1
|
Rao M, Gulbransen BD. Enteric Glia. Cold Spring Harb Perspect Biol 2025; 17:a041368. [PMID: 38951022 PMCID: PMC11960695 DOI: 10.1101/cshperspect.a041368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Enteric glia are a unique type of peripheral neuroglia that accompany neurons in the enteric nervous system (ENS) of the digestive tract. The ENS displays integrative neural circuits that are capable of governing moment-to-moment gut functions independent of input from the central nervous system. Enteric glia are interspersed with neurons throughout these intrinsic gut neural circuits and are thought to fulfill complex roles directed at maintaining homeostasis in the neuronal microenvironment and at neuroeffector junctions in the gut. Changes to glial functions contribute to a wide range of gastrointestinal diseases, but the precise roles of enteric glia in gut physiology and pathophysiology are still under examination. This review summarizes current concepts regarding enteric glial development, diversity, and functions in health and disease.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
2
|
Shang L, Yang F, Chen Q, Dai Z, Yang G, Zeng X, Qiao S, Yu H. Bacteriocin Microcin J25's antibacterial infection effects and novel non-microbial regulatory mechanisms: differential regulation of dopaminergic receptors. J Anim Sci Biotechnol 2024; 15:156. [PMID: 39533384 PMCID: PMC11559059 DOI: 10.1186/s40104-024-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The antibacterial and immunomodulatory activities of bacteriocins make them attractive targets for development as anti-infective drugs. Although the importance of the enteric nervous system (ENS) in the struggle against infections of the intestine has been demonstrated, whether it is involved in bacteriocins anti-infective mechanisms is poorly defined. RESULTS Here, we demonstrated that the bacteriocin Microcin J25 (J25) significantly alleviated diarrhea and intestinal inflammation in piglets caused by enterotoxigenic Escherichia coli (ETEC) infection. Mechanistically, macrophage levels were significantly downregulated after J25 treatment, and this was replicated in a mouse model. Omics analysis and validation screening revealed that J25 treatment induced significant changes in the dopaminergic neuron pathway, but little change in microbial structure. The alleviation of inflammation may occur by down-regulating dopamine receptor (DR) D1 and the downstream DAG-PKC pathway, thus inhibiting arachidonic acid decomposition, and the inhibition of macrophages may occur through the up-regulation of DRD5 and the downstream cAMP-PKA pathway, thus inhibiting NF-κB. CONCLUSIONS Our studies' findings provide insight into the changes and possible roles of the ENS in J25 treatment of ETEC infection, providing a more sophisticated foundational understanding for developing the application potential of J25.
Collapse
Affiliation(s)
- Lijun Shang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, 100193, P.R. China
- Beijing Bio-feed additives Key Laboratory, Beijing, 100193, P.R. China
| | - Fengjuan Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, 100193, P.R. China
- Beijing Bio-feed additives Key Laboratory, Beijing, 100193, P.R. China
| | - Qingyun Chen
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, 100193, P.R. China
- Beijing Bio-feed additives Key Laboratory, Beijing, 100193, P.R. China
| | - Ziqi Dai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, 100193, P.R. China
- Beijing Bio-feed additives Key Laboratory, Beijing, 100193, P.R. China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, 100193, P.R. China
- Beijing Bio-feed additives Key Laboratory, Beijing, 100193, P.R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, 100193, P.R. China
- Beijing Bio-feed additives Key Laboratory, Beijing, 100193, P.R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, 100193, P.R. China
- Beijing Bio-feed additives Key Laboratory, Beijing, 100193, P.R. China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, 100193, P.R. China.
- Beijing Bio-feed additives Key Laboratory, Beijing, 100193, P.R. China.
| |
Collapse
|
3
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
4
|
Zhang W, Zhang J, Wang Y, Wang S, Wu Y, Zhang W, Wu M, Wang L, Xu G, Deng F, Liu W, Liu Z, Chen L, Xiao K, Zhang L. In Vitro Detection of S100B and Severity Evaluation of Traumatic Brain Injury Based on Biomimetic Peptide-Modified Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306809. [PMID: 38009781 DOI: 10.1002/smll.202306809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Jianrui Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yijun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Senyao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yitian Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchang Zhang
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fuan Deng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhengwei Liu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Lu Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Thomasi B, Valdetaro L, Ricciardi MC, Gonçalves de Carvalho M, Fialho Tavares I, Tavares-Gomes AL. Enteric glia as a player of gut-brain interactions during Parkinson's disease. Front Neurosci 2023; 17:1281710. [PMID: 38027511 PMCID: PMC10644407 DOI: 10.3389/fnins.2023.1281710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The enteric glia has been shown as a potential component of neuroimmune interactions that signal in the gut-brain axis during Parkinson's disease (PD). Enteric glia are a peripheral glial type found in the enteric nervous system (ENS) that, associated with enteric neurons, command various gastrointestinal (GI) functions. They are a unique cell type, with distinct phenotypes and distribution in the gut layers, which establish relevant neuroimmune modulation and regulate neuronal function. Comprehension of enteric glial roles during prodromal and symptomatic phases of PD should be a priority in neurogastroenterology research, as the reactive enteric glial profile, gastrointestinal dysfunction, and colonic inflammation have been verified during the prodromal phase of PD-a moment that may be interesting for interventions. In this review, we explore the mechanisms that should govern enteric glial signaling through the gut-brain axis to understand pathological events and verify the possible windows and pathways for therapeutic intervention. Enteric glia directly modulate several functional aspects of the intestine, such as motility, visceral sensory signaling, and immune polarization, key GI processes found deregulated in patients with PD. The search for glial biomarkers, the investigation of temporal-spatial events involving glial reactivity/signaling, and the proposal of enteric glia-based therapies are clearly demanded for innovative and intestine-related management of PD.
Collapse
Affiliation(s)
- Beatriz Thomasi
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Luisa Valdetaro
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Maria Carolina Ricciardi
- Neuroglial Interaction Lab, Neuroscience Program, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Isabela Fialho Tavares
- Neuroglial Interaction Lab, Neurobiology Department, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana Lucia Tavares-Gomes
- Neuroglial Interaction Lab, Neuroscience Program, Universidade Federal Fluminense, Niterói, Brazil
- Neuroglial Interaction Lab, Neurobiology Department, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
6
|
Xie H, Zeng X, Wang W, Wang W, Han B, Tan Q, Hu Q, Liu X, Chen S, Chen J, Sun L, Chen Y, Xiao W. Enteric glial cells aggravate the intestinal epithelial barrier damage by secreting S100β under high-altitude conditions. MOLECULAR BIOMEDICINE 2023; 4:31. [PMID: 37779161 PMCID: PMC10542628 DOI: 10.1186/s43556-023-00143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Damage to the intestinal epithelial barrier (IEB) has been reported under high-altitude (HA) conditions and may be responsible for HA-associated gastrointestinal (GI) disorders. However, this pathogenetic mechanism does not fully explain the GI stress symptoms, such as flatulence and motility diarrhea, which accompany the IEB damage under HA conditions, especially for the people exposed to HA acutely. In the present study, we collected the blood samples from the people who lived at HA and found the concentration of enteric glial cells (EGCs)-associated biomarkers increased significantly. HA mouse model was then established and the results revealed that EGCs were involved in IEB damage. Zona occludens (ZO)-1, occludin, and claudin-1 expression was negatively correlated with that of glial fibrillary acidic protein (GFAP) and S100β under HA conditions. In order to learn more about how EGCs influence IEB, the in vitro EGC and MODE-K hypoxia experiments that used hypoxic stimulation for simulating in vivo exposure to HA was performed. We found that hypoxia increased S100β secretion in EGCs. And MODE-K cells cultured in medium conditioned by hypoxic EGCs showed low ZO-1, occludin, and claudin-1 levels of expression. Furthermore, treatment of MODE-K cells with recombinant mouse S100β resulted in diminished levels of ZO-1, occludin, and claudin-1 expression. Thus, HA exposure induces greater S100β secretion by EGCs, which aggravates the damage to the IEB. This study has revealed a novel mechanism of IEB damage under HA conditions, and suggest that EGCs may constitute a fresh avenue for the avoidance of GI disorders at HA.
Collapse
Affiliation(s)
- Huichao Xie
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiong Zeng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ben Han
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - QianShan Tan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiu Hu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xingyu Liu
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jun Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yihui Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Ding S, Wang C, Wang W, Yu H, Chen B, Liu L, Zhang M, Lang Y. Autocrine S100B in astrocytes promotes VEGF-dependent inflammation and oxidative stress and causes impaired neuroprotection. Cell Biol Toxicol 2023; 39:1-25. [PMID: 34792689 DOI: 10.1007/s10565-021-09674-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
Minimal hepatic encephalopathy (MHE) is strongly associated with neuroinflammation. Nevertheless, the underlying mechanism of the induction of inflammatory response in MHE astrocytes remains not fully understood. In the present study, we investigated the effect and mechanism of S100B, a predominant isoform expressed and released from mature astrocytes, on MHE-like neuropathology in the MHE rat model. We discovered that S100B expressions and autocrine were significantly increased in MHE rat brains and MHE rat brain-derived astrocytes. Furthermore, S100B stimulates VEGF expression via the interaction between TLR2 and RAGE in an autocrine manner. S100B-facilitated VEGF autocrine expression further led to a VEGFR2 and COX-2 interaction, which in turn induced the activation of NFƙB, eventually resulting in inflammation and oxidative stress in MHE astrocytes. MHE astrocytes supported impairment of neuronal survival and growth in a co-culture system. To sum up, a comprehensive understanding of the role of S100B-overexpressed MHE astrocyte in MHE pathogenesis may provide insights into the etiology of MHE.
Collapse
Affiliation(s)
- Saidan Ding
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Chengde Wang
- Neurosurgery department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Weikan Wang
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - He Yu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Baihui Chen
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Leping Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minxue Zhang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yan Lang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
8
|
Cohen G, Gover O, Schwartz B. Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study. Int J Mol Sci 2023; 24:14628. [PMID: 37834076 PMCID: PMC10572654 DOI: 10.3390/ijms241914628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.
Collapse
|
9
|
Liu C, Xia Y, Fu S, Meng F, Feng B, Xu L, Li L, Zuo X. Inhibition of Piezo1 Ameliorates Intestinal Inflammation and Limits the Activation of Group 3 Innate Lymphoid Cells in Experimental Colitis. J Innate Immun 2023; 15:709-723. [PMID: 37725937 PMCID: PMC10601687 DOI: 10.1159/000533525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/04/2023] [Indexed: 09/21/2023] Open
Abstract
Piezo1, the mechanosensory ion channel, has attracted increasing attention for its essential roles in various inflammatory responses and immune-related diseases. Although most of the key immune cells in inflammatory bowel disease (IBD) have been reported to be regulated by Piezo1, the specific role of Piezo1 in colitis has yet to be intensively studied. The present study investigated the impact of pharmacological inhibition of Piezo1 on dextran sulfate sodium (DSS)-induced colitis and explored the role of Piezo1 in intestinal immune cells in the context of colitis. We observed upregulated expression of Piezo1 in the colon tissue of mice with DSS-induced colitis. Pharmacological inhibition of Piezo1 by GsMTx4 diminished the severity of colitis. Piezo1 inhibition downregulated the expression of pro-inflammatory mediators Il1b, Il6, and Ptgs2 in colonic tissue and suppressed the production of IL-6 from macrophages and dendritic cells without altering the balance of T helper (Th) cells. In particular, Piezo1 did not affect cell viability but regulated cell proliferation and production of IL-17A in group 3 innate lymphoid cells (ILC3s), which is dependent on the PI3K-Akt-mTOR signaling pathway. Our findings uncover Piezo1 as an effective regulator of gut inflammation. Targeting Piezo1 could be a promising strategy to modulate intestinal immunity in IBD.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China,
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China,
| | - Yanan Xia
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Shichen Fu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Fanyi Meng
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Leiqi Xu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital, Shandong University, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
Manai F, Zanoletti L, Arfini D, Micco SGD, Gjyzeli A, Comincini S, Amadio M. Dimethyl Fumarate and Intestine: From Main Suspect to Potential Ally against Gut Disorders. Int J Mol Sci 2023; 24:9912. [PMID: 37373057 DOI: 10.3390/ijms24129912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Dimethyl fumarate (DMF) is a well-characterized molecule that exhibits immuno-modulatory, anti-inflammatory, and antioxidant properties and that is currently approved for the treatment of psoriasis and multiple sclerosis. Due to its Nrf2-dependent and independent mechanisms of action, DMF has a therapeutic potential much broader than expected. In this comprehensive review, we discuss the state-of-the-art and future perspectives regarding the potential repurposing of DMF in the context of chronic inflammatory diseases of the intestine, such as inflammatory bowel disorders (i.e., Crohn's disease and ulcerative colitis) and celiac disease. DMF's mechanisms of action, as well as an exhaustive analysis of the in vitro/in vivo evidence of its beneficial effects on the intestine and the gut microbiota, together with observational studies on multiple sclerosis patients, are here reported. Based on the collected evidence, we highlight the new potential applications of this molecule in the context of inflammatory and immune-mediated intestinal diseases.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lisa Zanoletti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
- Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Davide Arfini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Simone Giorgio De Micco
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Arolda Gjyzeli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
11
|
S100B Affects Gut Microbiota Biodiversity. Int J Mol Sci 2023; 24:ijms24032248. [PMID: 36768570 PMCID: PMC9916897 DOI: 10.3390/ijms24032248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
This in vivo study in mice addresses the relationship between the biodiversity of the microbiota and the levels of S100B, a protein present in enteroglial cells, but also in foods such as milk. A positive significant correlation was observed between S100B levels and Shannon values, which was reduced after treatment with Pentamidine, an inhibitor of S100B function, indicating that the correlation was influenced by the modulation of S100B activity. Using the bootstrap average method based on the distribution of the S100B concentration, three groups were identified, exhibiting a significant difference between the microbial profiles. Operational taxonomic units, when analyzed by SIMPER analysis, showed that genera regarded to be eubiotic were mainly concentrated in the intermediate group, while genera potentially harboring pathobionts often appeared to be more concentrated in groups where the S100B amounts were very low or high. Finally, in a pilot experiment, S100B was administered orally, and the microbial profiles appeared to be modified accordingly. These data may open novel perspectives involving the possibility of S100B-mediated regulation in the intestinal microbiota.
Collapse
|
12
|
Phuong-Nguyen K, McNeill BA, Aston-Mourney K, Rivera LR. Advanced Glycation End-Products and Their Effects on Gut Health. Nutrients 2023; 15:nu15020405. [PMID: 36678276 PMCID: PMC9867518 DOI: 10.3390/nu15020405] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Dietary advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed when reducing sugars are heated with proteins, amino acids, or lipids at high temperatures for a prolonged period. The presence and accumulation of AGEs in numerous cell types and tissues are known to be prevalent in the pathology of many diseases. Modern diets, which contain a high proportion of processed foods and therefore a high level of AGE, cause deleterious effects leading to a multitude of unregulated intracellular and extracellular signalling and inflammatory pathways. Currently, many studies focus on investigating the chemical and structural aspects of AGEs and how they affect the metabolism and the cardiovascular and renal systems. Studies have also shown that AGEs affect the digestive system. However, there is no complete picture of the implication of AGEs in this area. The gastrointestinal tract is not only the first and principal site for the digestion and absorption of dietary AGEs but also one of the most susceptible organs to AGEs, which may exert many local and systemic effects. In this review, we summarise the current evidence of the association between a high-AGE diet and poor health outcomes, with a special focus on the relationship between dietary AGEs and alterations in the gastrointestinal structure, modifications in enteric neurons, and microbiota reshaping.
Collapse
|
13
|
Colonic mast cells trigger enteric neuronal death through the S100β/RAGE/NFκB pathway on Inflammatory Bowel Diseases. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
The Enteric Glia and Its Modulation by the Endocannabinoid System, a New Target for Cannabinoid-Based Nutraceuticals? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196773. [PMID: 36235308 PMCID: PMC9570628 DOI: 10.3390/molecules27196773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
The enteric nervous system (ENS) is a part of the autonomic nervous system that intrinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-competent cells that contribute to the maintenance of the GI tract homeostasis through supporting epithelial integrity, providing neuroprotection, and influencing the GI motor function and sensation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids (anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved. Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dysfunctions, and the current knowledge about how EGCs may be modulated by the ECS components, as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with potential nutraceutical use.
Collapse
|
15
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
16
|
Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. J Neuroimmune Pharmacol 2022; 17:76-93. [PMID: 34993905 DOI: 10.1007/s11481-021-10046-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.
Collapse
|
17
|
Liu C, Yang J. Enteric Glial Cells in Immunological Disorders of the Gut. Front Cell Neurosci 2022; 16:895871. [PMID: 35573829 PMCID: PMC9095930 DOI: 10.3389/fncel.2022.895871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric glial cells (EGCs) are one of the major cell types of neural crest lineage distributed in the gastrointestinal tract. EGCs represent an integral part of the enteric nervous system (ENS) and significantly outnumber ENS neurons. Studies have suggested that EGCs would exert essential roles in supporting the survival and functions of the ENS neurons. Notably, recent evidence has begun to reveal that EGCs could possess multiple immune functions and thereby may participate in the immune homeostasis of the gut. In this review article, we will summarize the current evidence supporting the potential involvement of EGCs in several important immunological disorders, including inflammatory bowel disease, celiac disease, and autoimmune enteropathy. Further, we highlight critical questions on the immunological aspects of EGCs that warrant future research attention.
Collapse
Affiliation(s)
- Chang Liu
- Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- Center for Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Jing Yang
| |
Collapse
|
18
|
|
19
|
Lucarini E, Seguella L, Vincenzi M, Parisio C, Micheli L, Toti A, Corpetti C, Del Re A, Squillace S, Maftei D, Lattanzi R, Ghelardini C, Di Cesare Mannelli L, Esposito G. Role of Enteric Glia as Bridging Element between Gut Inflammation and Visceral Pain Consolidation during Acute Colitis in Rats. Biomedicines 2021; 9:biomedicines9111671. [PMID: 34829900 PMCID: PMC8616000 DOI: 10.3390/biomedicines9111671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/30/2022] Open
Abstract
Acute inflammation is particularly relevant in the pathogenesis of visceral hypersensitivity associated with inflammatory bowel diseases. Glia within the enteric nervous system, as well as within the central nervous system, contributes to neuroplasticity during inflammation, but whether enteric glia has the potential to modify visceral sensitivity following colitis is still unknown. This work aimed to investigate the occurrence of changes in the neuron–glial networks controlling visceral perception along the gut–brain axis during colitis, and to assess the effects of peripheral glial manipulation. Enteric glia activity was altered by the poison fluorocitrate (FC; 10 µmol kg−1 i.p.) before inducing colitis in animals (2,4-dinitrobenzenesulfonic acid, DNBS; 30 mg in 0.25 mL EtOH 50%), and visceral sensitivity, colon damage, and glia activation along the pain pathway were studied. FC injection significantly reduced the visceral hyperalgesia, the histological damage, and the immune activation caused by DNBS. Intestinal inflammation is associated with a parallel overexpression of TRPV1 and S100β along the gut–brain axis (colonic myenteric plexuses, dorsal root ganglion, and periaqueductal grey area). This effect was prevented by FC. Peripheral glia activity modulation emerges as a promising strategy for counteracting visceral pain induced by colitis.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Chiara Corpetti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Alessandro Del Re
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Silvia Squillace
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
| | - Daniela Maftei
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
- Correspondence:
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| |
Collapse
|
20
|
Kikel-Coury NL, Brandt JP, Correia IA, O’Dea MR, DeSantis DF, Sterling F, Vaughan K, Ozcebe G, Zorlutuna P, Smith CJ. Identification of astroglia-like cardiac nexus glia that are critical regulators of cardiac development and function. PLoS Biol 2021; 19:e3001444. [PMID: 34793438 PMCID: PMC8601506 DOI: 10.1371/journal.pbio.3001444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest-derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap, glast, and glutamine synthetase, markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.
Collapse
Affiliation(s)
- Nina L. Kikel-Coury
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jacob P. Brandt
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Isabel A. Correia
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael R. O’Dea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Dana F. DeSantis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Felicity Sterling
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kevin Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gulberk Ozcebe
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
21
|
Costa DVS, Moura-Neto V, Bolick DT, Guerrant RL, Fawad JA, Shin JH, Medeiros PHQS, Ledwaba SE, Kolling GL, Martins CS, Venkataraman V, Warren CA, Brito GAC. S100B Inhibition Attenuates Intestinal Damage and Diarrhea Severity During Clostridioides difficile Infection by Modulating Inflammatory Response. Front Cell Infect Microbiol 2021; 11:739874. [PMID: 34568098 PMCID: PMC8461106 DOI: 10.3389/fcimb.2021.739874] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of the enteric nervous system, which is a source of S100B, in Clostridioides difficile (C. difficile) infection (CDI) is poorly understood although intestinal motility dysfunctions are known to occur following infection. Here, we investigated the role of S100B in CDI and examined the S100B signaling pathways activated in C. difficile toxin A (TcdA)- and B (TcdB)-induced enteric glial cell (EGC) inflammatory response. The expression of S100B was measured in colon tissues and fecal samples of patients with and without CDI, as well as in colon tissues from C. difficile-infected mice. To investigate the role of S100B signaling in IL-6 expression induced by TcdA and TcdB, rat EGCs were used. Increased S100B was found in colonic biopsies from patients with CDI and colon tissues from C. difficile-infected mice. Patients with CDI-promoted diarrhea exhibited higher levels of fecal S100B compared to non-CDI cases. Inhibition of S100B by pentamidine reduced the synthesis of IL-1β, IL-18, IL-6, GMCSF, TNF-α, IL-17, IL-23, and IL-2 and downregulated a variety of NFκB-related genes, increased the transcription (SOCS2 and Bcl-2) of protective mediators, reduced neutrophil recruitment, and ameliorated intestinal damage and diarrhea severity in mice. In EGCs, TcdA and TcdB upregulated S100B-mediated IL-6 expression via activation of RAGE/PI3K/NFκB. Thus, CDI appears to upregulate colonic S100B signaling in EGCs, which in turn augment inflammatory response. Inhibition of S100B activity attenuates the intestinal injury and diarrhea caused by C. difficile toxins. Our findings provide new insight into the role of S100B in CDI pathogenesis and opens novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States.,Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Vivaldo Moura-Neto
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - David T Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jibraan A Fawad
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jae H Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Pedro H Q S Medeiros
- Department of Microbiology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Solanka E Ledwaba
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Conceição S Martins
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Venkat Venkataraman
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.,Department of Rehabilitation Medicine, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Gerly A C Brito
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
22
|
Mondal A, Saha P, Bose D, Chatterjee S, Seth RK, Xiao S, Porter DE, Brooks BW, Scott GI, Nagarkatti M, Nagarkatti P, Chatterjee S. Environmental Microcystin exposure in underlying NAFLD-induced exacerbation of neuroinflammation, blood-brain barrier dysfunction, and neurodegeneration are NLRP3 and S100B dependent. Toxicology 2021; 461:152901. [PMID: 34416350 PMCID: PMC8503918 DOI: 10.1016/j.tox.2021.152901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been shown to be associated with extrahepatic comorbidities including neuronal inflammation and Alzheimer's-like pathology. Environmental and genetic factors also act as a second hit to modulate severity and are expected to enhance the NAFLD-linked neuropathology. We hypothezied that environmental microcystin-LR (MC-LR), a toxin produced by harmful algal blooms of cyanobacteria, exacerbates the neuroinflammation and degeneration of neurons associated with NAFLD. Using a mouse model of NAFLD, exposed to MC-LR subsequent to the onset of fatty liver, we show that the cyanotoxin could significantly increase proinflammatory cytokine expression in the frontal cortex and cause increased expression of Lcn2 and HMGB1. The above effects were NLRP3 inflammasome activation-dependent since the use of NLRP3 knockout mice abrogated the increase in inflammation. NLRP3 was also responsible for decreased expression of the blood-brain barrier (BBB) tight junction proteins Occludin and Claudin 5 suggesting BBB dysfunction was parallel to neuroinflammation following microcystin exposure. An increased circulatory S100B release, a hallmark of astrocyte activation in MC-LR exposed NAFLD mice also confirmed BBB integrity loss, but the astrocyte activation observed in vivo was NLRP3 independent suggesting an important role of a secondary S100B mediated crosstalk. Mechanistically, conditioned medium from reactive astrocytes and parallel S100B incubation in neuronal cells caused increased inducible NOS, COX-2, and higher BAX/ Bcl2 protein expression suggesting oxidative stress-mediated neuronal cell apoptosis crucial for neurodegeneration. Taken together, MC-LR exacerbated neuronal NAFLD-linked comorbidities leading to cortical inflammation, BBB dysfunction, and neuronal apoptosis.
Collapse
Affiliation(s)
- Ayan Mondal
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Somdatta Chatterjee
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy at Rutgers University, Piscataway, NJ, 08854, USA
| | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, 29208, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76798-7266, USA
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA.
| |
Collapse
|
23
|
Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol 2021; 18:571-587. [PMID: 33731961 PMCID: PMC8324524 DOI: 10.1038/s41575-021-00423-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
One of the most transformative developments in neurogastroenterology is the realization that many functions normally attributed to enteric neurons involve interactions with enteric glial cells: a large population of peripheral neuroglia associated with enteric neurons throughout the gastrointestinal tract. The notion that glial cells function solely as passive support cells has been refuted by compelling evidence that demonstrates that enteric glia are important homeostatic cells of the intestine. Active signalling mechanisms between enteric glia and neurons modulate gastrointestinal reflexes and, in certain circumstances, function to drive neuroinflammatory processes that lead to long-term dysfunction. Bidirectional communication between enteric glia and immune cells contributes to gastrointestinal immune homeostasis, and crosstalk between enteric glia and cancer stem cells regulates tumorigenesis. These neuromodulatory and immunomodulatory roles place enteric glia in a unique position to regulate diverse gastrointestinal disease processes. In this Review, we discuss current concepts regarding enteric glial development, heterogeneity and functional roles in gastrointestinal pathophysiology and pathophysiology, with a focus on interactions with neurons and immune cells. We also present a working model to differentiate glial states based on normal function and disease-induced dysfunctions.
Collapse
Affiliation(s)
- Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Brian D Gulbransen
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
24
|
High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors. J Neuroinflammation 2021; 18:115. [PMID: 33993886 PMCID: PMC8126158 DOI: 10.1186/s12974-021-02164-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. METHODS C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. RESULTS HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. CONCLUSIONS HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity.
Collapse
|
25
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
26
|
Kneusels J, Kaehler M, Cascorbi I, Wedel T, Neunlist M, Lucius R, Cossais F. Limited Impact of 6-Mercaptopurine on Inflammation-Induced Chemokines Expression Profile in Primary Cultures of Enteric Nervous System. Neurochem Res 2021; 46:1781-1793. [PMID: 33864170 PMCID: PMC8187225 DOI: 10.1007/s11064-021-03324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regulatory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease. However, potential impacts of 6-MP on ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.
Collapse
Affiliation(s)
- Jan Kneusels
- Institute of Anatomy, Kiel University, Kiel, Germany.
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | |
Collapse
|
27
|
Marsilio I, Caputi V, Latorre E, Cerantola S, Paquola A, Alcalde AI, Mesonero JE, O'Mahony SM, Bertazzo A, Giaroni C, Giron MC. Oxidized phospholipids affect small intestine neuromuscular transmission and serotonergic pathways in juvenile mice. Neurogastroenterol Motil 2021; 33:e14036. [PMID: 33222337 DOI: 10.1111/nmo.14036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxidized phospholipid derivatives (OxPAPCs) act as bacterial lipopolysaccharide (LPS)-like damage-associated molecular patterns. OxPAPCs dose-dependently exert pro- or anti-inflammatory effects by interacting with several cellular receptors, mainly Toll-like receptors 2 and 4. It is currently unknown whether OxPAPCs may affect enteric nervous system (ENS) functional and structural integrity. METHODS Juvenile (3 weeks old) male C57Bl/6 mice were treated intraperitoneally with OxPAPCs, twice daily for 3 days. Changes in small intestinal contractility were evaluated by isometric neuromuscular responses to receptor and non-receptor-mediated stimuli. Alterations in ENS integrity and serotonergic pathways were assessed by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (LMMPs). Tissue levels of serotonin (5-HT), tryptophan, and kynurenine were measured by HPLC coupled to UV/fluorescent detection. KEY RESULTS OxPAPC treatment induced enteric gliosis, loss of myenteric plexus neurons, and excitatory hypercontractility, and reduced nitrergic neurotransmission with no changes in nNOS+ neurons. Interestingly, these changes were associated with a higher functional response to 5-HT, altered immunoreactivity of 5-HT receptors and serotonin transporter (SERT) together with a marked decrease in 5-HT levels, shifting tryptophan metabolism toward kynurenine production. CONCLUSIONS AND INFERENCES OxPAPC treatment disrupted structural and functional integrity of the ENS, affecting serotoninergic tone and 5-HT tissue levels toward a higher kynurenine content during adolescence, suggesting that changes in intestinal lipid metabolism toward oxidation can affect serotoninergic pathways, potentially increasing the risk of developing functional gastrointestinal disorders during critical stages of development.
Collapse
Affiliation(s)
- Ilaria Marsilio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eva Latorre
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,San Camillo Hospital, Treviso, Italy
| | - Andrea Paquola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ana I Alcalde
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - José E Mesonero
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
28
|
Li Z, Xin Z. Expression and significance of S-100β, CysC and NF-κB in patients with acute cerebral infarction. Exp Ther Med 2021; 21:149. [PMID: 33456516 PMCID: PMC7791921 DOI: 10.3892/etm.2020.9580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/20/2020] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to explore the expression and significance of S100 protein β (S100β), cystatin C (CysC), and nuclear factor kappa B (NF-κB) in patients with acute cerebral infarction (ACI). ACI patients (n=120) were selected as the experimental group at Xuzhou Central Hospital from August 2016 to August 2018. Ninety healthy subjects who underwent a physical examination at Xuzhou Central Hospital during the same period were selected as the control group. The expression levels of S-100β, CysC and NF-κB were compared between the two groups. Serum S-100β, CysC and NF-κB levels were compared between ACI patients with different degree of nervous functional defects, different infarct size and different prognosis. ROC curve analysis was used for the diagnosis of ACI by serum S-100β, CysC and NF-κB levels. Serum S-100β, CysC and NF-κB levels in the experimental group were higher than those in the control group (P<0.05). The levels of serum S-100β, CysC and NF-κB in patients with different neurological deficits were significantly different. The levels of serum S-100β, CysC and NF-κB in the severe and medium type infarction group were significantly higher than those in the mild type infarction group (both P<0.05). The levels of serum S-100β, CysC and NF-κB in the severe type infarction group were higher than those in the medium type infarction group (P<0.05). There were significant differences in serum S-100β, CysC and NF-κB levels in patients with different infarct sizes. The levels of serum S-100β, CysC and NF-κB in patients with large and medium size infarction were higher than those in the small size infarction group (both P<0.05). The levels of serum S-100β, CysC and NF-κB in patients with large size infarction were higher than those in patients with medium size infarction (P<0.05). Serum S-100β, CysC and NF-κB levels in patients of the worsening group were significantly higher than those in patients of the non-worsening group. The levels of S-100β, CysC, NF-κB in ACI patients were significantly higher than those in healthy subjects. Increased levels of S-100β, CysC and NF-κB can be used as ideal indexes for diagnosing cerebral infarction and studying the condition.
Collapse
Affiliation(s)
- Zaili Li
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Zaie Xin
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
29
|
Jaiswal M, Ganapathy A, Singh S, Sarwar S, Quadri JA, Rani N, Das P, Pal S, Shariff A. Morphology of enteric glia in colorectal carcinoma: A comparative study of tumor site and its proximal normal margin. Morphologie 2020; 105:267-274. [PMID: 33309198 DOI: 10.1016/j.morpho.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Colorectal carcinoma (CRC) is the third most common cancer in the world and fifth most common cancer in India. To understand the extent of perineural invasion (PNI) in CRC it is essential to study the morphology of enteric glial cells (EGCs). The aim of the study was to analyze the numerical density of EGCs and area of myenteric ganglia (MG) in the colonic tissue samples collected from CRC patients. MATERIAL AND METHODS Fifteen intraoperative tissue specimens were collected from the tumor site and 2cm proximal to the upper extent of tumor. The samples were divided into four groups: group 1 (n=15): proximal tumor free colonic tissue; group 2 (n=3): well-differentiated; group 3 (n=8): moderately differentiated; group 4 (n=4): poorly differentiated adenocarcinoma. After processing the tissues were subjected to hematoxylin and eosin staining. The anti-S100β and anti-GFAP antibodies were used to observe the EGCs. RESULTS In the H&E stained sections the number of myenteric ganglia appeared to be decreasing with increasing grade of adenocarcinoma. Immunostaining showed significant decreasing pattern in the numerical density of EGCs per myenteric ganglion and mean area of myenteric ganglia in relation to the thickness of circular muscle, corresponding to the increasing grades of adenocarcinoma. The morphology of the EGCs remained unaltered in the colonic tissue adjacent to the tumor site. CONCLUSION Significant loss of EGCs and neurodegeneration corresponded with the grade of tumor emphasizing on its prognostic value. The PNI was not seen in the clear margin proximal to the tumor site.
Collapse
Affiliation(s)
- M Jaiswal
- Department of anatomy, All India Institute of Medical Sciences, 110029 New Delhi, India
| | - A Ganapathy
- Department of anatomy, All India Institute of Medical Sciences, 110029 New Delhi, India
| | - S Singh
- Department of anatomy, All India Institute of Medical Sciences, 110029 New Delhi, India.
| | - S Sarwar
- Department of anatomy, All India Institute of Medical Sciences, 110029 New Delhi, India
| | - J A Quadri
- Department of anatomy, All India Institute of Medical Sciences, 110029 New Delhi, India
| | - N Rani
- Department of anatomy, All India Institute of Medical Sciences, 110029 New Delhi, India
| | - P Das
- Department of pathology, All India Institute of Medical Sciences, New Delhi, India
| | - S Pal
- Department of gastrointestinal surgery, All India Institute of Medical Sciences, New Delhi, India
| | - A Shariff
- Department of anatomy, All India Institute of Medical Sciences, 110029 New Delhi, India
| |
Collapse
|
30
|
Enteric Glia at the Crossroads between Intestinal Immune System and Epithelial Barrier: Implications for Parkinson Disease. Int J Mol Sci 2020; 21:ijms21239199. [PMID: 33276665 PMCID: PMC7730281 DOI: 10.3390/ijms21239199] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Over recent years, several investigations have suggested that Parkinson’s disease (PD) can be regarded as the consequence of a bowel disorder. Indeed, gastrointestinal symptoms can occur at all stages of this neurodegenerative disease and in up to a third of cases, their onset can precede the involvement of the central nervous system. Recent data suggest that enteric glial cells (EGCs) may play a major role in PD-related gastrointestinal disturbances, as well as in the development and progression of the central disease. In addition to their trophic and structural functions, EGCs are crucial for the homeostatic control of a wide range of gastrointestinal activities. The main purpose of this review was to provide a detailed overview of the role of EGCs in intestinal PD-associated alterations, with particular regard for their participation in digestive and central inflammation as well as the dynamic interactions between glial cells and intestinal epithelial barrier. Accumulating evidence suggests that several pathological intestinal conditions, associated with an impairment of barrier permeability, may trigger dysfunctions of EGCs and their shift towards a proinflammatory phenotype. The reactive gliosis is likely responsible for PD-related neuroinflammation and the associated pathological changes in the ENS. Thus, ameliorating the efficiency of mucosal barrier, as well as avoiding IEB disruption and the related reactive gliosis, might theoretically prevent the onset of PD or, at least, counteract its progression.
Collapse
|
31
|
Vijayvargiya P, Camilleri M, Carlson P, Nair A, Nord SL, Ryks M, Rhoten D, Burton D, Busciglio I, Lueke A, Harmsen WS, Donato LJ. Effects of Colesevelam on Bowel Symptoms, Biomarkers, and Colonic Mucosal Gene Expression in Patients With Bile Acid Diarrhea in a Randomized Trial. Clin Gastroenterol Hepatol 2020; 18:2962-2970.e6. [PMID: 32088296 PMCID: PMC7442687 DOI: 10.1016/j.cgh.2020.02.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Approximately one-third of patients with IBS-diarrhea (IBS-D) have increased bile acid (BA) synthesis or excretion. An open-label study showed benefits of colesevelam on bowel functions, consistent with luminal BA sequestration by colesevelam. We compared the effects of colesevelam vs placebo on symptoms and gene expression patterns in the sigmoid colon mucosa in patients with BA diarrhea associated with IBS-D. METHODS We performed a double-blind, parallel-group study of 30 adults with IBS-D and evidence of increased BA synthesis or fecal excretion, from December 2017 through December 2018 at a single center. Patients were randomly assigned (1:1) to groups given colesevelam (3 tablets, 625 mg each) or matching placebo, orally twice daily for 4 weeks. Stool diaries documented bowel functions for 8 days before and 28 days during colesevelam or placebo. Stool and fasting serum samples were collected for analyses of fecal BAs and serum levels of C4 and FGF19. We measured colonic transit by scintigraphy, mucosal permeability by in vivo excretion of saccharide probes, and mRNA levels in rectosigmoid biopsies. All measurements were made at baseline and on the last days of treatment. The primary endpoints were change in total fecal BA concentration and stool consistency. RESULTS Compared with placebo, colesevelam was associated with significant changes in sequestered fecal total BA excretion (P < .001) and serum levels of C4 and FGF19 (both P < .001), and with a mean increase in fecal level of deoxycholic acid (10%; P = .07) compared to placebo. Colesevelam decreased colon mucosal expression of NR1H4 and P2RY4 and increased expression of GPBAR1, compared with baseline. Stool frequency and consistency, colonic transit, and permeability did not differ significantly between groups. Colesevelam was well tolerated. CONCLUSIONS In a randomized trial, we found that colesevelam increases delivery of total and secondary BAs to stool, hepatic BA synthesis, and colonic mucosal expression of genes that regulate BA, farnesoid X, and GPBAR1 receptors. Larger studies are needed to determine the effects on clinical responses. ClinicalTrials.gov no: NCT03270085.
Collapse
Affiliation(s)
- Priya Vijayvargiya
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota.
| | - Paula Carlson
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Asha Nair
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Sara Linker Nord
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Ryks
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Deborah Rhoten
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Duane Burton
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Irene Busciglio
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Alan Lueke
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - W Scott Harmsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Leslie J Donato
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
32
|
Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J, Harzman A, Christofi FL. Postoperative Ileus and Postoperative Gastrointestinal Tract Dysfunction: Pathogenic Mechanisms and Novel Treatment Strategies Beyond Colorectal Enhanced Recovery After Surgery Protocols. Front Pharmacol 2020; 11:583422. [PMID: 33390950 PMCID: PMC7774512 DOI: 10.3389/fphar.2020.583422] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Postoperative ileus (POI) and postoperative gastrointestinal tract dysfunction (POGD) are well-known complications affecting patients undergoing intestinal surgery. GI symptoms include nausea, vomiting, pain, abdominal distention, bloating, and constipation. These iatrogenic disorders are associated with extended hospitalizations, increased morbidity, and health care costs into the billions and current therapeutic strategies are limited. This is a narrative review focused on recent concepts in the pathogenesis of POI and POGD, pipeline drugs or approaches to treatment. Mechanisms, cellular targets and pathways implicated in the pathogenesis include gut surgical manipulation and surgical trauma, neuroinflammation, reactive enteric glia, macrophages, mast cells, monocytes, neutrophils and ICC's. The precise interactions between immune, inflammatory, neural and glial cells are not well understood. Reactive enteric glial cells are an emerging therapeutic target that is under intense investigation for enteric neuropathies, GI dysmotility and POI. Our review emphasizes current therapeutic strategies, starting with the implementation of colorectal enhanced recovery after surgery protocols to protect against POI and POGD. However, despite colorectal enhanced recovery after surgery, it remains a significant medical problem and burden on the healthcare system. Over 100 pipeline drugs or treatments are listed in Clin.Trials.gov. These include 5HT4R agonists (Prucalopride and TAK 954), vagus nerve stimulation of the ENS-macrophage nAChR cholinergic pathway, acupuncture, herbal medications, peripheral acting opioid antagonists (Alvimopen, Methlnaltexone, Naldemedine), anti-bloating/flatulence drugs (Simethiocone), a ghreline prokinetic agonist (Ulimovelin), drinking coffee, and nicotine chewing gum. A better understanding of the pathogenic mechanisms for short and long-term outcomes is necessary before we can develop better prophylactic and treatment strategies.
Collapse
Affiliation(s)
- Elvio Mazzotta
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Juan Fiorda-Diaz
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Alan Harzman
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Fievos L. Christofi
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
33
|
Orsini M, Di Liddo R, Valeriani F, Mancin M, D’Incà R, Castagnetti A, Aceti A, Parnigotto PP, Romano Spica V, Michetti F. In Silico Evaluation of Putative S100B Interacting Proteins in Healthy and IBD Gut Microbiota. Cells 2020; 9:cells9071697. [PMID: 32679810 PMCID: PMC7407188 DOI: 10.3390/cells9071697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
The crosstalk between human gut microbiota and intestinal wall is essential for the organ’s homeostasis and immune tolerance. The gut microbiota plays a role in healthy and pathological conditions mediated by inflammatory processes or by the gut-brain axes, both involving a possible role for S100B protein as a diffusible cytokine present not only in intestinal mucosa but also in faeces. In order to identify target proteins for a putative interaction between S100B and the microbiota proteome, we developed a bioinformatics workflow by integrating the interaction features of known domains with the proteomics data derived from metataxonomic studies of the gut microbiota from healthy and inflammatory bowel disease (IBD) subjects. On the basis of the microbiota composition, proteins putatively interacting with S100B domains were in fact found, both in healthy subjects and IBD patients, in a reduced number in the latter samples, also exhibiting differences in interacting domains occurrence between the two groups. In addition, differences between ulcerative colitis and Crohn disease samples were observed. These results offer the conceptual framework for where to investigate the role of S100B as a candidate signalling molecule in the microbiota/gut communication machinery, on the basis of interactions differently conditioned by healthy or pathological microbiota.
Collapse
Affiliation(s)
- Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, 35020 Legnaro PD, Italy; (M.O.); (M.M.)
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy;
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy;
| | - Marzia Mancin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, 35020 Legnaro PD, Italy; (M.O.); (M.M.)
| | - Renata D’Incà
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Unit, University Hospital of Padua, 35121 Padua, Italy;
| | | | - Antonio Aceti
- Clinical Infectious Diseases, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling T.E.S. onlus Padua, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua, Italy;
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy;
- Correspondence: ; Tel.: +3906-3673-32-47
| | - Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
34
|
Persistent Increased Enteric Glial Expression of S100β is Associated With Low-grade Inflammation in Patients With Diverticular Disease. J Clin Gastroenterol 2019. [PMID: 29517710 DOI: 10.1097/mcg.0000000000001011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diverticular disease (DD) is a common gastrointestinal inflammatory disorder associated with an enteric neuropathy. Although enteric glial cells (EGCs) are essential regulators of intestinal inflammation and motility functions, their contribution to the pathophysiology of DD remains unclear. Therefore, we analyzed the expression of specific EGC markers in patients with DD. MATERIALS AND METHODS Expression of the glial markers S100β, GFAP, Sox10, and Connexin 43 was analyzed by real-time quantitative PCR in colonic specimens of patients with DD and in that of controls. Protein expression levels of S100β, GFAP, and Connexin 43 were further analyzed using immunohistochemistry in the submucosal and myenteric plexus of patients with DD and in that of controls. Expression of the inflammatory cytokines tumor necrosis factor-α and interleukin-6 was quantified using qPCR, and infiltration of CD3+ lymphocytes was determined using immunohistochemistry. RESULTS Expression of S100β was increased in the submucosal and myenteric plexus of patients with DD compared with that in controls, whereas expression of other glial factors remained unchanged. This increased expression of S100β was correlated to CD3+ lymphocytic infiltrates in patients with DD, whereas no correlation was observed in controls. CONCLUSIONS DD is associated with limited but significant alterations of the enteric glial network. The increased expression of S100β is associated with a persistent low-grade inflammation reported in patients with DD, further emphasizing the role of EGCs in intestinal inflammation.
Collapse
|
35
|
S100B Protein Stimulates Proliferation and Angiogenic Mediators Release through RAGE/pAkt/mTOR Pathway in Human Colon Adenocarcinoma Caco-2 Cells. Int J Mol Sci 2019; 20:ijms20133240. [PMID: 31266264 PMCID: PMC6651655 DOI: 10.3390/ijms20133240] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation and angiogenesis are associated with colonic carcinogenesis. Enteric glia-derived S100B protein has been proposed as an "ideal bridge", linking colonic inflammation and cancer, given its dual ability to up-regulate nuclear factor-kappaB (NF-κB) transcription via receptor for advanced glycation end products (RAGE) signaling and to sequestrate wild type pro-apoptotic wild type (wt)p53. However, its pro-angiogenic effects on cancer cells are still uninvestigated. To this aim, we evaluated the effect of exogenous S100B (0.05-5 µM) protein alone or in the presence of S100B blocking monoclonal antibody (mAb) (1:105-1:104 v/v diluted) on (1) cultured Caco-2 cells proliferation, migration and invasiveness in vitro, respectively by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT)-formazan, wound healing and matrigel invasion assays and (2) its effect on the release of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF) by ELISA and immunofluorescence analyses. The effect of S100B alone or in the presence of S100BmAb was then investigated on RAGE/pAkt/mammalian target of rapamycin (mTOR) signaling pathway by immunoblot analysis. Our results showed that S100B markedly increases proliferation and invasiveness of Caco-2 cells, through the release of pro-angiogenic VEGF and NO paralleled to a significant decrease of wtp53 expression mediated by RAGE-p38 mitogen-activated protein kinase (MAPK)/pAkt-mTOR and hypoxia-inducible factor 1-alpha (HIF1α) pathways. Such effects were counteracted by S100BmAb, indicating that S100B targeting is a potential approach to inhibit colon carcinoma proliferation and angiogenesis.
Collapse
|
36
|
Aaron L, Torsten M, Patricia W. Autoimmunity in celiac disease: Extra-intestinal manifestations. Autoimmun Rev 2019; 18:241-246. [PMID: 30639642 DOI: 10.1016/j.autrev.2018.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
Abstract
Celiac disease is an autoimmune condition of the small intestine caused by prolamins in genetically susceptible individuals evoked by multiple environmental factors. The pathological luminal intricate eco-events produce multiple signals that irradiate the entire body, resulting in a plethora of extra-intestinal manifestations. Nutrients, dysbiosis, dysbiotic components and their mobilome, post-translational modification of naive proteins, inter-enterocyte's tight junction dysfunction resulting in a leaky gut, microbial lateral genetic transfer of virulent genes, the sensing network of the enteric nervous systems and the ensuing pro-inflammatory messengers are mutually orchestrating the autoimmune interplay. Genetic-environmental-luminal events-mucosal changes are driving centrifugally the remote organs autoimmunity, establishing extra-intestinal multi organ injury. Exploring the underlying intestinal eco-events, the sensing and the delivery pathways and mechanisms that induce the peripheral tissues' damages might unravel new therapeutical strategies to prevent and help the gluten affected patients.
Collapse
Affiliation(s)
- Lerner Aaron
- AESKU.KIPP Institute, Wendelsheim, Germany; B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | |
Collapse
|
37
|
Boesmans W, Hao MM, Fung C, Li Z, Van den Haute C, Tack J, Pachnis V, Vanden Berghe P. Structurally defined signaling in neuro-glia units in the enteric nervous system. Glia 2019; 67:1167-1178. [PMID: 30730592 PMCID: PMC6593736 DOI: 10.1002/glia.23596] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Coordination of gastrointestinal function relies on joint efforts of enteric neurons and glia, whose crosstalk is vital for the integration of their activity. To investigate the signaling mechanisms and to delineate the spatial aspects of enteric neuron-to-glia communication within enteric ganglia we developed a method to stimulate single enteric neurons while monitoring the activity of neighboring enteric glial cells. We combined cytosolic calcium uncaging of individual enteric neurons with calcium imaging of enteric glial cells expressing a genetically encoded calcium indicator and demonstrate that enteric neurons signal to enteric glial cells through pannexins using paracrine purinergic pathways. Sparse labeling of enteric neurons and high-resolution analysis of the structural relation between neuronal cell bodies, varicose release sites and enteric glia uncovered that this form of neuron-to-glia communication is contained between the cell body of an enteric neuron and its surrounding enteric glial cells. Our results reveal the spatial and functional foundation of neuro-glia units as an operational cellular assembly in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Marlene M Hao
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Zhiling Li
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium.,Leuven Viral Vector Core, University of Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Vassilis Pachnis
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2019; 33:269-280. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial barrier is the largest exchange surface between the body and the external environment. Its functions are regulated by luminal, and also internal, components including the enteric nervous system. This review summarizes current knowledge about the role of the digestive "neuronal-glial-epithelial unit" on epithelial barrier function.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Laboratory for Enteric Neuroscience, TARGID, University of Leuven , Leuven , Belgium
| |
Collapse
|
39
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
40
|
Marungruang N, Kovalenko T, Osadchenko I, Voss U, Huang F, Burleigh S, Ushakova G, Skibo G, Nyman M, Prykhodko O, Hållenius FF. Lingonberries and their two separated fractions differently alter the gut microbiota, improve metabolic functions, reduce gut inflammatory properties, and improve brain function in ApoE-/- mice fed high-fat diet. Nutr Neurosci 2018; 23:600-612. [PMID: 30353787 DOI: 10.1080/1028415x.2018.1536423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lingonberries (LB) have been shown to have beneficial metabolic effects, which is associated with an altered gut microbiota. This study investigated whether the LB-induced improvements were associated with altered gut- and neuroinflammatory markers, as well as cognitive performance in ApoE-/- mice fed high-fat (HF) diets. Whole LB, as well as two separated fractions of LB were investigated. Eight-week-old male ApoE-/- mice were fed HF diets (38% kcal) containing whole LB (wLB), or the insoluble (insLB) and soluble fractions (solLB) of LB for 8 weeks. Inclusion of wLB and insLB fraction reduced weight gain, reduced fat deposition and improved glucose response. Both wLB and insLB fraction also changed the caecal microbiota composition and reduced intestinal S100B protein levels. The solLB fraction mainly induced weight loss in the mice. There were no significant changes in spatial memory, but significant increases in synaptic density in the hippocampus were observed in the brain of mice-fed wLB and insLB. Thus, this study shows that all lingonberry fractions counteracted negative effects of HF feedings on metabolic parameters. Also, wLB and insLB fraction showed to potentially improve brain function in the mice.
Collapse
Affiliation(s)
- Nittaya Marungruang
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden.,Food for Health Science Center, Lund University, Lund, Sweden
| | | | | | - Ulrikke Voss
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Fang Huang
- Food for Health Science Center, Lund University, Lund, Sweden
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden.,Food for Health Science Center, Lund University, Lund, Sweden
| | - Galyna Ushakova
- Department of Biophysics and Biochemistry, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Galyna Skibo
- Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden.,Food for Health Science Center, Lund University, Lund, Sweden
| | - Olena Prykhodko
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden.,Food for Health Science Center, Lund University, Lund, Sweden
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden.,Food for Health Science Center, Lund University, Lund, Sweden
| |
Collapse
|
41
|
GULBRANSEN BRIAND, CHRISTOFI FIEVOSL. Are We Close to Targeting Enteric Glia in Gastrointestinal Diseases and Motility Disorders? Gastroenterology 2018; 155:245-251. [PMID: 29964042 PMCID: PMC6452442 DOI: 10.1053/j.gastro.2018.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
HIV-1 Tat-induced diarrhea is improved by the PPARalpha agonist, palmitoylethanolamide, by suppressing the activation of enteric glia. J Neuroinflammation 2018; 15:94. [PMID: 29573741 PMCID: PMC5866515 DOI: 10.1186/s12974-018-1126-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/09/2018] [Indexed: 11/17/2022] Open
Abstract
Background Diarrhea is a severe complication in HIV-1-infected patients with Trans-activator of transcription (HIV-1 Tat) protein being recognized as a major underlying cause. Beside its direct enterotoxic effects, Tat protein has been recently shown to affect enteric glial cell (EGC) activity. EGCs regulate intestinal inflammatory responses by secreting pro-inflammatory molecules; nonetheless, they might also release immune-regulatory factors, as palmytoilethanolamide (PEA), which exerts anti-inflammatory effects by activating PPARα receptors. We aimed at clarifying whether EGCs are involved in HIV-1 Tat-induced diarrhea and if PEA exerts antidiarrheal activity. Methods Diarrhea was induced by intracolonic administration of HIV-1 Tat protein in rats at day 1. PEA alone or in the presence of peroxisome proliferator-activated receptor (PPAR) antagonists was given intraperitoneally from day 2 to day 7. S100B, iNOS, NF-kappaB, TLR4 and GFAP expression were evaluated in submucosal plexi, while S100B and NO levels were measured in EGC submucosal plexi lysates, respectively. To verify whether PEA effects were PPARα-mediated, PPARα−/− mice were also used. After 7 days from diarrhea induction, endogenous PEA levels were measured in submucosal plexi homogenates deriving from rats and PPARα−/− mice. Results HIV-1 Tat protein induced rapid onset diarrhea alongside with a significant activation of EGCs. Tat administration significantly increased all hallmarks of neuroinflammation by triggering TLR4 and NF-kappaB activation and S100B and iNOS expression. Endogenous PEA levels were increased following HIV-1 Tat exposure in both wildtype and knockout animals. In PPARα−/− mice, PEA displayed no effects. In wildtype rats, PEA, via PPARα-dependent mechanism, resulted in a significant antidiarrheal activity in parallel with marked reduction of EGC-sustained neuroinflammation. Conclusions EGCs mediate HIV-1 Tat-induced diarrhea by sustaining the intestinal neuroinflammatory response. These effects are regulated by PEA through a selective PPARα-dependent mechanism. PEA might be considered as an adjuvant therapy in HIV-1-induced diarrhea. Electronic supplementary material The online version of this article (10.1186/s12974-018-1126-4) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Medjeber O, Touri K, Rafa H, Djeraba Z, Belkhelfa M, Boutaleb AF, Arroul-Lammali A, Belguendouz H, Touil-Boukoffa C. Ex vivo immunomodulatory effect of ethanolic extract of propolis during Celiac Disease: involvement of nitric oxide pathway. Inflammopharmacology 2018. [PMID: 29516252 DOI: 10.1007/s10787-018-0460-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Celiac Disease (CeD) is a chronic immune-mediated enteropathy, in which dietary gluten induces an inflammatory reaction, predominantly in the duodenum. Propolis is a resinous hive product, collected by honeybees from various plant sources. Propolis is well-known for its anti-inflammatory, anti-oxidant and immunomodulatory effects, due to its major compounds, polyphenols and flavonoids. The aim of our study was to assess the ex vivo effect of ethanolic extract of propolis (EEP) upon the activity and expression of iNOS, along with IFN-γ and IL-10 production in Algerian Celiac patients. In this context, PBMCs isolated from peripheral blood of Celiac patients and healthy controls were cultured with different concentrations of EEP. NO production was measured using the Griess method, whereas quantitation of IFN-γ and IL-10 levels was performed by ELISA. Inducible nitric oxide synthase (iNOS) expression, NFκB and pSTAT-3 activity were analyzed by immunofluorescence assay. Our results showed that PBMCs from Celiac patients produced high levels of NO and IFN-γ compared with healthy controls (HC). Interestingly, EEP reduced significantly, NO and IFN-γ levels and significantly increased IL-10 levels at a concentration of 50 µg/mL. Importantly, EEP downmodulated the iNOS expression as well as the activity of NFκB and pSTAT-3 transcription factors. Altogether, our results highlight the immunomodulatory effect of propolis on NO pathway and on pro-inflammatory cytokines. Therefore, we suggest that propolis may constitute a potential candidate to modulate inflammation during Celiac Disease and has a potential therapeutic value.
Collapse
Affiliation(s)
- Oussama Medjeber
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | - Kahina Touri
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | - Hayet Rafa
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | - Zineb Djeraba
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | - Mourad Belkhelfa
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | | | - Amina Arroul-Lammali
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | - Houda Belguendouz
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | - Chafia Touil-Boukoffa
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria.
| |
Collapse
|
44
|
HIV-1 Tat-induced diarrhea evokes an enteric glia-dependent neuroinflammatory response in the central nervous system. Sci Rep 2017; 7:7735. [PMID: 28798420 PMCID: PMC5552820 DOI: 10.1038/s41598-017-05245-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the effectiveness of combined anti-retroviral therapy, human immunodeficiency virus (HIV) infected-patients frequently report diarrhea and neuropsychological deficits. It is claimed that the viral HIV-1 Trans activating factor (HIV-1 Tat) protein is responsible for both diarrhea and neurotoxic effects, but the underlying mechanisms are not known. We hypothesize that colonic application of HIV-1 Tat activates glial cells of the enteric nervous system (EGCs), leading to a neuroinflammatory response able to propagate to the central nervous system. We demonstrated that HIV-1 Tat-induced diarrhea was associated with a significant activation of glial cells within the colonic wall, the spinal cord and the frontal cortex, and caused a consistent impairment of the cognitive performances. The inhibition of glial cells activity by lidocaine, completely abolished the above-described effects. These observations point out the role of glial cells as putative effectors in HIV-1 Tat-associated gastrointestinal and neurological manifestations and key regulators of gut-brain signaling.
Collapse
|
45
|
Kannan G, Gressitt KL, Yang S, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CLG, Adamos MB, Sweeney KM, Origoni AE, Khushalani S, Bahn S, Leweke FM, Dickerson FB, Yolken RH, Pletnikov MV, Severance EG. Pathogen-mediated NMDA receptor autoimmunity and cellular barrier dysfunction in schizophrenia. Transl Psychiatry 2017; 7:e1186. [PMID: 28763062 PMCID: PMC5611729 DOI: 10.1038/tp.2017.162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Autoantibodies that bind the N-methyl-D-aspartate receptor (NMDAR) may underlie glutamate receptor hypofunction and related cognitive impairment found in schizophrenia. Exposure to neurotropic pathogens can foster an autoimmune-prone environment and drive systemic inflammation leading to endothelial barrier defects. In mouse model cohorts, we demonstrate that infection with the protozoan parasite, Toxoplasma gondii, caused sustained elevations of IgG class antibodies to the NMDAR in conjunction with compromised blood-gut and blood-brain barriers. In human cohorts, NMDAR IgG and markers of barrier permeability were significantly associated with T. gondii exposure in schizophrenia compared with controls and independently of antipsychotic medication. Combined T. gondii and NMDAR antibody seropositivity in schizophrenia resulted in higher degrees of cognitive impairment as measured by tests of delayed memory. These data underscore the necessity of disentangling the heterogeneous pathophysiology of schizophrenia so that relevant subsets eligible for NMDAR-related treatment can be identified. Our data aid to reconcile conflicting reports regarding a role of pathological NMDAR autoantibodies in this disorder.
Collapse
Affiliation(s)
- G Kannan
- Department of Psychiatry, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K L Gressitt
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C R Stallings
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - E Katsafanas
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - L A Schweinfurth
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - C L G Savage
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - M B Adamos
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - K M Sweeney
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - A E Origoni
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - S Khushalani
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - S Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - F M Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - F B Dickerson
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - R H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M V Pletnikov
- Department of Psychiatry, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Immunology and Microbiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - E G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Wang N, Song S, Chen J. Synchronized dual pulse gastric electrical stimulation improves gastric emptying and activates enteric glial cells via upregulation of GFAP and S100B with different courses of subdiaphragmatic vagotomy in rats. Mol Med Rep 2017; 15:3826-3832. [PMID: 28440477 DOI: 10.3892/mmr.2017.6471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
Previous research and clinical practice have indicated that damage to the vagal nerve may seriously affect gastrointestinal physiological movement behavior. The aim of the current study was to observe the change of gastric motility, as well as enteric glial cells (EGCs) in the stomach with different courses of vagal nerve transection in rats prior to and following synchronized dual pulse gastric electrical stimulation. The gastric emptying rates were measured to assess the gastric motility. The glial markers, containing calcium binding protein (S100B) and glial fibrillary acidic protein (GFAP), were detected by reverse transcription‑quantitative polymerase chain reaction and double‑labeling immunofluorescence analysis. Ultrastructural changes of EGCs were observed using transmission electron microscopy. Gastric emptying was delayed in the terminal vagotomy group, compared with the terminal control group. The effect of long‑term synchronized dual pulse gastric electrical stimulation (SGES) was superior to short‑term SGES in terminal groups. The expression levels of S100B/GFAP were markedly decreased in the terminal vagotomy group compared with the terminal control group. Following short‑term or long‑term SGES, S100B/GFAP gene and protein expression increased in terminal groups. However, long‑term SGES was more effective than short‑term SGES and the difference was statistically significant. Vagal nerve damage leads to gastric motility disorder and weakens the function of EGCs. Therefore, SGES may improve stomach movement behavior and restore the impaired EGCs. The underlying mechanism of the effect remains elusive, but maybe associated with activation of EGCs.
Collapse
Affiliation(s)
- Nian Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuangning Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
47
|
Nogueira LT, Costa DVS, Gomes AS, Martins CS, Silva AMHP, Coelho-Aguiar JM, Castelucci P, Lima-Júnior RCP, Leitão RFC, Moura-Neto V, Brito GAC. The involvement of mast cells in the irinotecan-induced enteric neurons loss and reactive gliosis. J Neuroinflammation 2017; 14:79. [PMID: 28388962 PMCID: PMC5384042 DOI: 10.1186/s12974-017-0854-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background The irinotecan (CPT-11) causes intestinal mucositis and diarrhea that may be related to changes in the enteric nervous system (ENS). In inflammatory condition, mast cells release a variety of pro-inflammatory mediators that can interact with the ENS cells. It has not been explored whether CPT-11 is able to alter the enteric glial and neuronal cell, and the role of mast cells in this effect. Therefore, this study was conducted to investigate the effect of CPT-11 on the enteric glial and neuronal cells, as well as to study the role of mast cells in the CPT-11-induced intestinal mucositis. Methods Intestinal mucositis was induced in Swiss mice by the injection of CPT-11 (60 mg/kg, i.p.) once a day for 4 days following by euthanasia on the fifth day. To investigate the role of mast cells, the mice were pretreated with compound 48/80 for 4 days (first day, 0.6 mg/kg; second day, 1.0 mg/kg; third day, 1.2 mg/kg; fourth day, 2.4 mg/kg) to induce mast cell degranulation before the CPT-11 treatment. Results Here, we show that CPT-11 increased glial fibrillary acidic protein (GFAP) and S100β gene and S100β protein expressions and decreased HuC/D protein expression in the small intestine segments. Concomitantly, CPT-11 enhanced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels and inducible nitric oxide synthase (iNOS) gene expression, associated with an increase in the total number macrophages (positive cells for ionized calcium-binding adapter molecule, Iba-1) and degranulated mast cells in the small intestine segments and caused significant weight loss. The pretreatment with compound 48/80, an inductor of mast cells degranulation, significantly prevented these CPT-11-induced effects. Conclusions Our data suggests the participation of mast cells on the CPT-11-induced intestinal mucositis, macrophages activation, enteric reactive gliosis, and neuron loss. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0854-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ludmila T Nogueira
- Department of Morphology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Deiziane V S Costa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Antoniella S Gomes
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Conceição S Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Angeline M H P Silva
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Juliana M Coelho-Aguiar
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Roberto C P Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renata F C Leitão
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Vivaldo Moura-Neto
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Gerly A C Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil.
| |
Collapse
|
48
|
Veiga-Fernandes H, Pachnis V. Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 2017; 18:116-122. [DOI: 10.1038/ni.3634] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
|
49
|
Veiga-Fernandes H, Mucida D. Neuro-Immune Interactions at Barrier Surfaces. Cell 2017; 165:801-11. [PMID: 27153494 DOI: 10.1016/j.cell.2016.04.041] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/23/2022]
Abstract
Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.
Collapse
Affiliation(s)
- Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
50
|
da Cunha Franceschi R, Nardin P, Machado CV, Tortorelli LS, Martinez-Pereira MA, Zanotto C, Gonçalves CA, Zancan DM. Enteric glial reactivity to systemic LPS administration: Changes in GFAP and S100B protein. Neurosci Res 2017; 119:15-23. [PMID: 28063977 DOI: 10.1016/j.neures.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharide (LPS) is used to induce inflammation and promotes nervous system activation. Different regions of the brain present heterogeneous glial responses; thus, in order to verify whether systemic LPS-induced inflammation affects the enteric glia differently across the intestinal segments, we evaluated the expressions of two glial activity markers, GFAP and S100B protein, in different intestine segments, at 1h, 24h and 7days after acute systemic LPS administration (0.25 or 2.5mgkg-1) in rats. Histological inflammatory analysis indicated that the cecum was most affected when compared to the duodenum and proximal colon at the highest doses of LPS. LPS induced an increased S100B content after 24h in all three regions, which decreased at 7days after the highest dose in all regions. Moreover, at 24h, this dose of LPS increased ex-vivo S100B secretion only in the cecum. The highest dose of LPS also increased GFAP in all regions at 24h, but earlier in the cecum, where LPS-induced enteric S100B and GFAP alterations were dependent on dose, time and intestine region. No associated changes in serum S100B were observed. Our results indicate heterogeneous enteric glial responses to inflammatory insult, as observed in distinct brain areas.
Collapse
Affiliation(s)
- Raphaela da Cunha Franceschi
- Laboratory of Comparative Neurobiology, Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Graduate Program in Neuroscience, ICBS, UFRGS, Brazil
| | - Patrícia Nardin
- Laboratory of Calcium-Binding Proteins, Department of Biochemistry, ICBS, UFRGS, Brazil
| | - Clivia Valle Machado
- Laboratory of Comparative Neurobiology, Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Graduate Program in Neuroscience, ICBS, UFRGS, Brazil
| | | | | | - Caroline Zanotto
- Laboratory of Calcium-Binding Proteins, Department of Biochemistry, ICBS, UFRGS, Brazil
| | - Carlos-Alberto Gonçalves
- Graduate Program in Neuroscience, ICBS, UFRGS, Brazil; Laboratory of Calcium-Binding Proteins, Department of Biochemistry, ICBS, UFRGS, Brazil.
| | - Denise Maria Zancan
- Laboratory of Comparative Neurobiology, Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Graduate Program in Neuroscience, ICBS, UFRGS, Brazil
| |
Collapse
|