1
|
Sandu R, Singh J. A comprehensive review on calcitonin gene-related peptide in the management of gastrointestinal disorders. Inflammopharmacology 2025; 33:1043-1059. [PMID: 39934537 DOI: 10.1007/s10787-025-01657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The prevalence of gastrointestinal disorders caused by alcohol, Helicobacter pylori, non-steroidal anti-inflammatory drugs, chronic stress and sedentary lifestyle is on the rise. Calcitonin gene-related peptide (CGRP), a 37-amino acid neuropeptide, has emerged as a protective factor against various gastrointestinal issues. Despite its known benefits, the dual role of CGRP in gastrointestinal damage remains unclear. Discovered 30 years ago through alternative RNA processing of the calcitonin gene, CGRP is known to be a potent vasodilator involved in crucial defensive mechanisms for both physiological and pathological conditions. Promising evidences from preclinical research have attracted the interest of scientists for the exploration of CGRP as a therapeutic neuropeptide. Numerous evidences suggest that this neuropeptide is secreted by the neurons under the influence of endogenous as well as exogenous stimuli. CGRP repairs the gastric mucosal barrier and maintain mucosal integrity by suppressing NF-κB activation, thereby reducing tumour necrosis factor-alpha expression. In addition, recent studies suggest that CGRP modulates immune responses and enhances epithelial cell proliferation, further contributing to its cytoprotective effects. Consequently, CGRP and the CGRP secretagogues represent promising novel targets for clinical applications. This review aims to elucidate the role of CGRP and CGRP secretagogues in the management of gastrointestinal disorders, highlighting its potential as a therapeutic agent in the context of evidence-based modern gastroenterology.
Collapse
Affiliation(s)
- Rajesh Sandu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Jagtar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
2
|
Chowdhury MR, Islam A, Yurina V, Shimosato T. Water pollution, cholera, and the role of probiotics: a comprehensive review in relation to public health in Bangladesh. Front Microbiol 2025; 15:1523397. [PMID: 39877756 PMCID: PMC11772269 DOI: 10.3389/fmicb.2024.1523397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Cholera, a disease caused by Vibrio cholerae, remains a pervasive public health threat, particularly in regions with inadequate water sanitation and hygiene infrastructure, such as Bangladesh. This review explores the complex interplay between water pollution and cholera transmission in Bangladesh, highlighting how contaminated water bodies serve as reservoirs for V. cholerae. A key focus is the potential role of probiotics as a novel intervention approach for cholera prevention and management. Probiotics are promising as an adjunctive approach to existing therapies as they can enhance gut barrier function, induce competitive exclusion of pathogens, and modulate host immune responses. Recent probiotic advancements include engineering strains that disrupt V. cholerae biofilms and inhibit their virulence. Integrating probiotics with traditional cholera control measures could significantly enhance their effectiveness and provide a multifaceted approach to combating this persistent disease. This review aims to shed light on the potential of probiotics in revolutionizing cholera management and to offer insights into their application as both preventive and therapeutic tools in the fight against this enduring public health challenge.
Collapse
Affiliation(s)
- Md. Rayhan Chowdhury
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Ariful Islam
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Valentina Yurina
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Takeshi Shimosato
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Institute for Aqua Regeneration, Shinshu University, Nagano, Japan
| |
Collapse
|
3
|
Kalam N, Balasubramaniam VRMT. Crosstalk between COVID-19 and the gut-brain axis: a gut feeling. Postgrad Med J 2024; 100:539-554. [PMID: 38493312 DOI: 10.1093/postmj/qgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.
Collapse
Affiliation(s)
- Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
4
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Khablenko A, Danylenko S, Yalovenko O, Duhan O, Potemskaia O, Prykhodko D. Recombinant Probiotic Preparations: Current State, Development and Application Prospects. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2023; 6:119-147. [DOI: 10.20535/ibb.2022.6.3-4.268349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The article is devoted to the latest achievements in the field of research, development, and implementation of various types of medicinal products based on recombinant probiotics. The benefits of probiotics, their modern use in medicine along with the most frequently used genera and species of probiotic microorganisms were highlighted. The medicinal and therapeutic activities of the studied probiotics were indicated. The review suggests various methods of creating recombinant probiotic microorganisms, including standard genetic engineering methods, as well as systems biology approaches and new methods of using the CRISPR-Cas system. The range of potential therapeutic applications of drugs based on recombinant probiotics was proposed. Special attention was paid to modern research on the creation of new, more effective recombinant probiotics that can be used for various therapeutic purposes. Considering the vast diversity of therapeutic applications of recombinant probiotics and ambiguous functions, their use for the potential treatment of various common human diseases (non-infectious and infectious diseases of the gastrointestinal tract, metabolic disorders, and allergic conditions) was investigated. The prospects for creating different types of vaccines based on recombinant probiotics together with the prospects for their implementation into medicine were considered. The possibilities of using recombinant probiotics in veterinary medicine, particularly for the prevention of domestic animal diseases, were reviewed. The prospects for the implementation of recombinant probiotics as vaccines and diagnostic tools for testing certain diseases as well as modeling the work of the human digestive system were highlighted. The risks of creation, application, including the issues related to the regulatory sphere regarding the use of new recombinant microorganisms, which can potentially enter the environment and cause unforeseen circumstances, were outlined.
Collapse
Affiliation(s)
| | - Svetlana Danylenko
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | | - Olexii Duhan
- Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
| | - Oksana Potemskaia
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | |
Collapse
|
6
|
Chowdhury F, Ross AG, Islam MT, McMillan NAJ, Qadri F. Diagnosis, Management, and Future Control of Cholera. Clin Microbiol Rev 2022; 35:e0021121. [PMID: 35726607 PMCID: PMC9491185 DOI: 10.1128/cmr.00211-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera, caused by Vibrio cholerae, persists in developing countries due to inadequate access to safe water, sanitation, and hygiene. There are approximately 4 million cases and 143,000 deaths each year due to cholera. The disease is transmitted fecally-orally via contaminated food or water. Severe dehydrating cholera can progress to hypovolemic shock due to the rapid loss of fluids and electrolytes, which requires a rapid infusion of intravenous (i.v.) fluids. The case fatality rate exceeds 50% without proper clinical management but can be less than 1% with prompt rehydration and antibiotics. Oral cholera vaccines (OCVs) serve as a major component of an integrated control package during outbreaks or within zones of endemicity. Water, sanitation, and hygiene (WaSH); health education; and prophylactic antibiotic treatment are additional components of the prevention and control of cholera. The World Health Organization (WHO) and the Global Task Force for Cholera Control (GTFCC) have set an ambitious goal of eliminating cholera by 2030 in high-risk areas.
Collapse
Affiliation(s)
- Fahima Chowdhury
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | - Md Taufiqul Islam
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Firdausi Qadri
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
7
|
Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol 2022; 10:890479. [PMID: 35656199 PMCID: PMC9152101 DOI: 10.3389/fbioe.2022.890479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.
Collapse
|
8
|
Chen J, Byun H, Liu R, Jung IJ, Pu Q, Zhu CY, Tanchoco E, Alavi S, Degnan PH, Ma AT, Roggiani M, Beld J, Goulian M, Hsiao A, Zhu J. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc Natl Acad Sci U S A 2022; 119:e2121180119. [PMID: 35254905 PMCID: PMC8931321 DOI: 10.1073/pnas.2121180119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Hyuntae Byun
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Rui Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - I-Ji Jung
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Qinqin Pu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | | | - Ethan Tanchoco
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Salma Alavi
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Patrick H. Degnan
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Amy T. Ma
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Jun Zhu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
9
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
10
|
Design and in situ biosynthesis of precision therapies against gastrointestinal pathogens. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Yang B, Fang D, Lv Q, Wang Z, Liu Y. Targeted Therapeutic Strategies in the Battle Against Pathogenic Bacteria. Front Pharmacol 2021; 12:673239. [PMID: 34054548 PMCID: PMC8149751 DOI: 10.3389/fphar.2021.673239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence and rapid spread of antibiotic resistance in pathogenic bacteria constitute a global threat for public health. Despite ongoing efforts to confront this crisis, the pace of finding new potent antimicrobials is far slower than the evolution of drug resistance. The abuse of broad-spectrum antibiotics not only accelerates the formation of resistance but also imposes a burden on the intestinal microbiota, which acts a critical role in human homeostasis. As such, innovative therapeutic strategies with precision are pressingly warranted and highly anticipated. Recently, target therapies have achieved some breakthroughs by the aid of modern technology. In this review, we provide an insightful illustration of current and future medical targeted strategies, including narrow-spectrum agents, engineered probiotics, nanotechnology, phage therapy, and CRISPR-Cas9 technology. We discuss the recent advances and potential hurdles of these strategies. Meanwhile, the possibilities to mitigate the spread of resistance in these approaches are also mentioned. Altogether, a better understanding of the advantages, disadvantages, and mechanisms of action of these targeted therapies will be conducive to broadening our horizons and optimizing the existing antibacterial approaches.
Collapse
Affiliation(s)
- Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Qingyan Lv
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Low-Dose Exposure to Ganglioside-Mimicking Bacteria Tolerizes Human Macrophages to Guillain-Barré Syndrome-Associated Antigens. mBio 2021; 13:e0385221. [PMID: 35100875 PMCID: PMC8805021 DOI: 10.1128/mbio.03852-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early in life, commensal bacteria play a major role in immune development, helping to guide the host response toward harmful stimuli while tolerating harmless antigens to prevent autoimmunity. Guillain-Barré syndrome (GBS) is an autoimmune disease caused by errant immune attack of antibody-bound ganglioside receptors on host nerve cells, resulting in paralysis. Lipooligosaccharides enveloping the prevalent enteric pathogen, Campylobacter jejuni, frequently mimic human gangliosides and can trigger GBS by stimulating the autoimmune response. In low- to middle-income countries, young children are consistently exposed to C. jejuni, and it is not known if this impacts GBS susceptibility later in life. Using a macrophage model, we examined the effect of training these cells with low doses of ganglioside-mimicking bacteria prior to challenge with GBS-associated antigens. This training caused decreased production of proinflammatory cytokines, suggesting tolerance induction. We then screened Campylobacter isolates from 154 infant fecal samples for GM1 ganglioside mimicry, finding that 23.4% of strains from both symptomatic and asymptomatic infants displayed GM1-like structures. Training macrophages with one of these asymptomatic carrier isolates also induced tolerance against GBS-associated antigens, supporting that children can be exposed to the tolerizing antigen early in life. RNA interference of Toll-like receptor 2 (TLR2) and TLR4 suggests that these receptors are not involved in tolerance associated with decreases in tumor necrosis factor (TNF), interleukin-6 (IL-6), or IL-1β levels. The results of this study suggest that exposure to ganglioside-mimicking bacteria early in life occurs naturally and impacts host susceptibility to GBS development. IMPORTANCE In this study, we demonstrated that it is possible to tolerize immune cells to potentially dampen the autoreactive proinflammatory immune response against Guillain-Barré syndrome (GBS)-associated antigens. The innate immune response functions to arm the host against bacterial attack, but it can be tricked into recognizing the host's own cells when infectious bacteria display sugar structures that mimic human glycans. It is this errant response that leads to the autoimmunity and paralysis associated with GBS. By presenting immune cells with small amounts of the bacterial glycan mimic, we were able to suppress the proinflammatory immune response upon subsequent high exposure to glycan-mimicking bacteria. This suggests that individuals who have already been exposed to the glycan mimics in small amounts are less sensitive to autoimmune reactions against these glycans, and this could be a factor in determining susceptibility to GBS.
Collapse
|
13
|
Ryan VE, Bailey TW, Liu D, Vemulapalli T, Cooper B, Cox AD, Bhunia AK. Listeria adhesion protein-expressing bioengineered probiotics prevent fetoplacental transmission of Listeria monocytogenes in a pregnant Guinea pig model. Microb Pathog 2021; 151:104752. [PMID: 33484805 DOI: 10.1016/j.micpath.2021.104752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pregnancy is a high-risk factor for foodborne pathogen Listeria monocytogenes (Lm), which causes abortion, premature birth, or stillbirth. The primary route of Lm transmission is oral hence intestinal epithelial barrier crossing is a prerequisite for systemic spread. Intestinal barrier crossing, in part, is attributed to the interaction of Listeria adhesion protein (LAP) with its cognate receptor, Hsp60. In a recent study, we showed that oral-dosing of bioengineered Lactobacillus caseiprobiotic (BLP) expressing the LAP protected nonpregnant mice from lethal infection; however, its ability to prevent listeriosis during pregnancy is not known. Therefore, we investigated whether BLP could prevent fetoplacental transmission of Lm in a pregnant guinea pig model. After 14 consecutive days on probiotic (~109 CFU/ml in drinking water), pregnant guinea pigs (gestational days 24-28) were orally challenged with Lm (9 × 108-2.5 × 109 CFU/animal) and were euthanized 72 h post-infection. Maternal mesenteric lymph node (MLN), liver, spleen, lungs, blood, and placenta, and fetal liver were analyzed for the presence/absence of Lm. All tissues/organs from Lm-challenged naïve dams and fetuses were Lm positive. Similar tissue distribution was also seen in guinea pigs that received wild-type Lactobacillus casei (LbcWT). Remarkably, Lm was absent in the maternal blood, kidney, lungs, and placenta, and fetal liver from the BLP-fed group even though the Lm was present in the maternal liver, spleen, and MLN. BLP feeding also suppressed Lm-induced inflammatory response in mothers. These data highlight the potential for the prevention of fetoplacental transmission of Lm by LAP-expressing BLP during pregnancy.
Collapse
Affiliation(s)
- Valerie E Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Taylor W Bailey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA
| | - Tracy Vemulapalli
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
Drolia R, Amalaradjou MAR, Ryan V, Tenguria S, Liu D, Bai X, Xu L, Singh AK, Cox AD, Bernal-Crespo V, Schaber JA, Applegate BM, Vemulapalli R, Bhunia AK. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat Commun 2020; 11:6344. [PMID: 33311493 PMCID: PMC7732855 DOI: 10.1038/s41467-020-20200-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Probiotic bacteria reduce the intestinal colonization of pathogens. Yet, their use in preventing fatal infection caused by foodborne Listeria monocytogenes (Lm), is inconsistent. Here, we bioengineered Lactobacillus probiotics (BLP) to express the Listeria adhesion protein (LAP) from a non-pathogenic Listeria (L. innocua) and a pathogenic Listeria (Lm) on the surface of Lactobacillus casei. The BLP strains colonize the intestine, reduce Lm mucosal colonization and systemic dissemination, and protect mice from lethal infection. The BLP competitively excludes Lm by occupying the surface presented LAP receptor, heat shock protein 60 and ameliorates the Lm-induced intestinal barrier dysfunction by blocking the nuclear factor-κB and myosin light chain kinase-mediated redistribution of the major epithelial junctional proteins. Additionally, the BLP increases intestinal immunomodulatory functions by recruiting FOXP3+T cells, CD11c+ dendritic cells and natural killer cells. Engineering a probiotic strain with an adhesion protein from a non-pathogenic bacterium provides a new paradigm to exclude pathogens and amplify their inherent health benefits.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Mary Anne Roshni Amalaradjou
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Valerie Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Atul K Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Victor Bernal-Crespo
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - James A Schaber
- Bindley Bioscience Research Center, Purdue University, West Lafayette, IN, USA
| | - Bruce M Applegate
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
15
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [PMID: 32926886 DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
16
|
Alamdary SZ, Bakhshi B. Lactobacillus acidophilus attenuates toxin production by Vibrio cholerae and shigella dysenteriae following intestinal epithelial cells infection. Microb Pathog 2020; 149:104543. [PMID: 33010360 DOI: 10.1016/j.micpath.2020.104543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
AIMS The main objective of the present study was to assess and compare the safety and inhibitory efficacy of Lactobacillus acidophilus against cholera toxin and shigatoxin production by measuring CTX-B and Stx1 expression level in Caco-2 cells exposed to Vibrio cholerae (as a non-invasive small intestine pathogens and Shigella dysenteriae (as an invasive colon pathogen). METHODS Caco-2 cells were incubated with L. acidophilus 2 h before infection by V. cholerae and S. dysenteriae. Following RNA extraction and cDNA synthesis, relative toxins mRNA levels were determined according to a comparative critical threshold (Ct) real-time PCR. L. acidophilus didn't show any cytotoxic effect on Caco-2 cells. RESULTS L. acidophilus revealed a protective effect for Caco-2 cells against S. dysenteriae and V. cholera by 51% and 57%, respectively, which was determined by MTT assay and further confirmed by morphological examination. Pretreatment of Caco-2 cells with L. acidophilus prior to exposure to V. cholerae, attenuated the CTX-B expression in V. cholerae to about 1.76 folds. Expression of Stx1 by S. dysenteriae was also down-regulated to 1.6 folds following pretreatment of Caco-2 cells by L. acidophilus. No significant difference was observed in the attenuator role of L. acidophilus in toxin production by S. dysenteriae as a colon-invasive bacterium, compared with V. cholerae, the non-invasive pathogen of small intestine. CONCLUSIONS The results of the present study suggest that L. acidophilus is safe with protective effect for human epithelial colorectal cells, and is effective enough to be applied as a supplementary treatment for attenuation of toxin production in acute infectious diarrhea caused by V. cholerae and S. dysenteriae.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Abstract
Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.
Collapse
|
18
|
Development of bacteria as diagnostics and therapeutics by genetic engineering. J Microbiol 2019; 57:637-643. [DOI: 10.1007/s12275-019-9105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
|
19
|
Abstract
Cholera infections caused by the gamma-proteobacterium Vibrio cholerae have ravaged human populations for centuries, and cholera pandemics have afflicted every corner of the globe. Fortunately, interventions such as oral rehydration therapy, antibiotics/antimicrobials, and vaccines have saved countless people afflicted with cholera, and new interventions such as probiotics and phage therapy are being developed as promising approaches to treat even more cholera infections. Although current therapies are mostly effective and can reduce disease transmission, cholera outbreaks remain deadly, as was seen during recent outbreaks in Haiti, Ethiopia, and Yemen. This is due to significant underlying political and socioeconomic complications, including shortages of vaccines and clean food and water and a lack of health surveillance. In this review, we highlight the strengths and weaknesses of current cholera therapies, discuss emerging technologies, and argue that a multi-pronged, flexible approach is needed to continue to reduce the worldwide burden of cholera.
Collapse
Affiliation(s)
- Brian Y Hsueh
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Waters
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
20
|
Patry RT, Stahl M, Perez-Munoz ME, Nothaft H, Wenzel CQ, Sacher JC, Coros C, Walter J, Vallance BA, Szymanski CM. Bacterial AB 5 toxins inhibit the growth of gut bacteria by targeting ganglioside-like glycoconjugates. Nat Commun 2019; 10:1390. [PMID: 30918252 PMCID: PMC6437147 DOI: 10.1038/s41467-019-09362-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
The AB5 toxins cholera toxin (CT) from Vibrio cholerae and heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli are notorious for their roles in diarrheal disease, but their effect on other intestinal bacteria remains unexplored. Another foodborne pathogen, Campylobacter jejuni, can mimic the GM1 ganglioside receptor of CT and LT. Here we demonstrate that the toxin B-subunits (CTB and LTB) inhibit C. jejuni growth by binding to GM1-mimicking lipooligosaccharides and increasing permeability of the cell membrane. Furthermore, incubation of CTB or LTB with a C. jejuni isolate capable of altering its lipooligosaccharide structure selects for variants lacking the GM1 mimic. Examining the chicken GI tract with immunofluorescence microscopy demonstrates that GM1 reactive structures are abundant on epithelial cells and commensal bacteria, further emphasizing the relevance of this mimicry. Exposure of chickens to CTB or LTB causes shifts in the gut microbial composition, providing evidence for new toxin functions in bacterial gut competition. Bacterial AB5 toxins, such as cholera toxin, bind to oligosaccharides on the host cell surface and play key roles in the pathogenesis of diarrheal disease. Here, Patry et al. show that these toxins bind also to bacterial oligosaccharides and inhibit the growth of Campylobacter jejuni and gut commensal bacteria.
Collapse
Affiliation(s)
- Robert T Patry
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Martin Stahl
- Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - Maria Elisa Perez-Munoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Cory Q Wenzel
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Colin Coros
- Delta Genomics, Edmonton, AB, T5J 4P6, Canada
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - Christine M Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA. .,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
21
|
Asadi A, Razavi S, Talebi M, Gholami M. A review on anti-adhesion therapies of bacterial diseases. Infection 2019; 47:13-23. [PMID: 30276540 DOI: 10.1007/s15010-018-1222-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Infections caused by bacteria are a foremost cause of morbidity and mortality in the world. The common strategy of treating bacterial infections is by local or systemic administration of antimicrobial agents. Currently, the increasing antibiotic resistance is a serious and global problem. Since the most important agent for infection is bacteria attaching to host cells, hence, new techniques and attractive approaches that interfere with the ability of the bacteria to adhere to tissues of the host or detach them from the tissues at the early stages of infection are good therapeutic strategies. METHODS All available national and international databanks were searched using the search keywords. Here, we review various approaches to anti-adhesion therapy, including use of receptor and adhesion analogs, dietary constituents, sublethal concentrations of antibiotics, and adhesion-based vaccines. RESULTS Altogether, the findings suggest that interference with bacterial adhesion serves as a new means to fight infectious diseases. CONCLUSION Anti-adhesion-based therapies can be effective in prevention and treatment of bacterial infections, but further work is needed to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Ozdemir T, Fedorec AJ, Danino T, Barnes CP. Synthetic Biology and Engineered Live Biotherapeutics: Toward Increasing System Complexity. Cell Syst 2018; 7:5-16. [DOI: 10.1016/j.cels.2018.06.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
23
|
Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med 2018; 10:eaao2586. [PMID: 29899022 PMCID: PMC7821980 DOI: 10.1126/scitranslmed.aao2586] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Microbiota-modulating interventions are an emerging strategy to promote gastrointestinal homeostasis. Yet, their use in the detection, prevention, and treatment of acute infections remains underexplored. We report the basis of a probiotic-based strategy to promote colonization resistance and point-of-need diagnosis of cholera, an acute diarrheal disease caused by the pathogen Vibrio cholerae Oral administration of Lactococcus lactis, a common dietary fermentative bacterium, reduced intestinal V. cholerae burden and improved survival in infected infant mice through the production of lactic acid. Furthermore, we engineered an L. lactis strain that specifically detects quorum-sensing signals of V. cholerae in the gut and triggers expression of an enzymatic reporter that is readily detected in fecal samples. We postulate that preventive dietary interventions with fermented foods containing natural and engineered L. lactis strains may hinder cholera progression and improve disease surveillance in populations at risk of cholera outbreaks.
Collapse
Affiliation(s)
- Ning Mao
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Andres Cubillos-Ruiz
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - D. Ewen Cameron
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
24
|
Rostami FM, Mousavi H, Mousavi MRN, Shahsafi M. Efficacy of Probiotics in Prevention and Treatment of Infectious Diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.clinmicnews.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Das S, Angsantikul P, Le C, Bao D, Miyamoto Y, Gao W, Zhang L, Eckmann L. Neutralization of cholera toxin with nanoparticle decoys for treatment of cholera. PLoS Negl Trop Dis 2018; 12:e0006266. [PMID: 29470490 PMCID: PMC5839590 DOI: 10.1371/journal.pntd.0006266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/06/2018] [Accepted: 01/24/2018] [Indexed: 01/16/2023] Open
Abstract
Diarrheal diseases are a major cause of morbidity and mortality worldwide. In many cases, antibiotic therapy is either ineffective or not recommended due to concerns about emergence of resistance. The pathogenesis of several of the most prevalent infections, including cholera and enteroxigenic Escherichia coli, is dominated by enterotoxins produced by lumen-dwelling pathogens before clearance by intestinal defenses. Toxins gain access to the host through critical host receptors, making these receptors attractive targets for alternative antimicrobial strategies that do not rely on conventional antibiotics. Here, we developed a new nanotechnology strategy as a countermeasure against cholera, one of the most important and prevalent toxin-mediated enteric infections. The key host receptor for cholera toxin, monosialotetrahexosylganglioside (GM1), was coated onto the surface of polymeric nanoparticles. The resulting GM1-polymer hybrid nanoparticles were shown to function as toxin decoys by selectively and stably binding cholera toxin, and neutralizing its actions on epithelial cells in vitro and in vivo. Furthermore, the GM1-coated nanoparticle decoys attenuated epithelial 3’,5’-cyclic adenosine monophosphate production and fluid responses to infection with live Vibrio cholera in cell culture and a murine infection model. Together, these studies illustrate that the new nanotechnology-based platform can be employed as a non-traditional antimicrobial strategy for the management of enteric infections with enterotoxin-producing pathogens. Diarrheal diseases are a major cause of suffering and death in the world, particularly in tropical regions with limited health care resources. Many of the most important diarrhea-causing microbes produce toxins that activate fluid secretion in the gut. A prototype pathogen in this category is the cause of cholera, Vibrio cholerae, which is characterized by profuse diarrhea and severe electrolyte disturbances due to the release of cholera toxin. Although treatment with fluids by mouth or injection can save patients from death, they still experience the devastating symptoms of the disease. In the present study, we have developed a new intervention strategy with engineered nanoparticles, particulates than are smaller than one millionth of a meter, which can neutralize cholera toxin in the gut before it can cause the characteristic disease manifestations. This strategy represents a novel interventional approach whose mechanism of action is different from currently existing therapies, thus significantly broadening the medical armamentarium against cholera and perhaps other gut infections that cause diseases dominated by toxin production.
Collapse
Affiliation(s)
- Soumita Das
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Pavimol Angsantikul
- Department of Nanoengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Christine Le
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Denny Bao
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Weiwei Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Liangfang Zhang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (LE); (LZ)
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (LE); (LZ)
| |
Collapse
|
26
|
Abstract
Our ability to generate bacterial strains with unique and increasingly complex functions has rapidly expanded in recent times. The capacity for DNA synthesis is increasing and costing less; new tools are being developed for fast, large-scale genetic manipulation; and more tested genetic parts are available for use, as is the knowledge of how to use them effectively. These advances promise to unlock an exciting array of 'smart' bacteria for clinical use but will also challenge scientists to better optimize preclinical testing regimes for early identification and validation of promising strains and strategies. Here, we review recent advances in the development and testing of engineered bacterial diagnostics and therapeutics. We highlight new technologies that will assist the development of more complex, robust and reliable engineered bacteria for future clinical applications, and we discuss approaches to more efficiently evaluate engineered strains throughout their preclinical development.
Collapse
|
27
|
Yates LE, Mills DC, DeLisa MP. Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:167-200. [PMID: 30099598 DOI: 10.1007/10_2018_72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacteria have garnered increased interest in recent years as a platform for the biosynthesis of a variety of glycomolecules such as soluble oligosaccharides, surface-exposed carbohydrates, and glycoproteins. The ability to engineer commonly used laboratory species such as Escherichia coli to efficiently synthesize non-native sugar structures by recombinant expression of enzymes from various carbohydrate biosynthesis pathways has allowed for the facile generation of important products such as conjugate vaccines, glycosylated outer membrane vesicles, and a variety of other research reagents for studying and understanding the role of glycans in living systems. This chapter highlights some of the key discoveries and technologies for equipping bacteria with the requisite biosynthetic machinery to generate such products. As the bacterial glyco-toolbox continues to grow, these technologies are expected to expand the range of glycomolecules produced recombinantly in bacterial systems, thereby opening up this platform to an even larger number of applications.
Collapse
Affiliation(s)
- Laura E Yates
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Dominic C Mills
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
28
|
Cerdó T, Ruíz A, Suárez A, Campoy C. Probiotic, Prebiotic, and Brain Development. Nutrients 2017; 9:E1247. [PMID: 29135961 PMCID: PMC5707719 DOI: 10.3390/nu9111247] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
Recently, a number of studies have demonstrated the existence of a link between the emotional and cognitive centres of the brain and peripheral functions through the bi-directional interaction between the central nervous system and the enteric nervous system. Therefore, the use of bacteria as therapeutics has attracted much interest. Recent research has found that there are a variety of mechanisms by which bacteria can signal to the brain and influence several processes in relation to neurotransmission, neurogenesis, and behaviour. Data derived from both in vitro experiments and in vivo clinical trials have supported some of these new health implications. While recent molecular advancement has provided strong indications to support and justify the role of the gut microbiota on the gut-brain axis, it is still not clear whether manipulations through probiotics and prebiotics administration could be beneficial in the treatment of neurological problems. The understanding of the gut microbiota and its activities is essential for the generation of future personalized healthcare strategies. Here, we explore and summarize the potential beneficial effects of probiotics and prebiotics in the neurodevelopmental process and in the prevention and treatment of certain neurological human diseases, highlighting current and future perspectives in this topic.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Paediatrics, School of Medicine, University of Granada, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Alicia Ruíz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute, 18016 Granada, Spain.
- Department of Paediatrics, Faculty of Medicine, University of Granada, Av. de la Investigación, 11, 18016 Granada, Spain.
| |
Collapse
|
29
|
Landry BP, Tabor JJ. Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0020-2017. [PMID: 29052539 PMCID: PMC11687543 DOI: 10.1128/microbiolspec.bad-0020-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria in vivo, researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota in situ. Here, we develop a standard approach for engineering "smart probiotics," which both diagnose and treat disease, as well as "diagnostic gut bacteria" and "drug factory probiotics," which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.
Collapse
Affiliation(s)
- Brian P Landry
- Department of Bioengineering, Rice University, Houston, TX 77030
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Biosciences, Rice University, Houston, TX 77030
| |
Collapse
|
30
|
Jayaraman P, Holowko MB, Yeoh JW, Lim S, Poh CL. Repurposing a Two-Component System-Based Biosensor for the Killing of Vibrio cholerae. ACS Synth Biol 2017; 6:1403-1415. [PMID: 28441472 DOI: 10.1021/acssynbio.7b00058] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New strategies to control cholera are urgently needed. This study develops an in vitro proof-of-concept sense-and-kill system in a wild-type Escherichia coli strain to target the causative pathogen Vibrio cholerae using a synthetic biology approach. Our engineered E. coli specifically detects V. cholerae via its quorum-sensing molecule CAI-1 and responds by expressing the lysis protein YebF-Art-085, thereby self-lysing to release the killing protein Art-085 to kill V. cholerae. For this report, we individually characterized YebF-Art-085 and Art-085 expression and their activities when coupled to our previously developed V. cholerae biosensing circuit. We show that, in the presence of V. cholerae supernatant, the final integrated sense-and-kill system in our engineered E. coli can effectively inhibit the growth of V. cholerae cells. This work represents the first step toward a novel probiotic treatment modality that could potentially prevent and treat cholera in the future.
Collapse
Affiliation(s)
- Premkumar Jayaraman
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI),
Life Sciences Institute, National University of Singapore, Singapore
| | - Maciej B. Holowko
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Jing Wui Yeoh
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI),
Life Sciences Institute, National University of Singapore, Singapore
| | - Sierin Lim
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Chueh Loo Poh
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI),
Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
31
|
Mathipa MG, Thantsha MS. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog 2017; 9:28. [PMID: 28491143 PMCID: PMC5422995 DOI: 10.1186/s13099-017-0178-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
There is a growing concern about the increase in human morbidity and mortality caused by foodborne pathogens. Antibiotics were and still are used as the first line of defense against these pathogens, but an increase in the development of bacterial antibiotic resistance has led to a need for alternative effective interventions. Probiotics are used as dietary supplements to promote gut health and for prevention or alleviation of enteric infections. They are currently used as generics, thus making them non-specific for different pathogens. A good understanding of the infection cycle of the foodborne pathogens as well as the virulence factors involved in causing an infection can offer an alternative treatment with specificity. This specificity is attained through the bioengineering of probiotics, a process by which the specific gene of a pathogen is incorporated into the probiotic. Such a process will subsequently result in the inhibition of the pathogen and hence its infection. Recombinant probiotics offer an alternative novel therapeutic approach in the treatment of foodborne infections. This review article focuses on various strategies of bioengineered probiotics, their successes, failures and potential future prospects for their applications.
Collapse
Affiliation(s)
- Moloko Gloria Mathipa
- Department of Microbiology and Plant Pathology, University of Pretoria, New Agricultural Sciences Building, Pretoria, 0002 South Africa
| | - Mapitsi Silvester Thantsha
- Department of Microbiology and Plant Pathology, University of Pretoria, New Agricultural Sciences Building, Pretoria, 0002 South Africa
| |
Collapse
|
32
|
Sola-Oladokun B, Culligan EP, Sleator RD. Engineered Probiotics: Applications and Biological Containment. Annu Rev Food Sci Technol 2017; 8:353-370. [PMID: 28125354 DOI: 10.1146/annurev-food-030216-030256] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bioengineered probiotics represent the next generation of whole cell-mediated biotherapeutics. Advances in synthetic biology, genome engineering, and DNA sequencing and synthesis have enabled scientists to design and develop probiotics with increased stress tolerance and the ability to target specific pathogens and their associated toxins, as well as to mediate targeted delivery of vaccines, drugs, and immunomodulators directly to host cells. Herein, we review the most significant advances in the development of this field. We discuss the critical issue of biological containment and consider the role of synthetic biology in the design and construction of the probiotics of the future.
Collapse
Affiliation(s)
- Babasola Sola-Oladokun
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Eamonn P Culligan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , , .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Holowko MB, Wang H, Jayaraman P, Poh CL. Biosensing Vibrio cholerae with Genetically Engineered Escherichia coli. ACS Synth Biol 2016; 5:1275-1283. [PMID: 27529184 DOI: 10.1021/acssynbio.6b00079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholera is a potentially mortal, infectious disease caused by Vibrio cholerae bacterium. Current treatment methods of cholera still have limitations. Beneficial microbes that could sense and kill the V. cholerae could offer potential alternative to preventing and treating cholera. However, such V. cholerae targeting microbe is still not available. This microbe requires a sensing system to be able to detect the presence of V. cholera bacterium. To this end, we designed and created a synthetic genetic sensing system using nonpathogenic Escherichia coli as the host. To achieve the system, we have moved proteins used by V. cholerae for quorum sensing into E. coli. These sensor proteins have been further layered with a genetic inverter based on CRISPRi technology. Our design process was aided by computer models simulating in vivo behavior of the system. Our sensor shows high sensitivity to presence of V. cholerae supernatant with tight control of expression of output GFP protein.
Collapse
Affiliation(s)
- Maciej B. Holowko
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore 639798
| | - Huijuan Wang
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore 639798
| | - Premkumar Jayaraman
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore 639798
| | - Chueh Loo Poh
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
34
|
Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 2016; 106:27-44. [PMID: 27641944 DOI: 10.1016/j.addr.2016.09.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.
Collapse
|
35
|
Braff D, Shis D, Collins JJ. Synthetic biology platform technologies for antimicrobial applications. Adv Drug Deliv Rev 2016; 105:35-43. [PMID: 27089812 DOI: 10.1016/j.addr.2016.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels.
Collapse
Affiliation(s)
- Dana Braff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - David Shis
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Advances in the Microbiome: Applications to Clostridium difficile Infection. J Clin Med 2016; 5:jcm5090083. [PMID: 27657145 PMCID: PMC5039486 DOI: 10.3390/jcm5090083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Clostridium difficile is a major cause of morbidity and mortality worldwide, causing over 400,000 infections and approximately 29,000 deaths in the United States alone each year. C. difficile is the most common cause of nosocomial diarrhoea in the developed world, and, in recent years, the emergence of hyper-virulent (mainly ribotypes 027 and 078, sometimes characterised by increased toxin production), epidemic strains and an increase in the number of community-acquired infections has caused further concern. Antibiotic therapy with metronidazole, vancomycin or fidaxomicin is the primary treatment for C. difficile infection (CDI). However, CDI is unique, in that, antibiotic use is also a major risk factor for acquiring CDI or recurrent CDI due to disruption of the normal gut microbiota. Therefore, there is an urgent need for alternative, non-antibiotic therapeutics to treat or prevent CDI. Here, we review a number of such potential treatments which have emerged from advances in the field of microbiome research.
Collapse
|
37
|
Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 2016; 35:1721-1739. [DOI: 10.1007/s10096-016-2726-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
38
|
Hwang IY, Koh E, Kim HR, Yew WS, Chang MW. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria. Drug Resist Updat 2016; 27:59-71. [DOI: 10.1016/j.drup.2016.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023]
|
39
|
Kali A. Human Microbiome Engineering: The Future and Beyond. J Clin Diagn Res 2015; 9:DE01-4. [PMID: 26500908 DOI: 10.7860/jcdr/2015/14946.6570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
Microbial flora of skin and mucosal surface are vital component of human biology. Current research indicates that this microbial constellation, rather than being inert commensals, has greater implications in health and disease. They play essential role in metabolism, immunity, inflammation, neuro-endocrine regulation and even moderate host response to cancer. Genetic engineering was a major breakthrough in medical research in 1970's and it opened up newer dimensions in vaccinology, large-scale synthesis of bio-molecule and drug development. Engineering human microbiome is a novel concept. Recombinant DNA technology can be employed to modify the genome of critical components of resident microflora to achieve unprecedented goals.
Collapse
Affiliation(s)
- Arunava Kali
- Assistant Professor, Department of Microbiology, Mahatma Gandhi Medical College & Research Institute , Pondicherry, India
| |
Collapse
|
40
|
Abstract
Synthetic cell therapy is a field that has broad potential for future applications in human disease treatment. Next generation therapies will consist of engineered bacterial strains capable of diagnosing disease, producing and delivering therapeutics, and controlling their numbers to meet containment and safety concerns. A thorough understanding of the microbial ecology of the human body and the interaction of the microbes with the immune system will benefit the choice of an appropriate chassis that engrafts stably and interacts productively with the resident community in specific body niches.
Collapse
Affiliation(s)
- Jan Claesen
- Department of Bioengineering
and Therapeutic Sciences and the California Institute for Quantitative
Biosciences, University of California, San
Francisco, San Francisco, California 94158, United States
| | - Michael A. Fischbach
- Department of Bioengineering
and Therapeutic Sciences and the California Institute for Quantitative
Biosciences, University of California, San
Francisco, San Francisco, California 94158, United States
| |
Collapse
|
41
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 2014; 5:399-412. [PMID: 24317337 PMCID: PMC3979868 DOI: 10.4161/viru.27208] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.
Collapse
Affiliation(s)
- Eamonn P Culligan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- School of Microbiology; University College Cork; Cork, Ireland
| | - Roy D Sleator
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Julian R Marchesi
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- Cardiff School of Biosciences; Cardiff University; Cardiff, UK
- Department of Hepatology and Gastroenterology; Imperial College London; London, UK
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- School of Microbiology; University College Cork; Cork, Ireland
| |
Collapse
|
42
|
Krachler AM, Orth K. Targeting the bacteria-host interface: strategies in anti-adhesion therapy. Virulence 2014; 4:284-94. [PMID: 23799663 PMCID: PMC3710331 DOI: 10.4161/viru.24606] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and are increasingly problematic to treat due to the rise in antibiotic-resistant strains. It becomes more and more challenging to develop new antimicrobials that are able to withstand the ever-increasing repertoire of bacterial resistance mechanisms. This necessitates the development of alternative approaches to prevent and treat bacterial infections. One of the first steps during bacterial infection is adhesion of the pathogen to host cells. A pathogen’s ability to colonize and invade host tissues strictly depends on this process. Thus, interference with adhesion (anti-adhesion therapy) is an efficient way to prevent or treat bacterial infections. As a basis to present different strategies to interfere with pathogen adhesion, this review briefly introduces general concepts of bacterial attachment to host cells. We further discuss advantages and disadvantages of anti-adhesion treatments and issues that are in need of improvement so as to make anti-adhesion compounds a more broadly applicable alternative to conventional antimicrobials.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
43
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
44
|
Brotman RM, Ravel J, Bavoil PM, Gravitt PE, Ghanem KG. Microbiome, sex hormones, and immune responses in the reproductive tract: challenges for vaccine development against sexually transmitted infections. Vaccine 2013; 32:1543-52. [PMID: 24135572 DOI: 10.1016/j.vaccine.2013.10.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/05/2013] [Accepted: 10/02/2013] [Indexed: 12/24/2022]
Abstract
The female and male reproductive tracts are complex eco-systems where immune cells, hormones, and microorganisms interact. The characteristics of the reproductive tract mucosa are distinct from other mucosal sites. Reproductive tract mucosal immune responses are compartmentalized, unique, and affected by resident bacterial communities and sex hormones. The female and male genital microbiomes are complex environments that fluctuate in response to external and host-associated stimuli. The female vaginal microbiota play an important role in preventing colonization by pathogenic organisms. Sex hormones and their duration of exposure affect the composition and stability of the microbiome as well as systemic and mucosal immune responses. In addition to the characteristics of the pathogen they are targeting, successful vaccines against sexually transmitted pathogens must take into account the differences between the systemic and mucosal immune responses, the compartmentalization of the mucosal immune responses, the unique characteristics of the reproductive tract mucosa, the role of the mucosal bacterial communities, the impact of sex hormones, and the interactions among all of these factors.
Collapse
Affiliation(s)
- Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA.
| | - Patti E Gravitt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Khalil G Ghanem
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Baker JL, Çelik E, DeLisa MP. Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends Biotechnol 2013; 31:313-23. [PMID: 23582719 DOI: 10.1016/j.tibtech.2013.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 01/05/2023]
Abstract
Glycosylation is the most prevalent post-translational modification found on proteins, occurring in all domains of life. Ever since the discovery of asparagine-linked (N-linked) protein glycosylation pathways in bacteria, major efforts have been made to harness these systems for the creation of novel therapeutics, vaccines, and diagnostics. Recent advances such as the ability to produce designer glycans in bacteria, some containing unnatural sugars, and techniques for evolving glycosylation enzymes have spawned an entirely new discipline known as bacterial glycoengineering. In addition to their biotechnological and therapeutic potential, bacteria equipped with recombinant N-linked glycosylation pathways are improving our understanding of the N-glycosylation process. This review discusses the key role played by microorganisms in glycosciences, particularly in the context of N-linked glycosylation.
Collapse
Affiliation(s)
- Jenny L Baker
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
46
|
Merritt JH, Ollis AA, Fisher AC, DeLisa MP. Glycans-by-design: Engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnol Bioeng 2013; 110:1550-64. [DOI: 10.1002/bit.24885] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 02/04/2023]
|
47
|
Thomson ABR, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: Part I. World J Gastroenterol 2012; 18:3336-52. [PMID: 22807604 PMCID: PMC3396187 DOI: 10.3748/wjg.v18.i26.3336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
As is the case in all parts of gastroenterology and hepatology, there have been many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed for 2008 and 2009, and the important advances in basic science as well as clinical applications were considered. In Part I of this Editorial Review, seven topics are considered: intestinal development; proliferation and repair; intestinal permeability; microbiotica, infectious diarrhea and probiotics; diarrhea; salt and water absorption; necrotizing enterocolitis; and immunology/allergy. These topics were chosen because of their importance to the practicing physician.
Collapse
|
48
|
Paton AW, Morona R, Paton JC. Bioengineered microbes in disease therapy. Trends Mol Med 2012; 18:417-25. [DOI: 10.1016/j.molmed.2012.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 01/30/2023]
|
49
|
Abstract
With the rapid advances in sequencing technologies in recent years, the human genome is now considered incomplete without the complementing microbiome, which outnumbers human genes by a factor of one hundred. The human microbiome, and more specifically the gut microbiome, has received considerable attention and research efforts over the past decade. Many studies have identified and quantified "who is there?," while others have determined some of their functional capacity, or "what are they doing?" In a recent study, we identified novel salt-tolerance loci from the human gut microbiome using combined functional metagenomic and bioinformatics based approaches. Herein, we discuss the identified loci, their role in salt-tolerance and their importance in the context of the gut environment. We also consider the utility and power of functional metagenomics for mining such environments for novel genes and proteins, as well as the implications and possible applications for future research.
Collapse
Affiliation(s)
- Eamonn P. Culligan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland
| | - Julian R. Marchesi
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Cardiff School of Biosciences; Cardiff University; Cardiff, UK,Correspondence to: Julian R. Marchesi, and Colin Hill, and Roy D. Sleator,
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland,Correspondence to: Julian R. Marchesi, and Colin Hill, and Roy D. Sleator,
| | - Roy D. Sleator
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland,Correspondence to: Julian R. Marchesi, and Colin Hill, and Roy D. Sleator,
| |
Collapse
|
50
|
Removal of cholera toxin from aqueous solution by probiotic bacteria. Pharmaceuticals (Basel) 2012; 5:665-73. [PMID: 24281668 PMCID: PMC3763660 DOI: 10.3390/ph5060665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022] Open
Abstract
Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103) and Bifidobacteriumlongum 46 (DSM 14583), to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacteriumlongum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.
Collapse
|