1
|
Yang CC, Jiang Q, Xue JS. Comprehensive multi-omics and pharmacokinetics reveal sclareol's role in inhibiting ocular neovascularization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156817. [PMID: 40347925 DOI: 10.1016/j.phymed.2025.156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Ocular neovascularization, a hallmark of several vision-threatening diseases, including retinopathy of prematurity (ROP) and wet age-related macular degeneration (wet AMD), is commonly treated with intravitreal injections of anti-VEGF agents. However, these treatments are limited by invasiveness and drug resistance, highlighting the need for alternative therapies. Sclareol (SCL), a labdane diterpenoid derived from Salvia sclarea, exhibits various biological activities, but its potential role in angiogenesis and pharmacokinetics after oral administration remain unexplored. METHODS Hypoxia-induced endothelial cells (ECs) were used as an in vitro model, while mouse oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) were used as in vivo models. The pharmacokinetics of SCL in plasma, retina, and choroid were analyzed after oral administration in mice. Furthermore, the underlying mechanisms were elucidated through an integrative approach combining transcriptomics, metabolomics, network pharmacology, molecular docking, and molecular dynamics simulation. RESULTS SCL inhibited hypoxia-induced EC proliferation, permeability, migration, tube formation, sprouting, glycolysis, mitochondrial respiration, and oxidative stress by modulating the PI3K-AKT-FOXO1 pathway. Additionally, Oral administration of SCL significantly inhibited OIR and CNV progression in mice, demonstrating enhanced therapeutic efficacy when combined with intravitreal aflibercept (Eylea) injection. CONCLUSION SCL is a promising orally administered natural compound for ocular neovascularization, offering a potential alternative or adjunctive therapy to existing anti-VEGF treatments.
Collapse
Affiliation(s)
- Chong-Chao Yang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; The Fourth School of clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; The Fourth School of clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Jin-Song Xue
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; The Fourth School of clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
2
|
Ülger Y, Delik A. Gene expression profile in ulcerative colitis patients: FOXO4, ALDOB, SLC26A3, SOD2 genes as potential biomarkers. Genes Genomics 2025:10.1007/s13258-025-01625-y. [PMID: 40153227 DOI: 10.1007/s13258-025-01625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/14/2025] [Indexed: 03/30/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a complex, chronic inflammatory disease that primarily impacts the colon mucosa. One of the key pathological contributors to the development and progression of inflammatory bowel disease (IBD) is oxidative stress, which results in reactive oxygen species (ROS)-induced mucosal damage. This stress leads to dysfunction of the intestinal barrier. OBJECTIVES The purpose of this study is to examine the expression levels of genes involved in various inflammatory pathways, including autophagy, unfolded protein response (UPR), ubiquitination, metabolic pathways, and immune responses in the colon mucosa of patients with UC. MATERIAL AND METHODS Patients diagnosed with UC at Çukurova University, Balcalı Hospital, Gastroenterology Department between December 2023 and January 2024 were included in this prospective study. A total of 40 participants were included in the study: 27 ulcerative colitis patients and 13 controls. To isolate high-quality RNA, colon biopsy material obtained during colonoscopy was immediately placed in stabilization solution and stored at - 80 degrees Celsius. The relative quantification of target gene mRNA was determined using a Light Cycler. Subsequently, differences in gene expression between patients and the control group were evaluated using the Mann-Whitney U and Kruskal-Wallis tests. RESULTS In our study, FOXO4 gene expression increased in UC patients during both active and remission phases compared to the control group. The high expression of this gene is associated with its role in inflammation and cell death processes. Additionally, the high expression of ALDOB and SLC26A genes is linked to increased inflammation and energy demand. Lastly, the elevated expression of the SOD2 gene can be considered a response to oxidative stress-related inflammatory processes in the disease. CONCLUSION These findings propose that these genes could serve as potential biomarkers for genomic identification and understanding the pathogenesis of UC.
Collapse
Affiliation(s)
- Yakup Ülger
- Division of Gastroenterology, Faculty of Medicine, Cukurova University, 01330, Adana, Turkey.
- Balcalı Hospital, Sarıcam, Adana, Turkey.
| | - Anıl Delik
- Division of Gastroenterology, Faculty of Medicine, Cukurova University, 01330, Adana, Turkey
- Balcalı Hospital, Sarıcam, Adana, Turkey
- Division of Biology, Faculty of Science and Literature, Cukurova University, 01330, Adana, Turkey
| |
Collapse
|
3
|
Wang Z, Lian W, Chen C, Dai Q, Liu Z, Liu J, Zhang Y, Zhou M, Wang X. Network pharmacology and experimental verification revealing valnemulin alleviates DSS-induced ulcerative colitis by inhibiting intestinal senescence. Int Immunopharmacol 2024; 141:112810. [PMID: 39151382 DOI: 10.1016/j.intimp.2024.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease that is increasing in prevalence globally. Senescence is characterized by a specific chronic, low-grade, "sterile" inflammatory state known as inflammaging, suggesting that senescence may exacerbate the severity of UC. However, the link between UC and senescence remains unclear. Valnemulin (VAL) is a semi-synthetic derivative of a naturally occurring diterpenoid antibiotic (pleuromutilin), which can inhibit peptidyl transferase. Studies investigating the potential of valnemulin to inhibit senescence and alleviate colitis are currently limited. In this study, we revealed that dextran sulfate sodium (DSS), an inducer of UC, induces senescence in both colon epithelial NCM460 cells and colon tissues. Additionally, VAL, identified from a compound library, exhibited robust anti-senescence activity in DSS-treated NCM460 cells. Identified in our study as an anti-senescence agent, VAL effectively mitigated DSS-induced UC and colonic senescence in mice. Through network pharmacology analysis and experimental validation, the potential signaling pathway (AMPK/NF-κB) for VAL in treating UC was identified. We discovered that DSS significantly inhibited the AMPK signaling pathway and activated the NF-κB signaling pathway. However, supplementation with VAL remarkably restored AMPK activity and inhibited the NF-κB signaling pathway, which led to the inhibition of senescence. In summary, our study demonstrated that DSS-induced UC stimulates the senescence of colonic tissues, and VAL can effectively alleviate DSS-induced colonic damage and reduce colonic senescence. Our research findings provide a new perspective for targeting anti-senescence in the treatment of UC.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Wei Lian
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Cui Chen
- Qujing Medical College, Qujing, Yunnan, 655011, China
| | - Qianlong Dai
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Zhenlin Liu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Jiayu Liu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yuanyuan Zhang
- School of Clinical Medicine, Dali University, Dali, Yunnan, 671000, China.
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China.
| |
Collapse
|
4
|
Zhang L, Zhu Z, Zheng L, Liu X, Li H, Dai X, Zhang Z, Wang B, Huang X, Ren Q, Xu Y. Identification of a FOXO gene and its roles in anti-WSSV infection through regulation of Dicers and Argos in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109908. [PMID: 39299407 DOI: 10.1016/j.fsi.2024.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Forkhead box O (FOXO) proteins are a subgroup of the forkhead family of transcription factors that play important roles in the immune response. In this study, we cloned and identified a FOXO gene named MnFOXO from Macrobrachium nipponense. The full-length cDNA of MnFOXO is 2086 bp and contains a 1302 bp open reading frame, which encodes 433 amino acids. MnFOXO consists of five low-complexity regions and a conserved DNA-binding domain (forkhead domain). Evolutionary analyses indicate that MnFOXO proteins cluster with FOXO proteins from crustaceans. Tissue distribution analysis showed that MnFOXO was expressed in all detected tissues, with relatively higher expression levels in the intestine, eyestalks, stomach, and hemocytes than in the hepatopancreas, gills, and heart. The expression levels of MnFOXO in the hepatopancreas and intestine were significantly up-regulated in M. nipponense infected with white spot syndrome virus (WSSV) at 24 and 48 h. Furthermore, knockdown of MnFOXO increased the expression of WSSV envelope protein VP28 during WSSV infection. Further studies showed that knockdown of the MnFOXO gene in M. nipponense inhibited the synthesis of Dicers (MnDicer1, MnDicer2) and Argonautes (MnArgo1, MnArgo2) during WSSV invasion. These findings suggest that MnFOXO positively regulates the expression of Dicers and Argos, and inhibits the expression of VP28. This study provides new evidence for understanding the role of FOXO in antiviral innate immunity in crustaceans.
Collapse
Affiliation(s)
- Lihua Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ziyue Zhu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Liangmin Zheng
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaohan Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Hao Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhaoqian Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Bingyan Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, 210044, China.
| | - Yu Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| |
Collapse
|
5
|
Kim DH, Kim J, Park J, Kim TH, Han YH. Blockade of forkhead box protein O1 signaling alleviates primary sclerosing cholangitis-induced sarcopenia in mice model. Life Sci 2024; 356:123042. [PMID: 39233198 DOI: 10.1016/j.lfs.2024.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
AIMS Primary sclerosing cholangitis (PSC) is a cholestatic liver disease that affects the hepatic bile ducts, leading to hepatic inflammation and fibrosis. PSC can also impact skeletal muscle through the muscle-liver axis, resulting in sarcopenia, a complication characterized by a generalized loss of muscle mass and strength. The underlying mechanisms and therapy of PSC-induced sarcopenia are not well understood, but one potential regulator is the transcription factor forkhead box protein O1 (FOXO1), which is involved in the ubiquitin proteasome system. Thus, the aim of this study is to assess the pharmacological potential of FOXO1 inhibition for treating PSC-induced sarcopenia. MATERIALS AND METHODS To establish diet-induced PSC model, we provided mice with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 4 weeks. Mice were intramuscularly injected with AS1842856 (AS), a FOXO1 inhibitor, at a dose of 3.5 mg/kg twice a week for last two weeks. C2C12 myotubes with cholic acid (CA) or deoxycholic acid (DCA) were treated with AS. KEY FINDINGS We observed a decrease in muscle size and performance in DDC-fed mice with upregulated expression of FOXO1 and E3 ligases such as ATROGIN1 and MuRF1. We found that myotube diameter and MyHC protein level were decreased by CA or DCA in C2C12 myotubes, but treatment of AS reversed these reductions. We observed that intramuscular injection of AS effectively mitigates DDC diet-induced sarcopenia in a rodent PSC model. SIGNIFICANCE Our study suggests that a FOXO1 inhibitor could be a potential leading therapeutic drug for relieving PSC-induced sarcopenia.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Jieun Kim
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, South Korea; Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Jeongho Park
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, South Korea; College of Veterinary Medicine. Kangwon National University, Chuncheon, South Korea
| | - Tae Hyun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
6
|
Ishii K, Naito K, Tanaka D, Koto Y, Kurata K, Shimizu H. Molecular Mechanisms of Skatole-Induced Inflammatory Responses in Intestinal Epithelial Caco-2 Cells: Implications for Colorectal Cancer and Inflammatory Bowel Disease. Cells 2024; 13:1730. [PMID: 39451248 PMCID: PMC11505633 DOI: 10.3390/cells13201730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), in intestinal epithelial cells significantly contribute to inflammatory bowel disease (IBD) and colorectal cancer (CRC). Given our previous findings that TNF-α is upregulated in intestinal epithelial Caco-2 cells induced by skatole, a tryptophan-derived gut microbiota metabolite, the present study aimed to explore the relationship between skatole and IL-6, alongside TNF-α. Skatole elevated the promoter activity of IL-6 as well as TNF-α, and increased IL-6 mRNA expression and protein secretion. In addition to activating NF-κB, the NF-κB inhibitor BAY 11-7082 reduced skatole-induced cell survival and the mRNA expression of IL-6 and TNF-α. NF-κB activation was attenuated by the extracellular signal-regulated kinase (ERK) pathway inhibitor U0126 and the p38 inhibitor SB203580, but not by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. U126 and SB203580 also decreased the skatole-induced increase in IL-6 expression. When skatole-induced AhR activation was inhibited by CH223191, in addition to promoting NF-κB activation, IL-6 expression was enhanced in a manner similar to that previously reported for TNF-α. Taken together, these results suggest that skatole-elicited NF-κB activation induces IL-6 and TNF-α expression, although AhR activation partially suppresses this process. The ability of skatole to increase the expression of IL-6 and TNF-α may significantly affect the development and progression of these diseases. Moreover, the balance between NF-κB and AhR activation appears to govern the skatole-induced increases in IL-6 and TNF-α expression. Therefore, the present findings provide new insights into the mechanisms linking tryptophan-derived gut microbiota metabolites with colorectal disease.
Collapse
Affiliation(s)
- Katsunori Ishii
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Kazuma Naito
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Dai Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Yoshihito Koto
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Koichi Kurata
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Hidehisa Shimizu
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Estuary Research Center, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| |
Collapse
|
7
|
Dong J, Zhou W, Hu X, Bai J, Zhang S, Zhang X, Yu L, Yang P, Kong L, Liu M, Shang X, Su Z, Geng D, Zhu C. Honeycomb-inspired ZIF-sealed interface enhances osseointegration via anti-infection and osteoimmunomodulation. Biomaterials 2024; 307:122515. [PMID: 38401481 DOI: 10.1016/j.biomaterials.2024.122515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Implant-associated infections (IAIs) pose a significant threat to orthopedic surgeries. Bacteria colonizing the surface of implants disrupt bone formation-related cells and interfere with the osteoimmune system, resulting in an impaired immune microenvironment and osteogenesis disorders. Inspired by nature, a zeolitic imidazolate framework (ZIF)-sealed smart drug delivery system on Ti substrates (ZSTG) was developed for the "natural-artificial dual-enzyme intervention (NADEI)" strategy to address these challenges. The subtle sealing design of ZIF-8 on the TiO2 nanotubes ensured glucose oxidase (GOx) activity and prevented its premature leakage. In the acidic infection microenvironment, the degradation of ZIF-8 triggered the rapid release of GOx, which converted glucose into H2O2 for disinfection. The Zn2+ released from degraded ZIF-8, as a DNase mimic, can hydrolyze extracellular DNA, which further enhances H2O2-induced disinfection and prevents biofilm formation. Importantly, Zn2+-mediated M2 macrophage polarization significantly improved the impaired osteoimmune microenvironment, accelerating bone repair. Transcriptomics revealed that ZSTG effectively suppressed the inflammatory cascade induced by lipopolysaccharide while promoting cell proliferation, homeostasis maintenance, and bone repair. In vitro and in vivo results confirmed the superior anti-infective, osteoimmunomodulatory, and osteointegrative capacities of the ZSTG-mediated NADEI strategy. Overall, this smart bionic platform has significant potential for future clinical applications to treat IAIs.
Collapse
Affiliation(s)
- Jiale Dong
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Siming Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai 200433, China
| | - Mingkai Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xifu Shang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
8
|
Li X, Shi S, Li Z, Wang Y, Qi X, Zhang R, Liu Z, Cheng Y. Heterogeneous nuclear ribonucleoprotein A2/B1 promotes myocardial fibrosis by regulating the miR-221-3p/FOXO4-mediated inflammation. Clin Transl Med 2024; 14:e1616. [PMID: 38468493 PMCID: PMC10928344 DOI: 10.1002/ctm2.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Xuping Li
- School of Pharmaceutical SciencesJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shuotao Shi
- School of Pharmaceutical SciencesJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zipei Li
- School of Pharmaceutical SciencesJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Ying Wang
- School of Pharmaceutical SciencesJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaoxiao Qi
- School of Pharmaceutical SciencesJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Rong Zhang
- School of Pharmaceutical SciencesJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhongqiu Liu
- School of Pharmaceutical SciencesJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yuanyuan Cheng
- School of Pharmaceutical SciencesJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
9
|
Teaney NA, Cyr NE. FoxO1 as a tissue-specific therapeutic target for type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1286838. [PMID: 37941908 PMCID: PMC10629996 DOI: 10.3389/fendo.2023.1286838] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Forkhead box O (FoxO) proteins are transcription factors that mediate many aspects of physiology and thus have been targeted as therapeutics for several diseases including metabolic disorders such as type 2 diabetes mellitus (T2D). The role of FoxO1 in metabolism has been well studied, but recently FoxO1's potential for diabetes prevention and therapy has been debated. For example, studies have shown that increased FoxO1 activity in certain tissue types contributes to T2D pathology, symptoms, and comorbidities, yet in other tissue types elevated FoxO1 has been reported to alleviate symptoms associated with diabetes. Furthermore, studies have reported opposite effects of active FoxO1 in the same tissue type. For example, in the liver, FoxO1 contributes to T2D by increasing hepatic glucose production. However, FoxO1 has been shown to either increase or decrease hepatic lipogenesis as well as adipogenesis in white adipose tissue. In skeletal muscle, FoxO1 reduces glucose uptake and oxidation, promotes lipid uptake and oxidation, and increases muscle atrophy. While many studies show that FoxO1 lowers pancreatic insulin production and secretion, others show the opposite, especially in response to oxidative stress and inflammation. Elevated FoxO1 in the hypothalamus increases the risk of developing T2D. However, increased FoxO1 may mitigate Alzheimer's disease, a neurodegenerative disease strongly associated with T2D. Conversely, accumulating evidence implicates increased FoxO1 with Parkinson's disease pathogenesis. Here we review FoxO1's actions in T2D conditions in metabolic tissues that abundantly express FoxO1 and highlight some of the current studies targeting FoxO1 for T2D treatment.
Collapse
Affiliation(s)
- Nicole A. Teaney
- Stonehill College, Neuroscience Program, Easton, MA, United States
| | - Nicole E. Cyr
- Stonehill College, Neuroscience Program, Easton, MA, United States
- Stonehill College, Department of Biology, Easton, MA, United States
| |
Collapse
|
10
|
Liu Y, Hou Q, Wang R, Liu Y, Cheng Z. FOXO4-D-Retro-Inverso targets extracellular matrix production in fibroblasts and ameliorates bleomycin-induced pulmonary fibrosis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2393-2403. [PMID: 37074394 DOI: 10.1007/s00210-023-02452-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/27/2023] [Indexed: 04/20/2023]
Abstract
Pulmonary fibrosis (PF) occurs in various end stages of lung disease, and it is characterized by persistent scarring of the lung parenchyma with excessive deposition of extracellular matrix (ECM), leading to degressive quality of life and earlier mortality. FOXO4-D-Retro-Inverso (FOXO4-DRI), a synthesis peptide as a specific FOXO4 blocker, selectively induced dissociation of the FOXO4-p53 complex and nuclear exclusion of p53. Simultaneously, the p53 signaling pathway has been reported to activate in fibroblasts isolated from IPF fibrotic lung tissues and the p53 mutants cooperate with other factors that have the ability to disturb the synthesis of ECM. Yet, whether FOXO4-DRI influences the nuclear exclusion of p53 and then obstructs PF progress is still unknown. In this research, we explored the effect of FOXO4-DRI on bleomycin (BLM)-induced PF mouse model and activated fibroblasts model. The animal group of FOXO4-DRI therapeutic administration shows a milder pathologic change and less collagen deposition compared with the BLM-induced group. We also found the FOXO4-DRI resets the distribution of intranuclear p53 and concurrently decreased the total ECM proteins content. After further validation, FOXO4-DRI may well be a promising therapeutic approach to treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Qinhui Hou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China.
| |
Collapse
|
11
|
Jang S, Kim S, So BR, Kim Y, Kim CK, Lee JJ, Jung SK. Sinapic acid alleviates inflammatory bowel disease (IBD) through localization of tight junction proteins by direct binding to TAK1 and improves intestinal microbiota. Front Pharmacol 2023; 14:1217111. [PMID: 37649894 PMCID: PMC10462984 DOI: 10.3389/fphar.2023.1217111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Although sinapic acid is found in various edible plants and has been shown to have anti-inflammatory properties including colitis, its underlying mechanism and effects on the composition of the gut microbiota are largely unknown. We aimed to identify an early response kinase that regulates the localization of tight junction proteins, act at the onset of the inflammatory response, and is regulated by sinapic acid. Additionally, we analyzed the effects of sinapic acid on the homeostasis of the intestinal microbiome. Methods: We examined the aberrant alterations of early response genes such as nuclear factor-kappa B (NF-κB) and activating transcription factor (ATF)-2 within 2 h of sinapic acid treatment in fully differentiated Caco-2 cells with or without lipopolysaccharide and tumor necrosis factor (TNF)-α stimulation. To confirm the effect of sinapic acid on stimulus-induced delocalization of tight junction proteins, including zonula occludens (ZO)-1, occludin, and claudin-2, all tight junction proteins were investigated by analyzing a fraction of membrane and cytosol proteins extracted from Caco-2 cells and mice intestines. Colitis was induced in C57BL/6 mice using 2% dextran sulfate sodium and sinapic acid (2 or 10 mg/kg/day) was administrated for 15 days. Furthermore, the nutraceutical and pharmaceutical activities of sinapic acid for treating inflammatory bowel disease (IBD) evaluated. Results: We confirmed that sinapic acid significantly suppressed the stimulus-induced delocalization of tight junction proteins from the intestinal cell membrane and abnormal intestinal permeability as well as the expression of inflammatory cytokines such as interleukin (IL)-1β and TNF-α in vitro and in vivo. Sinapic acid was found to bind directly to transforming growth factor beta-activated kinase 1 (TAK1) and inhibit the stimulus-induced activation of NF-κB as well as MAPK/ATF-2 pathways, which in turn regulated the expression of mitogen-activated protein kinase (MLCK). Dietary sinapic acid also alleviated the imbalanced of gut microbiota and symptoms of IBD, evidenced by improvements in the length and morphology of the intestine in mice with colitis. Discussion: These findings indicate that sinapic acid may be an effective nutraceutical and pharmaceutical agent for IBD treatment as it targets TAK1 and inhibits subsequent NF-κB and ATF-2 signaling.
Collapse
Affiliation(s)
- Sehyeon Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Bo Ram So
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Donlon TA, Morris BJ, Chen R, Lim E, Morgen EK, Fortney K, Shah N, Masaki KH, Willcox BJ. Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. GeroScience 2023; 45:2303-2324. [PMID: 36881352 PMCID: PMC10651822 DOI: 10.1007/s11357-023-00740-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA.
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Randi Chen
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
| | - Eunjung Lim
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eric K Morgen
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kristen Fortney
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Naisha Shah
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kamal H Masaki
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
13
|
Yu S, He J, Xie K. Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis. Int J Biol Sci 2023; 19:3804-3815. [PMID: 37564207 PMCID: PMC10411466 DOI: 10.7150/ijbs.85765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Tight junction (TJ) is the barrier of epithelial and endothelial cells to maintain paracellular substrate transport and cell polarity. As one of the TJ cytoplasmic adaptor proteins adjacent to cell membrane, zonula occludens (ZO) proteins are responsible for connecting transmembrane TJ proteins and cytoplasmic cytoskeleton, providing a binding platform for transmembrane TJ proteins to maintain the barrier function. In addition to the basic structural function, ZO proteins play important roles in signal regulation such as cell proliferation and motility, the latter including cell migration, invasion and metastasis, to influence embryonic development, tissue homeostasis, damage repair, inflammation, tumorigenesis, and cancer progression. In this review, we will focus on the signal regulating function of ZO proteins in inflammation and tumorigenesis, and discuss the limitations of previous research and future challenges in ZO protein research.
Collapse
Affiliation(s)
- Sen Yu
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| |
Collapse
|
14
|
Zhang X, Evans TD, Chen S, Sergin I, Stitham J, Jeong SJ, Rodriguez-Velez A, Yeh YS, Park A, Jung IH, Diwan A, Schilling JD, Rom O, Yurdagul A, Epelman S, Cho J, Lodhi IJ, Mittendorfer B, Razani B. Loss of Macrophage mTORC2 Drives Atherosclerosis via FoxO1 and IL-1β Signaling. Circ Res 2023; 133:200-219. [PMID: 37350264 PMCID: PMC10527041 DOI: 10.1161/circresaha.122.321542] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages. METHODS Using macrophage-specific Rictor- and mTOR-deficient mice, we now dissect the distinct functions of mTORC2 pathways in atherogenesis. RESULTS In contrast to the atheroprotective effect seen with blockade of macrophage mTORC1, macrophage-specific mTORC2-deficient mice exhibit an atherogenic phenotype, with larger, more complex lesions and increased cell death. In cultured macrophages, we show that mTORC2 signaling inhibits the FoxO1 (forkhead box protein O1) transcription factor, leading to suppression of proinflammatory pathways, especially the inflammasome/IL (interleukin)-1β response, a key mediator of vascular inflammation and atherosclerosis. In addition, administration of FoxO1 inhibitors efficiently rescued the proinflammatory response caused by mTORC2 deficiency both in vitro and in vivo. Interestingly, collective deletion of macrophage mTOR, which ablates mTORC1- and mTORC2-dependent pathways, leads to minimal change in plaque size or complexity, reflecting the balanced yet opposing roles of these signaling arms. CONCLUSIONS Our data provide the first mechanistic details of macrophage mTOR signaling in atherosclerosis and suggest that therapeutic measures aimed at modulating mTOR need to account for its dichotomous functions.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Trent D. Evans
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Sunny Chen
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Ismail Sergin
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Jeremiah Stitham
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | | | - Yu-Sheng Yeh
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Arick Park
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - In-Hyuk Jung
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Abhinav Diwan
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| | - Joel D. Schilling
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology and Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology and Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA
| | - Slava Epelman
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Center, Toronto General Hospital Research Institute, University Health Network and University of Toronto, Toronto, Canada
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Bettina Mittendorfer
- Division of Geriatrics and Nutritional Science, and Washington University School of Medicine, St Louis, MO, USA
| | - Babak Razani
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| |
Collapse
|
15
|
Hubbard IC, Thompson JS, Else KJ, Shears RK. Another decade of Trichuris muris research: An update and application of key discoveries. ADVANCES IN PARASITOLOGY 2023; 121:1-63. [PMID: 37474238 DOI: 10.1016/bs.apar.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The mouse whipworm, Trichuris muris, has been used for over 60 years as a tractable model for human trichuriasis, caused by the related whipworm species, T. trichiura. The history of T. muris research, from the discovery of the parasite in 1761 to understanding the lifecycle and outcome of infection with different doses (high versus low dose infection), as well as the immune mechanisms associated with parasite expulsion and chronic infection have been detailed in an earlier review published in 2013. Here, we review recent advances in our understanding of whipworm biology, host-parasite interactions and basic immunology brought about using the T. muris mouse model, focussing on developments from the last decade. In addition to the traditional high/low dose infection models that have formed the mainstay of T. muris research to date, novel models involving trickle (repeated low dose) infection in laboratory mice or infection in wild or semi-wild mice have led to important insights into how immunity develops in situ in a multivariate environment, while the use of novel techniques such as the development of caecal organoids (enabling the study of larval development ex vivo) promise to deliver important insights into host-parasite interactions. In addition, the genome and transcriptome analyses of T. muris and T. trichiura have proven to be invaluable tools, particularly in the context of vaccine development and identification of secreted products including proteins, extracellular vesicles and micro-RNAs, shedding further light on how these parasites communicate with their host and modulate the immune response to promote their own survival.
Collapse
Affiliation(s)
- Isabella C Hubbard
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jacob S Thompson
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.
| |
Collapse
|
16
|
Cao G, Lin M, Gu W, Su Z, Duan Y, Song W, Liu H, Zhang F. The rules and regulatory mechanisms of FOXO3 on inflammation, metabolism, cell death and aging in hosts. Life Sci 2023:121877. [PMID: 37352918 DOI: 10.1016/j.lfs.2023.121877] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The FOX family of transcription factors was originally identified in 1989, comprising the FOXA to FOXS subfamilies. FOXO3, a well-known member of the FOXO subfamily, is widely expressed in various human organs and tissues, with higher expression levels in the ovary, skeletal muscle, heart, and spleen. The biological effects of FOXO3 are mostly determined by its phosphorylation, which occurs in the nucleus or cytoplasm. Phosphorylation of FOXO3 in the nucleus can promote its translocation into the cytoplasm and inhibit its transcriptional activity. In contrast, phosphorylation of FOXO3 in the cytoplasm leads to its translocation into the nucleus and exerts regulatory effects on biological processes, such as inflammation, aerobic glycolysis, autophagy, apoptosis, oxidative stress, cell cycle arrest and DNA damage repair. Additionally, FOXO3 isoform 2 acts as an important suppressor of osteoclast differentiation. FOXO3 can also interfere with the development of various diseases, including inhibiting the proliferation and invasion of tumor cells, blocking the production of inflammatory factors in autoimmune diseases, and inhibiting β-amyloid deposition in Alzheimer's disease. Furthermore, FOXO3 slows down the aging process and exerts anti-aging effects by delaying telomere attrition, promoting cell self-renewal, and maintaining genomic stability. This review suggests that changes in the levels and post-translational modifications of FOXO3 protein can maintain organismal homeostasis and improve age-related diseases, thus counteracting aging. Moreover, this may indicate that alterations in FOXO3 protein levels are also crucial for longevity, offering new perspectives for therapeutic strategies targeting FOXO3.
Collapse
Affiliation(s)
- Guoding Cao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wei Gu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Zaiyu Su
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Yagan Duan
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
17
|
Dai M, Wang L, Yang J, Chen J, Dou X, Chen R, Ge Y, Lin Y. LDHA as a regulator of T cell fate and its mechanisms in disease. Biomed Pharmacother 2023; 158:114164. [PMID: 36916398 DOI: 10.1016/j.biopha.2022.114164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
T cells are the main force of anti-infection and antitumor and are also involved in autoimmune diseases. During the development of these diseases, T cells need to rapidly produce large amounts of energy to satisfy their activation, proliferation, and differentiation. In this review, we introduced lactate dehydrogenase A(LDHA), predominantly involved in glycolysis, which provides energy for T cells and plays a dual role in disease by mediating lactate production, non-classical enzyme activity, and oxidative stress. Mechanistically, the signaling molecule can interact with the LDHA promoter or regulate LDHA activity through post-translational modifications. These latest findings suggest that modulation of LDHA may have considerable therapeutic effects in diseases where T-cell activation is an important pathogenesis.
Collapse
Affiliation(s)
- Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| |
Collapse
|
18
|
Huang H, Dong J, Jiang J, Yang F, Zheng Y, Wang S, Wang N, Ma J, Hou M, Ding Y, Meng L, Zhuo W, Yang D, Qian W, Chen Q, You G, Qian G, Gu L, Lv H. The role of FOXO4/NFAT2 signaling pathway in dysfunction of human coronary endothelial cells and inflammatory infiltration of vasculitis in Kawasaki disease. Front Immunol 2023; 13:1090056. [PMID: 36700213 PMCID: PMC9869249 DOI: 10.3389/fimmu.2022.1090056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Aims The Ca+/NFAT (Nuclear factor of activated T cells) signaling pathway activation is implicated in the pathogenesis of Kawasaki disease (KD); however, we lack detailed information regarding the regulatory network involved in the human coronary endothelial cell dysfunction and cardiovascular lesion development. Herein, we aimed to use mouse and endothelial cell models of KD vasculitis in vivo and in vitro to characterize the regulatory network of NFAT pathway in KD. Methods and Results Among the NFAT gene family, NFAT2 showed the strongest transcriptional activity in peripheral blood mononuclear cells (PBMCs) from patients with KD. Then, NFAT2 overexpression and knockdown experiments in Human coronary artery endothelial cells (HCAECs) indicated that NFAT2 overexpression disrupted endothelial cell homeostasis by regulation of adherens junctions, whereas its knockdown protected HCAECs from such dysfunction. Combined analysis using RNA-sequencing and transcription factor (TF) binding site analysis in the NFAT2 promoter region predicted regulation by Forkhead box O4 (FOXO4). Western blotting, chromatin immunoprecipitation, and luciferase assays validated that FOXO4 binds to the promoter and transcriptionally represses NFAT2. Moreover, Foxo4 knockout increased the extent of inflamed vascular tissues in a mouse model of KD vasculitis. Functional experiments showed that inhibition NFAT2 relieved Foxo4 knockout exaggerated vasculitis in vivo. Conclusions Our findings revealed the FOXO4/NFAT2 axis as a vital pathway in the progression of KD that is associated with endothelial cell homeostasis and cardiovascular inflammation development.
Collapse
Affiliation(s)
- Hongbiao Huang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China,Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China,Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jinfeng Dong
- Department of Hematology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jiaqi Jiang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fang Yang
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiming Zheng
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shuhui Wang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Nana Wang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Ma
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Miao Hou
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yueyue Ding
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lijun Meng
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Wenyu Zhuo
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Daoping Yang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weiguo Qian
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Guoping You
- Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Guanghui Qian
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Gu
- Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Cardiopulmonary Institute (CPI), Bad Nauheim, Germany,*Correspondence: Haitao Lv, ; Lei Gu,
| | - Haitao Lv
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Haitao Lv, ; Lei Gu,
| |
Collapse
|
19
|
Zhang C, Deng Y, Zhang Y, Ba T, Niu S, Chen Y, Gao Y, Dai H. CXCR3 Inhibition Blocks the NF-κB Signaling Pathway by Elevating Autophagy to Ameliorate Lipopolysaccharide-Induced Intestinal Dysfunction in Mice. Cells 2023; 12:cells12010182. [PMID: 36611975 PMCID: PMC9818741 DOI: 10.3390/cells12010182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Autophagy is a cellular catabolic process in the evolutionarily conservative turnover of intracellular substances in eukaryotes, which is involved in both immune homeostasis and injury repairment. CXCR3 is an interferon-induced chemokine receptor that participates in immune regulation and inflammatory responses. However, CXCR3 regulating intestine injury via autophagy along with the precise underlying mechanism have yet to be elucidated. In the current study, we employed an LPS-induced inflammatory mouse model and confirmed that CXCR3 knockout significantly attenuates intestinal mucosal structural damage and increases tight junction protein expression. CXCR3 knockout alleviated the LPS-induced increase in the expression of inflammatory factors including TNF-α, IL-6, p-65, and JNK-1 and enhanced autophagy by elevating LC3II, ATG12, and PINK1/Parkin expression. Mechanistically, the function of CXCR3 regarding autophagy and immunity was investigated in IPEC-J2 cells. CXCR3 inhibition by AMG487 enhanced autophagy and reduced the inflammatory response, as well as blocked the NF-κB signaling pathway and elevated the expression of the tight junction protein marker Claudin-1. Correspondingly, these effects were abolished by autophagy inhibition with the selective blocker, 3-MA. Moreover, the immunofluorescence assay results further demonstrated that CXCR3 inhibition-mediated autophagy blocked p65 nuclear translocation, and the majority of Claudin-1 was located at the tight junctions. In conclusion, CXCR3 inhibition reversed LPS-induced intestinal barrier damage and alleviated the NF-κB signaling pathway via enhancing autophagy. These data provided a theoretical basis for elucidating the immunoregulatory mechanism by targeting CXCR3 to prevent intestinal dysfunction.
Collapse
|
20
|
Kitamoto T, Lee YK, Sultana N, Watanabe H, McKimpson WM, Du W, Fan J, Diaz B, Lin HV, Leibel RL, Belvedere S, Accili D, Accili D. Chemical induction of gut β-like-cells by combined FoxO1/Notch inhibition as a glucose-lowering treatment for diabetes. Mol Metab 2022; 66:101624. [PMID: 36341906 PMCID: PMC9664469 DOI: 10.1016/j.molmet.2022.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive β-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate β-like gut cells. METHODS We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced β-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced β-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive β-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION These results provide proof of principle of gut cell conversion into β-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Chiba University Graduate School of Medicine, Chiba, Japan, 2608670.
| | | | - Nishat Sultana
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hitoshi Watanabe
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wendy M McKimpson
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wen Du
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Jason Fan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, 33146, USA
| | - Bryan Diaz
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hua V Lin
- BioFront Therapeutics, Beijing, China
| | - Rudolph L Leibel
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Domenico Accili
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
21
|
Migliorini LB, Leaden L, de Sales RO, Correa NP, Marins MM, Koga PCM, Toniolo ADR, de Menezes FG, Martino MDV, Mingorance J, Severino P. The Gastrointestinal Load of Carbapenem-Resistant Enterobacteriacea Is Associated With the Transition From Colonization to Infection by Klebsiella pneumoniae Isolates Harboring the blaKPC Gene. Front Cell Infect Microbiol 2022; 12:928578. [PMID: 35865821 PMCID: PMC9294314 DOI: 10.3389/fcimb.2022.928578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 01/15/2023] Open
Abstract
Background Healthcare-associated infections by carbapenem-resistant Klebsiella pneumoniae are difficult to control. Virulence and antibiotic resistance genes contribute to infection, but the mechanisms associated with the transition from colonization to infection remain unclear. Objective We investigated the transition from carriage to infection by K. pneumoniae isolates carrying the K. pneumoniae carbapenemase–encoding gene blaKPC (KpKPC). Methods KpKPC isolates detected within a 10-year period in a single tertiary-care hospital were characterized by pulsed-field gel electrophoresis (PFGE), multilocus sequencing typing, capsular lipopolysaccharide and polysaccharide typing, antimicrobial susceptibility profiles, and the presence of virulence genes. The gastrointestinal load of carbapenem-resistant Enterobacteriaceae and of blaKPC-carrying bacteria was estimated by relative quantification in rectal swabs. Results were evaluated as contributors to the progression from carriage to infection. Results No PGFE type; ST-, K-, or O-serotypes; antimicrobial susceptibility profiles; or the presence of virulence markers, such yersiniabactin and colibactin, were associated with carriage or infection, with ST437 and ST11 being the most prevalent clones. Admission to intensive and semi-intensive care units was a risk factor for the development of infections (OR 2.79, 95% CI 1.375 to 5.687, P=0.005), but higher intestinal loads of carbapenem-resistant Enterobacteriaceae or of blaKPC-carrying bacteria were the only factors associated with the transition from colonization to infection in this cohort (OR 8.601, 95% CI 2.44 to 30.352, P<0.001). Conclusion The presence of resistance and virulence mechanisms were not associated with progression from colonization to infection, while intestinal colonization by carbapenem-resistant Enterobacteriacea and, more specifically, the load of gastrointestinal carriage emerged as an important determinant of infection.
Collapse
Affiliation(s)
- Letícia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Laura Leaden
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Romário Oliveira de Sales
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Maryana Mara Marins
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | | | | | | | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- *Correspondence: Patricia Severino,
| |
Collapse
|
22
|
Li Y, Liu J, Pongkorpsakol P, Xiong Z, Li L, Jiang X, Zhao H, Yuan D, Zhang C, Guo Y, Dun Y. Relief Effects of Icariin on Inflammation-Induced Decrease of Tight Junctions in Intestinal Epithelial Cells. Front Pharmacol 2022; 13:903762. [PMID: 35754510 PMCID: PMC9214228 DOI: 10.3389/fphar.2022.903762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammatory cytokines including TNF-α and IL-1β impair intestinal barrier function in aging by disrupting intestinal tight junction integrity. Icariin (ICA) has a variety of pharmacological effects. Indeed, ICA produces anti-inflammatory, anti-oxidative stress, and inhibitory effects on microRNA (miRNA) expression. This study was to explore whether ICA could alleviate inflammation-associated intestinal barrier function impairment in aging and its underlying mechanism. Of particular interest, network pharmacology prediction indicated the potential therapeutic impacts of ICA for the treatment of colitis. Then, rats were used to study whether ICA has a protective effect on the reduction of tight junctions caused by inflammatory cytokines. Next, Caco-2 cell monolayers were used to explore the mechanism by which ICA alleviates the down-regulation of tight junctions. Network pharmacology prediction revealed that ICA alleviated colitis via suppressing oxidative stress. After ICA intervention, expressions of inflammatory cytokines were reduced, but tight junctions, antioxidant enzymes in aging rats were up-regulated. ICA reversed the TNF-α-induced decrease in abundance of Occludin protein in Caco-2 cell monolayers. Meanwhile, ICA alleviated the increase in permeability and expression of miR-122a. However, the protective effect of ICA was markedly attenuated after transfection with miR-122a mimics. In conclusion, ICA reduced the expressions of Occludin, Claudin1, and Claudin5 in colon, which were related to the reduction of TNF-α and IL-1β and alleviation of colonic in vivore. And ICA attenuated TNF-α-induced Occludin disruption and epithelial barrier impairment by decreasing miR-122a expression in Caco-2 cell monolayers.
Collapse
Affiliation(s)
- Yanli Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Jie Liu
- Department of Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Zhengguo Xiong
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Anatomy and Histoembryology, Medical College, China Three Gorges University, Yichang, China
| | - Li Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Anatomy and Histoembryology, Medical College, China Three Gorges University, Yichang, China
| | - Xuemei Jiang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Pathology, Medical College, China Three Gorges University, Yichang, China
| | - Haixia Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Yuhui Guo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Yaoyan Dun
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Pathology, Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
23
|
Yu T, Xie Y, Yuan J, Gao J, Xiao Z, Wu Y, Chen H. The Nutritional Intervention of Resveratrol Can Effectively Alleviate the Intestinal Inflammation Associated With Celiac Disease Induced by Wheat Gluten. Front Immunol 2022; 13:878186. [PMID: 35450077 PMCID: PMC9017684 DOI: 10.3389/fimmu.2022.878186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Wheat gluten is a critical trigger for celiac disease, often causing inflammatory lesions and oxidative stress damage in the intestines of patients. In daily life, it is difficult for celiac disease patients to strictly avoid the dietary intake of gluten, which makes complementary preventive therapy particularly urgent. As such, we investigated the alleviating effects of resveratrol in vivo and in vitro models of celiac disease. Methods We established in vivo and in vitro models of gluten protein-induced celiac disease. The intervention effect of resveratrol was defined well based on relevant indicators of inflammation, immunity and oxidative stress, and its possible involvement in signaling pathways and genes were also identified. Results Resveratrol was effective in reducing intestinal oxidative stress and inflammatory damage induced by wheat gluten in both cell and mouse models for celiac disease. We identified correlations between the genes (Fgf15, Nr0b2, Aire and Ubd) and signaling pathways (PPAR, AMPK and FoxO) in which resveratrol performed critical roles. Conclusions Resveratrol contributed to regulate development of autoimmunity through up-regulation of Aire and Ubd genes and promote nutrient absorption in intestine through down-regulation of Fgf15 and Nr0b2 genes, as well as played a role in regulating complex response system of oxidative stress, inflammatory response and immune response in intestine by activating PPAR, AMPK and FoxO signaling pathways, thus effectively alleviating the intestinal symptoms of celiac disease.
Collapse
Affiliation(s)
- Tian Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China.,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yiting Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China.,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhiwen Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China.,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Sasaki T, Nagashima H, Okuma A, Yamauchi T, Yamasaki K, Aiba S, So T, Ishii N, Owada Y, MaruYama T, Kobayashi S. Functional Analysis of the Transcriptional Regulator IκB-ζ in Intestinal Homeostasis. Dig Dis Sci 2022; 67:1252-1259. [PMID: 33818662 DOI: 10.1007/s10620-021-06958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/12/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The Toll-like receptor signaling pathway contributes to the regulation of intestinal homeostasis through interactions with commensal bacteria. Although the transcriptional regulator IκB-ζ can be induced by Toll-like receptor signaling, its role in intestinal homeostasis is still unclear. AIMS To investigate the role of IκB-ζ in gut homeostasis. METHODS DSS-administration induced colitis in control and IκB-ζ-deficient mice. The level of immunoglobulins in feces was detected by ELISA. The immunological population in lamina propria (LP) was analyzed by FACS. RESULTS IκB-ζ-deficient mice showed severe inflammatory diseases with DSS administration in the gut. The level of IgM in the feces after DSS administration was less in IκB-ζ-deficient mice compared to control mice. Upon administration of DSS, IκB-ζ-deficient mice showed exaggerated intestinal inflammation (more IFN-g-producing CD4+ T cells in LP), and antibiotic treatment canceled this inflammatory phenotype. CONCLUSION IκB-ζ plays a crucial role in maintaining homeostasis in the gut.
Collapse
Affiliation(s)
- Tomoki Sasaki
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Okuma
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, Japan
| | - Takashi MaruYama
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Mucosal Immunology Unit, NIDCR, NIH, Bethesda, MD, USA
| | - Shuhei Kobayashi
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan. .,Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, Japan.
| |
Collapse
|
25
|
Wang XJ, Li XY, Guo XC, Liu L, Jin YY, Lu YQ, Cao YJN, Long JY, Wu HG, Zhang D, Yang G, Hong J, Yang YT, Ma XP. LncRNA-miRNA-mRNA Network Analysis Reveals the Potential Biomarkers in Crohn's Disease Rats Treated with Herb-Partitioned Moxibustion. J Inflamm Res 2022; 15:1699-1716. [PMID: 35282268 PMCID: PMC8906857 DOI: 10.2147/jir.s351672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/19/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) is receiving growing attention in Crohn's disease (CD). However, the mechanism by which herb-partitioned moxibustion (HPM) regulates the expression and functions of lncRNAs in CD rats is still unclear. The aim of our study is to identify lncRNA-miRNA-mRNA network potential biological functions in CD. METHODS RNA sequencing and microRNA (miRNA) sequencing were carried out to analyze lncRNA, miRNA and mRNA expression profiles among the CD rats, normal control rats, and CD rats after HPM treatment and constructed the potential related lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to explore potentially important genes in ceRNA networks. RESULTS A total of 189 lncRNAs, 32 miRNAs and 463 mRNAs were determined as differentially expressed (DE) genes in CD rats compared to normal control rats, and 161 lncRNAs, 12 miRNAs and 130 mRNAs were identified as remarkably DE genes in CD rats after HPM treatment compared to CD rats. GO analysis indicated that the target genes were most enriched in cAMP and in KEGG pathway analysis the main pathways included adipocytokine, PPAR, AMPK, FoxO and PI3K-Akt signaling pathway. Finally, qRT-PCR results confirmed that lncRNA LOC102550026 sponged miRNA-34c-5p to regulate the intestinal immune inflammatory response by targeting Pck1. CONCLUSION By constructing a ceRNA network with lncRNA-miRNA-mRNA, PCR verification, and KEGG analysis, we revealed that LOC102550026/miRNA-34c-5p/Pck1 axis and adipocytokine, PPAR, AMPK, FoxO, and PI3K-Akt signaling pathways might regulate the intestinal immune-inflammatory response, and HPM may regulate the lncRNA LOC102550026/miR-34c-5p/Pck1 axis and adipocytokine, PPAR, AMPK, FoxO, and PI3K-Akt signaling pathways, thus improving intestinal inflammation in CD. These findings may be novel potential targets in CD.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Cong Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - You-You Jin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yun-Qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yao-Jia-Ni Cao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun-Yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Huan-Gan Wu
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Dan Zhang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Guang Yang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Jue Hong
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Yan-Ting Yang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Xiao-Peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Wu X, Niu K, Wang X, Zhao J, Wang H, Li D, Wang H, Miao T, Yang Y, Ma H, Zhang Y, Pan L, Liu R, Bai H, Liu N. microRNA-252 and FoxO repress inflammaging by a dual inhibitory mechanism on Dawdle-mediated TGF-β pathway in Drosophila. Genetics 2021; 220:6472350. [DOI: 10.1093/genetics/iyab234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Inflammaging refers to low-grade, chronically activated innate immunity that has deleterious effects on healthy lifespan. However, little is known about the intrinsic signaling pathway that elicits innate immune genes during aging. Here, using Drosophila melanogaster, we profile the microRNA targetomes in young and aged animals, and reveal Dawdle, an activin-like ligand of the TGF-β pathway, as a physiological target of microRNA-252. We show that microRNA-252 cooperates with Forkhead box O, a conserved transcriptional factor implicated in aging, to repress Dawdle. Unopposed Dawdle triggers hyperactivation of innate immune genes coupled with a decline in organismal survival. Using adult muscle tissues, single-cell sequencing analysis describes that Dawdle and its downstream innate immune genes are expressed in distinct cell types, suggesting a cell nonautonomous mode of regulation. We further determine the genetic cascade by which Dawdle signaling leads to increased Kenny/IKKγ protein, which in turn activates Relish/NF-κB protein and consequentially innate immune genes. Finally, transgenic increase of microRNA-252 and Forkhead box O pathway factors in wild-type Drosophila extends lifespan and mitigates the induction of innate immune genes in aging. Together, we propose that microRNA-252 and Forkhead box O promote healthy longevity by cooperative inhibition on Dawdle-mediated inflammaging.
Collapse
Affiliation(s)
- Xiaofen Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kongyan Niu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dean Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- Singlera Genomics, Pudong, Shanghai 201203, China
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Yun Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
| | - Lei Pan
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Liu
- Singlera Genomics, Pudong, Shanghai 201203, China
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai 201210, China
| |
Collapse
|
27
|
Chen Z, Luo J, Li J, Kim G, Chen ES, Xiao S, Snapper SB, Bao B, An D, Blumberg RS, Lin CH, Wang S, Zhong J, Liu K, Li Q, Wu C, Kuchroo VK. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J Exp Med 2021; 218:e20210324. [PMID: 34287641 PMCID: PMC8424467 DOI: 10.1084/jem.20210324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Mucus produced by goblet cells in the gastrointestinal tract forms a biological barrier that protects the intestine from invasion by commensals and pathogens. However, the host-derived regulatory network that controls mucus secretion and thereby changes gut microbiota has not been well studied. Here, we identify that Forkhead box protein O1 (Foxo1) regulates mucus secretion by goblet cells and determines intestinal homeostasis. Loss of Foxo1 in intestinal epithelial cells (IECs) results in defects in goblet cell autophagy and mucus secretion, leading to an impaired gut microenvironment and dysbiosis. Subsequently, due to changes in microbiota and disruption in microbiome metabolites of short-chain fatty acids, Foxo1 deficiency results in altered organization of tight junction proteins and enhanced susceptibility to intestinal inflammation. Our study demonstrates that Foxo1 is crucial for IECs to establish commensalism and maintain intestinal barrier integrity by regulating goblet cell function.
Collapse
Affiliation(s)
- Zuojia Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Eric S. Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Sheng Xiao
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA
| | - Bin Bao
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Dingding An
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cheng-hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Jiaxin Zhong
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Kuai Liu
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Qiyuan Li
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Chuan Wu
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vijay K. Kuchroo
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
28
|
Yi D, Yu H, Lu K, Ruan C, Ding C, Tong L, Zhao X, Chen D. AMPK Signaling in Energy Control, Cartilage Biology, and Osteoarthritis. Front Cell Dev Biol 2021; 9:696602. [PMID: 34239878 PMCID: PMC8258395 DOI: 10.3389/fcell.2021.696602] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) was initially identified as an enzyme acting as an "energy sensor" in maintaining energy homeostasis via serine/threonine phosphorylation when low cellular adenosine triphosphate (ATP) level was sensed. AMPK participates in catabolic and anabolic processes at the molecular and cellular levels and is involved in appetite-regulating circuit in the hypothalamus. AMPK signaling also modulates energy metabolism in organs such as adipose tissue, brain, muscle, and heart, which are highly dependent on energy consumption via adjusting the AMP/ADP:ATP ratio. In clinics, biguanides and thiazolidinediones are prescribed to patients with metabolic disorders through activating AMPK signaling and inhibiting complex I in the mitochondria, leading to a reduction in mitochondrial respiration and elevated ATP production. The role of AMPK in mediating skeletal development and related diseases remains obscure. In this review, in addition to discuss the emerging advances of AMPK studies in energy control, we will also illustrate current discoveries of AMPK in chondrocyte homeostasis, osteoarthritis (OA) development, and the signaling interaction of AMPK with other pathways, such as mTOR (mechanistic target of rapamycin), Wnt, and NF-κB (nuclear factor κB) under OA condition.
Collapse
Affiliation(s)
- Dan Yi
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huan Yu
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Lu
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changshun Ruan
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Liping Tong
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
29
|
Sang L, Kang K, Sun Y, Li Y, Chang B. FOXO4 ameliorates alcohol-induced chronic liver injury via inhibiting NF-κB and modulating gut microbiota in C57BL/6J mice. Int Immunopharmacol 2021; 96:107572. [PMID: 33798806 DOI: 10.1016/j.intimp.2021.107572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal mucosa barrier function and gut-liver axis are impaired by ethanol in chronic alcoholic liver disease (ALD). However, the possible mechanism is not clear. This study aimed to investigate the effects of Forkhead Box O4 (FOXO4) on alcohol-induced chronic liver injury and its molecular mechanism(s). METHODS Male C57BL/6J mice were injected with or without FOXO4-WT, FOXO4-TB or NF-κB vectors, and fed with Lieber-DeCarli liquid diets containing 36% ethanol for eight weeks to induce chronic ALD. Thereafter, blood, liver, colon and fecal samples were collected. Biochemical parameters, endotoxin and inflammatory cytokines in the blood and antioxidant enzymes in the liver were tested by commercial kits. Histopathological changes in the liver were evaluated by HE staining. In addition, the mRNA and protein expression of FOXO4, NF-κB, ZO-1 and Occluding in the colon were measured by quantitative real-time PCR and Western blot, respectively. Furthermore, gut microbiota composition in the fecal samples was investigated with 16S rDNA sequencing. RESULTS FOXO4 significantly ameliorated liver histopathological damage. Moreover, FOXO4 reduced the serum endotoxin, biochemical parameters (ALT, AST, ALP and TG), antioxidant enzymes (ROS and MDA), inflammatory cytokines (IL-6, IL-1β, and TNF-α), but restored the levels of GSH, SOD and IL-10. Furthermore, FOXO4 significantly inhibited the expression of NF-κB, p-NF-κB p65, p-IKKα and p-IKKβ, and up-regulated the expression of ZO-1 and Occludin. Additionally, FOXO4 modulated the gut microbiota composition and certain bacteria including Odoribacter, Parasutterella and Psychrobacter. CONCLUSION These findings suggest that FOXO4 protects against alcohol-induced chronic liver injury via inhibiting NF-κB and modulating gut microbiota in C57BL/6J mice.
Collapse
Affiliation(s)
- Lixuan Sang
- Department of Geriatrics, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kai Kang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Sun
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yiling Li
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Senolytic targets and new strategies for clearing senescent cells. Mech Ageing Dev 2021; 195:111468. [PMID: 33741395 DOI: 10.1016/j.mad.2021.111468] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
Senescent cells (SCs) accumulate with age and cause various age-related diseases. Clearance of SCs by transgenic or pharmaceutical strategies has been demonstrated to delay aging, treat age-related diseases and extend healthspan. SCs are resistant to various stressors because they are protected from apoptosis by SC anti-apoptotic pathways (SCAPs). Targeting the proteins in the SCAPs with small molecules can selectively kill SCs, the effector proteins are called senolytic targets and the small molecules are called senolytics. Until now, a series of senolytic targets, such as BCL-XL, heat shock protein 90 (HSP90), Na+/K+ ATPase, bromodomain containing 4 (BRD4), and oxidation resistance 1 (OXR1) have been identified. However, current senolytics targeting these proteins still have some limitations in killing SCs in terms of safety, specificity and broad-spectrum activity. To overcome the challenges, some new strategies, such as proteolysis-targeting chimera (PROTAC) technology, chimeric antigen receptor (CAR) T cells, and β-galactosidase-modified prodrugs, were developed to clear SCs and shown to have promising therapeutic potential. Here we review the significance of SCs in aging and age-related diseases, summarize the known senolytic targets and highlight the emerging new strategies for clearing SCs.
Collapse
|
31
|
Han K, Singh K, Rodman MJ, Hassanzadeh S, Wu K, Nguyen A, Huffstutler RD, Seifuddin F, Dagur PK, Saxena A, McCoy JP, Chen J, Biancotto A, Stagliano KER, Teague HL, Mehta NN, Pirooznia M, Sack MN. Fasting-induced FOXO4 blunts human CD4 + T helper cell responsiveness. Nat Metab 2021; 3:318-326. [PMID: 33723462 PMCID: PMC7990708 DOI: 10.1038/s42255-021-00356-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/03/2021] [Indexed: 01/11/2023]
Abstract
Intermittent fasting blunts inflammation in asthma1 and rheumatoid arthritis2, suggesting that fasting may be exploited as an immune-modulatory intervention. However, the mechanisms underpinning the anti-inflammatory effects of fasting are poorly characterized3-5. Here, we show that fasting in humans is sufficient to blunt CD4+ T helper cell responsiveness. RNA sequencing and flow cytometry immunophenotyping of peripheral blood mononuclear cells from volunteers subjected to overnight or 24-h fasting and 3 h of refeeding suggest that fasting blunts CD4+ T helper cell activation and differentiation. Transcriptomic analysis reveals that longer fasting has a more robust effect on CD4+ T-cell biology. Through bioinformatics analyses, we identify the transcription factor FOXO4 and its canonical target FK506-binding protein 5 (FKBP5) as a potential fasting-responsive regulatory axis. Genetic gain- or loss-of-function of FOXO4 and FKBP5 is sufficient to modulate TH1 and TH17 cytokine production. Moreover, we find that fasting-induced or genetic overexpression of FOXO4 and FKBP5 is sufficient to downregulate mammalian target of rapamycin complex 1 signalling and suppress signal transducer and activator of transcription 1/3 activation. Our results identify FOXO4-FKBP5 as a new fasting-induced, signal transducer and activator of transcription-mediated regulatory pathway to blunt human CD4+ T helper cell responsiveness.
Collapse
Affiliation(s)
- Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Rodman
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kaiyuan Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - An Nguyen
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca D Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ankit Saxena
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinguo Chen
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angélique Biancotto
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Precision Immunology, Sanofi, Cambridge, MA, USA
| | - Katherine E R Stagliano
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Laboratory of Cardiometabolic Disease and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N Mehta
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Cardiometabolic Disease and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Zhao X, Zeng H, Lei L, Tong X, Yang L, Yang Y, Li S, Zhou Y, Luo L, Huang J, Xiao R, Chen J, Zeng Q. Tight junctions and their regulation by non-coding RNAs. Int J Biol Sci 2021; 17:712-727. [PMID: 33767583 PMCID: PMC7975691 DOI: 10.7150/ijbs.45885] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Tight junction (TJ) is a “zippering up” junction structure located at the uppermost portion of adjacent epithelial/endothelial cells in organs and tissues. TJs maintain the relative stability of intracellular substances and functions by closing or opening intercellular pathways, coordinating the entry and exit of molecules of different sizes and charges, and regulating the permeability of paracellular barrier. TJs also prevent microbial invasion, maintain epithelial/endothelial cell polarity, and regulate cell proliferation. TJs are widely present in the skin and mucosal epithelial barriers, intestinal epithelial barrier, glomerular filtration barrier, bladder epithelial barrier, blood-brain barrier, brain-blood tumor barrier, and blood-testis barrier. TJ dysfunction in different organs can lead to a variety of diseases. In addition to signal pathways, transcription factors, DNA methylation, histone modification, TJ proteins can also be regulated by a variety of non-coding RNAs, such as micro-RNAs, long-noncoding RNAs, and circular RNAs, directly or indirectly. This review summarizes the structure of TJs and introduces the functions and regulatory mechanisms of TJs in different organs and tissues. The roles and mechanisms of non-coding RNAs in the regulation of TJs are also highlighted in this review.
Collapse
Affiliation(s)
- Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Lun Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Yan Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Ying Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
33
|
Pirr S, Viemann D. Host Factors of Favorable Intestinal Microbial Colonization. Front Immunol 2020; 11:584288. [PMID: 33117398 PMCID: PMC7576995 DOI: 10.3389/fimmu.2020.584288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbial colonization starts with birth and initiates a complex process between the host and the microbiota. Successful co-development of both establishes a symbiotic mutual relationship and functional homeostasis, while alterations thereof predispose the individual life-long to inflammatory and metabolic diseases. Multiple data have been provided how colonizing microbes induce a reprogramming and maturation of immunity by providing crucial instructing information to the newborn immune system. Less is known about what host factors have influence on the interplay between intestinal immunity and the composition of the gut microbial ecology. Here we review existing evidence regarding host factors that contribute to a favorable development of the gut microbiome and thereby successful maturation of gut mucosal immunity.
Collapse
Affiliation(s)
- Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| |
Collapse
|
34
|
Wang A, Xiao C, Zheng J, Ye C, Dai Z, Wu Q, Liu J, Strappe P, Zhou Z. Terpenoids of Ganoderma lucidum reverse cognitive impairment through attenuating neurodegeneration via suppression of PI3K/AKT/mTOR expression in vivo model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
35
|
Li C, Chen Y, Zhu H, Zhang X, Han L, Zhao Z, Wang J, Ning L, Zhou W, Lu C, Xu L, Sang J, Feng Z, Zhang Y, Lou X, Bo X, Zhu B, Yu C, Zheng M, Li Y, Sun J, Shen Z. Inhibition of Histone Deacetylation by MS-275 Alleviates Colitis by Activating the Vitamin D Receptor. J Crohns Colitis 2020; 14:1103-1118. [PMID: 32030401 DOI: 10.1093/ecco-jcc/jjaa016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ulcerative colitis [UC] is a common chronic inflammatory bowel disease without curative treatment. METHODS We conducted gene set enrichment analysis to explore potential therapeutic agents for UC. Human colon tissue samples were collected to test H3 acetylation in UC. Both in vivo and in vitro colitis models were constructed to verify the role and mechanism of H3 acetylation modification in UC. Intestine-specific vitamin D receptor [VDR]-/- mice and VD [vitamin D]-deficient diet-fed mice were used to explore downstream molecular mechanisms accordingly. RESULTS According to the Connectivity Map database, MS-275 [class I histone deacetylase inhibitor] was the top-ranked agent, indicating the potential importance of histone acetylation in the pathogenesis of UC. We then found that histone H3 acetylation was significantly lower in the colon epithelium of UC patients and negatively associated with disease severity. MS-275 treatment inhibited histone H3 deacetylation, subsequently attenuating nuclear factor kappa B [NF-κB]-induced inflammation, reducing cellular apoptosis, maintaining epithelial barrier function, and thereby reducing colitis activity in a mouse model of colitis. We also identified VDR as be a downstream effector of MS-275. The curative effect of MS-275 on colitis was abolished in VDR-/- mice and in VD-deficient diet-fed mice and VDR directly targeted p65. In UC patients, histone H3 acetylation, VDR and zonulin-1 expression showed similar downregulation patterns and were negatively associated with disease severity. CONCLUSIONS We demonstrate that MS-275 inhibits histone deacetylation and alleviates colitis by ameliorating inflammation, reducing apoptosis, and maintaining intestinal epithelial barrier via VDR, providing new strategies for UC treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Yi Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huatuo Zhu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Zhang
- Department of Pathology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Han
- Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Department of Neuroimmunopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zuodong Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Wang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Longgui Ning
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Zhou
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Lu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Jianzhong Sang
- Department of Gastroenterology, Yuyao People's Hospital of Zhejiang Province, Ningbo, China
| | - Zemin Feng
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuwei Zhang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhe Lou
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Shen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Qin X, Guo J. MicroRNA-328-3p Protects Vascular Endothelial Cells Against Oxidized Low-Density Lipoprotein Induced Injury via Targeting Forkhead Box Protein O4 (FOXO4) in Atherosclerosis. Med Sci Monit 2020; 26:e921877. [PMID: 32329448 PMCID: PMC7195608 DOI: 10.12659/msm.921877] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Endothelial cell (EC) injury is underlies for the pathogenesis of atherosclerosis (AS). MicroRNAs (miRNAs) have been indicated play important role in modulating AS occurrence and development. However, how miR-328-3p modulates EC injury molecular level for AS remains unclear. Material/Methods MiR-328-3p and forkhead box protein O4 (FOXO4) expression were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell viability was analyzed by Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was utilized to analyze the apoptotic rate. The migration and invasion abilities were measured by Transwell assay. Western blot was applied to examine the expression of C-caspase 3, Beclin, LC3-I, and LC3-II. The levels of interleukin (IL)-1β, IL-10, and tumor necrosis factor-α (TNF-α) were tested by enzyme-linked immunosorbent assay (ELISA) assay and western blot. Results MiR-328-3p expression was downregulated in oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs). Overexpressed miR-328-3p obviously alleviated ox-LDL induced inhibition on cell viability, migration and invasion, stimulation on apoptosis, autophagy as well as inflammation in HUVECs. FOXO4 was elevated in ox-LDL HUVECs, and functional assay indicated that FOXO4 aggravated ox-LDL induced HUVECs impairment. In addition, FOXO4 was a target of miR-328-3p in HUVECs; rescue experiments suggested miR-328-3p could protect HUVECs against ox-LDL induced injury via regulating FOXO4. Conclusions MiR-328-3p protected vascular endothelial cells against ox-LDL induced injury via targeting FOXO4, suggesting a novel insight for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xiaowei Qin
- Department of Cardiac Function, The Affiliated Hospital of Kangda College of Nanjing Medica University/The First People's Hospital of Lianyungang/ The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China (mainland)
| | - Jiantao Guo
- Department of Cardiac Surgery, First hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
37
|
Fu X, Ouyang Y, Mo J, Li R, Fu L, Peng S. Upregulation of microRNA-328-3p by hepatitis B virus contributes to THLE-2 cell injury by downregulating FOXO4. J Transl Med 2020; 18:143. [PMID: 32228643 PMCID: PMC7106851 DOI: 10.1186/s12967-020-02299-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) remains a major cause of chronic hepatitis and hepatocellular carcinoma, and miRNAs play important roles in HBV pathogenesis. Our previous study has shown that miR-328-3p is upregulated in HBV-infected patients and serves as a potent predictor for the prognosis of HBV-related liver failure. Methods Here, the role of miR-328-3p in modulating cell injury in HBV-infected liver cells THLE-2 was investigated in detail. MiR-328-3p expression was examined using qRT-PCR. The levels of pro-inflammatory cytokines were measured using ELISA. HBV RNA and HBV DNA levels were quantified. The interactions between STAT3 and miR-328-3p promoter as well as miR-328-3p and FOXO4 were analyzed using chromatin immunoprecipitation (CHIP) assay and luciferase reporter assay, respectively. THLE-2 cell injury was evaluated by examining cell viability and apoptosis. Results HBV promoted expression of miR-328-3p through the STAT3 signal pathway and that increasingly expressed miR-328-3p downregulated its target FOXO4, leading to the promotion of cell injury in HBV-infected liver cells THLE-2. Conclusion These data demonstrate that HBV-STAT3-miR-328-3p-FOXO4 regulation pathway may play an important role in the pathogenesis of HBV infection.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yi Ouyang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Juan Mo
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ronghua Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Fu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shifang Peng
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
38
|
Bramhall M, Rich K, Chakraborty A, Logunova L, Han N, Wilson J, McLaughlin J, Brass A, Cruickshank SM. Differential Expression of Soluble Receptor for Advanced Glycation End-products in Mice Susceptible or Resistant to Chronic Colitis. Inflamm Bowel Dis 2020; 26:360-368. [PMID: 31840738 PMCID: PMC7012299 DOI: 10.1093/ibd/izz311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Identifying the factors that contribute to chronicity in inflamed colitic tissue is not trivial. However, in mouse models of colitis, we can investigate at preclinical timepoints. We sought to validate murine Trichuris muris infection as a model for identification of factors that promote development of chronic colitis. METHODS We compared preclinical changes in mice with a resolving immune response to T. muris (resistant) vs mice that fail to expel the worms and develop chronic colitis (susceptible). Findings were then validated in healthy controls and patients with suspected or confirmed IBD. RESULTS The receptor for advanced glycation end products (RAGE) was highly dysregulated between resistant and susceptible mice before the onset of any pathological signs. Increased soluble RAGE (sRAGE) in the serum and feces of resistant mice correlated with reduced colitis scores. Mouse model findings were validated in a preliminary clinical study: fecal sRAGE was differentially expressed in patients with active IBD compared with IBD in remission, patients with IBD excluded, or healthy controls. CONCLUSIONS Preclinical changes in mouse models can identify early pathways in the development of chronic inflammation that human studies cannot. We identified the decoy receptor sRAGE as a potential mechanism for protection against chronic inflammation in colitis in mice and humans. We propose that the RAGE pathway is clinically relevant in the onset of chronic colitis and that further study of sRAGE in IBD may provide a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Michael Bramhall
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Kevin Rich
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Ajanta Chakraborty
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Namshik Han
- Manchester Academic Health Science Centre, School of Medical Sciences, The University of Manchester, Manchester, UK
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | | | - John McLaughlin
- Salford Royal NHS Foundation Trust, Salford, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Andy Brass
- Manchester Academic Health Science Centre, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Sheena M Cruickshank
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Liu W, Li Y, Luo B. Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci 2020; 77:651-663. [PMID: 31529218 PMCID: PMC11104957 DOI: 10.1007/s00018-019-03297-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Forkhead box O4 (FOXO4) is a member of the FOXO family that regulates a number of genes involved in metabolism, cell cycle, apoptosis, and cellular homeostasis via transcriptional activity. It also mediates cell responses to oxidative stress and treatment with antitumor agents. The expression of FOXO4 is repressed by microRNAs in multiple cancer cells, while FOXO4 function is regulated by post-translational modifications and interaction with other proteins. The deregulation of FOXO4 is closely linked to the progression of several types of cancer, senescence, and other diseases. In this review, we present recent findings on the regulation of FOXO4 in physiological and pathological conditions and provide an overview of the complex role of FOXO4 in disease development and response to therapy.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, Faculty of Medicine, Qingdao University, Qingdao, China
| | - Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Faculty of Medicine, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, Faculty of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
40
|
Wang D, Chen L, Fu Y, Kang Q, Wang X, Ma X, Li X, Sheng J. Avertin affects murine colitis by regulating neutrophils and macrophages. Int Immunopharmacol 2020; 80:106153. [PMID: 31931369 DOI: 10.1016/j.intimp.2019.106153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022]
Abstract
Anesthetics are thought to be involved in immunomodulation. Avertin is one of the safest and most commonly used intravenous anesthetics in rodent experiments; it is also widely used in euthanasia of inflammatory bowel disease (IBD) models. This study aimed to define the role and mechanism of action of Avertin on murine colitis. We assessed the effects of a single Avertin injection on colitis using the disease activity index (DAI), pathology, enzyme-linked immunosorbent assay (ELISA), multiplex-ELISA, flow cytometry, and routine blood examination in wild-type (WT) and dextran sodium sulphate (DSS)-treated mice. Although Avertin caused acute cecitis in WT mice after 24 h and aggravated inflammation in the medium term, it alleviated inflammation in the late stage of DSS-induced colitis according to the DAI. Avertin upregulated MPO production and induced the accumulation of neutrophils and macrophages in intestinal mucosa of both WT and DSS-treated mice; the altered MPO might indicate a change in respiratory burst. However, it exhibited a more effective suppression of inflammatory factors secreted by macrophages as the colitis progressed. Avertin led to an increase in neutrophils and decrease in monocytes in both WT and DSS-treated mice blood. Our findings suggest that Avertin aggravates inflammation in the early and medium terms, but alleviates inflammation in the late stage of colitis by regulating neutrophils and macrophages.
Collapse
Affiliation(s)
- Dezhi Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Linxiao Chen
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China; Dalian Medical University, Dalian 116044, China
| | - Yanxia Fu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qian Kang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Xianzong Ma
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Xuhang Li
- Department of Medicine/GI Division, School of Medicine, Johns Hopkins University, Baltimore 21205, United States
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China.
| |
Collapse
|
41
|
Ren TH, Lv MM, An XM, Leung WK, Seto WK. Activation of adenosine A3 receptor inhibits inflammatory cytokine production in colonic mucosa of patients with ulcerative colitis by down-regulating the nuclear factor-kappa B signaling. J Dig Dis 2020; 21:38-45. [PMID: 31714673 DOI: 10.1111/1751-2980.12831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The activation of the adenosine A3 receptor (A3AR) can regulate inflammation, but the way that this regulates colonic mucosal inflammation in ulcerative colitis (UC) remains unclear. This study aimed at examining A3AR expression and investigating the effect of A3AR activation on ex vivo cytokine expression and nuclear factor-kappa B (NF-κB) signaling in colonic mucosa. METHODS Colonic mucosal biopsied tissue from 18 patients with UC and 11 healthy controls was tested for A3AR expression by immunofluorescence, quantitative real-time polymerase chain reaction and Western blot. Following treatment for 24 hours with or without 2-Cl-IB-MECA, an A3AR agonist, TNF-α and IL-1β secreted by the cultured colonic mucosal tissue were quantified by ELISA. The colonic mucosal epithelia were dissected and treated with, or without 2-Cl-IB-MECA for 24 hours. The NF-κB p65 protein and its distribution in the cultured colonic epithelia were examined by immunofluorescence and Western blot. RESULTS Compared with the controls, down-regulated A3AR expression and up-regulated TNF-α and IL-1β production and NF-κB p65 protein were observed in the UC colonic mucosa. The activation of A3AR by 2-Cl-IB-MECA significantly decreased TNF-α and IL-1β production and attenuated the NF-κB p65 activation in colonic tissues from patients with UC. CONCLUSIONS A3AR activation inhibited inflammation by mitigating pro-inflammatory cytokine production and the NF-κB signal activation in colonic mucosa of patients with UC. A3AR activation may play a role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Tian Hua Ren
- Division of Gastroenterology and Hepatology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Min Min Lv
- Core Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Xiao Meng An
- Core Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wai Keung Leung
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai-Kay Seto
- Division of Gastroenterology and Hepatology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.,Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
42
|
Velásquez E, Martins-de-Souza D, Velásquez I, Carneiro GRA, Schmitt A, Falkai P, Domont GB, Nogueira FCS. Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients. J Proteome Res 2019; 18:4240-4253. [PMID: 31581776 DOI: 10.1021/acs.jproteome.9b00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a chronic disease characterized by the impairment of mental functions with a marked social dysfunction. A quantitative proteomic approach using iTRAQ labeling and SRM, applied to the characterization of mitochondria (MIT), crude nuclear fraction (NUC), and cytoplasm (CYT), can allow the observation of dynamic changes in cell compartments providing valuable insights concerning schizophrenia physiopathology. Mass spectrometry analyses of the orbitofrontal cortex from 12 schizophrenia patients and 8 healthy controls identified 655 protein groups in the MIT fraction, 1500 in NUC, and 1591 in CYT. We found 166 groups of proteins dysregulated among all enriched cellular fractions. Through the quantitative proteomic analysis, we detect as the main biological pathways those related to calcium and glutamate imbalance, cell signaling disruption of CREB activation, axon guidance, and proteins involved in the activation of NF-kB signaling along with the increase of complement protein C3. Based on our data analysis, we suggest the activation of NF-kB as a possible pathway that links the deregulation of glutamate, calcium, apoptosis, and the activation of the immune system in schizophrenia patients. All MS data are available in the ProteomeXchange Repository under the identifier PXD015356 and PXD014350.
Collapse
Affiliation(s)
- Erika Velásquez
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology , University of Campinas (UNICAMP) , Campinas 13083-970 , Brazil.,Experimental Medicine Research Cluster (EMRC) University of Campinas , Campinas 13083-887 , SP , Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) , Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) , São Paulo , Brazil
| | | | - Gabriel Reis Alves Carneiro
- Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Fabio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil.,Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| |
Collapse
|
43
|
Li L, Li Y, Xiong Z, Shu W, Yang Y, Guo Z, Gao B. FoxO4 inhibits HBV core promoter activity through ERK-mediated downregulation of HNF4α. Antiviral Res 2019; 170:104568. [DOI: 10.1016/j.antiviral.2019.104568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
|
44
|
AMPK: A promising molecular target for combating cisplatin toxicities. Biochem Pharmacol 2019; 163:94-100. [DOI: 10.1016/j.bcp.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
|
45
|
Cabrera-Ortega AA, Feinberg D, Liang Y, Rossa C, Graves DT. The Role of Forkhead Box 1 (FOXO1) in the Immune System: Dendritic Cells, T Cells, B Cells, and Hematopoietic Stem Cells. Crit Rev Immunol 2019; 37:1-13. [PMID: 29431075 DOI: 10.1615/critrevimmunol.2017019636] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Forkhead box-O (FOXO) transcription factors have a fundamental role in the development and differentiation of immune cells. FOXO1 and FOXO3 are FOXO members that are structurally similar and bind to the same conserved consensus DNA sequences to induce transcription. FOXO1 has been studied in detail in the activation of dendritic cells (DCs), where it plays an important role through the regulation of target genes such as ICAM-1, CCR7, and the integrin αvβ3. FOXO1 is activated by bacteria challenge in DCs and promotes DC bacterial phagocytosis, migration, homing to lymph nodes, DC stimulation of CD4+ T cells and resting B cells, and antibody production. Deletion of FOXO1 in DCs enhances susceptibility to bacteria-induced periodontal disease. FOXO1 and FOXO3 maintain naive T cell quiescence and survival. FOXO1 and FOXO3 enhance the formation of regulatory T cells and inhibit the formation of T-helper 1 (Th1) and Th17 cells. FOXO1 promotes differentiation, proliferation, survival, immunoglobulin gene rearrangement, and class switching in B cells, but FOXO3 has little effect. Both FOXO1 and FOXO3 are important in the maintenance of hematopoietic stem cells by protecting them from oxidative stress. This review examines FOXO1/FOXO3 in the adaptive immune response, key target genes, and FOXO inhibition by the phosphoinositide 3-kinase/AKT pathway.
Collapse
Affiliation(s)
- Adriana Alicia Cabrera-Ortega
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Daniel Feinberg
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youde Liang
- Department of Stomatology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, China
| | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Chen D, Gong Y, Xu L, Zhou M, Li J, Song J. Bidirectional regulation of osteogenic differentiation by the FOXO subfamily of Forkhead transcription factors in mammalian MSCs. Cell Prolif 2018; 52:e12540. [PMID: 30397974 PMCID: PMC6496202 DOI: 10.1111/cpr.12540] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/09/2018] [Accepted: 09/02/2018] [Indexed: 12/23/2022] Open
Abstract
Through loss‐ and gain‐of‐function experiments in knockout and transgenic mice, Forkhead box O (FOXO) family transcription factors have been demonstrated to play essential roles in many biological processes, including cellular proliferation, apoptosis and differentiation. Osteogenic differentiation from mesenchymal stem cells (MSCs) into osteoblasts is a well‐organized process that is carefully guided and characterized by various factors, such as runt‐related transcription factor 2 (Runx2), β‐catenin, osteocalcin (OCN), alkaline phosphatase (ALP) and activating transcription factor 4 (ATF4). Accumulating evidence suggests multiple interactions among FOXO members and the differentiation regulatory factors listed above, resulting in an enhancement or inhibition of osteogenesis in different stages of osteogenic differentiation. To systematically and integrally understand the role of FOXOs in osteogenic differentiation and explain the contrary phenomena observed in vitro and in vivo, we herein summarized FOXO‐interacting differentiation regulatory genes/factors and following alterations in differentiation. The underlying mechanism was further discussed on the basis of binding types, sites, phases and the consequent downstream transcriptional alterations of interactions among FOXOs and differentiation regulatory factors. Interestingly, a bidirectional effect of FOXOs on balancing osteogenic differentiation was discovered in MSCs. Moreover, FOXO factors are reported to be activated or suppressed by several context‐dependent signalling inputs during differentiation, and the underlying molecular basis may offer new drug development targets for treatments of bone formation defect diseases.
Collapse
Affiliation(s)
- Duanjing Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Gong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ling Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
47
|
Fernández-Ruiz JC, Ramos-Remus C, Sánchez-Corona J, Castillo-Ortiz JD, Castañeda-Sánchez JJ, Bastian Y, Romo-García MF, Ochoa-González F, Monsivais-Urenda AE, González-Amaro R, Enciso-Moreno JA, Castañeda-Delgado JE. Analysis of miRNA expression in patients with rheumatoid arthritis during remission and relapse after a 5-year trial of tofacitinib treatment. Int Immunopharmacol 2018; 63:35-42. [PMID: 30075427 DOI: 10.1016/j.intimp.2018.07.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 01/02/2023]
Abstract
The physiopathology of rheumatoid arthritis (RA) is mediated by proinflammatory cytokines, some of which are regulated by the JAK/STAT pathway. Tofacitinib is a JAK inhibitor, but its role in the regulation of microRNAs (miRNAs) is unknown. There is also no information regarding the role of miRNAs in the clinical relapse/remission of RA. The present project aims to identify a signature profile of miRNA expression in a subgroup of RA patients who had to discontinue tofacitinib treatment (because of the ending of a 5-year open-label clinical trial) and to describe the expression of miRNAs during RA remission or flare-up. The relative expression of 61 miRNAs was determined in serum samples with the Firefly™ BioWorks assay. Statistical analysis was performed by means of Student's t-test and heatmap analysis was performed with Firefly™ Analysis Workbench software and in the software GraphPad® Prism v5.0. Target prediction and Gene Ontology analysis were carried out using bioinformatic tools. We found a distinctive signature of miRNA expression associated with relapse, featuring upregulated expression of hsa‑miR‑432‑5p (p < 0.05). We also found upregulation of hsa‑miR‑194‑5p (p < 0.05) in samples of patients with RA flare-up. Gene Ontology analysis of the target genes for hsa‑miR‑432‑5p was performed to identify relevant pathways associated with relapse; the implications of these pathways in the physiopathology of RA are discussed. Tofacitinib treatment does not have a direct effect on the expression of measured miRNAs. The changes in hsa‑miR‑432‑5p and hsa‑miR‑194‑5p are associated with the regulation of proinflammatory pathways and RA flare-up.
Collapse
Affiliation(s)
- Julio C Fernández-Ruiz
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - José Sánchez-Corona
- División de Medicina Molecular del Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - José D Castillo-Ortiz
- Unidad de Investigación en Enfermedades Crónico-Degenerativas, Guadalajara, Jalisco, Mexico
| | | | - Yadira Bastian
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico; Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Mexico
| | - María F Romo-García
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Fátima Ochoa-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - Adriana E Monsivais-Urenda
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Roberto González-Amaro
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - Julio E Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico; Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Mexico.
| |
Collapse
|
48
|
Kaur CP, Vadivelu J, Chandramathi S. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J Dig Dis 2018; 19:262-271. [PMID: 29573336 DOI: 10.1111/1751-2980.12595] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/26/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
The 2016 Global Burden of Disease report by WHO revealed that diseases of the gastrointestinal tract (GIT) had one of the highest incidence rates worldwide. The plethora of factors that contribute to the development of GIT-related illnesses can be divided into genetic, environmental and lifestyle factors. Apart from that, the role that infectious agents play in the development of GIT diseases has piqued the interest of researchers worldwide. The human gut harbors approximately 1014 bacteria in it with increasing concentration toward the lower GIT. Among the various microbiota that colonize the human gut, Gram-negative bacteria have been most notoriously linked to GIT-related diseases such as inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis and colorectal cancer (CRC). Some of the notable culprits that have been attributed to these diseases are Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli and Helicobacter pylori. However, studies in recent years are beginning to recognize a new player, Klebsiella pneumoniae (K. pneumoniae) in the causation and progression of GIT diseases. Once synonymous with infections and diseases of the upper respiratory tract, K. pneumoniae has now emerged as one of the pathogens commonly isolated from patients with GIT diseases. However, extensive studies attributing K. pneumoniae to GIT diseases, particularly that of CRC are scanty. Therefore, this review intends to shed light on the association of K. pneumoniae in gastrointestinal diseases such as Crohn's disease, ulcerative colitis as well as CRC.
Collapse
Affiliation(s)
- Christina Parvinder Kaur
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Di Vincenzo S, Heijink IH, Noordhoek JA, Cipollina C, Siena L, Bruno A, Ferraro M, Postma DS, Gjomarkaj M, Pace E. SIRT1/FoxO3 axis alteration leads to aberrant immune responses in bronchial epithelial cells. J Cell Mol Med 2018; 22:2272-2282. [PMID: 29411515 PMCID: PMC5867095 DOI: 10.1111/jcmm.13509] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/25/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation and ageing are intertwined in chronic obstructive pulmonary disease (COPD). The histone deacetylase SIRT1 and the related activation of FoxO3 protect from ageing and regulate inflammation. The role of SIRT1/FoxO3 in COPD is largely unknown. This study evaluated whether cigarette smoke, by modulating the SIRT1/FoxO3 axis, affects airway epithelial pro-inflammatory responses. Human bronchial epithelial cells (16HBE) and primary bronchial epithelial cells (PBECs) from COPD patients and controls were treated with/without cigarette smoke extract (CSE), Sirtinol or FoxO3 siRNA. SIRT1, FoxO3 and NF-κB nuclear accumulation, SIRT1 deacetylase activity, IL-8 and CCL20 expression/release and the release of 12 cytokines, neutrophil and lymphocyte chemotaxis were assessed. In PBECs, the constitutive FoxO3 expression was lower in patients with COPD than in controls. Furthermore, CSE reduced FoxO3 expression only in PBECs from controls. In 16HBE, CSE decreased SIRT1 activity and nuclear expression, enhanced NF-κB binding to the IL-8 gene promoter thus increasing IL-8 expression, decreased CCL20 expression, increased the neutrophil chemotaxis and decreased lymphocyte chemotaxis. Similarly, SIRT1 inhibition reduced FoxO3 expression and increased nuclear NF-κB. FoxO3 siRNA treatment increased IL-8 and decreased CCL20 expression in 16HBE. In conclusion, CSE impairs the function of SIRT1/FoxO3 axis in bronchial epithelium, dysregulating NF-κB activity and inducing pro-inflammatory responses.
Collapse
Affiliation(s)
- Serena Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Irene H. Heijink
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Jacobien A. Noordhoek
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Chiara Cipollina
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
- Fondazione Ri.MEDPalermoItaly
| | - Liboria Siena
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Andreina Bruno
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Maria Ferraro
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Dirkje S. Postma
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Mark Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| |
Collapse
|
50
|
Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene 2018; 648:97-105. [PMID: 29428128 DOI: 10.1016/j.gene.2018.01.051] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Fork head box O (FOXO) transcription factor is a key player in an evolutionarily conserved pathway. The mammalian FOXO family consists of FOXO1, 3, 4 and 6, are highly similar in their structure, function and regulation. To maintain optimum body function, the organisms have developed complex mechanisms for homeostasis. Importantly, it is well known that when these mechanisms dysregulate it results in the development of age-related disease. FOXO proteins are involved in a diverse cellular function and also have clinical significance including cell cycle arrest, cell differentiation, tumour suppression, DNA repair, longevity, diabetic complications, immunity, wound healing, regulation of metabolism and thus treatment of several types of diseases. By the combinations of post-translational modifications FOXO's serve as a 'molecular code' to sense external stimuli and recruit it as to specific regions of the genome and provide an integrated cellular response to changing physiological conditions. Akt/Protein kinase B a signaling pathway as a main regulator of FOXO to perform a diverse function in organisms. The present review summarizes the molecular and clinical aspects of FOXO transcription factor. And also elaborate the interaction of FOXO with the nucleosome remodelling complex to target genes, which is essential to cellular homeostasis.
Collapse
|