1
|
Frazer L, Chu T, Shaw P, Boufford C, Naief LT, Ednie M, Ritzert L, Green CP, Good M, Peters D. Detection of an intestinal cell DNA methylation signature in blood samples from neonates with necrotizing enterocolitis. Epigenomics 2025; 17:235-245. [PMID: 39894787 PMCID: PMC11853613 DOI: 10.1080/17501911.2025.2459552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is an often fatal intestinal injury that primarily affects preterm infants for which screening tools are lacking. We performed a pilot analysis of DNA methylation in peripheral blood samples from preterm infants with and without NEC to identify potential NEC biomarkers. METHODS Peripheral blood samples were collected from infants at NEC diagnosis (n = 15) or from preterm controls (n = 13). Targeted genome-wide analysis was performed to identify DNA methylation differences between cases and controls. RESULTS Broad differences between NEC cases and controls were identified in distinct genomic elements. Differences between surgical NEC cases and controls were frequently associated with inflammation. Deconvolution analysis to identify cell type-specific DNA signatures revealed increases in ileal, vascular endothelial, and cardiomyocyte cell type proportions and decreases in colonic and neuronal cell type proportions in blood from NEC cases relative to controls. CONCLUSIONS We identified marked differences in DNA methylation of peripheral blood samples from preterm infants with and without NEC. Increased ileal cell-specific methylation signatures in the blood of infants with NEC relative to controls, with a marked increase seen in surgical cases, provides rationale for further analysis of intestinal DNA methylation signatures as biomarkers of NEC.
Collapse
Affiliation(s)
- Lauren Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianjiao Chu
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia Shaw
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camille Boufford
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lucas Tavares Naief
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michaela Ednie
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laken Ritzert
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin P. Green
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Peters
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Brown CM, Yow MV, Kumar S. Biological Age Acceleration and Colonic Polyps in Persons under Age 50. Cancer Prev Res (Phila) 2025; 18:57-62. [PMID: 39655428 PMCID: PMC11790358 DOI: 10.1158/1940-6207.capr-24-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 02/04/2025]
Abstract
Epigenetic clocks can quantify DNA methylation by measuring the methylation levels at specific sites in the genome, which correlate with biological age (BA). Accelerated aging, where BA exceeds chronologic age, has been studied in relation to cancer development, but its utility in cancer prevention remains unclear. Accelerated aging holds promise as a tool to explain the increase in early-onset colorectal cancer (EOCRC). We investigate the association of accelerated aging and the presence of preneoplastic polyps (PNP) in the colon, defined as tubular adenomas and sessile serrated adenomas. In this study of persons under age 50 undergoing colonoscopy, we used peripheral blood samples to determine BA and age acceleration metrics. Age acceleration was determined by interrogating DNA methylation at specific CpG sites across the genome, which has been shown to correlate with age. We then conducted logistic regression analyses to evaluate the association between age acceleration and PNPs. In total, 51 patient samples were evaluated. We found that that the odds of harboring a PNP are 16% higher with 1 year of accelerated aging, as measured by GrimAge. However, the strongest risk factor for PNPs remained male sex. This represents one of the first studies to explore accelerated aging and PNP in patients under the age of 50. A risk-stratified approach to EOCRC screening would minimize unnecessary colonoscopies and minimize healthcare burden while addressing the increase in EOCRC. Our findings suggest that BA calculations with peripheral blood collections could be an important component of such a risk model. Prevention Relevance: Understanding the association of accelerated aging and colorectal PNPs presents an opportunity to develop a risk-stratified approach to colorectal cancer screening in young persons.
Collapse
Affiliation(s)
- Chloe M. Brown
- Sylvester Comprehensive Cancer Center, Miller School of Medicine at the University of Miami, Miami, Florida, USA
| | - Maria V. Yow
- Sylvester Comprehensive Cancer Center, Miller School of Medicine at the University of Miami, Miami, Florida, USA
| | - Shria Kumar
- Sylvester Comprehensive Cancer Center, Miller School of Medicine at the University of Miami, Miami, Florida, USA
- Division of Digestive Health and Liver Diseases, Department of Medicine, Miller School of Medicine at the University of Miami, Miami, Florida, USA
| |
Collapse
|
3
|
Wang F, Zhao D, Xu WY, Liu Y, Sun H, Lu S, Ji Y, Jiang J, Chen Y, He Q, Gong C, Liu R, Su Z, Dong Y, Yan Z, Liu L. Blood leukocytes as a non-invasive diagnostic tool for thyroid nodules: a prospective cohort study. BMC Med 2024; 22:147. [PMID: 38561764 PMCID: PMC10986011 DOI: 10.1186/s12916-024-03368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.
Collapse
Affiliation(s)
- Feihang Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Danyang Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Huiyi Sun
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shanshan Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | | | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China.
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
4
|
Frazer LC, Yamaguchi Y, Singh DK, Akopyants NS, Good M. DNA methylation in necrotizing enterocolitis. Expert Rev Mol Med 2024; 26:e16. [PMID: 38557638 PMCID: PMC11140546 DOI: 10.1017/erm.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Epigenetic modifications, such as DNA methylation, are enzymatically regulated processes that directly impact gene expression patterns. In early life, they are central to developmental programming and have also been implicated in regulating inflammatory responses. Research into the role of epigenetics in neonatal health is limited, but there is a growing body of literature related to the role of DNA methylation patterns and diseases of prematurity, such as the intestinal disease necrotizing enterocolitis (NEC). NEC is a severe intestinal inflammatory disease, but the key factors that precede disease development remain to be determined. This knowledge gap has led to a failure to design effective targeted therapies and identify specific biomarkers of disease. Recent literature has identified altered DNA methylation patterns in the stool and intestinal tissue of neonates with NEC. These findings provide the foundation for a new avenue in NEC research. In this review, we will provide a general overview of DNA methylation and then specifically discuss the recent literature related to methylation patterns in neonates with NEC. We will also discuss how DNA methylation is used as a biomarker for other disease states and how, with further research, methylation patterns may serve as potential biomarkers for NEC.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yukihiro Yamaguchi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalia S. Akopyants
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Chen Z, Zhao G, Wang K, Wang X, Ma Y, Xiong S, Zheng M, Fei S. Blood leukocytes methylation levels analysis indicate methylated plasma test is a promising tool for colorectal cancer early detection. J Cancer 2021; 12:3678-3685. [PMID: 33995643 PMCID: PMC8120172 DOI: 10.7150/jca.57114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background: A number of plasma methylated DNA biomarkers related to colorectal cancer (CRC) have been identified. However, the effect of methylation level in leukocytes on plasma-based methylation test was rarely reported. Methods: Blood samples from 213 individuals including 91 CRC patients were collected and separated into 3.5 mL of plasma and paired leukocyte fractions. DNA were extracted from plasma and leukocytes and bisulfite converted, followed by ColoDefense test that detects methylated SEPT9 (mSEPT9) and methylated SDC2 (mSDC2) simultaneously in a single qPCR reaction. Results: Both mSEPT9 and mSDC2 levels in leukocytes exhibited no significant difference among CRC, benign tumors and healthy controls. However, mSEPT9 and mSDC2 levels in plasma were significantly higher in CRC group than those in other groups. The sensitivities of mSEPT9 and mSDC2 alone for detecting CRC with plasma samples were 75.8% and 60.4% with specificities of 94.7% and 86.8%, respectively. These two markers in combination exhibited an improved sensitivity of 85.7% for CRC detection with a specificity of 86.8%, mostly attributable to increased sensitivity of 81.8% for detecting stage 0-II CRC. AUC values for mSEPT9 and mSDC2 alone were 0.864 (95% CI: 0.798 - 0.929) and 0.796 (95% CI: 0.719 - 0.874), respectively, but improved to 0.972 (95% CI: 0.949 - 0.996) when combined for ColoDefense test. Conclusions: The leukocytes gDNA will not affect the performance of plasma ColoDefense test, and plasma ColoDefense test exhibited high sensitivity and specificity in a validation set, demonstrating its potential as a non-invasive and cost-effective method for CRC early detection.
Collapse
Affiliation(s)
- Zhiliang Chen
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu 221002, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou Jiangsu 221002, China
| | - Guodong Zhao
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan Jiangsu 215300, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.,Suzhou VersaBio Technologies Co. Ltd., Kunshan Jiangsu 215300, China
| | - Kai Wang
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan Jiangsu 215300, China
| | - Xiaomei Wang
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan Jiangsu 215300, China
| | - Yong Ma
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan Jiangsu 215300, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou Jiangsu 215163, China
| | - Shangmin Xiong
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan Jiangsu 215300, China.,Suzhou VersaBio Technologies Co. Ltd., Kunshan Jiangsu 215300, China
| | - Minxue Zheng
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan Jiangsu 215300, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou Jiangsu 215163, China
| | - Sujuan Fei
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu 221002, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou Jiangsu 221002, China
| |
Collapse
|
6
|
Wielsøe M, Tarantini L, Bollati V, Long M, Bonefeld‐Jørgensen EC. DNA methylation level in blood and relations to breast cancer, risk factors and environmental exposure in Greenlandic Inuit women. Basic Clin Pharmacol Toxicol 2020; 127:338-350. [PMID: 32352194 PMCID: PMC7540549 DOI: 10.1111/bcpt.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023]
Abstract
Several studies have found aberrant DNA methylation levels in breast cancer cases, but factors influencing DNA methylation patterns and the mechanisms are not well understood. This case-control study evaluated blood methylation level of two repetitive elements and selected breast cancer-related genes in relation to breast cancer risk, and the associations with serum level of persistent organic pollutants (POPs) and breast cancer risk factors in Greenlandic Inuit. DNA methylation was determined using bisulphite pyrosequencing in blood from 74 breast cancer cases and 80 controls. Using first tertile as reference, the following was observed. Positive associations for ATM in second tertile (OR: 2.33, 95% CI: 1.04; 5.23) and ESR2 in third tertile (OR: 2.22, 95% CI: 0.97; 5.05) suggest an increased breast cancer risk with high DNA methylation. LINE-1 methylation was lower in cases than controls. In third tertile (OR: 0.42, 95% CI: 0.18; 0.98), associations suggest in accordance with the literature an increased risk of breast cancer with LINE-1 hypomethylation. Among controls, significant associations between methylation levels and serum level of POPs and breast cancer risk factors (age, body mass index, cotinine level) were found. Thus, breast cancer risk factors and POPs may alter the risk through changes in methylation levels; further studies are needed to elucidate the mechanisms.
Collapse
Affiliation(s)
- Maria Wielsøe
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Letizia Tarantini
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Manhai Long
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Eva Cecilie Bonefeld‐Jørgensen
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
- Greenland Center for Health ResearchUniversity of GreenlandNuukGreenland
| |
Collapse
|
7
|
Lyon P, Strippoli V, Fang B, Cimmino L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020; 12:E2867. [PMID: 32961717 PMCID: PMC7551072 DOI: 10.3390/nu12092867] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamins B9 (folate) and B12 are essential water-soluble vitamins that play a crucial role in the maintenance of one-carbon metabolism: a set of interconnected biochemical pathways driven by folate and methionine to generate methyl groups for use in DNA synthesis, amino acid homeostasis, antioxidant generation, and epigenetic regulation. Dietary deficiencies in B9 and B12, or genetic polymorphisms that influence the activity of enzymes involved in the folate or methionine cycles, are known to cause developmental defects, impair cognitive function, or block normal blood production. Nutritional deficiencies have historically been treated with dietary supplementation or high-dose parenteral administration that can reverse symptoms in the majority of cases. Elevated levels of these vitamins have more recently been shown to correlate with immune dysfunction, cancer, and increased mortality. Therapies that specifically target one-carbon metabolism are therefore currently being explored for the treatment of immune disorders and cancer. In this review, we will highlight recent studies aimed at elucidating the role of folate, B12, and methionine in one-carbon metabolism during normal cellular processes and in the context of disease progression.
Collapse
Affiliation(s)
- Peter Lyon
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Victoria Strippoli
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Byron Fang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Mungala Lengo A, Guiraut C, Mohamed I, Lavoie JC. Relationship between redox potential of glutathione and DNA methylation level in liver of newborn guinea pigs. Epigenetics 2020; 15:1348-1360. [PMID: 32594836 PMCID: PMC7678935 DOI: 10.1080/15592294.2020.1781024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The metabolism of DNA methylation is reported to be sensitive to oxidant molecules or oxidative stress. Hypothesis: early-life oxidative stress characterized by the redox potential of glutathione influences the DNA methylation level. The in vivo study aimed at the impact of modulating redox potential of glutathione on DNA methylation. Newborn guinea pigs received different nutritive modalities for 4 days: oral nutrition, parenteral nutrition including lipid emulsion Intralipid (PN-IL) or SMOFLipid (PN-SF), protected or not from ambient light. Livers were collected for biochemical determinations. Redox potential (p < 0.001) and DNA methylation (p < 0.01) were higher in PN-infused animals and even higher in PN-SF. Their positive correlation was significant (r2 = 0.51; p < 0.001). Methylation activity was higher in PN groups (p < 0.01). Protein levels of DNA methyltransferase (DNMT)-1 were lower in PN groups (p < 0.01) while those of both DNMT3a isoforms were increased (p < 0.01) and significantly correlated with redox potential (r2 > 0.42; p < 0.001). The ratio of SAM (substrate) to SAH (inhibitor) was positively correlated with the redox potential (r2 = 0.36; p < 0.001). In conclusion, early in life, the redox potential value strongly influences the DNA methylation metabolism, resulting in an increase of DNA methylation as a function of increased oxidative stress. These results support the notion that early-life oxidative stress can reprogram the metabolism epigenetically. This study emphasizes once again the importance of improving the quality of parenteral nutrition solutions administered early in life, especially to newborn infants. Abbreviation of Title: Parenteral nutrition and DNA methylation
Collapse
Affiliation(s)
- Angela Mungala Lengo
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada
| | - Clémence Guiraut
- Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| | - Ibrahim Mohamed
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada.,Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| | - Jean-Claude Lavoie
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada.,Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| |
Collapse
|
9
|
Pasha HA, Rezk NA, Riad MA. Circulating Cell Free Nuclear DNA, Mitochondrial DNA and Global DNA Methylation: Potential Noninvasive Biomarkers for Breast Cancer Diagnosis. Cancer Invest 2019; 37:432-439. [PMID: 31516038 DOI: 10.1080/07357907.2019.1663864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eighty seven women with benign breast lesion, 120 patients with breast cancer (BC) and one hundred controls were included in the study. Quantification of mtDNA and nDNA was done by qPCR. Global DNA methylation was measured using ELISA. Circulating cell-free nDNA and mtDNA were significantly elevated in BC and benign breast lesions patients. Global methylation was significantly low in BC patients. Combining the studied parameters in one panel, nDNA/mtDNA/hypomethylation, improved their sensitivity in detecting BC to reach 92.5%. Circulating cell-free nDNA, mtDNA and global DNA hypomethylation can be used as diagnostic and prognostic markers for BC.
Collapse
Affiliation(s)
- Heba A Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| | - Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| | - Mohamed A Riad
- Surgery Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| |
Collapse
|
10
|
Epiphanio TMF, Fernandes NCCDA, de Oliveira TF, Lopes PA, Réssio RA, Gonçalves S, Scattone NV, Tedardi MV, Kulikowski LD, Damasceno J, Loureiro APDM, Dagli MLZ. Global DNA methylation of peripheral blood leukocytes from dogs bearing multicentric non-Hodgkin lymphomas and healthy dogs: A comparative study. PLoS One 2019; 14:e0211898. [PMID: 30908498 PMCID: PMC6433272 DOI: 10.1371/journal.pone.0211898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
Non-Hodgkin lymphomas are among the most common types of tumors in dogs, and they are currently accepted as comparative models of the disease in humans. Aberrant patterns of DNA methylation seem to play a key role in the development of hematopoietic neoplasms in humans, constitute a special mechanism of transcriptional control, and may be influenced by genetic and environmental factors. Blood leukocyte DNA global methylation has been poorly investigated in dogs. The aim of this study is to examine whether peripheral blood global DNA methylation is associated with canine multicentric lymphomas. Peripheral venous blood samples from ten healthy dogs and nine dogs bearing multicentric lymphomas were collected, and the buffy coat was separated. Global DNA methylation was analyzed by High Performance Liquid Chromatography (HPLC) and immunocytochemistry (ICC). In both analyses, leukocytes from dogs with lymphoma presented lower global DNA methylation than in healthy dogs (HPLC: p = 0.027/ 5MeCyt immunoreactivity scores: p = 0.015). Moderate correlation was observed between the results obtained by HPLC and ICC (correlation coefficient = 0.50). For the identification of differently methylated genes between both groups, the Infinium Human Methylation (HM) EPIC BeadChip (850K) was used. Of the 853,307 CpGs investigated in the microarray, there were 34,574 probes hybridized in the canine samples. From this total, significant difference was observed in the methylation level of 8433 regions, and through the homologous and orthologous similarities 525 differently methylated genes were identified between the two groups. This study is pioneer in suggesting that dogs bearing non-Hodgkin lymphoma presented DNA global hypomethylation of circulating leukocytes compared with healthy dogs. Although canine samples were used in an assay developed specifically for human DNA, it was possible to identify differently methylated genes and our results reiterate the importance of the use of peripheral blood leukocytes in cancer research and possible new biomarkers targets.
Collapse
Affiliation(s)
| | | | - Tiago Franco de Oliveira
- Department of Pharmacoscience, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Priscila Assis Lopes
- Veterinary Laboratory, Veterinary Image Institute, IVI, São Paulo, São Paulo, Brazil
| | | | - Simone Gonçalves
- Veterinary Hemotherapy Center, Hemovet, São Paulo, São Paulo, Brazil
| | - Náyra Villar Scattone
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcello Vannucci Tedardi
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Jullian Damasceno
- Cytogenomic Laboratory, Department of Pathology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Paula de Melo Loureiro
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Morris MJ, Hesson LB, Poulos RC, Ward RL, Wong JWH, Youngson NA. Reduced nuclear DNA methylation and mitochondrial transcript changes in adenomas do not associate with mtDNA methylation. Biomark Res 2018; 6:37. [PMID: 30619609 PMCID: PMC6311003 DOI: 10.1186/s40364-018-0151-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background Altered mitochondrial function and large-scale changes to DNA methylation patterns in the nuclear genome are both hallmarks of colorectal cancer (CRC). Mitochondria have multiple copies of a 16 kb circular genome that contains genes that are vital for their function. While DNA methylation is known to alter the nuclear genome in CRC, it is not clear whether it could have a similar influence in mtDNA; indeed, currently, the issue of whether mitochondrial genome (mtDNA) methylation occurs is controversial. Thus our goal here was to determine whether the methylation state of mtDNA is linked to mitochondrial gene transcription in colorectal adenomas, and to assess its suitability as a biomarker in CRC. Methods To investigate the relationship between DNA methylation and mitochondrial transcripts in adenomas, we performed RNA-sequencing and Whole Genome Bisulphite Sequencing (WGBS) of mtDNA-enriched DNA from normal mucosa and paired adenoma patient samples. Results Transcriptional profiling indicated that adenomas had reduced mitochondrial proton transport versus normal mucosa, consistent with altered mitochondrial function. The expression of 3 tRNAs that are transcribed from mtDNA were also decreased in adenoma. Overall methylation of CG dinucleotides in the nuclear genome was reduced in adenomas (68%) compared to normal mucosa (75%, P < 0.01). Methylation in mtDNA was low (1%) in both normal and adenoma tissue but we observed clusters of higher methylation at the ribosomal RNA genes. Levels of methylation within these regions did not differ between normal and adenoma tissue. Conclusions We provide evidence that low-level methylation of specific sites does exist in the mitochondrial genome but that it is not associated with mitochondrial gene transcription changes in adenomas. Furthermore, as no large scale changes to mtDNA methylation were observed it is unlikely to be a suitable biomarker for early-stage CRC. Electronic supplementary material The online version of this article (10.1186/s40364-018-0151-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M J Morris
- 1Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW Australia
| | - L B Hesson
- 2Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW Australia
| | - R C Poulos
- 2Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW Australia.,3Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW Australia
| | - R L Ward
- 2Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW Australia.,4Office of the Deputy Vice-Chancellor (Research), University of Queensland, QLD, Brisbane, Australia
| | - J W H Wong
- 2Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW Australia.,5School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of China
| | - N A Youngson
- 1Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW Australia
| |
Collapse
|
12
|
Fouad MA, Salem SE, Hussein MM, Zekri ARN, Hafez HF, El Desouky ED, Shouman SA. Impact of Global DNA Methylation in Treatment Outcome of Colorectal Cancer Patients. Front Pharmacol 2018; 9:1173. [PMID: 30405408 PMCID: PMC6201055 DOI: 10.3389/fphar.2018.01173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Global DNA methylation has an impact in cancer pathogenesis and progression. This study aimed at investigating the impact of global DNA methylation in treatment outcome of Colorectal Cancer (CRC). Patients and Methods: Global DNA methylation was measured by LC/MS/MS in peripheral blood leucocytes of 102, 48, and 32 Egyptian CRC patients at baseline and after 3 and 6 months of Fluoropyrimidine (FP) therapy respectively, in addition to 32 normal healthy matched in age and sex. The genetic expressions of DNA methyl transferases (DNMTs) were determined and correlated with patients‘ survival using univariate and multivariate methods of analyses. Results: Egyptian CRC patients had significant global hypomethylation of 5mC level and 5mC % with overexpression of DNMT3A and DNMT3B. Significant higher 5mC levels were shown in patients > 45 years, male gender, T2 tumors, stage II, negative lymph nodes, and absence of metastasis. FP therapy significantly reduced DNA methylation particularly in the subgroups of patients with high DNA methylation level at baseline and good prognostic features. After 3 years of follow up, patients with 5mC % > 8.02% had significant poor overall survival (OS) while, significant better event-free survival (EFS) was found in patients with 5mC level > 0.55. High initial CEA level and presence of metastasis were significantly associated with hazards of disease progression and death. Conclusion: Global DNA methylation has a significant impact on the treatment outcome and survival of Egyptian CRC patients treated with FP- based therapy.
Collapse
Affiliation(s)
- Mariam A Fouad
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Salem E Salem
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa M Hussein
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdel Rahman N Zekri
- Virology and Immunology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hafez F Hafez
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman D El Desouky
- Department of Biostatistics and Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Zhang RN, Pan Q, Zheng RD, Mi YQ, Shen F, Zhou D, Chen GY, Zhu CY, Fan JG. Genome-wide analysis of DNA methylation in human peripheral leukocytes identifies potential biomarkers of nonalcoholic fatty liver disease. Int J Mol Med 2018; 42:443-452. [PMID: 29568887 DOI: 10.3892/ijmm.2018.3583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/12/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to uncover the role of leukocytic DNA methylation in the evaluation of nonalcoholic fatty liver disease (NAFLD). Patients with biopsy-proven NAFLD (n=35) and normal controls (n=30) were recruited from Chinese Han population. Their DNA methylation in peripheral leukocytes was subjected to genome-wide profiling. The association between differential methylation of CpG sites and NAFLD was further investigated on the basis of histopathological classification, bioinformatics, and pyrosequencing. A panel of 863 differentially methylated CpG sites dominated by global hypomethylation, characterized the NAFLD patients. Hypomethylated CpG sites of Acyl-CoA synthetase long-chain family member 4 (ACSL4) (cg15536552) and carnitine palmitoyltransferase 1C (CPT1C) (cg21604803) associated with the increased risk of NAFLD [cg15536552, odds ratio (OR): 11.44, 95% confidence interval (CI): 1.04‑125.37, P=0.046; cg21604803, OR: 6.57, 95% CI: 1.02-42.15, P=0.047] at cut-off β-values of <3.36 (ACSL4 cg15536552) and <3.54 (CPT1C cg21604803), respectively, after the adjustment of age, sex, body mass index (BMI) and homeostasis model assessment of insulin resistant (HOMA-IR). Their methylation levels also served as biomarkers of NAFLD (ACSL4 cg15536552, AUC: 0.80, 95% CI: 0.62-0.98, P=0.009; CPT1C cg21604803, AUC: 0.78, 95% CI: 0.65-0.91, P=0.001). Pathologically, lowered methylation level (β-values <3.26) of ACSL4 (cg15536552) conferred susceptibility to nonalcoholic steatohepatitis (NASH). Taken together, genome-wide hypomethylation of peripheral leukocytes may differentiate NAFLD patients from normal controls. The leukocytic hypomethylated ACSL4 (cg15536552) was suggested to be a biomarker for the pathological characteristics of NAFLD.
Collapse
Affiliation(s)
- Rui-Nan Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Rui-Dan Zheng
- Diagnosis and Treatment Center for Liver Diseases, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Yu-Qiang Mi
- Department of Infective Diseases, Tianjin Infectious Disease Hospital, Tianjin 300192, P.R. China
| | - Feng Shen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Da Zhou
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guang-Yu Chen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Chan-Yan Zhu
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
14
|
Passador J, Toffoli LV, Fernandes KB, Neves-Souza RD, Pelosi GG, Gomes MV. Dietary Ingestion of Calories and Micronutrients Modulates the DNA Methylation Profile of Leukocytes from Older Individuals. J Nutr Health Aging 2018; 22:1281-1285. [PMID: 30498838 DOI: 10.1007/s12603-018-1085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Several lines of evidence from the last decade support the connection between nutrition and epigenetic mechanisms. In the present study we evaluated the impact of the daily dietary intake of calories and the micronutrients vitamin A, D, B1, B2, B5, C, E, copper, calcium, phosphorus, iron, iodine, selenium, manganese, potassium and sodium on the global DNA methylation profile of blood cells from older individuals. RESEARCH METHODS AND PROCEDURES The study enrolled 126 physically independent elderly of both sexes (60 men and 66 women). For the molecular analysis, DNA samples were extracted from leukocytes and global DNA methylation was evaluated using a high throughput Elisa-based method. Correlations between global DNA methylation and the daily intake of calorie or micronutrients were evaluated using Prism5 GraphPad Software. RESULTS A statistically significant correlation was observed between global DNA methylation and the daily caloric value (p=0.019, r=-0.21), and the intake of vitamin A (p=0.03, r=-0.18), Vitamin E (p=0.027, r=-0.20) and copper (p=0.04, r=-0.18). No correlation was observed between global DNA methylation and the daily intake of vitamin D, B1, B2, B5, C, calcium, phosphorus, iron, iodine, selenium, manganese and potassium (p>0.05). CONCLUSION Our data demonstrate that the daily intake of calories or the micronutrients vitamin A, vitamin E and copper can potentially modulate the global DNA methylation profile of leukocytes in older adults and corroborate the notion of nutritional influences on epigenetic mechanisms.
Collapse
Affiliation(s)
- J Passador
- Gislaine Garcia Pelosi, Departamento de Ciências Fisiológicas, CCB-UEL, Campus Universitário, Rod Celso Garcia Cid, Km 380, CEP 86055-900, Londrina, Paraná, Brazil. Phone.: +55 43 3371 4201; fax: +55 43 3371 4467, E-mail address:
| | | | | | | | | | | |
Collapse
|
15
|
Grelus A, Nica DV, Miklos I, Belengeanu V, Ioiart I, Popescu C. Clinical Significance of Measuring Global Hydroxymethylation of White Blood Cell DNA in Prostate Cancer: Comparison to PSA in a Pilot Exploratory Study. Int J Mol Sci 2017; 18:ijms18112465. [PMID: 29156615 PMCID: PMC5713431 DOI: 10.3390/ijms18112465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
This is the first study investigating the clinical relevance of 5-hydroxymethylcytosine (5hmC) in genomic DNA from white blood cells (WBC) in the context of prostate cancer (PCa) and other prostate pathologies. Using an enzyme-linked immunosorbent assay, we identified significantly different distributions of patients with low and elevated 5hmC content in WBC DNA across controls and patients with prostate cancer (PCa), atypical small acinar proliferation (ASAP), and benign prostatic hyperplasia (BPH). The measured values were within the normal range for most PCa patients, while the latter category was predominant for ASAP. We observed a wider heterogeneity in 5hmC content in all of the prostate pathologies analyzed when compared to the healthy age-matched controls. When compared to blood levels of prostate-specific antigen (PSA), this 5hmC-based biomarker had a lower performance in PCa detection than the use of a PSA cut-off of 2.5 nanograms per milliliter (ng/mL). Above this threshold, however, it delineated almost three quarters of PCa patients from controls and patients with other prostate pathologies. Overall, genome-wide 5hmC content of WBC DNA appears to be applicable for detecting non-cancerous prostate diseases, rather than PCa. Our results also suggest a potential clinical usefulness of complementing PSA as a PCa marker by the addition of a set of hydroxymethylation markers in the blood, but further studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Alin Grelus
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Dragos V Nica
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| | - Imola Miklos
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Valerica Belengeanu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| | - Ioan Ioiart
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Cristina Popescu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Faculty of Pharmacy, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| |
Collapse
|
16
|
Shen J, Song R, Gong Y, Zhao H. Global DNA hypomethylation in leukocytes associated with glioma risk. Oncotarget 2017; 8:63223-63231. [PMID: 28968983 PMCID: PMC5609915 DOI: 10.18632/oncotarget.18739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/21/2017] [Indexed: 11/25/2022] Open
Abstract
Global DNA hypomethylation in leukocytes has been associated with increased risk for a variety of cancers. However, the role of leukocyte global DNA hypomethylation in glioma development, if any, is largely unknown. To define this role, we performed a case-control study with 390 glioma patients and 390 controls with no known cancer. Levels of 5-methylcytosine (5-mC%), a marker for global DNA methylation, were measured in leukocyte DNA. Overall, median levels of 5-mC% were significantly lower in glioma cases than in controls (3.45 vs 3.82, P=0.001). Levels of 5-mC% differed significantly by age and sex among controls and by tumor subtype and grade among glioma cases. In multivariate analysis, lower levels of 5-mC% were associated with a 1.31-fold increased risk of glioma (odds ratio = 1.31, 95% confidence interval = 1.10-1.41). A significant dose-response trend was observed in quartile analysis (P=0.001). In an analysis further stratified by clinical characteristics at baseline, the association between lower levels of 5-mC% and glioma risk was evident only among younger participants (age <52 years), women, and those with aggressive tumor characteristics, such as glioblastoma subtype, high tumor grade (grade III or IV), and absence of IDH1 mutation. Our findings indicate that global DNA hypomethylation in leukocytes may contribute to the development of glioma and that the association is affected by age, sex, and tumor aggressiveness.
Collapse
Affiliation(s)
- Jie Shen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renduo Song
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Liu Y, Wang Y, Hu F, Sun H, Zhang Z, Wang X, Luo X, Zhu L, Huang R, Li Y, Li G, Li X, Lin S, Wang F, Liu Y, Rong J, Yuan H, Zhao Y. Multiple gene-specific DNA methylation in blood leukocytes and colorectal cancer risk: a case-control study in China. Oncotarget 2017; 8:61239-61252. [PMID: 28977860 PMCID: PMC5617420 DOI: 10.18632/oncotarget.18054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
The relationship between gene-specific DNA methylation in peripheral blood leukocytes and colorectal cancer (CRC) susceptibility is unclear. In this case-control study, the methylation status of a panel of 10 CRC-related genes in 428 CRC cases and 428 cancer-free controls were detected with methylation-sensitive high-resolution melting analysis. We calculated a weighted methylation risk score (MRS) that comprehensively combined the methylation status of the panel of 10 genes and found that the MRS_10 was significantly associated with CRC risk. Compared with MRS-Low group, MRS-High group and MRS-Medium group exhibited a 6.51-fold (95% CI, 3.77-11.27) and 3.85-fold (95% CI, 2.72-5.45) increased risk of CRC, respectively. Moreover, the CRC risk increased with increasing MRS_10 (Ptrend < 0.0001). Stratified analyses demonstrated that the significant association retained in both men and women, younger and older, and normal weight or underweight and overweight or obese subjects. The area under the receiver operating characteristic curves for the MRS_10 model was 69.04% (95% CI, 65.57-72.66%) and the combined EF and MRS_10 model yielded an AUC of 79.12% (95% CI, 76.22-82.15%). Together, the panel of 10 gene-specific DNA methylation in leukocytes was strongly associated with the risk of CRC and might be a useful marker of susceptibility for CRC.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yibaina Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Fulan Hu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Zuoming Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xuan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xiang Luo
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Lin Zhu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Rong Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yan Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Guangxiao Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xia Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Shangqun Lin
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Fan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yanhong Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Jiesheng Rong
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Huiping Yuan
- Key Laboratory of Ophthalmology, Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| |
Collapse
|
18
|
Durso DF, Bacalini MG, Sala C, Pirazzini C, Marasco E, Bonafé M, do Valle ÍF, Gentilini D, Castellani G, Faria AMC, Franceschi C, Garagnani P, Nardini C. Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget 2017; 8:23237-23245. [PMID: 28423572 PMCID: PMC5410300 DOI: 10.18632/oncotarget.15573] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/12/2017] [Indexed: 01/12/2023] Open
Abstract
Changes in blood epigenetic age have been associated with several pathological conditions and have recently been described to anticipate cancer development. In this work, we analyze a publicly available leukocytes methylation dataset to evaluate the relation between DNA methylation age and the prospective development of specific types of cancer. We calculated DNA methylation age acceleration using five state-of-the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and we compared 424 samples that remained cancer-free over the approximately ten years of follow-up with 235 and 166 subjects who developed breast and colorectal cancer, respectively. We show that the epigenetic age estimated from blood DNA methylation data is statistically significantly associated to future breast and male colorectal cancer development. These results are corroborated by survival analysis that shows significant association between age acceleration and cancer incidence suggesting that the chance of developing age-related diseases may be predicted by circulating epigenetic markers, with a dependence upon tumor type, sex and age estimator. These are encouraging results towards the non-invasive and perspective usage of epigenetic biomarkers.
Collapse
Affiliation(s)
- Danielle Fernandes Durso
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- National Counsel of Technological and Scientific Development (CNPq), Ministry of Science Technology and Innovation (MCTI), Brasilia, Brazil
| | | | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Massimiliano Bonafé
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Davide Gentilini
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Ana Maria Caetano Faria
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Applied Biomedical Research Center, S. Orsola-Malpighi Polyclinic, Bologna, Italy
- Interdepartmental Center “L. Galvani”, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Christine Nardini
- Personal Genomics S.r.l., Verona, Italy
- CNR IAC “Mauro Picone”, Rome, Italy
| |
Collapse
|
19
|
DUSP1 promoter methylation in peripheral blood leukocyte is associated with triple-negative breast cancer risk. Sci Rep 2017; 7:43011. [PMID: 28220843 PMCID: PMC5318948 DOI: 10.1038/srep43011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is one of the most common epigenetic alterations, providing important information regarding cancer risk and prognosis. A case-control study (423 breast cancer cases, 509 controls) and a case-only study (326 cases) were conducted to evaluate the association of DUSP1 promoter methylation with breast cancer risk and clinicopathological characteristics. No significant association between DUSP1 methylation in peripheral blood leukocyte (PBL) DNA and breast cancer risk was observed. DUSP1 methylation was significantly associated with ER/PR-negative status; in particular, triple-negative breast cancer patients showed the highest frequency of DUSP1 methylation in both tumour DNA and PBL DNA. Soybean intake was significantly correlated with methylated DUSP1 only in ER-negative (OR 2.978; 95% CI 1.245-7.124) and PR negative (OR 2.735; 95% CI 1.315-5.692) patients. Irregular menstruation was significantly associated with methylated DUSP1 only in ER-positive (OR 3.564; 95% CI 1.691-7.511) and PR-positive (OR 3.902, 95% CI 1.656-9.194) patients. Thus, DUSP1 methylation is a cancer-associated hypermethylation event that is closely linked with triple-negative status. Further investigations are warranted to confirm the association of environmental factors, including fruit and soybean intake, irregular menstruation, and ER/PR status, with DUSP1 methylation in breast tumour DNA.
Collapse
|
20
|
Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Shivappa N, Guess J, Zhang H, Youngstedt SD, Creek KE, Lloyd S, Jones K, Hébert JR. Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 2017; 32:183-192. [PMID: 27771773 PMCID: PMC5288296 DOI: 10.1007/s00384-016-2688-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common and preventable forms of cancer but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70-90 % of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. METHODS Patients recruited from a local endoscopy clinic provided informed consent and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios (ORs) and 95 % confidence intervals (95% CIs) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. RESULTS Complete data were available for 107 participants; 36 % had adenomas (men 40 %, women 31 %). Hypomethylation of the MINT1 locus (OR 5.3, 95% CI 1.0-28.2) and the PER1 (OR 2.9, 95% CI 1.1-7.7) and PER3 (OR 11.6, 95% CI 1.6-78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71-97 %), sensitivity was relatively low (18-45 %). CONCLUSION Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance.
Collapse
Affiliation(s)
- M Alexander
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J B Burch
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA.
- William Jennings Bryant Dorn Department of Veterans Affairs Medical Center, Columbia, SC, USA.
| | - S E Steck
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - C-F Chen
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - T G Hurley
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
| | - P Cavicchia
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, FL, USA
| | - N Shivappa
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J Guess
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - H Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - S D Youngstedt
- College of Nursing and Health Innovation, College of Health Solutions, Arizona State University and Phoenix VA Health Care System, Phoenix, AZ, USA
| | - K E Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - S Lloyd
- South Carolina Medical Endoscopy Center, and Department of Family Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - K Jones
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - J R Hébert
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Department of Family and Preventive Medicine, School of Medicine, University of South Carolin, Columbia, SC, USA
| |
Collapse
|
21
|
Shen J, Song R, Wan J, Huff C, Fang S, Lee JE, Zhao H. Global methylation of blood leukocyte DNA and risk of melanoma. Int J Cancer 2017; 140:1503-1509. [PMID: 28006848 DOI: 10.1002/ijc.30577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Global DNA methylation, possibly influenced by lifestyle and environmental factors, has been suggested to play an active role in carcinogenesis. However, its role in melanoma has rarely been explored. The aims of this study were to evaluate the relationship between melanoma risk and levels of 5-methylcytosine (5-mC), a marker for global DNA methylation, in blood leukocyte DNA, and to determine whether this 5-mC level is influenced by pigmentation and sun exposure. This case-control study included 540 melanoma cases and 540 healthy controls. Overall, melanoma cases had significantly lower levels of 5-mC% than healthy controls (median: 3.24 vs. 3.91, p < 0.001). The significant difference between two groups did not differ by pigmentation or sun exposure. Among healthy controls, however, those who had fair skin color (p = 0.041) or light or no tanning after prolonged sun exposure (p = 0.031) or used a sunlamp (p = 0.028) had lower levels of 5-mC% than their counterparts. In addition, those with an intermediate or high phenotypic index, an indicator of cutaneous cancer susceptibility, had 2.58-fold greater likelihood of having a low level of 5-mC% [odds ratio (OR): 2.58; 95% confidence interval (CI): 1.72, 3.96] than those with a low phenotypic index. Lower levels of 5-mC% were associated with a 1.25-fold greater risk of melanoma (OR: 1.25; 95% CI: 1.08, 1.37). A significant dose-response relationship was observed in quartile analysis (p = 0.001). Our results suggest that global hypomethylation in blood leukocyte DNA is associated with increased risk of melanoma and that the level of methylation is influenced by pigmentation and sun exposure.
Collapse
Affiliation(s)
- Jie Shen
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Renduo Song
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jie Wan
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Chad Huff
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Shenying Fang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jeffrey E Lee
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Hua Zhao
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
22
|
Arellano-Ortiz AL, Salcedo-Vargas M, Vargas-Requena CL, López-Díaz JA, De la Mora-Covarrubias A, Silva-Espinoza JC, Jiménez-Vega F. DNA Methylation of Cellular Retinoic Acid-Binding Proteins in Cervical Cancer. GENETICS & EPIGENETICS 2016; 8:53-57. [PMID: 27867303 PMCID: PMC5106192 DOI: 10.4137/geg.s40847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/09/2016] [Accepted: 10/15/2016] [Indexed: 11/05/2022]
Abstract
This study determined the methylation status of cellular retinoic acid-binding protein (CRABP) gene promoters and associated them with demographic characteristics, habits, and the presence of human papilloma virus (HPV) in patients with cervical cancer (CC), low and high squamous intraepithelial lesions, and no intraepithelial lesion. Women (n = 158) were selected from the Colposcopy Clinic of Sanitary Jurisdiction II in Ciudad Juarez, Chihuahua, Mexico. Demographic characteristics and habit information were collected. Cervical biopsy and endocervical scraping were used to determine methylation in promoter regions by methylation-specific polymerase chain reaction technique. We found hemi-methylation patterns in the promoter regions of CRABP1 and CRABP2; there was 28.5% hemi-methylation in CRABP1 and 7.0% in that of CRABP2. Methylation in CRABP1 was associated with age (≥35 years, P = 0.002), family history of cancer (P = 0.032), the presence of HPV-16 (P = 0.013), and no alcohol intake (P = 0.035). These epigenetic changes could be involved in the CC process, and CRABP1 has the potential to be a predictive molecular marker of retinoid therapy response.
Collapse
Affiliation(s)
- Ana L. Arellano-Ortiz
- Laboratorio de Biotecnología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | - Mauricio Salcedo-Vargas
- Unidad de Investigación Médica de Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional-Siglo XXI, IMSS, Ciudad de México, México
| | - Claudia L. Vargas-Requena
- Laboratorio de Biotecnología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | - José A. López-Díaz
- Laboratorio de Biotecnología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | - Antonio De la Mora-Covarrubias
- Laboratorio de Biotecnología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | - Juan C. Silva-Espinoza
- Laboratorio de Biotecnología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | - Florinda Jiménez-Vega
- Laboratorio de Biotecnología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| |
Collapse
|
23
|
Joyce BT, Gao T, Zheng Y, Liu L, Zhang W, Dai Q, Shrubsole MJ, Hibler EA, Cristofanilli M, Zhang H, Yang H, Vokonas P, Cantone L, Schwartz J, Baccarelli A, Hou L. Prospective changes in global DNA methylation and cancer incidence and mortality. Br J Cancer 2016; 115:465-72. [PMID: 27351216 PMCID: PMC4985350 DOI: 10.1038/bjc.2016.205] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Methylation of repetitive elements Alu and LINE-1 in humans is considered a surrogate for global DNA methylation. Previous studies of blood-measured Alu/LINE-1 and cancer risk are inconsistent. METHODS We studied 1259 prospective methylation measurements from blood drawn 1-4 times from 583 participants from 1999 to 2012. We used Cox regression to evaluate time-dependent methylation as a biomarker for cancer risk and mortality, and linear regression to compare mean differences in methylation over time by cancer status and analyse associations between rate of methylation change and cancer. RESULTS Time-dependent LINE-1 methylation was associated with prostate cancer incidence (HR: 1.38, 95% CI: 1.01-1.88) and all-cancer mortality (HR: 1.41, 95% CI: 1.03-1.92). The first measurement of Alu methylation (HR: 1.39, 95% CI: 1.08-1.79) was associated with all-cancer mortality. Participants who ultimately developed cancer had lower mean LINE-1 methylation than cancer-free participants 10+ years pre-diagnosis (P<0.01). Rate of Alu methylation change was associated with all-cancer incidence (HR: 3.62, 95% CI: 1.09-12.10). CONCLUSIONS Our results add longitudinal data on blood Alu and LINE-1 methylation and cancer, and potentially contribute to their use as early-detection biomarkers. Future larger studies are needed and should account for the interval between blood sample collection and cancer diagnosis.
Collapse
Affiliation(s)
- Brian T Joyce
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Division of Epidemiology/Biostatistics, School of Public Health, University of Illinois-Chicago, 1603 W. Taylor Street, Chicago, IL 60612, USA
| | - Tao Gao
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Lei Liu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Qi Dai
- Vanderbilt University Medical Center, 2525 West End Avenue, Suite 319, Nashville, TN 37203, USA
| | - Martha J Shrubsole
- Vanderbilt University Medical Center, 2525 West End Avenue, Suite 319, Nashville, TN 37203, USA
| | - Elizabeth A Hibler
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Massimo Cristofanilli
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, 8th Floor, Chicago, IL 60611, USA
| | - Hu Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Hushan Yang
- Department of Medical Oncology, Division of Population Science, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut Street, Suite 314, Philadelphia, PA 19107, USA
| | - Pantel Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Laura Cantone
- Molecular Epidemiology and Environmental Epigenetics Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, San Barnaba 8, Milan 20122, Italy
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Andrea Baccarelli
- Department of Environmental Health, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Olson Pavilion 8350, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Ho V, Ashbury JE, Taylor S, Vanner S, King WD. Genetic and epigenetic variation in the DNMT3B and MTHFR genes and colorectal adenoma risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:261-8. [PMID: 27062459 DOI: 10.1002/em.22010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Polymorphisms in DNMT3B and MTHFR have been implicated in cancer etiology; however, it is increasingly clear that gene-specific DNA methylation also affects gene expression. A cross-sectional study (N = 272) investigated the main and joint effects of polymorphisms and DNA methylation in DNMT3B and MTHFR on colorectal adenoma risk. Polymorphisms examined included DNMT3B c.-6-1045G > T, and MTHFR c.665C > T and c.1286A > C. DNA methylation of 66 and 28 CpG sites in DNMT3B and MTHFR, respectively, was quantified in blood leukocytes using Sequenom EpiTYPER®. DNA methylation was conceptualized using two approaches: (1) average methylation and (2) unsupervised principal component analysis to identify variables that represented methylation around the transcription start site and the gene coding area of both genes. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) associated with the main and joint effects of polymorphisms and DNA methylation. DNA methyltransferase 3B (DNMT3B) TT versus GG/GT genotypes was associated with increased colorectal adenoma risk (OR = 2.12; 95% CI: 1.03-4.34). In addition, increasing DNA methylation in the gene-coding area of DNMT3B was associated with higher risk of colorectal adenomas (OR = 1.34; 95% CI: 1.01-1.79 per SD). In joint effect analyses, synergistic effects were observed among those with both the DNMT3B TT genotype and higher DNMT3B methylation levels compared to those with GT/GG genotypes and lower methylation levels (OR = 4.19; 95% CI: 1.45-12.13 for average methylation; OR = 4.26; 95%CI: 1.31-13.87 for methylation in the transcription start site). This research provides novel evidence that genetic and epigenetic variations contribute to colorectal adenoma risk, precursor to the majority of colorectal cancer (CRC).
Collapse
Affiliation(s)
- Vikki Ho
- University of Montreal Hospital Research Centre (CRCHUM), Tour Saint-Antoine, Montréal, Québec, Canada
| | - Janet E Ashbury
- Department of Public Health Sciences, Second Floor Carruthers Hall, Queen's University, Kingston, Ontario, Canada
| | - Sherryl Taylor
- Department of Medical Genetics, Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit (GIDRU), Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
| | - Will D King
- Department of Public Health Sciences, Second Floor Carruthers Hall, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Roos L, van Dongen J, Bell CG, Burri A, Deloukas P, Boomsma DI, Spector TD, Bell JT. Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clin Epigenetics 2016; 8:7. [PMID: 26798410 PMCID: PMC4721070 DOI: 10.1186/s13148-016-0172-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Background A key focus in cancer research is the discovery of biomarkers that accurately diagnose early lesions in non-invasive tissues. Several studies have identified malignancy-associated DNA methylation changes in blood, yet no general cancer biomarker has been identified to date. Here, we explore the potential of blood DNA methylation as a biomarker of pan-cancer (cancer of multiple different origins) in 41 female cancer discordant monozygotic (MZ) twin-pairs sampled before or after diagnosis using the Illumina HumanMethylation450 BeadChip. Results We analysed epigenome-wide DNA methylation profiles in 41 cancer discordant MZ twin-pairs with affected individuals diagnosed with tumours at different single primary sites: the breast, cervix, colon, endometrium, thyroid gland, skin (melanoma), ovary, and pancreas. No significant global differences in whole blood DNA methylation profiles were observed. Epigenome-wide analyses identified one novel pan-cancer differentially methylated position at false discovery rate (FDR) threshold of 10 % (cg02444695, P = 1.8 × 10−7) in an intergenic region 70 kb upstream of the SASH1 tumour suppressor gene, and three suggestive signals in COL11A2, AXL, and LINC00340. Replication of the four top-ranked signals in an independent sample of nine cancer-discordant MZ twin-pairs showed a similar direction of association at COL11A2, AXL, and LINC00340, and significantly greater methylation discordance at AXL compared to 480 healthy concordant MZ twin-pairs. The effects at cg02444695 (near SASH1), COL11A2, and LINC00340 were the most promising in biomarker potential because the DNA methylation differences were found to pre-exist in samples obtained prior to diagnosis and were limited to a 5-year period before diagnosis. Gene expression follow-up at the top-ranked signals in 283 healthy individuals showed correlation between blood methylation and gene expression in lymphoblastoid cell lines at PRL, and in the skin tissue at AXL. A significant enrichment of differential DNA methylation was observed in enhancer regions (P = 0.03). Conclusions We identified DNA methylation signatures in blood associated with pan-cancer, at or near SASH1, COL11A2, AXL, and LINC00340. Three of these signals were present up to 5 years prior to cancer diagnosis, highlighting the potential clinical utility of whole blood DNA methylation analysis in cancer surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0172-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonie Roos
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jenny van Dongen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Christopher G Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK ; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK ; Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK ; Epigenomic Medicine, Centre for Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK
| | - Andrea Burri
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
26
|
Mendoza-Pérez J, Gu J, Herrera LA, Tannir NM, Matin SF, Karam JA, Huang M, Chang DW, Wood CG, Wu X. Genomic DNA Hypomethylation and Risk of Renal Cell Carcinoma: A Case-Control Study. Clin Cancer Res 2015; 22:2074-82. [PMID: 26655847 DOI: 10.1158/1078-0432.ccr-15-0977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/22/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Genomic DNA hypomethylation is a hallmark of most cancer genomes, promoting genomic instability and cell transformation. In the present study, we sought to determine whether global DNA methylation in peripheral blood is associated with risk of renal cell carcinoma (RCC). EXPERIMENTAL DESIGN A retrospective case-control study consisting of 889 RCC cases and an equal number of age, gender, and ethnicity-matched controls was applied. Global DNA methylation was measured as 5-mC% content. Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) for the association between DNA methylation level and the risk of RCC. RESULTS The median 5-mC% was significantly lower in cases than in healthy controls (P< 0.001). In multivariate logistic regression analysis, individuals in the lowest tertile (T1) of 5-mC% had higher risk of RCC with OR of 1.40 (95% CI, 1.06-1.84), compared with individuals in the highest tertile (T3;Pfor trend= 0.02). When stratified by RCC risk factors, associations between hypomethylation and increased RCC risk appeared to be stronger among males (OR, 1.61;Pfor trend= 0.01), younger age (OR, 1.47;Pfor trend= 0.03), never smokers (OR, 1.55;Pfor trend= 0.02), family history of other cancer (OR, 1.64;Pfor trend= 1.22E-03), and late stage (OR, 2.06,Pfor trend= 4.98E-04). Additionally, we observed significant interaction between gender and 5-mC% in elevating RCC risk (Pfor interaction= 0.03). CONCLUSIONS Our findings suggest an association between global DNA hypomethylation and RCC risk. To establish global DNA hypomethylation as a risk factor for RCC, future prospective studies are warranted. This study may provide further understanding of the etiology of RCC tumorigenesis.
Collapse
Affiliation(s)
- Julia Mendoza-Pérez
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Surena F Matin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
27
|
Agodi A, Barchitta M, Quattrocchi A, Maugeri A, Canto C, Marchese AE, Vinciguerra M. Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. GENES AND NUTRITION 2015; 10:480. [PMID: 26183162 PMCID: PMC4504850 DOI: 10.1007/s12263-015-0480-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/02/2015] [Indexed: 01/05/2023]
Abstract
Several dietary agents, such as micronutrient and non-nutrient components, the so-called bioactive food components, have been shown to display anticancer properties and influence genetic processes. The most common epigenetic change is DNA methylation. Hypomethylation of long interspersed elements (LINE-1) has been associated with an increased risk of several cancers, although conflicting findings have also been observed. The aim of the present study was to test the hypothesis that a low adherence to the Mediterranean diet (MD) and folate deficiency may cause LINE-1 hypomethylation in blood leukocytes of healthy women, and thus genomic instability. One hundred and seventy-seven non-pregnant women were enrolled. Mediterranean diet score (MDS) and folate intake were calculated using a food frequency questionnaire. LINE-1 methylation level was measured by pyrosequencing analysis in three CpG sites of LINE-1 promoter. According to MDS, only 9.6 % of subjects achieved a high adherence to MD. Taking into account the use of supplements, there was a high prevalence of folate deficiency (73.4 %). Women whose consumption of fruit was below the median value (i.e., <201 gr/day) were 3.7 times more likely to display LINE-1 hypomethylation than women whose consumption was above the median value (OR 3.7; 95 % CI 1.4–9.5). Similarly, women with folate deficiency were 3.6 times more likely to display LINE-1 hypomethylation than women with no folate deficiency (OR 3.6; 95 % CI 1.1–12.1). A dietary pattern characterized by low fruit consumption and folate deficiency is associated with LINE-1 hypomethylation and with cancer risk.
Collapse
Affiliation(s)
- Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95121, Catania, Italy,
| | | | | | | | | | | | | |
Collapse
|
28
|
DNA methylation as a promising landscape: A simple blood test for breast cancer prediction. Tumour Biol 2015; 36:4905-12. [PMID: 26076810 DOI: 10.1007/s13277-015-3567-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/13/2015] [Indexed: 01/27/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide. Risk assessment is one of the main services delivered by cancer clinics. Biomarker analysis on different tissues including the peripheral blood can provide crucial information. One of the potential epigenetic biomarkers (epimarkers) is introduced as the peripheral blood DNA methylation pattern. This study was conducted to evaluate the potential value of peripheral blood epimarkers as an accessible tool to predict the risk of breast cancer development. WBC's DNA was the focus of several case-control studies at both genome wide and candidate gene levels to reveal epigenetic changes accounting for predisposition to breast cancer, leading to suggest that ATM, TITF1, SFRP1, NUP155, NEUROD1, ZNF217, DBC2, DOK7 and ESR1 genes and the LINE1, Alu and Sat2 DNA elements could be considered as the potential epimarkers. To address that by which mechanisms WBC's DNA methylation patterns could be linked to the propensity to breast cancer, several contemplations have been offered. Constitutional epimutation during embryonic life, and methylation changes secondary to either environmental exposures or tumor-mediated immune response, are the two main mechanisms. One can deduce that epimarkers based on their potential properties or regulatory impacts on cancer-related genes may be employed for risk prediction, prognosis, and survival inferences that are highly required for breast cancer management toward personalized medicine.
Collapse
|
29
|
Cappetta M, Berdasco M, Hochmann J, Bonilla C, Sans M, Hidalgo PC, Artagaveytia N, Kittles R, Martínez M, Esteller M, Bertoni B. Effect of genetic ancestry on leukocyte global DNA methylation in cancer patients. BMC Cancer 2015; 15:434. [PMID: 26012346 PMCID: PMC4445803 DOI: 10.1186/s12885-015-1461-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of genetic variants alone is not enough to explain a complex disease like cancer. Alterations in DNA methylation patterns have been associated with different types of tumor. In order to detect markers of susceptibility for the development of cutaneous melanoma and breast cancer in the Uruguayan population, we integrated genetic and epigenetic information of patients and controls. METHODS We performed two case-control studies that included 49 individuals with sporadic cutaneous melanoma and 73 unaffected controls, and 179 women with sporadic breast cancer and 209 women controls. We determined the level of global leukocyte DNA methylation using relative quantification of 5mdC by HPLC, and we compared methylation levels between cases and controls with nonparametric statistical tests. Since the Uruguayan population is admixed and both melanoma and breast cancer have very high incidences in Uruguay compared to other populations, we examined whether individual ancestry influences global leucocyte DNA methylation status. We carried out a correlation analysis between the percentage of African, European and Native American individual ancestries, determined using 59 ancestry informative markers, and global DNA methylation in all participants. RESULTS We detected global DNA hypomethylation in leukocytes of melanoma and breast cancer patients compared with healthy controls (p < 0.001). Additionally, we found a negative correlation between African ancestry and global DNA methylation in cancer patients (p <0.005). CONCLUSIONS These results support the potential use of global DNA methylation as a biomarker for cancer risk. In addition, our findings suggest that the ancestral genome structure generated by the admixture process influences DNA methylation patterns, and underscore the importance of considering genetic ancestry as a modifying factor in epigenetic association studies in admixed populations such as Latino ones.
Collapse
Affiliation(s)
- Mónica Cappetta
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain.
| | - Jimena Hochmann
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Carolina Bonilla
- School of Social and Community Medicine, University of Bristol, Bristol, UK.
| | - Mónica Sans
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay.
| | - Pedro C Hidalgo
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay.
- Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay.
| | - Nora Artagaveytia
- Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rick Kittles
- Department of Surgery and Public Health, University of Arizona, Tucson, USA.
| | - Miguel Martínez
- Cátedra de Dermatología, Hospital de Clínicas "Manuel Quintela", Universidad de la República, Montevideo, Uruguay.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| | - Bernardo Bertoni
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
30
|
Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Res Treat 2014; 148:665-73. [DOI: 10.1007/s10549-014-3209-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
|
31
|
Badiga S, Johanning GL, Macaluso M, Azuero A, Chambers MM, Siddiqui NR, Piyathilake CJ. A lower degree of PBMC L1 methylation in women with lower folate status may explain the MTHFR C677T polymorphism associated higher risk of CIN in the US post folic acid fortification era. PLoS One 2014; 9:e110093. [PMID: 25302494 PMCID: PMC4193871 DOI: 10.1371/journal.pone.0110093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Studies in populations unexposed to folic acid (FA) fortification have demonstrated that MTHFR C677T polymorphism is associated with increased risk of higher grades of cervical intraepithelial neoplasia (CIN 2+). However, it is unknown whether exposure to higher folate as a result of the FA fortification program has altered the association between MTHFR C677T and risk of CIN, or the mechanisms involved with such alterations. The current study investigated the following in a FA fortified population: 1) The association between MTHFR C677T polymorphism and risk of CIN 2+; 2) The modifying effects of plasma folate concentrations on this association; and 3) The modifying effects of plasma folate on the association between the polymorphism and degree of methylation of long interspersed nucleotide elements (L1s), in peripheral blood mononuclear cell (PBMC) DNA, a documented biomarker of CIN risk. METHODS The study included 457 US women diagnosed with either CIN 2+ (cases) or ≤ CIN 1 (non-cases). Unconditional logistic regression models were used to test the associations after adjusting for relevant risk factors for CIN. RESULTS The 677CT/TT MTHFR genotypes were not associated with the risk of CIN 2+. Women with CT/TT genotype with lower folate, however, were more likely to be diagnosed with CIN 2+ compared to women with CT/TT genotype with higher folate (OR = 2.41, P = 0.030). Women with CT/TT genotype with lower folate were less likely to have a higher degree of PBMC L1 methylation compared to women with CT/TT genotype with higher folate (OR = 0.28, P = 0.017). CONCLUSIONS This study provides the first evidence that the MTHFR 677CT/TT genotype-associated lower degree of PBMC L1 methylation increases the risk of CIN 2+ in women in the US post-FA fortification era. Thus, even in the post-FA fortification era, not all women have adequate folate status to overcome MTHFR 677CT/TT genotype-associated lower degree of L1 methylation.
Collapse
Affiliation(s)
- Suguna Badiga
- The Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gary L. Johanning
- Biosciences Division, Center for Cancer and Metabolism, SRI International, Menlo Park, California, United States of America
| | - Maurizio Macaluso
- The Department of Pediatrics, Division of Biostatistics and Epidemiology, The University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Andres Azuero
- The Department of Community Health Outcomes and System, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michelle M. Chambers
- The Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nuzhat R. Siddiqui
- The Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chandrika J. Piyathilake
- The Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
32
|
Barrow TM, Michels KB. Epigenetic epidemiology of cancer. Biochem Biophys Res Commun 2014; 455:70-83. [PMID: 25124661 DOI: 10.1016/j.bbrc.2014.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023]
Abstract
Epigenetic epidemiology includes the study of variation in epigenetic traits and the risk of disease in populations. Its application to the field of cancer has provided insight into how lifestyle and environmental factors influence the epigenome and how epigenetic events may be involved in carcinogenesis. Furthermore, it has the potential to bring benefit to patients through the identification of diagnostic markers that enable the early detection of disease and prognostic markers that can inform upon appropriate treatment strategies. However, there are a number of challenges associated with the conduct of such studies, and with the identification of biomarkers that can be applied to the clinical setting. In this review, we delineate the challenges faced in the design of epigenetic epidemiology studies in cancer, including the suitability of blood as a surrogate tissue and the capture of genome-wide DNA methylation. We describe how epigenetic epidemiology has brought insight into risk factors associated with lung, breast, colorectal and bladder cancer and review relevant research. We discuss recent findings on the identification of epigenetic diagnostic and prognostic biomarkers for these cancers.
Collapse
Affiliation(s)
- Timothy M Barrow
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Karin B Michels
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
33
|
King WD, Ashbury JE, Taylor SA, Tse MY, Pang SC, Louw JA, Vanner SJ. A cross-sectional study of global DNA methylation and risk of colorectal adenoma. BMC Cancer 2014; 14:488. [PMID: 24998982 PMCID: PMC4227295 DOI: 10.1186/1471-2407-14-488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 06/27/2014] [Indexed: 12/31/2022] Open
Abstract
Background The methylation of DNA is recognized as a key epigenetic mechanism and evidence for its role in the development of several malignancies is accumulating. We evaluated the relationship between global methylation in DNA derived from normal appearing colon mucosal tissue and blood leukocytes, and colorectal adenoma risk. Methods Patients, aged 40 to 65, scheduled for a screening colonoscopy were recruited. During the colonoscopy, two pinch biopsies of healthy, normal appearing mucosa were obtained from the descending colon. A fasting blood sample was also collected. The methylation status of LINE-1 (long interspersed nuclear element-1) repetitive sequences, as a surrogate measure of global methylation, was quantified in DNA extracted from normal colon mucosa and blood leukocytes. Statistical analysis of the relationship between global DNA methylation and adenoma risk was conducted on 317 participants, 108 subjects with at least one pathologically confirmed adenoma and 209 subjects with a normal colonoscopy. Results A statistically significant inverse relationship was observed between LINE-1 methylation in colon tissue DNA and adenoma risk for males and for both sexes combined for the lowest methylation quartile compared to the highest (adjusted ORs = 2.94 and 2.26 respectively). For blood, although the overall pattern of odds ratio estimates was towards an increase in risk for lower methylation quartiles compared to the highest methylation quartile, there were no statistically significant relationships observed. A moderate correlation was found between LINE-1 methylation levels measured in tissue and blood (Pearson correlation 0.36). Conclusions We observed that lower levels of LINE-1 DNA methylation in normal appearing background colon mucosa were associated with increased adenoma risk for males, and for both sexes combined. Though these findings provide some support for a relationship between LINE-1 DNA methylation in colon mucosal tissue and adenoma risk, large prospective cohort studies are needed to confirm results. Until such investigations are done, the clinical usefulness of LINE-1 methylation as a biomarker of increased adenoma risk is uncertain. Regardless, this study contributes to a better understanding of the role of global DNA methylation as an early event in CR carcinogenesis with implications for future etiologic research.
Collapse
Affiliation(s)
- Will D King
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
DNA methylation is a significant regulator of gene expression, and its role in carcinogenesis recently has been a subject of remarkable interest. The aim of this review is to analyze the mechanism and cell regulatory effects of both hypo- and hyper-DNA methylation on cancer. In this review, we report new developments and their implications regarding the effects of DNA methylation on cancer development. Indeed, alteration of the pattern of DNA methylation has been a constant finding in cancer cells of the same type and differences in the pattern of DNA methylation not only occur in a variety of tumor types, but also in developmental processes Furthermore, the pattern of histone modification appears to be a predicator of the risk of recurrence of human cancers. It is well known that hypermethylation represses transcription of the promoter sections of tumor-suppressor genes leading to gene silencing. However, hypomethylation also has been identified as a cause of oncogenesis. Furthermore, experiments concerning the mechanism of methylation and its control have led to the discovery of many regulatory enzymes and proteins. This review reports on methods developed for the detection of 5-hydroxymethylcytosine methylation at the 5-methylcytosine of protein domains in the CpG context compared to non-methylated DNA, histone modification, and microRNA change.
Collapse
|
35
|
Ashbury JE, Taylor SA, Tse MY, Pang SC, Louw JA, Vanner SJ, King WD. Biomarkers measured in buccal and blood leukocyte DNA as proxies for colon tissue global methylation. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2014; 5:120-4. [PMID: 24959316 PMCID: PMC4065400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
There is increasing interest in clarifying the role of global DNA methylation levels in colorectal cancer (CRC) etiology. Most commonly, in epidemiologic studies, methylation is measured in DNA derived from blood leukocytes as a proxy measure of methylation changes in colon tissue. However, little is known about the correlations between global methylation levels in DNA derived from colon tissue and more accessible tissues such as blood or buccal cells. This cross-sectional study utilized DNA samples from a screening colonoscopy population to determine to what extent LINE-1 methylation levels (as a proxy for genome-wide methylation) in non-target tissue (e.g., blood, buccal cells) reflected methylation patterns of colon mucosal tissue directly at risk of developing CRC. The strongest Pearson correlation was observed between LINE-1 methylation levels in buccal and blood leukocyte DNA (r = 0.50; N = 67), with weaker correlations for comparisons between blood and colon tissue (r = 0.36; N = 280), and buccal and colon tissue (r = 0.27; N = 72). These findings of weak/moderate correlations have important implications for interpreting and planning future investigations of epigenetic markers and CRC risk.
Collapse
Affiliation(s)
- Janet E Ashbury
- Department of Public Health Sciences, Queen’s UniversityKingston, ON, Canada
| | - Sherryl A Taylor
- Department of Medical Genetics, University of AlbertaEdmonton AB, Canada
- Molecular Diagnostics, Genetic Laboratory Services, Alberta Health ServicesEdmonton, AB, Canada
| | - M Yat Tse
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingston, ON, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingston, ON, Canada
| | - Jacob A Louw
- Department of Medicine, Division of Gastroenterology, Hotel Dieu Hospital/Queen’s UniversityKingston, ON, Canada
| | - Stephen J Vanner
- Department of Medicine, Division of Gastroenterology, Hotel Dieu Hospital/Queen’s UniversityKingston, ON, Canada
- Gastrointestinal Diseases Research Unit (GIDRU), Queen’s UniversityKingston, ON, Canada
| | - Will D King
- Department of Public Health Sciences, Queen’s UniversityKingston, ON, Canada
| |
Collapse
|
36
|
Global methylation levels in peripheral blood leukocyte DNA by LUMA and breast cancer: a case-control study in Japanese women. Br J Cancer 2014; 110:2765-71. [PMID: 24786600 PMCID: PMC4037832 DOI: 10.1038/bjc.2014.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Global hypomethylation has been suggested to cause genomic instability and lead to an increased risk of cancer. We examined the association between the global methylation level of peripheral blood leukocyte DNA and breast cancer among Japanese women. METHODS We conducted a hospital-based case-control study of 384 patients aged 20-74 years with newly diagnosed, histologically confirmed invasive breast cancer, and 384 matched controls from medical checkup examinees in Nagano, Japan. Global methylation levels in leukocyte DNA were measured by LUminometric Methylation Assay. Odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between global hypomethylation and breast cancer were estimated using a logistic regression model. RESULTS Compared with women in the highest tertile of global methylation level, ORs for the second and lowest tertiles were 1.87 (95% CI=1.20-2.91) and 2.86 (95% CI=1.85-4.44), respectively. Global methylation levels were significantly lower in cases than controls, regardless of the hormone receptor status of the cancer (all P values for trend <0.05). INTERPRETATION These findings suggest that the global methylation level of peripheral blood leukocyte DNA is low in patients with breast cancer and may be a potential biomarker for breast cancer risk.
Collapse
|
37
|
LINE1 and Alu repetitive element DNA methylation in tumors and white blood cells from epithelial ovarian cancer patients. Gynecol Oncol 2013; 132:462-7. [PMID: 24374023 DOI: 10.1016/j.ygyno.2013.12.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We determined whether DNA methylation of repetitive elements (RE) is altered in epithelial ovarian cancer (EOC) patient tumors and white blood cells (WBC), compared to normal tissue controls. METHODS Two different quantitative measures of RE methylation (LINE1 and Alu bisulfite pyrosequencing) were used in normal and tumor tissues from EOC cases and controls. Tissues analyzed included: i) EOC, ii) normal ovarian surface epithelia (OSE), iii) normal fallopian tube surface epithelia (FTE), iv) WBC from EOC patients, obtained before and after treatment, and v) WBC from demographically-matched controls. RESULTS REs were significantly hypomethylated in EOC compared to OSE and FTE, and LINE1 and Alu methylation showed a significant direct association in these tissues. In contrast, WBC RE methylation was significantly higher in EOC cases compared to controls. RE methylation in patient-matched EOC tumors and pre-treatment WBC did not correlate. CONCLUSIONS EOC shows robust RE hypomethylation compared to normal tissues from which the disease arises. In contrast, RE are generally hypermethylated in EOC patient WBC compared to controls. EOC tumor and WBC methylation did not correlate in matched patients, suggesting that RE methylation is independently controlled in tumor and normal tissues. Despite the significant differences observed over the population, the range of RE methylation in patient and control WBC overlapped, limiting their specific utility as an EOC biomarker. However, our data demonstrate that DNA methylation is deranged in normal tissues from EOC patients, supporting further investigation of WBC DNA methylation biomarkers suitable for EOC risk assessment.
Collapse
|
38
|
Methylome analysis and epigenetic changes associated with menarcheal age. PLoS One 2013; 8:e79391. [PMID: 24278132 PMCID: PMC3835804 DOI: 10.1371/journal.pone.0079391] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/30/2013] [Indexed: 01/12/2023] Open
Abstract
Reproductive factors have been linked to both breast cancer and DNA methylation, suggesting methylation as an important mechanism by which reproductive factors impact on disease risk. However, few studies have investigated the link between reproductive factors and DNA methylation in humans. Genome-wide methylation in peripheral blood lymphocytes of 376 healthy women from the prospective EPIC study was investigated using LUminometric Methylation Assay (LUMA). Also, methylation of 458877 CpG sites was additionally investigated in an independent group of 332 participants of the EPIC-Italy sub-cohort, using the Infinium HumanMethylation 450 BeadChip. Multivariate logistic regression and linear models were used to investigate the association between reproductive risk factors and genome wide and CpG-specific DNA methylation, respectively. Menarcheal age was inversely associated with global DNA methylation as measured with LUMA. For each yearly increase in age at menarche, the risk of having genome wide methylation below median level was increased by 32% (OR:1.32, 95%CI:1.14–1.53). When age at menarche was treated as a categorical variable, there was an inverse dose-response relationship with LUMA methylation levels (OR12–14vs.≤11 yrs:1.78, 95%CI:1.01–3.17 and OR≥15vs.≤11 yrs:4.59, 95%CI:2.04–10.33; P for trend<0.0001). However, average levels of global methylation as measured by the Illumina technology were not significantly associated with menarcheal age. In locus by locus comparative analyses, only one CpG site had significantly different methylation depending on the menarcheal age category examined, but this finding was not replicated by pyrosequencing in an independent data set. This study suggests a link between age at menarche and genome wide DNA methylation, and the difference in results between the two arrays suggests that repetitive element methylation has a role in the association. Epigenetic changes may be modulated by menarcheal age, or the association may be a mirror of other important changes in early life that have a detectable effect on both methylation levels and menarcheal age.
Collapse
|
39
|
Shen F, Huang W, Qi JH, Yuan BF, Huang JT, Zhou X, Feng YQ, Liu YJ, Liu SM. Association of 5-methylcytosine and 5-hydroxymethylcytosine with mitochondrial DNA content and clinical and biochemical parameters in hepatocellular carcinoma. PLoS One 2013; 8:e76967. [PMID: 24143196 PMCID: PMC3797098 DOI: 10.1371/journal.pone.0076967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
Increasing epidemiological evidence has indicated that inherited variations of mitochondrial DNA (mtDNA) copy number affect the genetic susceptibility of many malignancies in a tumour-specific manner and that DNA methylation also plays an important role in controlling gene expression during the differentiation and development of hepatocellular carcinoma (HCC). Our previous study demonstrated that HCC tissues showed a lower 5-hydroxymethylcytosine (5-hmC) content when compared to tumour-adjacent tissues, but the relationship among 5-hmC, 5-methylcytosine (5-mC) and mtDNA content in HCC patients is still unknown. This study aimed to clarify the correlation among mtDNA content, 5-mC and 5-hmC by quantitative real-time PCR and liquid chromatography tandem mass spectrometry analysis. We demonstrated that 5-hmC correlated with tumour size [odds ratio (OR) 0.847, 95% confidence interval (CI) 0.746–0.962, P = 0.011], and HCC patients with a tumour size ≥5.0 cm showed a lower 5-hmC content and higher levels of fasting plasma aspartate aminotransferase, the ratio of alanine amiotransferase to aspartate aminotransferase, γ-glutamyltransferase, alpha-fetoprotein than those with a tumour size <5 cm (all P<0.05). We further revealed that the mtDNA content of HCC tumour tissues was 225.97(105.42, 430.54) [median (25th Percentile, 75th Percentile)] and was negatively correlated with 5-mC content (P = 0.035), but not 5-hmC content, in genomic DNA from HCC tumour tissues.
Collapse
Affiliation(s)
- Fan Shen
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Jia-Hui Qi
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Jing-Tao Huang
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Zhou
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Ying-Juan Liu
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
40
|
Progressive changes in chromatin structure and DNA damage response signals in bone marrow and peripheral blood during myelomagenesis. Leukemia 2013; 28:1113-21. [PMID: 24089038 DOI: 10.1038/leu.2013.284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/10/2013] [Accepted: 09/25/2013] [Indexed: 02/08/2023]
Abstract
The molecular pathways implicated in multiple myeloma (MM) development are rather unknown. We studied epigenetic and DNA damage response (DDR) signals at selected model loci (N-ras, p53, d-globin) in bone marrow plasma cells and peripheral blood mononuclear cells (PBMCs) from patients with monoclonal gammopathy of undetermined significance (MGUS; n=20), smoldering/asymptomatic MM (SMM; n=29) and MM (n=18), as well as in healthy control-derived PBMCs (n=20). In both tissues analyzed, a progressive, significant increase in the looseness of local chromatin structure, gene expression levels and DNA repair efficiency from MGUS to SMM and finally to MM was observed (all P<0.002). Following ex vivo treatment with melphalan, a gradual suppression of the apoptotic pathway occurred in samples collected at different stages of myelomagenesis, with the severity and duration of the inhibition of RNA synthesis, p53 phosphorylation at serine15 and induction of apoptosis being higher in MGUS than SMM and lowest in MM patients (all P<0.0103). Interestingly, for all endpoints analyzed, a strong correlation between plasma cells and corresponding PBMCs was observed (all P<0.0003). We conclude that progressive changes in chromatin structure, transcriptional activity and DDR pathways during myelomagenesis occur in malignant plasma cells and that these changes are also reflected in PBMCs.
Collapse
|
41
|
Li X, Wang Y, Zhang Z, Yao X, Ge J, Zhao Y. Correlation of MLH1 and MGMT methylation levels between peripheral blood leukocytes and colorectal tissue DNA samples in colorectal cancer patients. Oncol Lett 2013; 6:1370-1376. [PMID: 24179526 PMCID: PMC3813787 DOI: 10.3892/ol.2013.1543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/07/2013] [Indexed: 02/06/2023] Open
Abstract
CpG island methylation in the promoter regions of the DNA mismatch repair gene mutator L homologue 1 (MLH1) and DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) genes has been shown to occur in the leukocytes of peripheral blood and colorectal tissue. However, it is unclear whether the methylation levels in the blood leukocytes and colorectal tissue are correlated. The present study analyzed and compared the levels of MGMT and MLH1 gene methylation in the leukocytes of peripheral blood and colorectal tissues obtained from patients with colorectal cancer (CRC). The methylation levels of MGMT and MLH1 were examined using methylation-sensitive high-resolution melting (MS-HRM) analysis. A total of 44 patients with CRC were selected based on the MLH1 and MGMT gene methylation levels in the leukocytes of the peripheral blood. Corresponding colorectal tumor and normal tissues were obtained from each patient and the DNA methylation levels were determined. The correlation coefficients were evaluated using Spearman's rank test. Agreement was determined by generalized κ-statistics. Spearman's rank correlation coefficients (r) for the methylation levels of the MGMT and MLH1 genes in the leukocytes of the peripheral blood and normal colorectal tissue were 0.475 and 0.362, respectively (P=0.001 and 0.016, respectively). The agreement of the MGMT and MLH1 gene methylation levels in the leukocytes of the peripheral blood and normal colorectal tissue were graded as fair and poor (κ=0.299 and 0.126, respectively). The methylation levels of MGMT and MLH1 were moderately and weakly correlated between the patient-matched leukocytes and the normal colorectal tissue, respectively. Blood-derived DNA methylation measurements may not always represent the levels of normal colorectal tissue methylation.
Collapse
Affiliation(s)
- Xia Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | | | | | | | | | | |
Collapse
|
42
|
Walters RJ, Williamson EJ, English DR, Young JP, Rosty C, Clendenning M, Walsh MD, Parry S, Ahnen DJ, Baron JA, Win AK, Giles GG, Hopper JL, Jenkins MA, Buchanan DD. Association between hypermethylation of DNA repetitive elements in white blood cell DNA and early-onset colorectal cancer. Epigenetics 2013; 8:748-55. [PMID: 23804018 DOI: 10.4161/epi.25178] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Changes in the methylation levels of DNA from white blood cells (WBCs) are putatively associated with an elevated risk for several cancers. The aim of this study was to investigate the association between colorectal cancer (CRC) and the methylation status of three DNA repetitive elements in DNA from peripheral blood. WBC DNA from 539 CRC cases diagnosed before 60 years of age and 242 sex and age frequency-matched healthy controls from the Australasian Colorectal Cancer Family Registry were assessed for methylation across DNA repetitive elements Alu, LINE-1 and Sat2 using MethyLight. The percentage of methylated reference (PMR) of cases and controls was calculated for each marker. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression adjusted for potential confounders. CRC cases demonstrated a significantly higher median PMR for LINE-1 (p < 0.001), Sat2 (p < 0.001) and Alu repeats (p = 0.02) when compared with controls. For each of the DNA repetitive elements, individuals with PMR values in the highest quartile were significantly more likely to have CRC compared with those in the lowest quartile (LINE-1 OR = 2.34, 95%CI = 1.48-3.70; p < 0.001, Alu OR = 1.83, 95%CI = 1.17-2.86; p = 0.01, Sat2 OR = 1.72, 95%CI = 1.10-2.71; p = 0.02). When comparing the OR for the PMR of each marker across subgroups of CRC, only the Alu marker showed a significant difference in the 5-fluoruracil treated and nodal involvement subgroups (both p = 0.002). This association between increasing methylation levels of three DNA repetitive elements in WBC DNA and early-onset CRC is novel and may represent a potential epigenetic biomarker for early CRC detection.
Collapse
Affiliation(s)
- Rhiannon J Walters
- Cancer and Population Studies Group; Queensland Institute of Medical Research; Herston, QLD Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nan H, Giovannucci EL, Wu K, Selhub J, Paul L, Rosner B, Fuchs CS, Cho E. Pre-diagnostic leukocyte genomic DNA methylation and the risk of colorectal cancer in women. PLoS One 2013; 8:e59455. [PMID: 23560049 PMCID: PMC3613344 DOI: 10.1371/journal.pone.0059455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/14/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Abnormal one-carbon metabolism may lead to general genomic (global) hypomethylation, which may predispose an individual to the development of colorectal neoplasia. METHODS We evaluated the association between pre-diagnostic leukocyte genomic DNA methylation level and the risk of colorectal cancer in a nested case-control study of 358 colorectal cancer cases and 661 matched controls within the all-female cohort of the Nurses' Health Study (NHS). Among control subjects, we further examined major plasma components in the one-carbon metabolism pathway in relation to genomic DNA methylation level. Liquid chromatography/tandem mass spectrometry was used to examine leukocyte genomic DNA methylation level. We calculated odds ratios (ORs) and 95% confidence intervals (95% CIs) using logistic regression. RESULTS Overall genomic DNA methylation level was not associated with the risk of colorectal cancer (p for trend, 0.45). Compared with women in the lowest quintile of methylation, the multivariate OR of colorectal cancer risk was 1.32 (95% CI, 0.82-2.13) for those in the highest quintile. We did not find significant associations between major plasma components of one-carbon metabolism or risk factors for colorectal cancer and genomic DNA methylation level (all p for trend >0.05). Also, neither one-carbon metabolism-related plasma components nor well-known risk factors for colorectal cancer modified the association between genomic DNA methylation level and the risk of colorectal cancer (all p for interaction >0.05). CONCLUSIONS We found no evidence that hypomethylation of leukocyte genomic DNA increases risk of colorectal cancer among women. Additional studies are needed to investigate the association between pre-diagnostic genomic DNA methylation level and colorectal cancer risk among diverse populations.
Collapse
Affiliation(s)
- Hongmei Nan
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward L. Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kana Wu
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Ligi Paul
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Charles S. Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eunyoung Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Jang H, Shin H. Current trends in the development and application of molecular technologies for cancer epigenetics. World J Gastroenterol 2013; 19:1030-1039. [PMID: 23467485 PMCID: PMC3581990 DOI: 10.3748/wjg.v19.i7.1030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/29/2012] [Accepted: 01/30/2013] [Indexed: 02/06/2023] Open
Abstract
Current progress in epigenetic research supports the view that diet and dietary components are important in cancer etiology by enhancing or inhibiting carcinogenesis. Since diet and dietary factors may significantly contribute to the causation and progression of many cancers, it is important to find the molecular mechanisms of action of such dietary factors for cancer prevention and treatment. Recently, the role of epigenetic mechanisms in the cancer development and progression has attracted more attention as additional evidence along with traditional DNA sequence based mechanisms such as mutations and structural re-arrangements. Such an increasing interest in cancer epigenetics has also accelerated the development and application of molecular assays and tools for DNA methylation detection and histone modification enrichment analysis. In this paper, key assays and methods for epigenetic research are reviewed and discussed in terms of their utility and usability. In addition, more advanced methods for genome-wide analysis are introduced as part of upcoming research trends and directions.
Collapse
|
45
|
Friso S, Udali S, Guarini P, Pellegrini C, Pattini P, Moruzzi S, Girelli D, Pizzolo F, Martinelli N, Corrocher R, Olivieri O, Choi SW. Global DNA hypomethylation in peripheral blood mononuclear cells as a biomarker of cancer risk. Cancer Epidemiol Biomarkers Prev 2013; 22:348-55. [PMID: 23300023 DOI: 10.1158/1055-9965.epi-12-0859] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Global DNA hypomethylation is an early molecular event in carcinogenesis. Whether methylation measured in peripheral blood mononuclear cells (PBMCs) DNA is a clinically reliable biomarker for early detection or cancer risk assessment is to be established. METHODS From an original sample-set of 753 male and female adults (ages 64.8 ± 7.3 years), PBMCs DNA methylation was measured in 68 subjects with history of cancer at time of enrollment and 62 who developed cancer during follow-up. Age- and sex-matched controls for prevalent and incident cancer cases (n = 68 and 58, respectively) were also selected. Global DNA methylation was assessed by liquid chromatography/mass spectrometry (LC/MS). Methylenetetrahydrofolate reductase (MTHFR) 677C>T genotype and plasma folate concentrations were also determined for the known gene-nutrient interaction affecting DNA methylation. RESULTS Cancer subjects had significantly lower PBMCs-DNA methylation than controls [4.39 (95% confidence intervals (CI), 4.25-4.53) vs. 5.13 (95% CI, 5.03-5.21) %mCyt/(mCyt+Cyt); P < 0.0001]. A DNA methylation threshold of 4.74% clearly categorized patients with cancer from controls so that those with DNA methylation less than 4.74% showed an increased prevalence of cancer than those with higher levels (91.5% vs. 19%; P < 0.001). Subjects with cancer at follow-up had, already at enrollment, reduced DNA methylation as compared with controls [4.34 (95% CI, 4.24-4.51) vs. 5.08 (95% CI, 5.05-5.22) %mCyt/(mCyt+Cyt); P < 0.0001]. Moreover, MTHFR677C>T genotype and folate interact for determining DNA methylation, so that MTHFR677TT carriers with low folate had the lowest DNA methylation and concordantly showed a higher prevalence of cancer history (OR, 7.04; 95% CI, 1.52-32.63; P = 0.013). CONCLUSIONS Genomic PBMCs-DNA methylation may be a useful epigenetic biomarker for early detection and cancer risk estimation. IMPACT This study identifies a threshold for PBMCs-DNA methylation to detect cancer-affected from cancer-free subjects and an at-risk condition for cancer based on genomic DNA methylation and MTHFR677C>T-folate status.
Collapse
Affiliation(s)
- Simonetta Friso
- Corresponding Author: Simonetta Friso, Department of Medicine, University of Verona School of Medicine, Policlinico G.B. Rossi, P.le L.A. Scuro, 10, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Marsit C, Christensen B. Blood-derived DNA methylation markers of cancer risk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:233-52. [PMID: 22956505 DOI: 10.1007/978-1-4419-9967-2_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of somatic epigenetic alterations in tissues targeted for carcinogenesis is now well recognized and considered a key molecular step in the development of a tumor. Particularly, alteration of gene-specific and genomic DNA methylation has been extensively characterized in tumors, and has become an attractive biomarker of risk due to its specificity and stability in human samples. It also is clear that tumors do not develop as isolated phenomenon in their target tissue, but instead result from altered processes affecting not only the surrounding cells and tissues, but other organ systems, including the immune system. Thus, alterations to DNA methylation profiles detectable in peripheral blood may be useful not only in understanding the carcinogenic process and response to environmental insults, but can also provide critical insights in a systems biological view of tumorigenesis. Research to date has generally focused on how environmental exposures alter genomic DNA methylation content in peripheral blood. More recent work has begun to translate these findings to clinically useful endpoints, by defining the relationship between DNA methylation alterations and cancer risk. This chapter highlights the existing research linking the environment, blood-derived DNA methylation alterations, and cancer risk, and points out how these epigenetic alterations may be contributing fundamentally to carcinogenesis.
Collapse
Affiliation(s)
- Carmen Marsit
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen, Hanover, NH 03755, USA.
| | | |
Collapse
|
47
|
Gomes MVM, Toffoli LV, Arruda DW, Soldera LM, Pelosi GG, Neves-Souza RD, Freitas ER, Castro DT, Marquez AS. Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but are not associated with the MTHFR C677T genotype or to functional capacities. PLoS One 2012; 7:e52570. [PMID: 23285094 PMCID: PMC3527598 DOI: 10.1371/journal.pone.0052570] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/19/2012] [Indexed: 01/01/2023] Open
Abstract
Global DNA methylation of peripheral blood leukocytes has been recently proposed as a potential biomarker for disease risk. However, the amplitude of the changes in DNA methylation associated with normal aging and the impacts of environmental changes on this variation are still unclear. In this context, we evaluated the association of global DNA methylation with nutritional habits, tobacco smoking, body mass index (BMI), clinical laboratory parameters, polymorphism C677T MTHFR, functional cognition and the daily practice of physical activity in a cancer-free older population. Leukocyte global DNA methylation from 126 older individuals was quantified using a high-throughput ELISA-based method. Global DNA hypomethylation was observed in older individuals when compared to a younger population (p = 0.0469), confirming changes in DNA methylation in the aging process. Furthermore, the methylation profile of elders was correlated with the daily ingestion of carbohydrates (p = 0.0494), lipids (p = 0.0494), vitamin B6 (p = 0.0421), magnesium (p = 0.0302), and also to the serum levels of total protein (p = 0.0004), alpha 2 globulin (p = 0.0013) and albumin (p = 0.0015). No statistically significant difference was observed when global DNA methylation were stratified according to C677T MTHFR genotypes (p = 0.7200), BMI (p = 0.1170), smoking habit (p = 0.4382), physical activity in daily life (p = 0.8492), scored cognitive function (p = 0.7229) or depression state (p = 0.8301). Our data indicate that age-related variations in the global DNA methylation profile of leukocytes might be modulated by the daily intake of carbohydrates, lipids, vitamin B6, and magnesium and be associated with serum protein levels, however it is independent of C677T MTHFR genotype and not correlated with BMI, smoking habit, cognitive function or the routine physical activities.
Collapse
Affiliation(s)
- Marcus V M Gomes
- Research Centre on Health Sciences, University of Northern Parana (UNOPAR), Londrina, Paraná, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brennan K, Flanagan JM. Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res (Phila) 2012; 5:1345-57. [PMID: 23135621 DOI: 10.1158/1940-6207.capr-12-0316] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells display widespread genetic and epigenetic abnormalities, but the contribution to disease risk, particularly in normal tissue before disease, is not yet established. Genome-wide hypomethylation occurs frequently in tumors and may facilitate chromosome instability, aberrant transcription and transposable elements reactivation. Several epidemiologic case-control studies have reported genomic hypomethylation in peripheral blood of cancer patients, suggesting a systemic effect of hypomethylation on disease predisposition, which may be exploited for biomarker development. However, more recent studies have failed to reproduce this. Here, we report a meta-analysis, indicating a consistent inverse association between genomic 5-methylcytosine levels and cancer risk [95% confidence interval (CI), 1.2-6.1], but no overall risk association for studies using surrogates for genomic methylation, including methylation at the LINE-1 repetitive element (95% CI, 0.8-1.7). However, studies have been highly heterogeneous in terms of experimental design, assay type, and analytical methods. We discuss the limitations of the current approaches, including the low interindividual variability of surrogate assays such as LINE1 and the importance of using prospective studies to investigate DNA methylation in disease risk. Insights into genomic location of hypomethylation, from recent whole genome, high-resolution methylome maps, will help address this interesting and clinically important question.
Collapse
Affiliation(s)
- Kevin Brennan
- Epigenetics Unit, Department of Surgery and Cancer, Hammersmith Hospital, Imperial College, London, United Kingdom
| | | |
Collapse
|
49
|
Jung AY, Botma A, Lute C, Blom HJ, Ueland PM, Kvalheim G, Midttun Ø, Nagengast F, Steegenga W, Kampman E. Plasma B vitamins and LINE-1 DNA methylation in leukocytes of patients with a history of colorectal adenomas. Mol Nutr Food Res 2012; 57:698-708. [PMID: 23132835 DOI: 10.1002/mnfr.201200069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/23/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
Abstract
SCOPE Low concentrations of folate, other B vitamins, and methionine are associated with colorectal cancer risk, possibly by changing DNA methylation patterns. Here, we examine whether plasma concentrations of B vitamins and methionine are associated with methylation of long interspersed nuclear element-1 (LINE-1) among those at high risk of colorectal cancer, i.e. patients with at least one histologically confirmed colorectal adenoma (CRA) in their life. METHODS AND RESULTS We used LINE-1 bisulfite pyrosequencing to measure global DNA methylation levels in leukocytes of 281 CRA patients. Multivariable linear regression was used to assess associations between plasma B vitamin concentrations and LINE-1 methylation levels. Plasma folate was inversely associated with LINE-1 methylation in CRA patients, while plasma methionine was positively associated with LINE-1 methylation. CONCLUSION This study does not provide evidence that in CRA patients, plasma folate concentrations are positively related to LINE-1 methylation in leukocytes but does suggest a direct association between plasma methionine and LINE-1 methylation in leukocytes.
Collapse
Affiliation(s)
- Audrey Y Jung
- Department of Epidemiology, Biostatistics, and HTA, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Huang WY, Su LJ, Hayes RB, Moore LE, Katki HA, Berndt SI, Weissfeld JL, Yegnasubramanian S, Purdue MP. Prospective study of genomic hypomethylation of leukocyte DNA and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2012; 21:2014-21. [PMID: 23001241 PMCID: PMC3493855 DOI: 10.1158/1055-9965.epi-12-0700-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Systematic genome-wide reductions of methylated cytosine (5-mC) levels have been observed in colorectal cancer tissue and are suspected to play a role in carcinogenesis, possibly as a consequence of inadequate folate intake. Reduced 5-mC levels in peripheral blood leukocytes have been associated with increased risk of colorectal cancer and adenoma in cross-sectional studies. METHODS To minimize disease- and/or treatment-related effects, we studied leukocyte 5-mC levels in prospectively collected blood specimens of 370 cases and 493 controls who were cancer-free at blood collection from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Leukocyte 5-mC level was determined by a high-pressure liquid chromatography (HPLC)/tandem mass spectrometry method and expressed as the relative amount of methyl to total cytosine residues, or %5-mC. We estimated the association between colorectal cancer risk and %5-mC categories by computing ORs and 95% confidence intervals (CI) through logistic regression modeling. RESULTS We observed no dose-dependent association between colorectal cancer and%5-mC categories (lowest vs. highest tertile: OR, 1.14; 95% CI, 0.80-1.63; P(trend) = 0.51). However, among subjects whose 5-mC levels were at the highest tertile, we observed an inverse association between natural folate intake and colorectal cancer (highest tertile of natural folate vs. lowest: OR, 0.35; 95% CI, 0.17-0.71; P(trend) = 0.003; P(interaction) = 0.003). CONCLUSIONS This prospective investigation show no clear association between leukocyte 5-mC level and subsequent colorectal cancer risk but a suggestive risk modification between 5-mC level and natural folate intake. IMPACT Adequate folate status may protect against colorectal carcinogenesis through mechanisms involving adequate DNA methylation in the genome.
Collapse
Affiliation(s)
- Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Boulevard, EPS 8110, MSC 7240, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|