1
|
Amusan A, Akinola O, Akano K, Hernández-Castañeda M, Dick JK, Sowunmi A, Hart G, Gbotosho G. Polymorphisms in Pfkelch13 domains before and after the introduction of artemisinin-based combination therapy in Southwest Nigeria. PLoS One 2025; 20:e0316479. [PMID: 40163420 PMCID: PMC11957316 DOI: 10.1371/journal.pone.0316479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/11/2024] [Indexed: 04/02/2025] Open
Abstract
Emergence of artemisinin resistance in East Africa has greatly necessitated surveillance of artemisinin resistance in other African countries with great malaria burden. Specific mutations within the β-propeller and BTB/Poz domains of Pfkelch13 gene are validated markers of artemisinin resistance. Sparse information exists on mutations outside these domains that may also contribute to artemisinin resistance. This study evaluated the occurrence and frequency of mutations in all domains of Pfkelch13 gene, and their impact on treatment outcome in Ibadan pre- and post-adoption of Artemisinin-based Combination Therapies (ACTs) in Nigeria. Dry blood spots prepared from blood samples obtained from P. falciparum-infected patients during retrospective (2000-2005) and prospective (2021) studies were analysed. Treatment outcomes with dihydroartemisinin-piperaquine were evaluated in a cohort of patients from the prospective study during a 42-day follow-up. Nested amplifications of Pfkelch13 gene fragments were done and subjected to Sanger dideoxy sequencing. Mutations were identified by sequence alignment and correlated with treatment outcome parameters including parasite clearance time (PCT) and day 2 parasite reduction ratio (PRRD2) among others. Mean PCT was 2.1 ± 0.6 days (95%CI: 1.97-2.24) while PRRD2 was 4815 with 100% adequate clinical and parasitological response. Altogether, 64 (11 retrospective/53 prospective) samples were successfully sequenced. None of the β-propeller domain mutations validated as artemisinin resistance markers were found within the analysed samples. However, four distinct mutations, K189T (64.2%), K189N (1.9%), R255K (3.8%), and N217H (1.9%) were identified within the N-terminal domain of the prospective samples while the K189T mutation was identified in a retrospective sample obtained in 2003. The K189T and R255K mutations correlated significantly with longer parasite clearance time in treated patients (P < 0.002). There was no evidence of validated molecular marker of artemisinin resistance within the ß-propeller domain of Pfkelch13. However, frequency of K189T mutation and its significant correlation with longer PCT may suggest possibilities of geographical variations in genetic drivers of artemisinin resistance.
Collapse
Affiliation(s)
- Abiodun Amusan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Malaria Research Laboratories, Institute for Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Malaria Research Laboratories, Institute for Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kazeem Akano
- Department of Biological Sciences and African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - María Hernández-Castañeda
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America.
| | - Jenna K. Dick
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America.
| | - Akintunde Sowunmi
- Malaria Research Laboratories, Institute for Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Geoffrey Hart
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America.
| | - Grace Gbotosho
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Malaria Research Laboratories, Institute for Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Habtamu K, Getachew H, Abossie A, Demissew A, Tsegaye A, Degefa T, Zhong D, Wang X, Lee MC, Zhou G, Kibret S, King CL, Kazura JW, Petros B, Yewhalaw D, Yan G. Post-treatment transmissibility of Plasmodium falciparum infections: an observational cohort study. Malar J 2025; 24:87. [PMID: 40098038 PMCID: PMC11917023 DOI: 10.1186/s12936-025-05279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/01/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Strengthening malaria control and expediting progress toward elimination requires targeting gametocytes to interrupt transmission. Artemisinin-based combination therapy (ACT) effectively clears Plasmodium falciparum asexual parasites and immature gametocytes but has a limited impact on mature gametocytes, which mosquitoes ingest during a blood meal. To address this gap, the World Health Organization recommends adding a single low dose of primaquine (PQ) to ACT regimens. This study assessed the efficacy of a single low-dose PQ for P. falciparum gametocyte clearance and evaluated mosquito infectiousness in Ethiopia. METHODS A prospective cohort study was conducted using passive case detection to enrol individuals with uncomplicated P. falciparum malaria at six health facilities. Participants were treated with either ACT alone or ACT plus 0.25 mg/kg single-dose PQ (ACT + PQ) and followed for 28 days with weekly visits. Blood smears for parasite counts, filter paper samples for DNA isolation, and whole blood for RNA preservation were collected on days 0, 7, 14, 21, and 28. On day 7, venous blood was obtained for membrane feeding assays using the Hemotek® system to assess mosquito infection. Logistic regression analysed mosquito infection predictors, while gametocyte prevalence was compared between treatment arms using χ2 or Fisher's exact tests. RESULTS Of 304 screened patients, 192 were enroled, with a median age of 23 (IQR 17-30) years; 65.7% were male. Post-treatment, 11 human-to-mosquito transmission cases were identified on day 7. Participants receiving ACT + SLD-PQ were significantly less likely to be infectious on day 7 (OR 0.12, 95% CI 0.02-0.57, p = 0.008) and had a significantly reduced prevalence of gametocytes (OR 0.22, 95% CI 0.06-0.83, p = 0.026) compared to those receiving ACT alone. CONCLUSION A single course of low-dose primaquine (PQ) given with ACT significantly decreases the prevalence of gametocytaemia. Furthermore, membrane-feeding assays show that this combination also considerably lowers mosquito infection, confirming existing knowledge and emphasizing the promise of low-dose PQ as a successful transmission-blocking strategy in managing malaria.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Laboratory Sciences, Menelik II Medical and Health Science College, Addis Ababa, Ethiopia.
| | - Hallelujah Getachew
- Department of Medical Laboratory Sciences, Arbaminch College of Health Sciences, Arbaminch, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Ashenafi Abossie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arbaminch, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Arega Tsegaye
- College of Natural Science, Department of Biology, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Solomon Kibret
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Christopher L King
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James W Kazura
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
3
|
Zhang D, Zhao Y, Liu D, Liu F, Liu P, Zhang B, Wu Z, Roobsoong W, Bantuchai S, Thongpoon S, Sripoorote P, Wang M, Cui L, Cao Y. Evaluation of the transmission-blocking potential of Plasmodium vivax antigen Pvg37 using transgenic rodent parasites and clinical isolates. Front Cell Infect Microbiol 2025; 15:1529770. [PMID: 39925376 PMCID: PMC11802531 DOI: 10.3389/fcimb.2025.1529770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Background Plasmodium vivax is a major cause of malaria, particularly outside Africa, necessitating effective strategies for public health management. Transmission-blocking vaccines (TBVs) have shown the potential to inhibit malaria transmission by targeting antigens expressed in sexual-stage parasites. Pbg37, a conserved protein expressed in sexual stages from gametocyte to ookinete in the rodent parasite P. berghei, is a viable target for TBV development. Methods and findings In this study, we constructed a transgenic strain, TrPvg37Pb, expressing Pvg37 using the P. berghei ΔPbg37 strain. Initial findings demonstrated that the replacement of Pbg37 with the exogenous Pvg37 did not impact parasite growth or development. Notably, Pvg37 was expressed during the gametocyte to ookinete development and was associated with the plasmic membrane, similar to Pbg37. To evaluate the potential of Pvg37 as a TBV candidate, we synthesized two Pvg37 polypeptides and immunized rabbits to generate antibodies. In vitro experiments demonstrated that anti-Pvg37-P2 antibodies significantly inhibited the formation of male gametes and ookinetes in the transgenic TrPvg37Pb parasite. Additionally, in mosquito feeding assays, mosquitos feeding on TrPvg37Pb-infected mice passively transferred with anti-Pvg37-P2 antibodies showed a significant 80.2% decrease in oocyst density compared to the control group. Furthermore, in direct membrane feeding experiments using four clinical P. vivax isolates, the anti-Pvg37 antibodies significantly reduced oocyst density by 28.6-50.4%. Conclusion Pvg37 is a promising candidate for P. vivax TBV development, deserving further research and optimization to enhance its immunogenicity and transmission-blocking activity.
Collapse
MESH Headings
- Animals
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Malaria Vaccines/immunology
- Malaria Vaccines/genetics
- Malaria Vaccines/administration & dosage
- Malaria, Vivax/transmission
- Malaria, Vivax/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Rabbits
- Mice
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/blood
- Humans
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Female
- Plasmodium berghei/immunology
- Plasmodium berghei/genetics
- Animals, Genetically Modified
- Male
- Disease Models, Animal
- Anopheles/parasitology
Collapse
Affiliation(s)
- Di Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dongyan Liu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Shenyang, Liaoning, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Pengbo Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Biying Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zifang Wu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piyarat Sripoorote
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Meilian Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
4
|
DePina AJ, Lopes Gomes JA, Moreira AL, Niang EHA. Situational analysis of malaria in Cabo Verde: From endemic control to elimination, history, cases data and challenges ahead. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004153. [PMID: 39792907 PMCID: PMC11723648 DOI: 10.1371/journal.pgph.0004153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
On 12 January 2024, Cabo Verde was officially certified by the WHO as a malaria-free country after six consecutive years without local transmission. This study analysed the malaria history of Cabo Verde from 1953 to certification in 2024, highlighted the valuable lessons learned, and discussed challenges for prevention reintroduction. Malaria data from the last 35 years (1988-2022) were analysed using descriptive analyses, and cases were mapped using the USGS National Map Viewer. From 1988 to 2022, 3,089 malaria cases were reported, 2.381 (77.1%) locally and 708 (22.9%) imported. Imported cases were reported nationwide except on Brava Island. Six municipalities did not report any cases, while local cases were restricted to Santiago and Boavista, with 2.360 and 21 cases, respectively. Malaria history in the country revealed six remarkable steps and three periods of interruption in the transmission of local malaria cases. The last local cases were reported in Boavista in 2015 and Santiago in 2017. Since 2018, introduced cases have been recorded from time to time. Disease lethality was low, with ten malaria deaths from 2010 to 2023, and the highest value of 8.3% (3/36) recorded in 2011. With this certification, Cabo Verde became a reference in Africa for its health sector organisation, multisectoral, and partnership in malaria control. However, maintaining the certification presents several sustainability challenges for the country. Additionally, robust epidemiological and entomological surveillance, continued investigations, and ongoing research are crucial.
Collapse
Affiliation(s)
- Adilson José DePina
- Programa de Eliminação do Paludismo, CCS-SIDA, Ministério da Saúde, Praia, Cabo Verde
| | | | - António Lima Moreira
- Programa Nacional de Luta contra as doenças de transmissão Vectorial e Problemas Ambientais, Ministério da Saúde, Praia, Cabo Verde
| | - El Hadji Amadou Niang
- Laboratoire d’Ecologie Vectorielle et Parasitaire (LEVP), Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| |
Collapse
|
5
|
Keleş S, Alakbarli J, Akgül B, Baghirova M, Imamova N, Barati A, Shikhaliyeva I, Allahverdiyev A. Nanotechnology based drug delivery systems for malaria. Int J Pharm 2024; 666:124746. [PMID: 39321903 DOI: 10.1016/j.ijpharm.2024.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Malaria, caused by Plasmodium parasites transmitted through Anopheles mosquitoes, remains a global health burden, particularly in tropical regions. The most lethal species, Plasmodium falciparum and Plasmodium vivax, pose significant threats to human health. Despite various treatment strategies, malaria continues to claim lives, with Africa being disproportionately affected. This review explores the advancements in drug delivery systems for malaria treatment, focusing on polymeric and lipid-based nanoparticles. Traditional antimalarial drugs, while effective, face challenges such as toxicity and poor bio-distribution. To overcome these issues, nanocarrier systems have been developed, aiming to enhance drug efficacy, control release, and minimize side effects. Polymeric nanocapsules, dendrimers, micelles, liposomes, lipid nanoparticles, niosomes, and exosomes loaded with antimalarial drugs are examined, providing a comprehensive overview of recent developments in nanotechnology for malaria treatment. The current state of antimalarial treatment, including combination therapies and prophylactic drugs, is discussed, with a focus on the World Health Organization's recommendations. The importance of nanocarriers in malaria management is underscored, highlighting their role in targeted drug delivery, controlled release, and improved pharmacological properties. This review bridges the gap in the literature, consolidating the latest advancements in nanocarrier systems for malaria treatment and offering insights into potential future developments in the field.
Collapse
Affiliation(s)
- Sedanur Keleş
- Faculty of Engineering, Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Jahid Alakbarli
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan; Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Buşra Akgül
- Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Malahat Baghirova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Nergiz Imamova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Ana Barati
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Inji Shikhaliyeva
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Adil Allahverdiyev
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan.
| |
Collapse
|
6
|
Liu T, Zheng D, Wang J, Li X, Yu S, Liu Z, Zheng F, Zhao C, Yang X, Wang Y. Dihydroartemisinin suppresses the susceptibility of Anopheles stephensi to Plasmodium yoelii by activating the Toll signaling pathway. Parasit Vectors 2024; 17:414. [PMID: 39363238 PMCID: PMC11451267 DOI: 10.1186/s13071-024-06497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Malaria is a serious public health concern. Artemisinin and its derivatives are first-line drugs for the treatment of Plasmodium falciparum malaria. In mammals, artemisinin exhibits potent anti-inflammatory and immunoregulatory properties. However, it is unclear whether artemisinin plays a regulatory role in the innate immunity of mosquitoes, thereby affecting the development of Plasmodium in Anopheles when artemisinin and its metabolites enter mosquitoes. This study aims to determine the effect of dihydroartemisinin (DHA), a first-generation semisynthetic derivative of artemisinin, on innate immunity and malaria vector competence of Anopheles stephensi. METHODS Anopheles stephensi was fed Plasmodium-infected mice treated with DHA via gavage, Plasmodium-infected blood containing DHA in vitro, or DHA-containing sugar, followed by Plasmodium yoelii infection. The engorged female mosquitoes were separated and dissected 8 and 17 days after infection. Plasmodium oocysts and sporozoites were counted and compared between the control and DHA-treated groups. Additionally, total RNA and proteins were extracted from engorged mosquitoes 24 and 72 h post infection (hpi). Real-time polymerase chain reaction (PCR) and western blotting were performed to detect the transcriptional levels and protein expression of immune molecules in mosquitoes. Finally, the Toll signaling pathway was inhibited via RNA interference and the infection density was analyzed to confirm the role of the Toll signaling pathway in the effect of DHA on the vector competence of mosquitoes. RESULTS DHA treatment via different approaches significantly reduced the number of Plasmodium oocysts and sporozoites in mosquitoes. The transcriptional levels of anti-Plasmodium immune genes (including TEP1, LRIM1, and APL1C), Toll pathway genes (including Tube, MyD88, and Rel1), and the effector defensin 1 were upregulated by DHA treatment at 24 and 72 hpi. TEP1 and Rel1 protein expression was significantly induced under DHA treatment. However, Rel1 knockdown in DHA-treated mosquitoes abrogated DHA-mediated refractoriness to Plasmodium infection. CONCLUSIONS DHA treatment effectively inhibited the development of P. yoelii in A. stephensi by upregulating mosquitoes' Toll signaling pathway, thereby influencing the susceptibility of Anopheles to Plasmodium.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
| | - Dan Zheng
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
| | - Xin Li
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
| | - Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
| | - Zhilong Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
| | - Feifei Zheng
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Caizhi Zhao
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China.
| |
Collapse
|
7
|
Ahmed F, Eticha T, Ashenef A. Quality assessment of common anti-malarial medicines marketed in Gambella, National Regional State, South Western-Ethiopia. Malar J 2024; 23:278. [PMID: 39272079 PMCID: PMC11401441 DOI: 10.1186/s12936-024-05091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Over the past years, there has been a growing concern that a considerable amount of anti-malarial supply in the underdeveloped world particularly in the private sector, is of poor quality. The World Health Organization (WHO) has received about 1500 reports that mentions instances of substandard and falsified products since 2013. The majority of the reports concerned antibiotics and anti-malarials. The majority of reports (42%) originate from the WHO African region. OBJECTIVE This study intends to assess the quality of the most widely used anti-malarial medications [artemether-lumefantrine tablets, chloroquine phosphate tablets, primaquine phosphate tablets, artesunate, and artemether injections] in Gambella, South-West, Ethiopia. METHODS A total of 52 samples were collected on June 2022 from Gambella National Regional State, Ethiopia. Half of the districts (six) located in the four zones of the region were chosen using simple random sampling technique. All drug retail outlets available in the selected districts (locally known as woredas) were included. The samples were subjected to visual inspection with a tool adopted from the joint WHO/FIP/ USP checklist. The pharmacopeial tests for identification, uniformity of dosage forms, assay, thickness, diameter, hardness, friability, disintegration test, dissolution, and sterility tests were carried out according to the USP 44-NF 39 and International Pharmacopoeia 11th edition, 2022 monographs. RESULTS AND DISCUSSION Only 25% of the samples were registered on the Ethiopian Food and Drug Authority (EFDA's) electronic regulatory/ registration system (ERIS). Besides, 88.8% of artemether injection products were presented in clear glass ampoules. This might expose the products to photochemical degradation that leads to in loss of anti-plasmodial activity. In addition, 50% of the artemether products assessed were not bioequivalent with the comparator product in the in vitro dissolution comparison tests. Overall, the study findings reveal a high prevalence (58.3%) of substandard anti-malarial drugs in the region. The stated percent of the samples had failed in one or more of the quality test parameters assessed in this study. CONCLUSION The study findings reveal a high prevalence (58.3%) of substandard anti-malarial drugs in the region. Only a quarter were registered and 38% of the unregistered products failed the quality tests. Hence, the national, regional medicine regulatory bodies and other stake holders should perform the required roles to circumvent presence of Substandard and Falsified (SF) anti-malarial drugs in the study sites.
Collapse
Affiliation(s)
- Feruza Ahmed
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O Box.1176, Addis Ababa, Ethiopia
| | - Tadele Eticha
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O Box.1176, Addis Ababa, Ethiopia
| | - Ayenew Ashenef
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O Box.1176, Addis Ababa, Ethiopia.
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box. 9086, Addis Ababa, Ethiopia.
| |
Collapse
|
8
|
Ranjit A, Wylie BJ. Malaria in Pregnancy, Current Challenges, and Emerging Prevention Strategies in a Warming Climate. Clin Obstet Gynecol 2024; 67:620-632. [PMID: 39061127 DOI: 10.1097/grf.0000000000000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Malaria still presents a grave threat to the health of pregnancies worldwide with prevention currently stalling as traditional control and prevention strategies are limited by both insecticide and drug resistance. Furthermore, climate change is bringing malaria to locations where it was once eradicated and intensifying malaria in other areas. Even where malaria is not currently common, obstetricians will need to understand the pathogenesis of the disease, how it is transmitted, methods for prevention and treatment in pregnancy, and promising emerging strategies such as vaccines. A renewed global response is needed for this age-old disease in which pregnancy poses specific susceptibility.
Collapse
Affiliation(s)
- Anju Ranjit
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Francisco
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
9
|
Afolayan FID, Odeyemi RA, Salaam RA. In silico and in vivo evaluations of multistage antiplasmodial potency and toxicity profiling of n-Hexadecanoic acid derived from Vernonia amygdalina. Front Pharmacol 2024; 15:1445905. [PMID: 39234111 PMCID: PMC11371785 DOI: 10.3389/fphar.2024.1445905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/12/2024] [Indexed: 09/06/2024] Open
Abstract
Background Despite the widely reported potentials of n-Hexadecanoic acid (HA) as a bioactive, its multi-stage antiplasmodial activity and toxicity profiles remain largely unknown. Methodology Thus, this study uses a combination of in silico approaches and in vivo studies to assess the inhibitory activities of HA at different stages of the Plasmodium lifecycle, antiplasmodial performance, and toxicity profiles. The HA was retrieved from the PubChem database, while antiplasmodial target proteins from different stages of the Plasmodium falciparum life cycle were collated from the Protein Databank (PDB). Molecular Docking and Visualization were conducted between the compound and target proteins using AutoVina PyRx software and Biovia Discovery Studio, respectively. Also, the AdmetLab 3.0 algorithm was used to predict the absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profiles of HA. Based on a 4-day suppressive test, the antiplasmodial activity against the Plasmodium berghei ANKA strain in mice was evaluated. Furthermore, subacute toxicity and micronucleus assays were used for further toxicity assessment. Results The molecular docking analysis indicates multi-stage, multi-target potentials of HA with favourable ligand-receptor complexes across the four Plasmodium falciparum stages. Meanwhile, the mice administered with 100 mg/kg, 50 mg/kg, and 10 mg/kg of HA demonstrated considerable chemosuppression in a dose-dependent manner of 89.74%, 83.80%, and 71.58% percentage chemosuppression, respectively, at p < 0.05. The ADMET prediction, histopathological tests, and micronucleus assays show that HA is safer at a lower dose. Conclusion This study showed that n-Hexadecanoic acid is a potential drug candidate for malaria. Hence, it is recommended for further molecular and biochemical investigations.
Collapse
Affiliation(s)
- F I D Afolayan
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - R A Odeyemi
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - R A Salaam
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
10
|
Khan SA, Alsulami MN, Alsehimi AA, Alzahrani MS, Mosule DA, Albohiri HH. Beta vulgaris Betalains Mitigate Parasitemia and Brain Oxidative Stress Induced by Plasmodium berghei in Mice. Pharmaceuticals (Basel) 2024; 17:1064. [PMID: 39204168 PMCID: PMC11357596 DOI: 10.3390/ph17081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Although many drugs have been discovered to treat malaria infection, many of them face resistance from the host's body with long-term use. Therefore, this study aimed to evaluate the activity of betalains (from Beta vulgaris) and chloroquine (a reference drug) against brain oxidative stress induced by Plasmodium berghei in male mice. Two protocols were applied in this study: the therapeutic and prophylactic protocols. The results of the therapeutic protocol revealed a significant decrease in the level of parasitemia caused by P. berghei. Additionally, the histopathological changes in various brain regions were markedly improved after treatment with betalains. Regarding the prophylactic protocol, betalains were able to protect the brain tissues from oxidative stress, inflammation, and disrupted neurotransmitters expected to occur as a result of infection by P. berghei. This was demonstrated by modulating the activities of brain antioxidants (SOD and GSH), inflammatory cytokines (IL-6, IL-10, IL-12, TNF-α, and INF-γ), and neurotransmitters (serotonin, epinephrine, and norepinephrine). This study has proven that using betalains as a treatment or as a preventive has a vital and effective role in confronting the brain histopathological, oxidative stress, and inflammatory changes induced by P. berghei infection.
Collapse
Affiliation(s)
- Samar A. Khan
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (S.A.K.); (M.N.A.); (D.A.M.)
| | - Muslimah N. Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (S.A.K.); (M.N.A.); (D.A.M.)
| | - Atif A. Alsehimi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.S.A.)
| | - Majed S. Alzahrani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.S.A.)
| | - Dina A. Mosule
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (S.A.K.); (M.N.A.); (D.A.M.)
| | - Haleema H. Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (S.A.K.); (M.N.A.); (D.A.M.)
| |
Collapse
|
11
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
12
|
Aqilah Zahirah Norazmi N, Hafizah Mukhtar N, Ravindar L, Suhaily Saaidin A, Huda Abd Karim N, Hamizah Ali A, Kartini Agustar H, Ismail N, Yee Ling L, Ebihara M, Izzaty Hassan N. Exploring antimalarial potential: Conjugating organometallic moieties with organic fragments for enhanced efficacy. Bioorg Chem 2024; 149:107510. [PMID: 38833991 DOI: 10.1016/j.bioorg.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
In the search for novel ligands with efficacy against various diseases, particularly parasitic diseases, molecular hybridization of organometallic units into biologically active scaffolds has been hailed as an appealing strategy in medicinal chemistry. The conjugation to organometallic fragments can be achieved by an appropriate linker or by directly coordinating the existing drugs to a metal. The success of Ferroquine (FQ, SR97193), an effective chloroquine-ferrocene conjugate currently undergoing the patient-exploratory phase as a combination therapy with the novel triaminopyrimidine ZY-19489 for malaria, has sparked intense interest in organometallic compound drug discovery. We present the evolution of organometallic antimalarial agents over the last decade, focusing on the parent moiety's class and the type of organometallics involved. Four main organometallic antimalarial compounds have been chosen based on conjugated organic moieties: existing antimalarial drugs, other clinical drugs, hybrid drugs, and promising scaffolds of thiosemicarbazones, benzimidazoles, and chalcones, in particular. The presented insights contribute to the ongoing discourse on organometallic compound drug development for malaria diseases.
Collapse
Affiliation(s)
- Nur Aqilah Zahirah Norazmi
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Hafizah Mukhtar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Center of Foundation Studies, Universiti Teknologi Mara, 43800 Dengkil, Selangor, Malaysia
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
13
|
Sivakumar R, Floyd K, Erath J, Jacoby A, Kim Kim J, Bayguinov PO, Fitzpatrick JAJ, Goldfarb D, Jovanovic M, Tripathi A, Djuranovic S, Pavlovic-Djuranovic S. Poly-basic peptides and polymers as new drug candidates against Plasmodium falciparum. Malar J 2024; 23:227. [PMID: 39090669 PMCID: PMC11295857 DOI: 10.1186/s12936-024-05056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-based combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs, such as lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. In this study, a common characteristic of the P. falciparum proteome-stretches of poly-lysine residues, such as those found in proteins related to adhesion and pathogenicity-is investigated for its potential to treat infected erythrocytes. METHODS This study utilizes in vitro culturing of intra-erythrocytic P. falciparum to assess the ability of poly-lysine peptides to inhibit the parasite's growth, measured via flow cytometry of acridine orange-stained infected erythrocytes. The inhibitory effect of many poly-lysine lengths and modifications were tested this way. Affinity pull-downs and mass spectrometry were performed to identify the proteins interacting with these poly-lysines. RESULTS A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 h. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers retains or increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. CONCLUSION Since poly-lysine dendrimers are already FDA-approved for drug delivery and this study displays their potency against intraerythrocytic P. falciparum, their adaptation as anti-malarial drugs presents a promising new therapeutic strategy for malaria.
Collapse
Affiliation(s)
- Roshan Sivakumar
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine Floyd
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Roche Pharma Research & Early Development, F. Hoffmann-LaRoche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Abhai Tripathi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
14
|
Obaldía N. The human malaria- Aotus monkey model: a historical perspective in antimalarial chemotherapy research at the Gorgas Memorial Laboratory-Panama. Antimicrob Agents Chemother 2024; 68:e0033824. [PMID: 38837364 PMCID: PMC11232403 DOI: 10.1128/aac.00338-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Center for the Evaluation of Antimalarial Drugs and Vaccines, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama, Republic of Panama
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Hamidon NH, Dona ACT, Zin NNINM, Nordin NI, Sulaiman SF, Abu-Bakar N. Bioassay-Guided Fractionation of Acetone and Methanol Extracts of Quercus infectoria Galls with Antimalarial Properties. Trop Life Sci Res 2024; 35:167-185. [PMID: 39234468 PMCID: PMC11371400 DOI: 10.21315/tlsr2024.35.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/03/2024] [Indexed: 09/06/2024] Open
Abstract
The antimalarial properties of crude extracts from Quercus infectoria galls were investigated through bioassay-guided fractionation. Acetone (QIA) and methanol (QIM) crude extracts have been reported to have promising antimalarial activity against Plasmodium falciparum (3D7 strain). These extracts were subjected to fractionation using automated preparative high-performance liquid chromatography (prep-HPLC) to identify the most active fractions. Nine fractions were isolated from each extract, of which the fractions QIA11 and QIM16 showed antimalarial activity, with IC50 values of 17.65 ± 1.82 μg/mL and 24.21 ± 1.88 μg/mL, respectively. In comparison, the standard antimalarial drug artemisinin has an IC50 value of 0.004 ± 0.001 μg/mL). Through high-resolution liquid chromatography coupled with mass spectrometry (HR-LCMS) analysis of the fractions, four known compounds were successfully identified: gallic acid, ellagic acid, 1,3,6-tris-o-(3,4,5-trihydroxybenzoyl)-beta-d-glucose and 1-O,6-O-digalloyl-beta-D-glucose.
Collapse
Affiliation(s)
- Nurul Hammizah Hamidon
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
- SIRIM BERHAD, Institute of Biotechnology Research Centre, Block 19, No. 1, Persiaran Dato Menteri, Section 2, 40700 Shah Alam, Selangor, Malaysia
| | | | - Nik Nor Imam Nik Mat Zin
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
- SIRIM BERHAD, Institute of Biotechnology Research Centre, Block 19, No. 1, Persiaran Dato Menteri, Section 2, 40700 Shah Alam, Selangor, Malaysia
| | - Nurul Izza Nordin
- SIRIM BERHAD, Institute of Biotechnology Research Centre, Block 19, No. 1, Persiaran Dato Menteri, Section 2, 40700 Shah Alam, Selangor, Malaysia
| | - Shaida Fariza Sulaiman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Nurhidanatasha Abu-Bakar
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
16
|
Collins JE, Jiang T, Lee JW, Wendt K, Nardella F, Jeon J, Paes R, Santos NM, Rocamora F, Chang M, Schaefer S, Cichewicz RH, Winzeler EA, Chakrabarti D. Understanding the Antiplasmodial Action of Resistance-Refractory Xanthoquinodin A1. ACS Infect Dis 2024; 10:2276-2287. [PMID: 38810215 PMCID: PMC11533362 DOI: 10.1021/acsinfecdis.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Our previous work identified a series of 12 xanthoquinodin analogues and 2 emodin-dianthrones with broad-spectrum activities against Trichomonas vaginalis, Mycoplasma genitalium, Cryptosporidium parvum, and Plasmodium falciparum. Analyses conducted in this study revealed that the most active analogue, xanthoquinodin A1, also inhibits Toxoplasma gondii tachyzoites and the liver stage of Plasmodium berghei, with no cross-resistance to the known antimalarial targets PfACS, PfCARL, PfPI4K, or DHODH. In Plasmodium, inhibition occurs prior to multinucleation and induces parasite death following 12 h of compound exposure. This moderately fast activity has impeded resistance line generation, with xanthoquinodin A1 demonstrating an irresistible phenotype in both T. gondii and P. falciparum.
Collapse
Affiliation(s)
- Jennifer E Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Tiantian Jiang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Karen Wendt
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Flore Nardella
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jin Jeon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Raphaella Paes
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Natalia Mojica Santos
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Maya Chang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Samuel Schaefer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
17
|
de Aguiar-Barros J, Granja F, de Abreu-Fernandes R, de Queiroz LT, da Silva e Silva D, Citó AC, Mocelin NKADO, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Molecular Surveillance of Artemisinin-Resistant Plasmodium falciparum Parasites in Mining Areas of the Roraima Indigenous Territory in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:679. [PMID: 38928926 PMCID: PMC11203648 DOI: 10.3390/ijerph21060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Multidrug- and artemisinin-resistant (ART-R) Plasmodium falciparum (Pf) parasites represent a challenge for malaria elimination worldwide. Molecular monitoring in the Kelch domain region (pfk13) gene allows tracking mutations in parasite resistance to artemisinin. The increase in illegal miners in the Roraima Yanomami indigenous land (YIL) could favor ART-R parasites. Thus, this study aimed to investigate ART-R in patients from illegal gold mining areas in the YIL of Roraima, Brazil. A questionnaire was conducted, and blood was collected from 48 patients diagnosed with P. falciparum or mixed malaria (Pf + P. vivax). The DNA was extracted and the pfk13 gene was amplified by PCR. The amplicons were subjected to DNA-Sanger-sequencing and the entire amplified fragment was analyzed. Among the patients, 96% (46) were from illegal mining areas of the YIL. All parasite samples carried the wild-type genotypes/ART-sensitive phenotypes. These data reinforce the continued use of artemisinin-based combination therapies (ACTs) in Roraima, as well as the maintenance of systematic monitoring for early detection of parasite populations resistant to ART, mainly in regions with an intense flow of individuals from mining areas, such as the YIL. This is especially true when the achievement of falciparum malaria elimination in Brazil is planned and expected by 2030.
Collapse
Affiliation(s)
- Jacqueline de Aguiar-Barros
- Malaria Control Center, Epidemiological Surveillance Department, General Health Surveillance Coordination, SESAU-RR, Roraima 69305-080, Brazil;
- Postgraduate Program in Biodiversity and Biotechnology–BIONORTE Network/Roraima Federal University (UFRR), Roraima 69310-000, Brazil;
| | - Fabiana Granja
- Postgraduate Program in Biodiversity and Biotechnology–BIONORTE Network/Roraima Federal University (UFRR), Roraima 69310-000, Brazil;
- Biodiversity Research Centre, Roraima Federal University (UFRR), Roraima 69304-000, Brazil;
- Graduate Program in Natural Resources, Federal University of Roraima (UFRR), Roraima 69304-000, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | | | - Arthur Camurça Citó
- Research Support Center in Roraima (NAPRR) of the National Institute for Amazonian Research (INPA), Roraima 69301-150, Brazil;
| | - Natália Ketrin Almeida-de-Oliveira Mocelin
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
18
|
King HR, Bycroft M, Nguyen TB, Kelly G, Vinogradov AA, Rowling PJE, Stott K, Ascher DB, Suga H, Itzhaki LS, Artavanis-Tsakonas K. Targeting the Plasmodium falciparum UCHL3 ubiquitin hydrolase using chemically constrained peptides. Proc Natl Acad Sci U S A 2024; 121:e2322923121. [PMID: 38739798 PMCID: PMC11126973 DOI: 10.1073/pnas.2322923121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.
Collapse
Affiliation(s)
- Harry R. King
- Department of Pathology, University of Cambridge, CambridgeCB2 1QP, United Kingdom
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Mark Bycroft
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Thanh-Binh Nguyen
- School of Chemistry and Molecular Biosciences, University of Queensland, BrisbaneQLD 4067, Australia
| | - Geoff Kelly
- NMR Centre, Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Alexander A. Vinogradov
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo113-0033, Japan
| | - Pamela J. E. Rowling
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, BrisbaneQLD 4067, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo113-0033, Japan
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | | |
Collapse
|
19
|
Jemimah Sandra TN, Christelle Nadia NA, Cedric Y, Guy-Armand GN, Azizi MA, Aboubakar Sidiki NN, Alex Kevin TD, Payne VK, Hu H. In vitro and in vivo antimalarial activities of the ethanol extract of Erythrina sigmoidea stem bark used for the treatment of malaria in the Western Region of Cameroon. FRONTIERS IN PARASITOLOGY 2024; 3:1359442. [PMID: 39817179 PMCID: PMC11731919 DOI: 10.3389/fpara.2024.1359442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 01/18/2025]
Abstract
Background Malaria is one of the leading causes of morbidity and/or mortality in tropical Africa. The spread and development of resistance to chemical antimalarial drugs and the relatively high cost of the latter are problems associated with malaria control and are reasons to promote the use of plants to meet healthcare needs to treat malaria. The aim of this study was to evaluate antiplasmodial activities of extracts of Erythrina sigmoidea (Mah quat), which is traditionally used for the treatment of malaria in the western region of Cameroon. Material and methods The ethanol extract of E. sigmoidea stem bark was obtained through the maceration process using 95% ethanol, while the aqueous extract was prepared by infusion. The in vitro antiplasmodial effect of extracts against P. falciparum chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains was determined using the Trager and Jensen method. On the other hand, the in vivo antimalarial activity of the extract was evaluated in mice infected with Plasmodium berghei strain NK65 using the Peters' 4-day suppressive test and Ryley test (curative test). A total of 36 mice were used, subdivided into six groups of six mice each: one normal control, a negative control, a positive control, and three other groups for the tested product. Blood samples were collected on the 10th day of each test for hematological parameters. Results The aqueous extract had an in vitro antiplasmodial activity against the chloroquine-sensitive strain with an IC50 of 29.51 ± 3.63 µg/mL and against the chloroquine-resistant strain with an IC50 of 35.23 ± 3.17 µg/mL. The highest in vitro antiplasmodial activity was observed with the ethanol extract against the chloroquine-sensitive strain with an IC50 of 6.44 ± 0.08 µg/mL and against the chloroquine-resistant strain with an IC50 of 7.53 ± 0.22 µg/mL. The ethanol extract demonstrated suppressive activity in vivo with reduction rates of 87.69%, 86.79%, and 81.08% at doses of 500 mg/kg, 250 mg/kg, and 125 mg/kg, respectively; and curative activity in vivo with reduction rates of 80%, 78.5%, and 77.5% at doses of 500 mg/kg, 250 mg/kg, and 125 mg/kg, respectively. The number of white blood cells in the negative control (44.55 ± 5.02 103/µL) was higher compared to the other groups. As for the red blood cells, we observed a massive destruction of the latter in the infected and untreated group (5.82 ± 1.50 106/µL) compared to the infected and ethanol extract-treated groups (8.74 ± 1.57 106/µL for 500 mg/kg, 7.54 ± 1.77 106/µL for 250 mg/kg, and 8.9 ± 1.50 106/µL for 125 mg/kg). Conclusion This study provides scientific data on the use of E. sigmoidea by the local population for the treatment of malaria. It shows that E. sigmoidea has antiplasmodial activity, and we also see that there are differences between the parameters that we have in the treated groups and those of the untreated group. However, toxicity tests are necessary to assess its safety.
Collapse
Affiliation(s)
- Tientcheu Noutong Jemimah Sandra
- Department of Animal Biology Faculty of Science, University of Dschang, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Noumedem Anangmo Christelle Nadia
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Microbiology, Hematology and Immunology Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Yamssi Cedric
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Bamenda, Bambili, Cameroon
| | - Gamago Nkadeu Guy-Armand
- Department of Animal Biology Faculty of Science, University of Dschang, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Mounvera Abdel Azizi
- Department of Animal Biology Faculty of Science, University of Dschang, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Ngouyamsa Nsapkain Aboubakar Sidiki
- Department of Animal Biology Faculty of Science, University of Dschang, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Tako Djimefo Alex Kevin
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon
| | - Vincent Khan Payne
- Department of Animal Biology Faculty of Science, University of Dschang, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine – Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, China
| |
Collapse
|
20
|
Embo-Ibouanga AW, Nguyen M, Paloque L, Coustets M, Joly JP, Augereau JM, Vanthuyne N, Bikanga R, Coquin N, Robert A, Audran G, Boissier J, Mellet P, Benoit-Vical F, Marque SRA. Hybrid Peptide-Alkoxyamine Drugs: A Strategy for the Development of a New Family of Antiplasmodial Drugs. Molecules 2024; 29:1397. [PMID: 38543034 PMCID: PMC10974622 DOI: 10.3390/molecules29061397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against P. falciparum. Since the parasite enzymes should trigger the production of the active drug in the parasite's food vacuoles, our approach is summarized as "to dig its grave with its fork". However, despite promising sub-micromolar IC50 values in the classical chemosensitivity assay, more in-depth tests evidenced that the anti-parasite activity of these compounds could be due to their cytostatic activity rather than a truly anti-parasitic profile, demonstrating that the antiplasmodial activity cannot be based only on measuring antiproliferative activity. It is therefore imperative to distinguish, with appropriate tests, a genuinely parasiticidal activity from a cytostatic activity.
Collapse
Affiliation(s)
- Ange W. Embo-Ibouanga
- Aix-Marseille University, CNRS, UMR 7273, 13007 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination and MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (L.P.); (J.-M.A.); (A.R.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination and MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (L.P.); (J.-M.A.); (A.R.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Mathilde Coustets
- LCC-CNRS, Laboratoire de Chimie de Coordination and MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (L.P.); (J.-M.A.); (A.R.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Jean-Patrick Joly
- Aix-Marseille University, CNRS, UMR 7273, 13007 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination and MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (L.P.); (J.-M.A.); (A.R.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Nicolas Vanthuyne
- Aix-Marseille University, CNRS, Centrale Marseille ISM2 Marseille, 13007 Marseille, France;
| | - Raphaël Bikanga
- Université des Sciences et Techniques de Masuku, LASNSOM, BP 901 Franceville, Gabon;
| | - Naomie Coquin
- LCC-CNRS, Laboratoire de Chimie de Coordination and MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (L.P.); (J.-M.A.); (A.R.)
| | - Anne Robert
- LCC-CNRS, Laboratoire de Chimie de Coordination and MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (L.P.); (J.-M.A.); (A.R.)
| | - Gérard Audran
- Aix-Marseille University, CNRS, UMR 7273, 13007 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Jérôme Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France;
| | - Philippe Mellet
- Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, 33076 Bordeaux, France;
- INSERM, 33076 Bordeaux, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination and MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (L.P.); (J.-M.A.); (A.R.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Sylvain R. A. Marque
- Aix-Marseille University, CNRS, UMR 7273, 13007 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| |
Collapse
|
21
|
Usman MA, Ibrahim FB, Mohammed HO, Awogbamila SO, Idris UA, Suleiman MA. Antiplasmodial Activity of β-Ionone and the Effect of the Compound on Amelioration of Anaemia and Oxidative Organ Damage in Mice Infected with Plasmodium berghei. Acta Parasitol 2024; 69:242-250. [PMID: 37982977 DOI: 10.1007/s11686-023-00741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Owing to evolution of parasite strains that are resistant to existing antimalarial drugs, research for novel antimalarial medicines is progressing on numerous fronts. PURPOSE Herein, we evaluated the in vivo anti-Plasmodium berghei activity of β-ionone including its ameliorative potential towards P. berghei-associated anaemia and oxidative organ damage. METHODS Mice were infected with chloroquine-sensitive strain of P. berghei and then treated with β-ionone at doses of 10 and 20 mg/kg body weight (BW) for seven days. The parasitemia, packed cell volume and redox sensitive biomarkers in the liver, brain and spleen were estimated. RESULTS Our result showed that β-ionone, in a dose-dependent fashion, significantly (p < 0.05) repressed the multiplication of P. berghei. More so, the compound, at doses of 10 and 20 mg/kg BW, significantly (p < 0.05) mitigated anaemia and organ damage induced by P. berghei. CONCLUSION Overall, the findings demonstrated that β-ionone has antiplasmodial actions and plays a mitigative role against P. berghei-induced anaemia and oxidative organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Umar Adam Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
22
|
Collins JE, Lee JW, Rocamora F, Saggu GS, Wendt KL, Pasaje CFA, Smick S, Santos NM, Paes R, Jiang T, Mittal N, Luth MR, Chin T, Chang H, McLellan JL, Morales-Hernandez B, Hanson KK, Niles JC, Desai SA, Winzeler EA, Cichewicz RH, Chakrabarti D. Antiplasmodial peptaibols act through membrane directed mechanisms. Cell Chem Biol 2024; 31:312-325.e9. [PMID: 37995692 PMCID: PMC10923054 DOI: 10.1016/j.chembiol.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.
Collapse
Affiliation(s)
- Jennifer E Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Jin Woo Lee
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA
| | - Frances Rocamora
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Karen L Wendt
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Smick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Natalia Mojica Santos
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Raphaella Paes
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Tiantian Jiang
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Nimisha Mittal
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline R Luth
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Taylor Chin
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Howard Chang
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - James L McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Kirsten K Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA.
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
23
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
24
|
Watson DJ, Laing L, Petzer JP, Wong HN, Parkinson CJ, Wiesner L, Haynes RK. Efficacies and ADME properties of redox active methylene blue and phenoxazine analogues for use in new antimalarial triple drug combinations with amino-artemisinins. Front Pharmacol 2024; 14:1308400. [PMID: 38259296 PMCID: PMC10800708 DOI: 10.3389/fphar.2023.1308400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Efforts to develop new artemisinin triple combination therapies effective against artemisinin-tolerant strains of Plasmodium falciparum based on rational combinations comprising artemisone or other amino-artemisinins, a redox active drug and a third drug with a different mode of action have now been extended to evaluation of three potential redox partners. These are the diethyl analogue AD01 of methylene blue (MB), the benzo [α]phenoxazine PhX6, and the thiosemicarbazone DpNEt. IC50 values in vitro against CQ-sensitive and resistant P. falciparum strains ranged from 11.9 nM for AD01-41.8 nM for PhX6. PhX6 possessed the most favourable pharmacokinetic (PK) profile: intrinsic clearance rate CLint was 21.47 ± 1.76 mL/min/kg, bioavailability was 60% and half-life was 7.96 h. AD01 presented weaker, but manageable pharmacokinetic properties with a rapid CLint of 74.41 ± 6.68 mL/min/kg leading to a half-life of 2.51 ± 0.07 h and bioavailability of 15%. DpNEt exhibited a half-life of 1.12 h and bioavailability of 8%, data which discourage its further examination, despite a low CLint of 10.20 mL/min/kg and a high Cmax of 6.32 µM. Efficacies of AD01 and PhX6 were enhanced synergistically when each was paired with artemisone against asexual blood stages of P. falciparum NF54 in vitro. The favourable pharmacokinetics of PhX6 indicate this is the best partner among the compounds examined thus far for artemisone. Future work will focus on extending the drug combination studies to artemiside in vitro, and conducting efficacy studies in vivo for artemisone with each of PhX6 and the related benzo[α]phenoxazine SSJ-183.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacobus P. Petzer
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Ho Ning Wong
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, Australia
| | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
25
|
Dembele L, Dara A, Maiga M, Maiga FO, Cissoko D, Djimde AA. Imidazolopiperazine (IPZ)-Induced Differential Transcriptomic Responses on Plasmodium falciparum Wild-Type and IPZ-Resistant Mutant Parasites. Genes (Basel) 2023; 14:2124. [PMID: 38136946 PMCID: PMC10743112 DOI: 10.3390/genes14122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Imidazolopiperazine (IPZ), KAF156, a close analogue of GNF179, is a promising antimalarial candidate. IPZ is effective against Plasmodium falciparum and Plasmodium vivax clinical malaria in human with transmission blocking property in animal models and effective against liver stage parasites. Despite these excellent drug efficacy properties, in vitro parasites have shown resistance to IPZ. However, the mechanism of action and resistance of IPZ remained not fully understood. Here, we used transcriptomic analysis to elucidate mode of action of IPZs. We report, in wild-type parasites GNF179 treatment down regulated lipase enzymes, two metabolic pathways: the hydrolysis of Phosphoinositol 4,5-bipohosphate (PIP2) that produce diacyglycerol (DAG) and the cytosolic calcium Ca2+ homeostasis which are known to be essential for P. falciparum survival and proliferation, as well for membrane permeability and protein trafficking. Furthermore, in wild-type parasites, GNF179 repressed expression of Acyl CoA Synthetase, export lipase 1 and esterase enzymes. Thus, in wild-type parasites only, GNF179 treatment affected enzymes leading lipid metabolism, transport, and synthesis. Lastly, our data revealed that IPZs did not perturb known IPZ resistance genes markers pfcarl, pfact, and pfugt regulations, which are all instead possibly involved in the drug resistance that disturb membrane transport targeted by IPZ.
Collapse
Affiliation(s)
- Laurent Dembele
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
- African Center of Excellence in Bioinformatics (ACE), Bamako P.O. Box 1805, Mali
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
| | - Mohamed Maiga
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
- African Center of Excellence in Bioinformatics (ACE), Bamako P.O. Box 1805, Mali
| | - Fatoumata O. Maiga
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
- African Center of Excellence in Bioinformatics (ACE), Bamako P.O. Box 1805, Mali
| | - Djeneba Cissoko
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
- African Center of Excellence in Bioinformatics (ACE), Bamako P.O. Box 1805, Mali
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
| |
Collapse
|
26
|
Audu D, Patel VB, Idowu OA, Mshelbwala FM, Idowu AB. Baseline and recurrent exposure to the standard dose of artemisinin-based combination therapies (ACTs) induces oxidative stress and liver damage in mice (BALB/c). EGYPTIAN LIVER JOURNAL 2023; 13:53. [DOI: 10.1186/s43066-023-00291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 07/18/2024] Open
Abstract
Abstract
Background
In malaria-endemic countries, repeated intake of artemisinin-based combination therapies (ACTs) is rampant and driven by drug resistance, improper usage, and easy accessibility. Stress effects and potential liver toxicity due to the frequent therapeutic use of ACTs have not been extensively studied. Here, we investigated the effects of repeated treatment with standard doses of the commonly used ACTs artemether/lumefantrine (A/L) and artesunate-amodiaquine (A/A) on oxidative stress and liver function markers in male mice (BALB/c).
Methods
Forty Five mice were divided into three groups: control, A/L, and A/A. The drugs were administered three days in a row per week, and the regimen was repeated every two weeks for a total of six cycles. The levels of oxidative stress and liver function markers were measured in both plasma and liver tissue after initial (baseline) and repeated exposures for the second, third, and sixth cycles.
Results
Exposure to A/L or A/A caused a significant (p < 0.001) increase in plasma malondialdehyde (MDA) levels after the first and repeated exposure periods. However, Hepatic MDA levels increased significantly (p < 0.01) only after the sixth exposure to A/A. Following either single or repeated exposure to A/L or A/A, plasma and liver glutathione peroxidase (GPx) and catalase (CAT) activities, plasma aspartate and alanine transaminase, alkaline phosphatase activity, and bilirubin levels increased, whereas total plasma protein levels decreased significantly (p < 0.001). Varying degrees of hepatocyte degeneration and blood vessel congestion were observed in liver tissues after a single or repeated treatment period.
Conclusion
Irrespective of single or repeated exposure to therapeutic doses of A/L or A/A, plasma oxidative stress and liver damage were observed. However, long-term repeated A/A exposure can led to hepatic stress. Compensatory processes involving GPx and CAT activities may help reduce the observed stress.
Collapse
|
27
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
28
|
Sivakumar R, Floyd K, Jessey E, Kim JK, Bayguinov PO, Fitzpatrick JA, Goldfrab D, Jovanovic M, Tripathi A, Djuranovic S, Pavlovic-Djuranovic S. Poly-basic peptides and polymers as new drug candidate against Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558069. [PMID: 37745508 PMCID: PMC10516022 DOI: 10.1101/2023.09.16.558069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs like lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. Our study shows that a common characteristic of the P. falciparum proteome - stretches of poly-lysine residues such as those found in proteins related to adhesion and pathogenicity - can serve as an effective peptide treatment for infected erythrocytes. A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 hours. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers further increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, our affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. Since poly-lysine dendrimers are already FDA-approved for drug delivery, their adaptation as antimalarial drugs presents a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Roshan Sivakumar
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Katherine Floyd
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Erath Jessey
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University; New York, New York, USA
| | - Peter O. Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Missouri, USA
- Department of Neuroscience, Washington University School of Medicine; Missouri, USA
| | - James A.J. Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Missouri, USA
- Department of Neuroscience, Washington University School of Medicine; Missouri, USA
| | - Dennis Goldfrab
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University; New York, New York, USA
| | - Abhai Tripathi
- Johns Hopkins Bloomberg School of Public Health; Baltimore, Maryland, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | | |
Collapse
|
29
|
Coonahan ES, Amaratunga C, Long CA, Tarning J. Clinical needs assessment to inform development of a new assay to detect antimalarial drugs in patient samples: A case study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002087. [PMID: 37616192 PMCID: PMC10449106 DOI: 10.1371/journal.pgph.0002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/23/2023] [Indexed: 08/26/2023]
Abstract
Point-of-care assays have greatly increased access to diagnostic information and improved healthcare outcomes globally, especially in the case of tropical diseases in rural settings. Increased recognition of the impact of these tools and increased funding, along with advances in technology have led to a surge in development of new assays. However, many new tools fail to fulfill their intended purpose due to a lack of clinical impact, operational feasibility, and input from envisioned operators. To be successful, they must fit into existing clinical decision-making models and be designed in collaboration with end users. We describe a case study of the development of a new low-cost sensor for antimalarial drugs, from initial planning through collection and incorporation of design feedback to final assay design. The assay uses an aptamer-based sensor to detect antimalarial drugs from patient samples for tracking antimalarial use in Southeast Asia, a region with a long history of emerging antimalarial drug resistance. Design and use-case input was collected from malaria control experts, researchers, and healthcare workers to develop target product profiles. Data was collected via surveys and in-person interviews during assay development and ultimately informed a change in assay format. This aptamer sensor platform can be easily adapted to detect other small molecule and protein targets and the design process described here can serve as a model for the development of effective new assays to improve access to healthcare technology.
Collapse
Affiliation(s)
- Erin S. Coonahan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Sawant SS, Gabhe SY, Singh KK. In Vitro Effect on Plasmodium falciparum and In Vivo Effect on Plasmodium berghei of Annomaal , an Oily Fraction Obtained from the Seeds of Annona squamosa. Molecules 2023; 28:5472. [PMID: 37513343 PMCID: PMC10383673 DOI: 10.3390/molecules28145472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Malaria remains a life-threatening health problem and is responsible for the high rates of mortality and morbidity in the tropical and subtropical regions of the world. The increasing threat of drug resistance to available artemisinin-based therapy warrants an urgent need to develop new antimalarial drugs that are safer, more effective, and have a novel mode of action. Natural plants are an excellent source of inspiration in searching for a new antimalarial agent. This research reports a systematic investigation for determining the antimalarial potential of the seeds of A. squamosa. The study shows that the crude seed extract (CSE), protein, saponin, and the oily fractions of the seeds were nontoxic at a 2000 mg/kg body weight dose when tested in Wistar rats, thus revealing high safety is classified as class 5. The oily fraction, Annomaal, demonstrated pronounced antimalarial activity with low IC50 (1.25 ± 0.183 μg/mL) against P. falciparum in vitro. The CSE and Annomaal significantly inhibited the growth of P. berghei parasites in vivo with 58.47% and 61.11% chemo suppression, respectively, while the standard drug artemether showed chemo suppression of 66.75%. Furthermore, the study demonstrated that oral administration of Annomaal at a daily dose of 250 mg/kg/day for 3 days was adequate to provide a complete cure to the P. berghei-infected mice. Annomaal thus holds promise as being patient-compliant due to the shorter treatment schedule, eliminating the need for frequent dosing for extended time periods as required by several synthetic antimalarial drugs. Further studies are needed to determine the active compounds in the oily fraction responsible for antimalarial activity.
Collapse
Affiliation(s)
- Sampada S Sawant
- C.U. Shah College of Pharmacy, SNDT Women's University, Santacruz (West), Mumbai 400049, India
- Cipla Limited, Mumbai 400013, India
| | - Satish Y Gabhe
- C.U. Shah College of Pharmacy, SNDT Women's University, Santacruz (West), Mumbai 400049, India
| | - Kamalinder K Singh
- C.U. Shah College of Pharmacy, SNDT Women's University, Santacruz (West), Mumbai 400049, India
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
- Biomedical Evidence Based Transdisciplinary Health Research Institute, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
31
|
Osborne A, Phelan JE, Kaneko A, Kagaya W, Chan C, Ngara M, Kongere J, Kita K, Gitaka J, Campino S, Clark TG. Drug resistance profiling of asymptomatic and low-density Plasmodium falciparum malaria infections on Ngodhe island, Kenya, using custom dual-indexing next-generation sequencing. Sci Rep 2023; 13:11416. [PMID: 37452073 PMCID: PMC10349106 DOI: 10.1038/s41598-023-38481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Malaria control initiatives require rapid and reliable methods for the detection and monitoring of molecular markers associated with antimalarial drug resistance in Plasmodium falciparum parasites. Ngodhe island, Kenya, presents a unique malaria profile, with lower P. falciparum incidence rates than the surrounding region, and a high proportion of sub-microscopic and low-density infections. Here, using custom dual-indexing and Illumina next generation sequencing, we generate resistance profiles on seventy asymptomatic and low-density P. falciparum infections from a mass drug administration program implemented on Ngodhe island between 2015 and 2016. Our assay encompasses established molecular markers on the Pfcrt, Pfmdr1, Pfdhps, Pfdhfr, and Pfk13 genes. Resistance markers for sulfadoxine-pyrimethamine were identified at high frequencies, including a quintuple mutant haplotype (Pfdhfr/Pfdhps: N51I, C59R, S108N/A437G, K540E) identified in 62.2% of isolates. The Pfdhps K540E biomarker, used to inform decision making for intermittent preventative treatment in pregnancy, was identified in 79.2% of isolates. Several variants on Pfmdr1, associated with reduced susceptibility to quinolones and lumefantrine, were also identified (Y184F 47.1%; D1246Y 16.0%; N86 98%). Overall, we have presented a low-cost and extendable approach that can provide timely genetic profiles to inform clinical and surveillance activities, especially in settings with abundant low-density infections, seeking malaria elimination.
Collapse
Affiliation(s)
- Ashley Osborne
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Jody E Phelan
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Akira Kaneko
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wataru Kagaya
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chim Chan
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Mtakai Ngara
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - James Kongere
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Centre for Research in Tropical Medicine and Community Development (CRTMCD), Hospital Road Next to Kenyatta National Hospital, Nairobi, Kenya
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
32
|
Sinha S, Medhi B, Radotra BD, Batovska D, Markova N, Sehgal R. Evaluation of chalcone derivatives for their role as antiparasitic and neuroprotectant in experimentally induced cerebral malaria mouse model. 3 Biotech 2023; 13:260. [PMID: 37405268 PMCID: PMC10314887 DOI: 10.1007/s13205-023-03676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection with a complex pathophysiology. The current course of treatment is ineffective in lowering mortality or post-treatment side effects such as neurological and cognitive abnormalities. Chalcones are enormously distributed in spices, fruits, vegetables, tea, and soy-based foodstuffs that are well known for their antimalarial activity, and in recent years they have been widely explored for brain diseases like Alzheimer's disease. Therefore, considering the previous background of chalcones serving as both antimalarial and neuroprotective, the present study aimed to study the effect of these chalcone derivatives on an experimental model of cerebral malaria (CM). CM-induced mice were tested behaviorally (elevated plus maze, rota rod test, and hanging wire test), biochemically (nitric oxide estimation, cytokines (IL-1, IL-6, IL-10, IL-12p70, TNF, IFN-y), histopathologically and immunohistochemically, and finally ultrastructural changes were examined using a transmission electron microscope. All three chalcones treated groups showed a significant (p < 0.001) decrease in percentage parasitemia at the 10th day post-infection. Mild anxiolytic activity of chalcones as compared to standard treatment with quinine has been observed during behavior tests. No pigment deposition was observed in the QNN-T group and other chalcone derivative treated groups. Rosette formation was seen in the derivative 1 treated group. The present derivatives may be pioneered by various research and science groups to design such a scaffold that will be a future antimalarial with therapeutic potential or, because of its immunomodulatory properties, it could be used as an adjunct therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03676-y.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - B. D. Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Daniela Batovska
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezhda Markova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rakesh Sehgal
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| |
Collapse
|
33
|
Mohamed BS, Nguyen MC, Wein S, Uttaro JP, Robert X, Violot S, Ballut L, Jugnarain V, Mathé C, Cerdan R, Aghajari N, Peyrottes S. Purine containing carbonucleoside phosphonate analogues as novel chemotype for Plasmodium falciparum Inhibition. Eur J Med Chem 2023; 258:115581. [PMID: 37402342 DOI: 10.1016/j.ejmech.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
The nucleotidase ISN1 is a potential therapeutic target of the purine salvage pathway of the malaria parasite Plasmodium falciparum. We identified PfISN1 ligands by in silico screening of a small library of nucleos(t)ide analogues and by thermal shift assays. Starting from a racemic cyclopentyl carbocyclic phosphonate scaffold, we explored the diversity on the nucleobase moiety and also proposed a convenient synthetic pathway to access the pure enantiomers of our initial hit (compound (±)-2). 2,6-Disubstituted purine containing derivatives such as compounds 1, (±)-7e and β-L-(+)-2 showed the most potent inhibition of the parasite in vitro, with low micromolar IC50 values. These results are remarkable considering the anionic nature of nucleotide analogues, which are known to lack activity in cell culture experiments due to their scarce capacity to cross cell membranes. For the first time, we report the antimalarial activity of a carbocyclic methylphosphonate nucleoside with an L-like configuration.
Collapse
Affiliation(s)
- Bemba Sidi Mohamed
- IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France
| | - Minh Chau Nguyen
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Sharon Wein
- LPHI, Univ Montpellier, CNRS, Campus Triolet, Place Eugène Bataillon, 34095, Montpellier, France
| | - Jean-Pierre Uttaro
- IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France
| | - Xavier Robert
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Vinesh Jugnarain
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Christophe Mathé
- IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France.
| | - Rachel Cerdan
- LPHI, Univ Montpellier, CNRS, Campus Triolet, Place Eugène Bataillon, 34095, Montpellier, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Suzanne Peyrottes
- IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
34
|
Azmi WA, Rizki AFM, Djuardi Y, Artika IM, Siregar JE. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105460. [PMID: 37269964 DOI: 10.1016/j.meegid.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Malaria still poses a major burden on human health around the world, especially in endemic areas. Plasmodium resistance to several antimalarial drugs has been one of the major hindrances in control of malaria. Thus, the World Health Organization recommended artemisinin-based combination therapy (ACT) as a front-line treatment for malaria. The emergence of parasites resistant to artemisinin, along with resistant to ACT partner drugs, has led to ACT treatment failure. The artemisinin resistance is mostly related to the mutations in the propeller domain of the kelch13 (k13) gene that encodes protein Kelch13 (K13). The K13 protein has an important role in parasite reaction to oxidative stress. The most widely spread mutation in K13, with the highest degree of resistance, is a C580Y mutation. Other mutations, which are already identified as markers of artemisinin resistance, are R539T, I543T, and Y493H. The objective of this review is to provide current molecular insights into artemisinin resistance in Plasmodium falciparum. The trending use of artemisinin beyond its antimalarial effect is described. Immediate challenges and future research directions are discussed. Better understanding of the molecular mechanisms underlying artemisinin resistance will accelerate implementation of scientific findings to solve problems with malarial infection.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - I Made Artika
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
35
|
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. DISCOVER NANO 2023; 18:66. [PMID: 37382765 PMCID: PMC10409709 DOI: 10.1186/s11671-023-03849-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Malaria is a life-threatening, blood-borne disease with over two hundred million cases throughout the world and is more prevalent in Sub-Saharan Africa than anywhere else in the world. Over the years, several treatment agents have been developed for malaria; however, most of these active pharmaceutical ingredients exhibit poor aqueous solubility and low bioavailability and may result in drug-resistant parasites, thus increasing malaria cases and eventually, deaths. Factors such as these in therapeutics have led to a better appreciation of nanomaterials. The ability of nanomaterials to function as drug carriers with a high loading capacity and targeted drug delivery, good biocompatibility, and low toxicity renders them an appealing alternative to conventional therapy. Nanomaterials such as dendrimers and liposomes have been demonstrated to be capable of enhancing the efficacy of antimalarial drugs. This review discusses the recent development of nanomaterials and their benefits in drug delivery for the potential treatment of malaria.
Collapse
Affiliation(s)
- Linda N Kekani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
36
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
37
|
Paul S, Ghodake BM, Bhattacharya AK. Late-Stage C(sp 2 )-H Arylation of Artemisinic Acid and Arteannuin B: Effect of Olefin Migration Towards Synthesis of C-13 Arylated Artemisinin Derivatives. Chem Asian J 2023; 18:e202300162. [PMID: 36867394 DOI: 10.1002/asia.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/01/2023] [Indexed: 03/04/2023]
Abstract
In recent years, C-H bond functionalization has emerged as a pivotal tool for late-stage functionalization of complex natural products for the synthesis of potent biologically active derivatives. Artemisinin and its C-12 functionalized semi-synthetic derivatives are well-known clinically used anti-malarial drugs due to the presence of the essential 1,2,4-trioxane pharmacophore. However, in the wake of parasite developing resistance against artemisinin-based drugs, we conceptualized the synthesis of C-13 functionalized artemisinin derivatives as new antimalarials. In this regard, we envisaged that artemisinic acid could be a suitable precursor for the synthesis of C-13 functionalized artemisinin derivatives. Herein, we report C-13 arylation of artemisinic acid, a sesquiterpene acid and our attempts towards synthesis of C-13 arylated artemisinin derivatives. However, all our efforts resulted in the formation of a novel ring-contracted rearranged product. Additionally, we have extended our developed protocol for C-13 arylation of arteannuin B, a sesquiterpene lactone epoxide considered to be the biogenetic precursor of artemisinic acid. Indeed, the synthesis of C-13 arylated arteannuin B renders our developed protocol to be effective in sesquiterpene lactone as well.
Collapse
Affiliation(s)
- Sayantan Paul
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| | - Balaji M Ghodake
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| |
Collapse
|
38
|
Ulhaq ZS. Synergistic anti-malarial effects of Ocimum sanctum leaf extract and artemisinin. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:250-251. [PMID: 36707285 DOI: 10.1016/j.eimce.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/11/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia; Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Batu, East Java, Indonesia.
| |
Collapse
|
39
|
Zhang M, Zhang Q, Zhang Q, Cui X, Zhu L. Promising Antiparasitic Natural and Synthetic Products from Marine Invertebrates and Microorganisms. Mar Drugs 2023; 21:84. [PMID: 36827125 PMCID: PMC9965275 DOI: 10.3390/md21020084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Parasitic diseases still threaten human health. At present, a number of parasites have developed drug resistance, and it is urgent to find new and effective antiparasitic drugs. As a rich source of biological compounds, marine natural products have been increasingly screened as candidates for developing new antiparasitic drugs. The literature related to the study of the antigenic animal activity of marine natural compounds from invertebrates and microorganisms was selected to summarize the research progress of marine compounds and the structure-activity relationship of these compounds in the past five years and to explore the possible sources of potential antiparasitic drugs for parasite treatment.
Collapse
Affiliation(s)
- Mingyue Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Qinrong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Qunde Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Xinyuan Cui
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
40
|
Gubae K, Mohammed H, Sime H, Hailgiorgis H, Mare AK, Gidey B, Haile M, Assefa G, Bekele W, Tasew G, Abay SM, Assefa A. Safety and therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria at Shecha health centre, Arba Minch, Ethiopia. Malar J 2023; 22:9. [PMID: 36611179 PMCID: PMC9824982 DOI: 10.1186/s12936-022-04436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In 2004, Ethiopia adopted artemether-lumefantrine (AL, Coartem®) as first-line treatment for the management of uncomplicated Plasmodium falciparum malaria. Continuous monitoring of AL therapeutic efficacy is crucial in Ethiopia, as per the World Health Organization (WHO) recommendation. This study aimed to assess the therapeutic efficacy of AL in the treatment of uncomplicated P. falciparum infection. METHODS A 28 day onearm, prospective evaluation of the clinical and parasitological response to AL was conducted at Shecha Health Centre, Arba Minch town, Southern Ethiopia. Patients were treated with six-dose regimen of AL over three days and monitored for 28 days with clinical and laboratory assessments. Participant recruitment and outcome classification was done in accordance with the 2009 WHO methods for surveillance of anti-malarial drug efficacy guidelines. RESULTS A total of 88 study participants were enrolled and 69 of them completed the study with adequate clinical and parasitological response. Two late parasitological failures were observed, of which one was classified as a recrudescence by polymerase chain reaction (PCR). The PCRcorrected cure rate was 98.6% (95% CI 92.3-100). AL demonstrated a rapid parasite and fever clearance with no parasitaemia on day 2 and febrile cases on day 3. Gametocyte clearance was complete by day three. No serious adverse events were reported during the 28 days follow-up. CONCLUSION The study demonstrated high therapeutic efficacy and good safety profile of AL. This suggests the continuation of AL as the first-line drug for the treatment of uncomplicated P. falciparum malaria in Ethiopia. Periodic therapeutic efficacy studies and monitoring of markers of resistance are recommended for early detection of resistant parasites.
Collapse
Affiliation(s)
- Kale Gubae
- grid.449044.90000 0004 0480 6730Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia ,grid.7123.70000 0001 1250 5688Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hussein Mohammed
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Heven Sime
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Henok Hailgiorgis
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Anteneh Kassahun Mare
- grid.7123.70000 0001 1250 5688Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bokretsion Gidey
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mebrahtom Haile
- grid.414835.f0000 0004 0439 6364Ethiopian Ministry of Health, Addis Ababa, Ethiopia
| | - Gudissa Assefa
- grid.414835.f0000 0004 0439 6364Ethiopian Ministry of Health, Addis Ababa, Ethiopia
| | - Worku Bekele
- World Health Organization, Addis Ababa, Ethiopia
| | - Geremew Tasew
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Ashenafi Assefa
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia ,grid.10698.360000000122483208Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
41
|
Kucharski M, Wirjanata G, Nayak S, Boentoro J, Dziekan JM, Assisi C, van der Pluijm RW, Miotto O, Mok S, Dondorp AM, Bozdech Z. Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum. PLoS Pathog 2023; 19:e1011118. [PMID: 36696458 PMCID: PMC9901795 DOI: 10.1371/journal.ppat.1011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/06/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Christina Assisi
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Rob W. van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
42
|
Targeting Artemisinin-Resistant Malaria by Repurposing the Anti-Hepatitis C Virus Drug Alisporivir. Antimicrob Agents Chemother 2022; 66:e0039222. [PMID: 36374050 PMCID: PMC9765015 DOI: 10.1128/aac.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of Plasmodium falciparum resistance raises an urgent need to find new antimalarial drugs. Here, we report the rational repurposing of the anti-hepatitis C virus drug, alisporivir, a nonimmunosuppressive analog of cyclosporin A, against artemisinin-resistant strains of P. falciparum. In silico docking studies and molecular dynamic simulation predicted strong interaction of alisporivir with PfCyclophilin 19B, confirmed through biophysical assays with a Kd value of 354.3 nM. Alisporivir showed potent antimalarial activity against chloroquine-resistant (PfRKL-9 with resistance index [Ri] 2.14 ± 0.23) and artemisinin-resistant (PfKelch13R539T with Ri 1.15 ± 0.04) parasites. The Ri is defined as the ratio between the IC50 values of the resistant line to that of the sensitive line. To further investigate the mechanism involved, we analyzed the expression level of PfCyclophilin 19B in artemisinin-resistant P. falciparum (PfKelch13R539T). Semiquantitative real-time transcript, Western blot, and immunofluorescence analyses confirmed the overexpression of PfCyclophilin 19B in PfKelch13R539T. A 50% inhibitory concentration in the nanomolar range, together with the targeting of PfCyclophilin 19B, suggests that alisporivir can be used in combination with artemisinin. Since artemisinin resistance slows the clearance of ring-stage parasites, we performed a ring survival assay on artemisinin-resistant strain PfKelch13R539T and found significant decrease in parasite survival with alisporivir. Alisporivir was found to act synergistically with dihydroartemisinin and increase its efficacy. Furthermore, alisporivir exhibited antimalarial activity in vivo. Altogether, with the rational target-based Repurposing of alisporivir against malaria, our results support the hypothesis that targeting resistance mechanisms is a viable approach toward dealing with drug-resistant parasite.
Collapse
|
43
|
Beck HP. Digital microscopy and artificial intelligence could profoundly contribute to malaria diagnosis in elimination settings. Front Artif Intell 2022; 5:510483. [DOI: 10.3389/frai.2022.510483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
|
44
|
Computational Clues of Immunogenic Hotspots in Plasmodium falciparum Erythrocytic Stage Vaccine Candidate Antigens: In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5886687. [PMID: 36277884 PMCID: PMC9584662 DOI: 10.1155/2022/5886687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Malaria is the most pernicious parasitic infection, and Plasmodium falciparum is the most virulent species with substantial morbidity and mortality worldwide. The present in silico investigation was performed to reveal the biophysical characteristics and immunogenic epitopes of the 14 blood-stage proteins of the P. falciparum using comprehensive immunoinformatics approaches. For this aim, various web servers were employed to predict subcellular localization, antigenicity, allergenicity, solubility, physicochemical properties, posttranslational modification sites (PTMs), the presence of signal peptide, and transmembrane domains. Moreover, structural analysis for secondary and 3D model predictions were performed for all and stable proteins, respectively. Finally, human helper T lymphocyte (HTL) epitopes were predicted using HLA reference set of IEDB server and screened in terms of antigenicity, allergenicity, and IFN-γ induction as well as population coverage. Also, a multiserver B-cell epitope prediction was done with subsequent screening for antigenicity, allergenicity, and solubility. Altogether, these proteins showed appropriate antigenicity, abundant PTMs, and many B-cell and HTL epitopes, which could be directed for future vaccination studies in the context of multiepitope vaccine design.
Collapse
|
45
|
Ng JPL, Han Y, Yang LJ, Birkholtz LM, Coertzen D, Wong HN, Haynes RK, Coghi P, Wong VKW. Antimalarial and antitumour activities of the steroidal quinone-methide celastrol and its combinations with artemiside, artemisone and methylene blue. Front Pharmacol 2022; 13:988748. [PMID: 36120293 PMCID: PMC9479156 DOI: 10.3389/fphar.2022.988748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Artemisinin, isolated from the traditional Chinese medicinal plant qīng hāo 青蒿 (Artemisia annua) and its derivatives are used for treatment of malaria. With treatment failures now being recorded for the derivatives and companion drugs used in artemisinin combination therapies new drug combinations are urgently required. The amino-artemisinins artemiside and artemisone display optimal efficacies in vitro against asexual and sexual blood stages of the malaria parasite Plasmodium falciparum and are active against tumour cell lines. In continuing the evolution of combinations of the amino-artemisinins with new drugs, we examine the triterpenoid quinone methide celastrol isolated from the traditional Chinese medicinal plant léi gōng téng 雷公藤 (Tripterygium wilfordii). This compound is redox active, and has attracted considerable attention because of potent biological activities against manifold targets. We report that celastrol displays good IC50 activities ranging from 0.50–0.82 µM against drug-sensitive and resistant asexual blood stage Pf, and 1.16 and 0.28 µM respectively against immature and late stage Pf NF54 gametocytes. The combinations of celastrol with each of artemisone and methylene blue against asexual blood stage Pf are additive. Given that celastrol displays promising antitumour properties, we examined its activities alone and in combinations with amino-artemisinins against human liver HepG2 and other cell lines. IC50 values of the amino-artemisinins and celastrol against HepG2 cancer cells ranged from 0.55–0.94 µM. Whereas the amino-artemisinins displayed notable selectivities (SI > 171) with respect to normal human hepatocytes, in contrast, celastrol displayed no selectivity (SI < 1). The combinations of celastrol with artemiside or artemisone against HepG2 cells are synergistic. Given the promise of celastrol, judiciously designed formulations or structural modifications are recommended for mitigating its toxicity.
Collapse
Affiliation(s)
- Jerome P. L. Ng
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yu Han
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Jun Yang
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute Malaria for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute Malaria for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, School of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, School of Health Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Richard K. Haynes, Paolo Coghi, Vincent Kam Wai Wong,
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
- *Correspondence: Richard K. Haynes, Paolo Coghi, Vincent Kam Wai Wong,
| | - Vincent Kam Wai Wong
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- *Correspondence: Richard K. Haynes, Paolo Coghi, Vincent Kam Wai Wong,
| |
Collapse
|
46
|
Singh P, Sharma C, Sharma B, Mishra A, Agarwal D, Kannan D, Held J, Singh S, Awasthi SK. N-sulfonylpiperidinedispiro-1,2,4,5-tetraoxanes exhibit potent in vitro antiplasmodial activity and in vivo efficacy in mice infected with P. berghei ANKA. Eur J Med Chem 2022; 244:114774. [DOI: 10.1016/j.ejmech.2022.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/04/2022]
|
47
|
Kaur N, Korkor C, Mobin SM, Chibale K, Singh K. Fluorene-Chloroquine Hybrids: Synthesis, in vitro Antiplasmodial Activity, and Inhibition of Heme Detoxification Machinery of Plasmodium falciparum. ChemMedChem 2022; 17:e202200414. [PMID: 36017666 DOI: 10.1002/cmdc.202200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Fluorene-chloroquine hybrids have been identified as a new promising class of antiplasmodial agents. The most active compound 9d exhibited good in vitro antiplasmodial activity against a chloroquine-sensitive NF54 strain of the human malaria parasite Plasmodium falciparum with an IC50 value of 139 nM. UV-visible absorption, FTIR spectral and 1H NMR titration data corroborated the binding of 9d to monomeric and µ-oxodimeric heme as well as inhibition of β-hematin formation, which collectively supported the inhibition of heme detoxification machinery in P. falciparum. In silico docking studies revealed the binding interactions of the hybrids in the active site of the wild type as well as quadruple mutant of Pf-DHFR-TS dihydrofolate enzyme. Further, the ADMET parameters were predicted and were in good agreement with the expected values, suggesting the drug likeness of the synthesized hybrid molecules.Introduction.
Collapse
Affiliation(s)
- Navpreet Kaur
- IIT Indore Discipline of Chemistry: Indian Institute of Technology Indore Discipline of Chemistry, Chemistry, INDIA
| | - Constance Korkor
- University of Cape Town Institute of Infectious Disease and Molecular Medicine, Chemistry, INDIA
| | - Shaikh M Mobin
- IIT Indore: Indian Institute of Technology Indore, Chemistry, INDIA
| | - Kelly Chibale
- University of Cape Town Institute of Infectious Disease and Molecular Medicine, Chemistry, INDIA
| | - Kamaljit Singh
- Guru Nanak Dev University, Department of Chemistry, Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143005, 143005, Amritsar, INDIA
| |
Collapse
|
48
|
Rathod GK, Jain M, Sharma KK, Das S, Basak A, Jain R. New structural classes of antimalarials. Eur J Med Chem 2022; 242:114653. [PMID: 35985254 DOI: 10.1016/j.ejmech.2022.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Malaria remains a major vector borne disease claiming millions of lives worldwide due to infections caused by Plasmodium sp. Discovery and development of antimalarial drugs have previously been dominated majorly by single drug therapy. The malaria parasite has developed resistance against first line and second line antimalarial drugs used in the single drug therapy. This has drawn attention to find ways to alleviate the disease burden supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has now mandated the revision of the current antimalarial pharmacotherapy. Research efforts of the past decade led to the discovery and identification of several new structural classes of antimalarial agents with improved biological attributes over the older ones. The following is a comprehensive review, addressed to the new structural classes of heterocyclic and natural compounds that have been identified during the last decade as antimalarial agents. Some of the classes included herein contain one or more pharmacophores amalgamated into a single bioactive scaffold as antimalarial agents, which act upon the conventional and novel targets.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Samarpita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ahana Basak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
49
|
Synergistic anti-malarial effects of Ocimum sanctum leaf extract and artemisinin. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022; 305:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
Infectious diseases remain as one of the major burdens among health communities as well as in the general public despite the advances in prevention and treatment. Although vaccination and vector eliminations have greatly prevented the transmission of these diseases, the effectiveness of these strategies is no longer guaranteed as new challenges such as drug resistance and toxicity as well as the missing effective therapeutics arise. Hence, the development of new tools to manage these challenges is anticipated, in which nano technology using liposomes as effective nanostructure is highly considered. In this review, we concentrate on the advantages of liposomes in the drug delivery system and the development of vaccine in the treatment of three major infectious diseases; tuberculosis (TB), malaria and HIV.
Collapse
Affiliation(s)
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|