1
|
Short SP, Brown RE, Chen Z, Pilat JM, McElligott BA, Meenderink LM, Bickart AC, Blunt KM, Jacobse J, Wang J, Simmons AJ, Xu Y, Yang Y, Parang B, Choksi YA, Goettel JA, Lau KS, Hiebert SW, Williams CS. MTGR1 is required to maintain small intestinal stem cell populations. Cell Death Differ 2024; 31:1170-1183. [PMID: 39048708 PMCID: PMC11369156 DOI: 10.1038/s41418-024-01346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Undifferentiated intestinal stem cells (ISCs) are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis where they differentiate into specialized cell types. Coordinated execution of complex transcriptional programs is necessary to allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss specifically in ISC biology. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic and functional analyses revealed deficiencies in Mtgr1-null ISCs, including deregulated ISC-associated transcriptional programs. Ex vivo, intestinal organoids established from Mtgr1-null mice were unable to survive and expand due to aberrant differentiation and loss of stem and proliferative cells. Together, these results indicate that the role of MTGR1 in intestinal differentiation is likely stem cell intrinsic and identify a novel role for MTGR1 in maintaining ISC function.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Leslie M Meenderink
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Alexander C Bickart
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Koral M Blunt
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yilin Yang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Bobak Parang
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Yash A Choksi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Jeremy A Goettel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Scott W Hiebert
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Williams C, Brown R, Zhao Y, Wang J, Chen Z, Blunt K, Pilat J, Parang B, Choksi Y, Lau K, Hiebert S, Short S, Jacobse J, Xu Y, Yang Y, Goettel J. MTGR1 is required to maintain small intestinal stem cell populations. RESEARCH SQUARE 2023:rs.3.rs-3315071. [PMID: 37790452 PMCID: PMC10543309 DOI: 10.21203/rs.3.rs-3315071/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Undifferentiated intestinal stem cells (ISCs), particularly those marked by Lgr5, are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis, where they differentiate into a variety of specialized cell types. This process requires coordinated execution of complex transcriptional programs, which allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Thus, disrupting these programs may negatively impact homeostasis and response to injury. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss on ISC biology and differentiation programs. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic analyses revealed MTGR1 loss may instead promote stem cell differentiation into transit-amplifying cells at the expense of cycling ISC populations. Furthermore, ex vivo intestinal organoids established from Mtgr1 null were found nearly completely unable to survive and expand, likely due to aberrant ISC differentiation, suggesting that Mtgr1 null ISCs were functionally deficient as compared to WT ISCs. Together, these results identify a novel role for MTGR1 in ISC function and suggest that MTGR1 is required to maintain the undifferentiated state.
Collapse
Affiliation(s)
| | | | | | - Jing Wang
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Son S, Koh J, Park M, Ryu S, Lee W, Yun B, Lee JH, Oh S, Kim Y. Effect of the Lactobacillus rhamnosus strain GG and tagatose as a synbiotic combination in a dextran sulfate sodium-induced colitis murine model. J Dairy Sci 2019; 102:2844-2853. [DOI: 10.3168/jds.2018-15013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
|
4
|
Xia T, Zhang J, Han L, Jin Z, Wang J, Li X, Man S, Liu C, Gao W. Protective effect of magnolol on oxaliplatin-induced intestinal injury in mice. Phytother Res 2019; 33:1161-1172. [PMID: 30868668 DOI: 10.1002/ptr.6311] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/01/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
Oxaliplatin (OXL) is the first line treatment therapy for gastrointestinal (GI) cancers and often combines with other chemotherapy. However, few reports have studied on its GI toxicity. Magnolol (MG), one of the mainly active constituents in Magnolia, has been reported to treat digestive diseases. Therefore, the purpose of this study is to evaluate the intestinal protective effect of MG in OXL treatment group. OXL administration mice showed body weight loss, diarrhea, and intestinal damage characterized by the shortening of villi and destruction of intestinal crypts, as well as the colon length change. MG significantly reduced body weight loss, alleviated diarrhea, reversed histopathological changes, and prevented colon length reduction. Oxidative stress and inflammation were activated after OXL, and these responses were repressed by MG through increasing the activities of superoxide dismutase, glutathione peroxidase, and glutathione, decreasing level of nuclear factor of kappa b and downregulating the following pro-inflammatory cytokines. Although the expression of tight junction protein occludin and numbers of proliferative crypt cells were reduced on ileum and colon after OXL, MG administration promoted these expressions. The fecal gut microbiota composition disturbed by OXL was significantly reversed by MG. Thus, MG could prevent the development and progression of mucositis induced by oxaliplatin through multipathway.
Collapse
Affiliation(s)
- Ting Xia
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Liying Han
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhaoxiang Jin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Short SP, Barrett CW, Stengel KR, Revetta FL, Choksi YA, Coburn LA, Lintel MK, McDonough EM, Washington MK, Wilson KT, Prokhortchouk E, Chen X, Hiebert SW, Reynolds AB, Williams CS. Kaiso is required for MTG16-dependent effects on colitis-associated carcinoma. Oncogene 2019; 38:5091-5106. [PMID: 30858547 PMCID: PMC6586520 DOI: 10.1038/s41388-019-0777-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 01/26/2023]
Abstract
The myeloid translocation gene family member MTG16 is a transcriptional corepressor that relies on the DNA-binding ability of other proteins to determine specificity. One such protein is the ZBTB family member Kaiso, and the MTG16:Kaiso interaction is necessary for repression of Kaiso target genes such as matrix metalloproteinase-7. Using the azoxymethane and dextran sodium sulfate (AOM/DSS) murine model of colitis-associated carcinoma, we previously determined that MTG16 loss accelerates tumorigenesis and inflammation. However, it was unknown whether this effect was modified by Kaiso-dependent transcriptional repression. To test for a genetic interaction between MTG16 and Kaiso in inflammatory carcinogenesis, we subjected single and double knockout (DKO) mice to the AOM/DSS protocol. Mtg16−/− mice demonstrated increased colitis and tumor burden; in contrast, disease severity in Kaiso−/− mice was equivalent to wild type controls. Surprisingly, Kaiso deficiency in the context of MTG16 loss reversed injury and pro-tumorigenic responses in the intestinal epithelium following AOM/DSS treatment, and tumor numbers were returned to near to wild type levels. Transcriptomic analysis of non-tumor colon tissue demonstrated that changes induced by MTG16 loss were widely mitigated by concurrent Kaiso loss, and DKO mice demonstrated downregulation of metabolism and cytokine-associated gene sets with concurrent activation of DNA damage checkpoint pathways as compared with Mtg16−/−. Further, Kaiso knockdown in intestinal enteroids reduced stem- and WNT-associated phenotypes, thus abrogating the induction of these pathways observed in Mtg16−/− samples. Together, these data suggest that Kaiso modifies MTG16-driven inflammation and tumorigenesis and suggests that Kaiso deregulation contributes to MTG16-dependent colitis and CAC phenotypes.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Caitlyn W Barrett
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Frank L Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Lori A Coburn
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mary K Lintel
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Elizabeth M McDonough
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Pediatrics, Division of Gastroenterology, Our Lady of the Lake Children's Hospital, Baton Rouge, TN, 70808, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
| | - Egor Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Xi Chen
- Department of Public Health Sciences and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
| | - Albert B Reynolds
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA. .,Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA. .,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.
| |
Collapse
|
6
|
McDonough EM, Barrett CW, Parang B, Mittal MK, Smith JJ, Bradley AM, Choksi YA, Coburn LA, Short SP, Thompson JJ, Zhang B, Poindexter SV, Fischer MA, Chen X, Li J, Revetta FL, Naik R, Washington MK, Rosen MJ, Hiebert SW, Wilson KT, Williams CS. MTG16 is a tumor suppressor in colitis-associated carcinoma. JCI Insight 2017; 2:78210. [PMID: 28814670 DOI: 10.1172/jci.insight.78210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
MTG16 is a member of the myeloid translocation gene (MTG) family of transcriptional corepressors. While MTGs were originally identified in chromosomal translocations in acute myeloid leukemia, recent studies have uncovered a role in intestinal biology. For example, Mtg16-/- mice have increased intestinal proliferation and are more sensitive to intestinal injury in colitis models. MTG16 is also underexpressed in patients with moderate/severe ulcerative colitis. Based on these findings, we postulated that MTG16 might protect against colitis-associated carcinogenesis. MTG16 was downregulated at the protein and RNA levels in patients with inflammatory bowel disease and in those with colitis-associated carcinoma. Mtg16-/- mice subjected to inflammatory carcinogenesis modeling exhibited worse colitis and increased tumor multiplicity and size. Loss of MTG16 also increased severity of dysplasia, apoptosis, proliferation, DNA damage, and WNT signaling. Moreover, transplantation of WT marrow into Mtg16-/- mice failed to rescue the Mtg16-/- protumorigenic phenotypes, indicating an epithelium-specific role for MTG16. While MTG dysfunction is widely appreciated in hematopoietic malignancies, the role of this gene family in epithelial homeostasis, and in colon cancer, was unrealized. This report identifies MTG16 as an important modulator of colitis and tumor development in inflammatory carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology
| | - Lori A Coburn
- Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | | | | | | | - Melissa A Fischer
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xi Chen
- Department of Public Health Sciences and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jiang Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Frank L Revetta
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rishi Naik
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Christopher S Williams
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Chen Y, Zheng H, Zhang J, Wang L, Jin Z, Gao W. Protective effect and potential mechanisms of Wei-Chang-An pill on high-dose 5-fluorouracil-induced intestinal mucositis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:200-211. [PMID: 27240747 DOI: 10.1016/j.jep.2016.05.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wei-Chang-An pill (WCA pill), a traditional Chinese pharmaceutical preparation, possessed potential anti-inflammatory advantages and noteworthy gastrointestinal regulations in digestive diseases, which might represent a promising candidate for the treatment of intestinal mucositis (IM) induced by 5-fluorouracil (5-FU). AIM OF THE STUDY To analyze the bioactive constituents and investigate the effect of methanol extraction from WCA pill (WCA ext) on 5-FU induced IM with underlying mechanisms. MATERIALS AND METHODS The analysis of serum bioactive constituents after WCA ext administration in rats was carried out by UHPLC-Quadrupole-Time of Flight-Mass Spectrometry. In mice, IM was induced by 5-FU and physical manifestations were measured during the period of drug delivery. Half of mice were assessed with histology, expression of inflammatory cytokines in ileum and plasma via hematoxylin and eosin staining, immunohistochemical staining as well as cytokine enzyme-linked immunosorbent assay test, respectively. Besides, gastric emptying (GE) and gastrointestinal transit (GIT) were further tested in the other half of 5-FU induced mice. RESULTS Twenty-two compounds were identified or tentatively characterized. IM induced by 5-FU was improved significantly after treatment with WCA ext through reducing the body weight loss, relieving the severe diarrhea, and inhibiting the GE as well as GIT. Further assessments validated that WCA ext promoted the recovery of intestinal mucosa, evaluated the activity of enterocyte proliferation, maintained the integrity of tight junction, and ameliorated the inflammatory disturbances. CONCLUSIONS These results suggested that WCA ext promoted the restoration of intestinal function in 5-FU-induced IM via regulating multiple sites of actions in intestinal homeostasis. Accordingly, WCA pill might be a promising therapeutic candidate for the prevention of IM during cancer chemotherapy.
Collapse
Affiliation(s)
- Yuling Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hong Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Special Drugs R & D Center of People's Armed Police Forces, Tianjin 300162, China.
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 300380, China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 300380, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Parang B, Bradley AM, Mittal MK, Short SP, Thompson JJ, Barrett CW, Naik RD, Bilotta AJ, Washington MK, Revetta FL, Smith JJ, Chen X, Wilson KT, Hiebert SW, Williams CS. Myeloid translocation genes differentially regulate colorectal cancer programs. Oncogene 2016; 35:6341-6349. [PMID: 27270437 PMCID: PMC5140770 DOI: 10.1038/onc.2016.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 03/02/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
Myeloid translocation genes (MTGs), originally identified as chromosomal translocations in acute myelogenous leukemia, are transcriptional corepressors that regulate hematopoietic stem cell programs. Analysis of The Cancer Genome Atlas (TCGA) database revealed that MTGs were mutated in epithelial malignancy and suggested that loss of function might promote tumorigenesis. Genetic deletion of MTGR1 and MTG16 in the mouse has revealed unexpected and unique roles within the intestinal epithelium. Mtgr1−/− mice have progressive depletion of all intestinal secretory cells, and Mtg16−/− mice have a decrease in goblet cells. Furthermore, both Mtgr1−/− and Mtg16−/− mice have increased intestinal epithelial cell proliferation. We thus hypothesized that loss of MTGR1 or MTG16 would modify Apc1638/+-dependent intestinal tumorigenesis. Mtgr1−/− mice, but not Mtg16−/− mice, had a 10-fold increase in tumor multiplicity. This was associated with more advanced dysplasia, including progression to invasive adenocarcinoma, and augmented intratumoral proliferation. Analysis of ChIP-seq datasets for MTGR1 and MTG16 targets indicated that MTGR1 can regulate Wnt and Notch signaling. In support of this, immunohistochemistry and gene expression analysis revealed that both Wnt and Notch signaling pathways were hyperactive in Mtgr1−/− tumors. Furthermore, in human colorectal cancer (CRC) samples MTGR1 was downregulated at both the transcript and protein level. Overall our data indicates that MTGR1 has a context dependent effect on intestinal tumorigenesis.
Collapse
Affiliation(s)
- B Parang
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - A M Bradley
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M K Mittal
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S P Short
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J J Thompson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C W Barrett
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R D Naik
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - A J Bilotta
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M K Washington
- Department of Pathology, Microbiology, and Immunology, Nashville, TN, USA
| | - F L Revetta
- Department of Pathology, Microbiology, and Immunology, Nashville, TN, USA
| | - J J Smith
- Department of Surgery, Division of Surgical Oncology, Nashville, TN, USA
| | - X Chen
- Department of Biostatistics, Nashville, TN, USA
| | - K T Wilson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, USA
| | - S W Hiebert
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Department of Biochemistry, Nashville, TN, USA
| | - C S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, USA
| |
Collapse
|
9
|
Chen Y, Zheng H, Zhang J, Wang L, Jin Z, Gao W. Reparative activity of costunolide and dehydrocostus in a mouse model of 5-fluorouracil-induced intestinal mucositis. RSC Adv 2016. [DOI: 10.1039/c5ra22371g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to investigate the protective effects of costunolide (Co) and dehydrocostus (De) in 5-fluorouracil (5-FU)-induced intestinal mucositis (IM) as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Yuling Chen
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Hong Zheng
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jingze Zhang
- Department of Pharmacy
- Logistics University of Chinese People's Armed Police Forces
- Special Drugs R & D Center of People's Armed Police Forces
- Tianjin 300162
- China
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
10
|
Parang B, Rosenblatt D, Williams AD, Washington MK, Revetta F, Short SP, Reddy VK, Hunt A, Shroyer NF, Engel ME, Hiebert SW, Williams CS. The transcriptional corepressor MTGR1 regulates intestinal secretory lineage allocation. FASEB J 2014; 29:786-95. [PMID: 25398765 DOI: 10.1096/fj.14-254284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Notch signaling largely determines intestinal epithelial cell fate. High Notch activity drives progenitors toward absorptive enterocytes by repressing secretory differentiation programs, whereas low Notch permits secretory cell assignment. Myeloid translocation gene-related 1 (MTGR1) is a transcriptional corepressor in the myeloid translocation gene/Eight-Twenty-One family. Given that Mtgr1(-/-) mice have a dramatic reduction of intestinal epithelial secretory cells, we hypothesized that MTGR1 is a key repressor of Notch signaling. In support of this, transcriptome analysis of laser capture microdissected Mtgr1(-/-) intestinal crypts revealed Notch activation, and secretory markers Mucin2, Chromogranin A, and Growth factor-independent 1 (Gfi1) were down-regulated in Mtgr1(-/-) whole intestines and Mtgr1(-/-) enteroids. We demonstrate that MTGR1 is in a complex with Suppressor of Hairless Homolog, a key Notch effector, and represses Notch-induced Hairy/Enhancer of Split 1 activity. Moreover, pharmacologic Notch inhibition using a γ-secretase inhibitor (GSI) rescued the hyperproliferative baseline phenotype in the Mtgr1(-/-) intestine and increased production of goblet and enteroendocrine lineages in Mtgr1(-/-) mice. GSI increased Paneth cell production in wild-type mice but failed to do so in Mtgr1(-/-) mice. We determined that MTGR1 can interact with GFI1, a transcriptional corepressor required for Paneth cell differentiation, and repress GFI1 targets. Overall, the data suggest that MTGR1, a transcriptional corepressor well characterized in hematopoiesis, plays a critical role in intestinal lineage allocation.
Collapse
Affiliation(s)
- Bobak Parang
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Daniel Rosenblatt
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Amanda D Williams
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Mary K Washington
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Frank Revetta
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Sarah P Short
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Vishruth K Reddy
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Aubrey Hunt
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Noah F Shroyer
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Michael E Engel
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Scott W Hiebert
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Christopher S Williams
- *Department of Medicine, Division of Gastroenterology, Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biology, Lipscomb University, Nashville, Tennessee, USA; Division of Pediatrics-Gastroenterology, Baylor University School of Medicine, Houston, Texas, USA; Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah; and **Vanderbilt Ingram Cancer Center, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Matsuo S, Yang WL, Aziz M, Kameoka S, Wang P. Fatty acid synthase inhibitor C75 ameliorates experimental colitis. Mol Med 2014; 20:1-9. [PMID: 24306512 DOI: 10.2119/molmed.2013.00113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022] Open
Abstract
Abnormalities of lipid metabolism through overexpression of fatty acid synthase (FASN), which catalyzes the formation of long-chain fatty acids, are associated with the development of inflammatory bowel disease (IBD). C75 is a synthetic α-methylene-γ-butyrolactone compound that inhibits FASN activity. We hypothesized that C75 treatment could effectively reduce the severity of experimental colitis. Male C57BL/6 mice were fed 4% dextran sodium sulfate (DSS) for 7 d. C75 (5 mg/kg body weight) or dimethyl sulfoxide (DMSO) (vehicle) was administered intraperitoneally from d 2 to 6. Clinical parameters were monitored daily. Mice were euthanized on d 8 for histological evaluation and measurements of colon length, chemokine, cytokine and inflammatory mediator expression. C75 significantly reduced body weight loss from 23% to 15% on d 8, compared with the vehicle group. The fecal bleeding, diarrhea and colon histological damage scores in the C75-treated group were significantly lower than scores in the vehicle animals. Colon shortening was significantly improved after C75 treatment. C75 protected colon tissues from DSS-induced apoptosis by inhibiting caspase-3 activity. Macrophage inflammatory protein 2, keratinocyte-derived chemokine, myeloperoxidase activity and proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1β and IL-6) in the colon were significantly downregulated in the C75-treated group, compared with the vehicle group. Treatment with C75 in colitis mice inhibited the elevation of FASN, cyclooxygenase-2 and inducible nitric oxide synthase expression as well as IκB degradation in colon tissues. C75 administration alleviates the severity of colon damage and inhibits the activation of inflammatory pathways in DSS-induced colitis. Thus, inhibition of FASN may represent an attractive therapeutic potential for treating IBD.
Collapse
Affiliation(s)
- Shingo Matsuo
- Department of Surgery, Hofstra North Shore-Long Island Jewish School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York, United States of America Department of Surgery II, Tokyo Women's Medical University, Tokyo, Japan
| | - Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-Long Island Jewish School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Monowar Aziz
- Department of Surgery, Hofstra North Shore-Long Island Jewish School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Shingo Kameoka
- Department of Surgery II, Tokyo Women's Medical University, Tokyo, Japan
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-Long Island Jewish School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
12
|
Williams CS, Bradley AM, Chaturvedi R, Singh K, Piazuelo MB, Chen X, McDonough EM, Schwartz DA, Brown CT, Allaman MM, Coburn LA, Horst SN, Beaulieu DB, Choksi YA, Washington MK, Williams AD, Fisher MA, Zinkel SS, Peek RM, Wilson KT, Hiebert SW. MTG16 contributes to colonic epithelial integrity in experimental colitis. Gut 2013; 62:1446-55. [PMID: 22833394 PMCID: PMC3663894 DOI: 10.1136/gutjnl-2011-301439] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The myeloid translocation genes (MTGs) are transcriptional corepressors with both Mtg8(-/-) and Mtgr1(-/-) mice showing developmental and/or differentiation defects in the intestine. We sought to determine the role of MTG16 in intestinal integrity. METHODS Baseline and stress induced colonic phenotypes were examined in Mtg16(-/-) mice. To unmask phenotypes, we treated Mtg16(-/-) mice with dextran sodium sulphate (DSS) or infected them with Citrobacter rodentium and the colons were examined for ulceration and for changes in proliferation, apoptosis and inflammation. RESULTS Mtg16(-/-) mice have altered immune subsets, suggesting priming towards Th1 responses. Mtg16(-/-) mice developed increased weight loss, diarrhoea, mortality and histological colitis and there were increased innate (Gr1(+), F4/80(+), CD11c(+) and MHCII(+); CD11c(+)) and Th1 adaptive (CD4) immune cells in Mtg16(-/-) colons after DSS treatment. Additionally, there was increased apoptosis and a compensatory increased proliferation in Mtg16(-/-) colons. Compared with wild-type mice, Mtg16(-/-) mice exhibited increased colonic CD4;IFN-γ cells in vehicle-treated and DSS-treated mice. Adoptive transfer of wild-type marrow into Mtg16(-/-) recipients did not rescue the Mtg16(-/-) injury phenotype. Isolated colonic epithelial cells from DSS-treated Mtg16(-/-) mice exhibited increased KC (Cxcl1) mRNA expression when compared with wild-type mice. Mtg16(-/-) mice infected with C rodentium had more severe colitis and greater bacterial colonisation. Last, MTG16 mRNA levels were reduced in human ulcerative colitis versus normal colon tissues. CONCLUSIONS These observations indicate that MTG16 is critical for colonocyte survival and regeneration in response to intestinal injury and provide evidence that this transcriptional corepressor regulates inflammatory recruitment in response to injury.
Collapse
Affiliation(s)
- Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Amber M Bradley
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Rupesh Chaturvedi
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kshipra Singh
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Maria B Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Elizabeth M McDonough
- Department of Pediatrics, Division of Pediatric Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - David A Schwartz
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Caroline T Brown
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Margaret M Allaman
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lori A Coburn
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Sara N Horst
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Dawn B Beaulieu
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Amanda D Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Melissa A Fisher
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Sandra S Zinkel
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA
| | - Richard M Peek
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Scott W Hiebert
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Perše M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol 2012; 2012:718617. [PMID: 22665990 PMCID: PMC3361365 DOI: 10.1155/2012/718617] [Citation(s) in RCA: 641] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial disease of unknown etiology. Thus, dozens of different animal models of IBD have been developed in past decades. Animal models of IBD are valuable and indispensable tools that provide a wide range of options for investigating involvement of various factors into the pathogenesis of IBD and to evaluate different therapeutic options. However, the dextran sulphate sodium (DSS-) induced colitis model has some advantages when compared to other animal models of colitis. It is well appreciated and widely used model of inflammatory bowel disease because of its simplicity. It has many similarities to human IBD, which are mentioned in the paper. In spite of its simplicity and wide applicability, there are also traps that need to be taken into account when using DSS model. As demonstrated in the present paper, various factors may affect susceptibility to DSS-induced lesions and modify results.
Collapse
Affiliation(s)
- Martina Perše
- Institute of Pathology, Medical Experimental Centre, Medical Faculty, University of Ljubljana, Zaloška 4, 1105 Ljubljana, Slovenia.
| | | |
Collapse
|
14
|
ErbB2 and ErbB3 regulate recovery from dextran sulfate sodium-induced colitis by promoting mouse colon epithelial cell survival. J Transl Med 2012; 92:437-50. [PMID: 22157714 PMCID: PMC3289719 DOI: 10.1038/labinvest.2011.192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ErbB2 and ErbB3 receptor tyrosine kinases are key regulators of proliferation, migration, differentiation and cell survival; however, their roles in gastrointestinal biology remain poorly defined. We hypothesized that ErbB2 and ErbB3 promote colon epithelial cell survival in the context of the wound-healing response following colitis. In this study, mice bearing intestinal epithelial-specific deletion of ErbB2 or ErbB3 were treated with dextran sulfate sodium (DSS). Colon sections were examined for injury, cytokine expression, epithelial cell proliferation and apoptosis. Deletion of epithelial ErbB2 did not affect the extent of intestinal injury in response to DSS, whereas deletion of ErbB3 slightly increased injury. However, the roles of both receptors were more apparent during recovery from DSS colitis, in which ErbB2 or ErbB3 epithelial deletion resulted in greater inflammation and crypt damage during the early reparative period. Moreover, loss of ErbB3 prevented normal epithelial regeneration in the long term, with damage persisting for at least 6 weeks following a single round of DSS. Delayed recovery in mice with epithelial deletion of ErbB2 or ErbB3 was associated with increased colonic expression of tumor necrosis factor alpha and increased epithelial apoptosis. Furthermore, epithelial ErbB3 deletion increased apoptosis at baseline and during DSS injury. Additionally, epithelial cell hyperproliferation during recovery was exacerbated by deletion of either ErbB2 or ErbB3. These results suggest that ErbB2 and ErbB3 have important cytoprotective and reparative roles in the colonic epithelium following injury, by promoting colon epithelial cell survival.
Collapse
|
15
|
Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence. EMBO J 2012; 31:1494-505. [PMID: 22266796 DOI: 10.1038/emboj.2011.500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/16/2011] [Indexed: 01/21/2023] Open
Abstract
The t(8;21) and t(16;21) that are associated with acute myeloid leukaemia disrupt two closely related genes termed Myeloid Translocation Genes 8 (MTG8) and 16 (MTG16), respectively. Many of the transcription factors that recruit Mtg16 regulate haematopoietic stem and progenitor cell functions and are required to maintain stem cell self-renewal potential. Accordingly, we found that Mtg16-null bone marrow (BM) failed in BM transplant assays. Moreover, when removed from the animal, Mtg16-deficient stem cells continued to show defects in stem cell self-renewal assays, suggesting a requirement for Mtg16 in this process. Gene expression analysis indicated that Mtg16 was required to suppress the expression of several key cell-cycle regulators including E2F2, and chromatin immunoprecipitation assays detected Mtg16 near an E2A binding site within the first intron of E2F2. BrdU incorporation assays indicated that in the absence of Mtg16 more long-term stem cells were in the S phase, even after competitive BM transplantation where normal stem and progenitor cells are present, suggesting that Mtg16 plays a role in the maintenance of stem cell quiescence.
Collapse
|
16
|
Williams CS, Zhang B, Smith JJ, Jayagopal A, Barrett CW, Pino C, Russ P, Presley SH, Peng D, Rosenblatt DO, Haselton FR, Yang JL, Washington MK, Chen X, Eschrich S, Yeatman TJ, El-Rifai W, Beauchamp RD, Chang MS. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma. J Clin Invest 2011. [PMID: 21911938 DOI: 10.1172/jci44228.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.
Collapse
Affiliation(s)
- Christopher S Williams
- Department of Medicine/GI, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Williams CS, Zhang B, Smith JJ, Jayagopal A, Barrett CW, Pino C, Russ P, Presley SH, Peng D, Rosenblatt DO, Haselton FR, Yang JL, Washington MK, Chen X, Eschrich S, Yeatman TJ, El-Rifai W, Beauchamp RD, Chang MS. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma. J Clin Invest 2011; 121:4056-69. [PMID: 21911938 DOI: 10.1172/jci44228] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/27/2011] [Indexed: 12/21/2022] Open
Abstract
The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.
Collapse
Affiliation(s)
- Christopher S Williams
- Department of Medicine/GI, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barrett CW, Fingleton B, Williams A, Ning W, Fischer MA, Washington MK, Chaturvedi R, Wilson KT, Hiebert SW, Williams CS. MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model. Cancer Res 2011; 71:1302-12. [PMID: 21303973 DOI: 10.1158/0008-5472.can-10-3317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myeloid Translocation Gene, Related-1 (MTGR1) CBFA2T2 is a member of the Myeloid Translocation Gene (MTG) family of transcriptional corepressors. The remaining two family members, MTG8 (RUNX1T1) and MTG16 (CBFA2T3) are identified as targets of chromosomal translocations in acute myeloid leukemia (AML). Mtgr1(-/-) mice have defects in intestinal lineage allocation and wound healing. Moreover, these mice show signs of impaired intestinal stem cell function. Based on these phenotypes, we hypothesized that MTGR1 may influence tumorigenesis arising in an inflammatory background. We report that Mtgr1(-/-) mice were protected from tumorigenesis when injected with azoxymethane (AOM) and then subjected to repeated cycles of dextran sodium sulfate (DSS). Tumor cell proliferation was comparable, but Mtgr1(-/-) tumors had significantly higher apoptosis rates. These phenotypes were dependent on epithelial injury, the resultant inflammation, or a combination of both as there was no difference in aberrant crypt foci (ACF) or tumor burden when animals were treated with AOM as the sole agent. Gene expression analysis indicated that Mtgr1(-/-) tumors had significant upregulation of inflammatory networks, and immunohistochemistry (IHC) for immune cell subsets revealed a marked multilineage increase in infiltrates, consisting predominately of CD3(+) and natural killer T (NKT) cells as well as macrophages. Transplantation of wild type (WT) bone marrow into Mtgr1(-/-) mice, and the reciprocal transplant, did not alter the phenotype, ruling out an MTGR1 hematopoietic cell-autonomous mechanism. Our findings indicate that MTGR1 is required for efficient inflammatory carcinogenesis in this model, and implicate its dysfunction in colitis-associated carcinoma. This represents the first report functionally linking MTGR1 to intestinal tumorigenesis.
Collapse
Affiliation(s)
- Caitlyn W Barrett
- Department of Medicine/Gastroenterology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jin Y, Hofseth AB, Cui X, Windust AJ, Chumanevich AA, Matesic LE, Singh NP, Nagarkatti M, Nagarkatti PS, Hofseth LJ. American ginseng suppresses colitis through p53-mediated apoptosis of inflammatory cells. Cancer Prev Res (Phila) 2010; 3:339-47. [PMID: 20179294 PMCID: PMC2833220 DOI: 10.1158/1940-6207.capr-09-0116] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ulcerative colitis is a dynamic, chronic inflammatory condition associated with an increased colon cancer risk. Inflammatory cell apoptosis is a key mechanism regulating ulcerative colitis. American ginseng (AG) is a putative antioxidant that can suppress hyperactive immune cells. We have recently shown that AG can prevent and treat mouse colitis. Because p53 levels are elevated in inflammatory cells in both mouse and human colitis, we tested the hypothesis that AG protects from colitis by driving inflammatory cell apoptosis through a p53 mechanism. We used isogenic p53(+/+) and p53(-/-) inflammatory cell lines as well as primary CD4(+)/CD25(-) effector T cells from p53(+/+) and p53(-/-) mice to show that AG drives apoptosis in a p53-dependent manner. Moreover, we used a dextran sulfate sodium (DSS) model of colitis in C57BL/6 p53(+/+) and p53(-/-) mice to test whether the protective effect of AG against colitis is p53 dependent. Data indicate that AG induces apoptosis in p53(+/+) but not in isogenic p53(-/-) cells in vitro. In vivo, C57BL/6 p53(+/+) mice are responsive to the protective effects of AG against DSS-induced colitis, whereas AG fails to protect from colitis in p53(-/-) mice. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of inflammatory cells within the colonic mesenteric lymph nodes is elevated in p53(+/+) mice consuming DSS + AG but not in p53(-/-) mice consuming DSS + AG. Results are consistent with our in vitro data and with the hypothesis that AG drives inflammatory cell apoptosis in vivo, providing a mechanism by which AG protects from colitis in this DSS mouse model.
Collapse
Affiliation(s)
- Yu Jin
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, SC 29208
| | - Anne B. Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, SC 29208
| | - Xiangli Cui
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, SC 29208
| | - Anthony J. Windust
- Institute for National Measurement Standards, National Research Council, Ottawa, Canada
| | - Alex A. Chumanevich
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, SC 29208
| | - Lydia E. Matesic
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - Narendra P. Singh
- Pathology and Microbiology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Mitzi Nagarkatti
- Pathology and Microbiology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Prakash S. Nagarkatti
- Pathology and Microbiology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Lorne J. Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, SC 29208
| |
Collapse
|
20
|
Whittem CG, Williams AD, Williams CS. Murine Colitis modeling using Dextran Sulfate Sodium (DSS). J Vis Exp 2010:1652. [PMID: 20087313 PMCID: PMC2841571 DOI: 10.3791/1652] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Colitis can occur from viral or bacterial infections, ischemic insult, or autoimmune disorders; most notably Ulcerative Colitis and the colonic variant of Crohn’s Disease - Crohn’s Colitis. Acute colitis may present with abdominal pain and distention, malabsorption, diarrhea, hematochezia and mucus in the stool. We are beginning to understand the complex interactions between the environment, genetics, and epithelial barrier dysfunction in Inflammatory Bowel Disease and animal models of colitis have been essential in advancing our understanding of this disease. One popular model involves supplementing the drinking water of mice with low-molecular weight Dextran Sodium Sulfate (DSS), resulting in epithelial damage and a robust inflammatory response in the colon lasting several days 1.Variations of this approach can be used to model acute injury, acute injury followed by repair, and repeated cycles of DSS interspersed with recovery modeling chronic inflammatory diseases 2. After a single four-day treatment of 3% DSS in drinking water, mice show signs of acute colitis including weight loss, bloody stools, and diarrhea. Mice are euthanized at the conclusion of the treatment course and at necropsy dissected colons are processed and can be 'Swiss rolled" 3 to allow microscopic analysis of the entire colon or infused with formalin as "sausages" to allow macroscopic analysis. Tissue is then embedded in paraffin, sectioned, and stained for histologic review.
Collapse
|
21
|
Abstract
Paneth cells (PCs) are specialized epithelial cells predominantly found in the small intestinal crypts of Lieberkuehn. They produce different broad spectrum antimicrobial peptides most abundantly the alpha-defensins HD-5 and -6 (DEFA5 und DEFA6). Both these PC products show a specific reduction in small intestinal Crohn's disease (CD) - a form of inflammatory bowel disease (IBD). Their decrease is independent of current inflammation and an association with a NOD2 frameshift mutation has been demonstrated. More recently, another independent and even more frequent mechanism has been found which is linked to diminished levels of the Wnt pathway transcription factor TCF7L2 (also known as TCF4). Besides regulating the expression of HD-5 and HD-6 as TCF4 target genes, the Wnt pathway also orchestrates Paneth cell differentiation and maturation and controls stem cell maintenance in the small intestine. Besides NOD2 (which is predominantly expressed in PC) and ATG16L1 (inter alia important in the exocytosis of PC products), TCF4 is the third gene which is associated with small intestinal CD and Paneth cell antimicrobial function. Thus, Paneth cells seem to be key player emphazising a paramount importance of antimicrobial host defense in small intestinal CD pathogenesis.
Collapse
|
22
|
Minocycline attenuates 5-fluorouracil-induced small intestinal mucositis in mouse model. Biochem Biophys Res Commun 2009; 389:634-9. [PMID: 19765544 DOI: 10.1016/j.bbrc.2009.09.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/11/2009] [Indexed: 11/21/2022]
Abstract
Minocycline exerts anti-inflammatory and anti-apoptotic effects distinct from its antimicrobial function. In this study we investigated the effect of this drug on chemotherapy-induced gut damage. Body weight loss results, diarrhea scores, and villi measurements showed that minocycline attenuated the severity of intestinal mucositis induced by 5-fluorouracil (5-FU). Minocycline repressed the expression of TNF-alpha, IL-1beta, and iNOS, decreased the apoptotic index, and inhibited poly(ADP-ribose) polymerase-1 (PARP-1) activity in the mouse small intestine. In vitro experiments showed that minocycline suppressed the upregulation of PARP-1 activity in enterocyte IEC-6 cells treated with 5-FU. In addition, minocycline treatment appeared to enhance the antitumor effects of 5-FU in tumor CT-26 xenograft mice. Our results indicate that minocycline protects mice from gut injury induced by 5-FU and enhances the antitumor effects of 5-FU in xenograft mice. These observations suggest that minocycline treatment may benefit patients undergoing standard cancer chemotherapy by alleviating chemical-associated intestinal mucositis.
Collapse
|
23
|
Huang TY, Chu HC, Lin YL, Lin CK, Hsieh TY, Chang WK, Chao YC, Liao CL. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases. Toxicol Appl Pharmacol 2009; 237:69-82. [PMID: 19285099 DOI: 10.1016/j.taap.2009.02.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 01/29/2009] [Accepted: 02/24/2009] [Indexed: 12/31/2022]
Abstract
In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tien-Yu Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Deletion of Mtg16, a target of t(16;21), alters hematopoietic progenitor cell proliferation and lineage allocation. Mol Cell Biol 2008; 28:6234-47. [PMID: 18710942 DOI: 10.1128/mcb.00404-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While a number of DNA binding transcription factors have been identified that control hematopoietic cell fate decisions, only a limited number of transcriptional corepressors (e.g., the retinoblastoma protein [pRB] and the nuclear hormone corepressor [N-CoR]) have been linked to these functions. Here, we show that the transcriptional corepressor Mtg16 (myeloid translocation gene on chromosome 16), which is targeted by t(16;21) in acute myeloid leukemia, is required for hematopoietic progenitor cell fate decisions and for early progenitor cell proliferation. Inactivation of Mtg16 skewed early myeloid progenitor cells toward the granulocytic/macrophage lineage while reducing the numbers of megakaryocyte-erythroid progenitor cells. In addition, inactivation of Mtg16 impaired the rapid expansion of short-term stem cells, multipotent progenitor cells, and megakaryocyte-erythroid progenitor cells that is required under hematopoietic stress/emergency. This impairment appears to be a failure to proliferate rather than an induction of cell death, as expression of c-Myc, but not Bcl2, complemented the Mtg16(-/-) defect.
Collapse
|
25
|
Farmer TE, Williams CS, Washington MK, Hiebert SW. Inactivation of the p19(ARF) tumor suppressor affects intestinal epithelial cell proliferation and integrity. J Cell Biochem 2008; 104:2228-40. [PMID: 18442038 PMCID: PMC3164503 DOI: 10.1002/jcb.21779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
p19(ARF) is a tumor suppressor that is frequently deleted in human cancer. It lies at chromosome 9p21 and shares exons 2 and 3 with p16(ink4a), which is also inactivated by these cancer-associated deletions. The "canonical pathway" by which p19(ARF) is thought to suppress tumorigenesis through activation of the p53 tumor suppressor. In response to hyperproliferative signals, such as expression of oncogenes, p19(ARF) is induced and binds to the MDM2 ubiquitin ligase, sequestering it in the nucleolus to allow the accumulation of p53. However, p19(ARF) also has MDM2 and p53 independent functions. In human colon cancer, p19(ARF) is only rarely deleted, but it is more frequently silenced by DNA promoter methylation. Here we show that inactivation of p19(ARF) in mice increases the number of cycling cells in the crypts of the colonic epithelium. Moreover, inactivation of p19(ARF) exacerbated the ulceration of the colonic epithelium caused by dextran sodium sulfate (DSS). These effects were similar to those observed in mice lacking myeloid translocation gene-related-1 (Mtgr1), and mice lacking both of these genes showed an even greater sensitivity to DSS. Surprisingly, inactivation of p19(ARF) restored the loss of the secretory lineage in mice deficient in Mtgr1, suggesting an additional role for p19(ARF) in the small intestinal epithelium.
Collapse
Affiliation(s)
- Tiffany E. Farmer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Christopher S. Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - M. Kay Washington
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
26
|
Wang Y, Srinivasan K, Siddiqui MR, George SP, Tomar A, Khurana S. A novel role for villin in intestinal epithelial cell survival and homeostasis. J Biol Chem 2008; 283:9454-64. [PMID: 18198174 DOI: 10.1074/jbc.m707962200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Apoptosis is a key regulator for the normal turnover of the intestinal mucosa, and abnormalities associated with this function have been linked to inflammatory bowel disease and colorectal cancer. Despite this, little is known about the mechanism(s) mediating intestinal epithelial cell apoptosis. Villin is an actin regulatory protein that is expressed in every cell of the intestinal epithelium as well as in exocrine glands associated with the gastrointestinal tract. In this study we demonstrate for the first time that villin is an epithelial cell-specific anti-apoptotic protein. Absence of villin predisposes mice to dextran sodium sulfate-induced colitis by promoting apoptosis. To better understand the cellular and molecular mechanisms of the anti-apoptotic function of villin, we overexpressed villin in the Madin-Darby canine kidney Tet-Off epithelial cell line to demonstrate that expression of villin protects cells from apoptosis by maintaining mitochondrial integrity thus inhibiting the activation of caspase-9 and caspase-3. Furthermore, we report that the anti-apoptotic response of villin depends on activation of the pro-survival proteins, phosphatidylinositol 3-kinase and phosphorylated Akt. The results of our studies shed new light on the previously unrecognized function of villin in the regulation of apoptosis in the gastrointestinal epithelium.
Collapse
Affiliation(s)
- Yaohong Wang
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
27
|
Myeloid translocation gene family members associate with T-cell factors (TCFs) and influence TCF-dependent transcription. Mol Cell Biol 2007; 28:977-87. [PMID: 18039847 DOI: 10.1128/mcb.01242-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling is mediated by a molecular "switch" that regulates the transcriptional properties of the T-cell factor (TCF) family of DNA-binding proteins. Members of the myeloid translocation gene (MTG) family of transcriptional corepressors are frequently disrupted by chromosomal translocations in acute myeloid leukemia, whereas MTG16 may be inactivated in up to 40% of breast cancer and MTG8 is a candidate cancer gene in colorectal carcinoma. Genetic studies imply that this corepressor family may function in stem cells. Given that mice lacking Myeloid Translocation Gene Related-1 (Mtgr1) fail to maintain the secretory lineage in the small intestine, we surveyed transcription factors that might recruit Mtgr1 in intestinal stem cells or progenitor cells and found that MTG family members associate specifically with TCF4. Coexpression of beta-catenin disrupted the association between these corepressors and TCF4. Furthermore, when expressed in Xenopus embryos, MTG family members inhibited axis formation and impaired the ability of beta-catenin and XLef-1 to induce axis duplication, indicating that MTG family members act downstream of beta-catenin. Moreover, we found that c-Myc, a transcriptional target of the Wnt pathway, was overexpressed in the small intestines of mice lacking Mtgr1, thus linking inactivation of Mtgr1 to the activation of a potent oncogene.
Collapse
|