1
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Jalali P, Aliyari S, Etesami M, Saeedi Niasar M, Taher S, Kavousi K, Nazemalhosseini Mojarad E, Salehi Z. GUCA2A dysregulation as a promising biomarker for accurate diagnosis and prognosis of colorectal cancer. Clin Exp Med 2024; 24:251. [PMID: 39485546 PMCID: PMC11530487 DOI: 10.1007/s10238-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer is a leading cause of global mortality and presents a significant barrier to improving life expectancy. The primary objective of this study was to discern a unique differentially expressed gene (DEG) that exhibits a strong association with colorectal cancer. By achieving this goal, the research aims to contribute valuable insights to the field of translational medicine. We performed analysis of colorectal cancer microarray and the TCGA colon adenoma carcinoma (COAD) datasets to identify DEGs associated with COAD and common DEGs were selected. Furthermore, a pan-cancer analysis encompassing 33 different cancer types was performed to identify differential genes significantly expressed only in COAD. Then, comprehensively in-silico analysis including gene set enrichment analysis, constructing Protein-Protein interaction, co-expression, and competing endogenous RNA (ceRNA) networks, investigating the correlation between tumor-immune signatures in distinct tumor microenvironment and also the potential interactions between the identified gene and various drugs was executed. Further, the candidate gene was experimentally validated in tumoral colorectal tissues and colorectal adenomatous polyps by qRael-Time PCR. GUCA2A emerged as a significant DEG specific to colorectal cancer (|log2FC|> 1 and adjusted q-value < 0.05). Importantly, GUCA2A exhibited excellent diagnostic performance for COAD, with a 99.6% and 78% area under the curve (AUC) based on TCGA-COAD and colon cancer patients. In addition, GUCA2A expression in adenomatous polyps equal to or larger than 5 mm was significantly lower compared to smaller than 5 mm. Moreover, low expression of GUCA2A significantly impacted overall patient survival. Significant correlations were observed between tumor-immune signatures and GUCA2A expression. The ceRNA constructed included GUCA2A, 8 shared miRNAs, and 61 circRNAs. This study identifies GUCA2A as a promising prognostic and diagnostic biomarker for colorectal cancer. Further investigations are warranted to explore the potential of GUCA2A as a therapeutic biomarker.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran
| | - Shahram Aliyari
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran
- Division of Applied Bioinformatics, German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Marziyeh Etesami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran
| | - Mahsa Saeedi Niasar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran
| | - Sahar Taher
- Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhang K, Xu Y, Zheng Y, Zhang T, Wu Y, Yan Y, Lei Y, Cao X, Wang X, Yan F, Lei Z, Brugger D, Chen Y, Deng L, Yang Y. Bifidobacterium pseudolongum-Derived Bile Acid from Dietary Carvacrol and Thymol Supplementation Attenuates Colitis via cGMP-PKG-mTORC1 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406917. [PMID: 39308187 DOI: 10.1002/advs.202406917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Indexed: 11/22/2024]
Abstract
Carvacrol and thymol (CAT) have been widely recognized for their antimicrobial and anti-inflammatory properties, yet their specific effects on colitis and the mechanisms involved remain insufficiently understood. This study establishes a causative link between CAT administration and colitis mitigation, primarily through the enhancement of Bifidobacterium pseudolongum abundance in the colon. This increase promotes the production of secondary bile acids, particularly hyodeoxycholic acid (HDCA) and 12-ketodeoxycholic acid (12-KCAC), which exert anti-inflammatory effects. Notably, CAT does not alleviate colitis symptoms in germ-free mice, indicating the necessity of gut microbiota. This research uncovers a novel regulatory mechanism where HDCA and 12-KCAC inhibit colonic inflammation by reducing the expression of transmembrane guanylate cyclase 1A in the colonic epithelium. This downregulation elevates intracellular Ca2+ and cGMP levels, activating protein kinase G (PKG). Activated PKG subsequently suppresses the mTOR signaling pathway, thereby ameliorating dextran sulfate sodium (DSS)-induced colonic damage. These findings highlight potential metabolites and therapeutic targets for preventing and treating colitis. Bifidobacterium pseudolongum, HDCA, and 12-KCAC emerge as promising candidates for therapeutic interventions in colitis and related disorders characterized by impaired tight junction function.
Collapse
Affiliation(s)
- Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yining Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Yiting Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xi Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Frances Yan
- Novus International Inc, Research Park Drive, Saint Charles, MO, 63304, USA
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
4
|
Huang JC, Li MC, Huang IC, Hu JM, Lin WZ, Chang YT. Gene Coexpression and miRNA Regulation: A Path to Early Intervention in Colorectal Cancer. Hum Gene Ther 2024; 35:855-867. [PMID: 38767504 PMCID: PMC11511781 DOI: 10.1089/hum.2023.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Early diagnosis and intervention are pivotal in reducing colorectal cancer (CRC) incidence and enhancing patient outcomes. In this study, we focused on three genes, AQP8, GUCA2B, and SPIB, which exhibit high coexpression and play crucial roles in suppressing early-stage CRC. Our objective was to identify key miRNAs that can mitigate CRC tumorigenesis and modulate the coexpression network involving these genes. We conducted a comprehensive analysis using large-scale tissue mRNA data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus to validate the coexpression of AQP8, GUCA2B, and SPIB, and to assess their diagnostic and prognostic significance in CRC. The mRNA-miRNA interactions were examined using MiRNet and the Encyclopedia of RNA Interactomes. Furthermore, using various molecular techniques, we conducted miRNA inhibitor transfection experiments in HCT116 cells to evaluate their effects on cell growth, migration, and gene/protein expression. Our findings revealed that, compared with normal tissues, AQP8, GUCA2B, and SPIB exhibited high coexpression and were downregulated in CRC, particularly during tumorigenesis. OncoMirs, hsa-miR-182-5p, and hsa-miR-27a-3p, were predicted to regulate these genes. MiRNA inhibition experiments in HCT116 cells demonstrated the inhibitory effects of miR-27a-3p and miR-182-5p on GUCA2B mRNA and protein expression. These miRNAs promoted the proliferation of CRC cells, possibly through their involvement in the GUCA2B-GUCY2C axis, which is known to promote tumor growth. While the expressions of AQP8 and SPIB were barely detectable, their regulatory relationship with hsa-miR-182-5p remained inconclusive. Our study confirms that hsa-miR-27a-3p and hsa-miR-182-5p are oncomiRs in CRC. These miRNAs may contribute to GUCY2C dysregulation by downregulating GUCA2B, which encodes uroguanylin. Consequently, hsa-miR-182-5p and hsa-miR-27a-3p show promise as potential targets for early intervention and treatment in the early stages of CRC.
Collapse
Affiliation(s)
- Jason C. Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chun Li
- Division of Pediatrics, Taipei City Hospital, Taipei, Taiwan
| | - I-Chieh Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Je-Ming Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Zhi Lin
- AIoT Center, Tri-service General Hospital, Taipei, Taiwan
| | - Yu-Tien Chang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Zhang J, Huang X, Zhang T, Gu C, Zuo W, Fu L, Dong Y, Liu H. Antitumorigenic potential of Lactobacillus-derived extracellular vesicles: p53 succinylation and glycolytic reprogramming in intestinal epithelial cells via SIRT5 modulation. Cell Biol Toxicol 2024; 40:66. [PMID: 39110260 PMCID: PMC11306434 DOI: 10.1007/s10565-024-09897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Colorectal cancer progression involves complex cellular mechanisms. This study examines the effects of Lactobacillus plantarum-derived extracellular vesicles (LEVs) on the SIRT5/p53 axis, focusing on glycolytic metabolic reprogramming and abnormal proliferation in intestinal epithelial cells. METHODS LEVs were isolated from Lactobacillus plantarum and incubated with Caco-2 cells. Differential gene expression was analyzed through RNA sequencing and compared with TCGA-COAD data. Key target genes and pathways were identified using PPI network and pathway enrichment analysis. Various assays, including RT-qPCR, EdU staining, colony formation, flow cytometry, and Western blotting, were used to assess gene expression, cell proliferation, and metabolic changes. Co-immunoprecipitation confirmed the interaction between SIRT5 and p53, and animal models were employed to validate in vivo effects. RESULTS Bioinformatics analysis indicated the SIRT5/p53 axis as a critical pathway in LEVs' modulation of colorectal cancer. LEVs were found to inhibit colorectal cancer cell proliferation and glycolytic metabolism by downregulating SIRT5, influencing p53 desuccinylation. In vivo, LEVs regulated this axis, reducing tumor formation in mice. Clinical sample analysis showed that SIRT5 and p53 succinylation levels correlated with patient prognosis. CONCLUSION Lactobacillus-derived extracellular vesicles play a pivotal role in suppressing colonic tumor formation by modulating the SIRT5/p53 axis. This results in decreased glycolytic metabolic reprogramming and reduced proliferation in intestinal epithelial cells.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Spleen and Stomach Disease, Yubei District Hospital of Traditional Chinese Medicine, Chongqing, 401120, China
| | - Xiumei Huang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Tingting Zhang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Chongqi Gu
- Department of Pediatrics, Rongchang District People's Hospital, Chongqing, 402460, China
| | - Wei Zuo
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Lijuan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Yiping Dong
- Department of Digital Medicine, Department of Bioengineering and Imaging, Army Medical University, Chongqing, 400038, China
| | - Hao Liu
- Department of Pediatrics, Rongchang District People's Hospital, Chongqing, 402460, China.
| |
Collapse
|
6
|
Dabral S, Noh M, Werner F, Krebes L, Völker K, Maier C, Aleksic I, Novoyatleva T, Hadzic S, Schermuly RT, Perez VADJ, Kuhn M. C-type natriuretic peptide/cGMP/FoxO3 signaling attenuates hyperproliferation of pericytes from patients with pulmonary arterial hypertension. Commun Biol 2024; 7:693. [PMID: 38844781 PMCID: PMC11156916 DOI: 10.1038/s42003-024-06375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.
Collapse
Affiliation(s)
- Swati Dabral
- Institute of Physiology, University of Würzburg, Würzburg, Germany.
| | - Minhee Noh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lisa Krebes
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Katharina Völker
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Christopher Maier
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Ivan Aleksic
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Tatyana Novoyatleva
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Vinicio A de Jesus Perez
- Divisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford University, California, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. NPJ Parkinsons Dis 2024; 10:83. [PMID: 38615030 PMCID: PMC11016112 DOI: 10.1038/s41531-024-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases and their second messenger cyclic (c)GMP support mitochondrial function, protecting against ROS and promoting cell survival in several tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) mouse model. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in SNpc DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Yalaz C, Bridges E, Alham NK, Zois CE, Chen J, Bensaad K, Miar A, Pires E, Muschel RJ, McCullagh JSO, Harris AL. Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response. Cancer Metab 2024; 12:5. [PMID: 38350962 PMCID: PMC10863171 DOI: 10.1186/s40170-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.
Collapse
Affiliation(s)
- Ceren Yalaz
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Esther Bridges
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nasullah K Alham
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Christos E Zois
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jianzhou Chen
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Karim Bensaad
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Miar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ruth J Muschel
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
9
|
Piroozkhah M, Aghajani A, Jalali P, Shahmoradi A, Piroozkhah M, Tadlili Y, Salehi Z. Guanylate cyclase-C Signaling Axis as a theragnostic target in colorectal cancer: a systematic review of literature. Front Oncol 2023; 13:1277265. [PMID: 37927469 PMCID: PMC10623427 DOI: 10.3389/fonc.2023.1277265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a devastating disease that affects millions of people worldwide. Recent research has highlighted the crucial role of the guanylate cyclase-C (GC-C) signaling axis in CRC, from the early stages of tumorigenesis to disease progression. GC-C is activated by endogenous peptides guanylin (GU) and uroguanylin (UG), which are critical in maintaining intestinal fluid homeostasis. However, it has been found that these peptides may also contribute to the development of CRC. This systematic review focuses on the latest research on the GC-C signaling axis in CRC. Methods According to the aim of the study, a systematic literature search was conducted on Medline and PubMed databases. Ultimately, a total of 40 articles were gathered for the systematic review. Results Our systematic literature search revealed that alterations in GC-C signaling compartments in CRC tissue have demonstrated potential as diagnostic, prognostic, and therapeutic markers. This research highlights a potential treatment for CRC by targeting the GC-C signaling axis. Promising results from recent studies have explored the use of this signaling axis to develop new vaccines and chimeric antigen receptors that may be used in future clinical trials. Conclusion The findings presented in this review provide compelling evidence that targeting the GC-C signaling axis may be an advantageous approach for treating CRC.
Collapse
Affiliation(s)
- Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Aghajani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Tadlili
- Department of Molecular Cell Biology, Microbiology Trend, Faculty of Basic Sciences, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Zahra Salehi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. RESEARCH SQUARE 2023:rs.3.rs-3416338. [PMID: 37886524 PMCID: PMC10602097 DOI: 10.21203/rs.3.rs-3416338/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases, and their second messengers cyclic (c)GMP, support mitochondrial function, protecting against ROS and promoting cell survival in a number of tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of neurodegeneration. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in nigral DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S. Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J. Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E. Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Kałużna A, Jura-Półtorak A, Derkacz A, Jaruszowiec J, Olczyk K, Komosinska-Vassev K. Circulating Profiles of Serum Proguanylin, S100A12 Protein and Pentraxin 3 as Diagnostic Markers of Ulcerative Colitis. J Clin Med 2023; 12:4339. [PMID: 37445374 DOI: 10.3390/jcm12134339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this research was to investigate potential new biomarkers which could be used in the clinical practice of ulcerative colitis (UC). Given the crucial role of intestinal barrier integrity and inflammation in the pathogenesis of UC, the serum profile of proteins linked to intestinal barrier and pro-inflammatory neutrophil products may be useful in diagnosing and monitoring the activity of the disease. We measured serum levels of proguanylin (pro-GN), S100A12, and pentraxin 3 (PTX3) in 31 patients with UC before and after a year of biological treatment, as well as in 20 healthy individuals. Significant differences in the serum profiles of pro-GN (5.27 vs. 11.35, p < 0.001), S100A12 (39.36 vs. 19.74, p < 0.001) and PTX3 (3197.05 vs. 1608.37, p < 0.001) were observed between pre-treatment patients with UC and healthy individuals. Furthermore, in UC patients prior to treatment, the levels of S100A12 (p < 0.0005; r = 0.628) and PTX3 (p < 0.05; r = 0.371) were correlated with disease activity as measured by the Mayo scale. Following a year of biological treatment with adalimumab, the concentration of pro-GN significantly increased (5.27 vs. 6.68, p < 0.005) in the blood of UC patients, while the level of PTX-3 decreased (3197.05 vs. 1946.4, p < 0.0001). Our study demonstrates the usefulness of pro-GN, S100A12, and PTX3 measurements in diagnosing and monitoring the activity of UC.
Collapse
Affiliation(s)
- Aleksandra Kałużna
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | | | - Julia Jaruszowiec
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
12
|
Di Guglielmo MD, Holbrook J, Stabley D, Robbins KM, Boyce B, Hardy H, Adeyemi A. The Intestinal Tract Brush Border in Young Children Uniformly Expresses Guanylate Cyclase C. Appl Immunohistochem Mol Morphol 2023; 31:154-162. [PMID: 36735491 DOI: 10.1097/pai.0000000000001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
The present study examined staining of guanylate cyclase C (GCC/GUCY2C) in the small and large intestines of children younger than age 7 years. Normal intestinal tissue from children aged 0 to 7 years was stained using GCC, uroguanylin, and villin antibodies and scored for staining intensity. A subset underwent quantitative real-time polymerase chain reaction. Data were analyzed using t test of independent means, descriptive statistics, and logistic regression. Four hundred sixty-four specimens underwent immunohistochemistry; 291 specimens underwent real-time polymerase chain reaction. GCC, villin, and uroguanylin were detected across age groups and anatomic sites. No significant differences were identifiable across age groups. GUCY2C and uroguanylin mRNA was detected in all samples, with no variability of statistical significance of either target-to-villin normalization between any age cohorts. A gradient of expression of GCC across age groups does not seem to exist.
Collapse
Affiliation(s)
| | - Jennifer Holbrook
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Deborah Stabley
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Katherine M Robbins
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Bobbie Boyce
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Heather Hardy
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | | |
Collapse
|
13
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Caspi A, Entezari AA, Crutcher M, Snook AE, Waldman SA. Guanylyl cyclase C as a diagnostic and therapeutic target in colorectal cancer. Per Med 2022; 19:457-472. [PMID: 35920071 PMCID: PMC12076115 DOI: 10.2217/pme-2022-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Colorectal cancer remains a major cause of mortality in the USA, despite advances in prevention and screening. Existing therapies focus primarily on generic treatment such as surgical intervention and chemotherapy, depending on disease severity. As personalized medicine and targeted molecular oncology continue to develop as promising treatment avenues, there has emerged a need for effective targets and biomarkers of colorectal cancer. The transmembrane receptor guanylyl cyclase C (GUCY2C) regulates intestinal homeostasis and has emerged as a tumor suppressor. Further, it is universally expressed in advanced metastatic colorectal tumors, as well as other cancer types that arise through intestinal metaplasia. In this context, GUCY2C satisfies many characteristics of a compelling target and biomarker for gastrointestinal malignancies.
Collapse
Affiliation(s)
- Adi Caspi
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ariana A Entezari
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Madison Crutcher
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Frühbeck G, Becerril S, Martín M, Ramírez B, Valentí V, Moncada R, Catalán V, Gómez-Ambrosi J, Silva C, Burrell MA, Escalada J, Rodríguez A. High plasma and lingual uroguanylin as potential contributors to changes in food preference after sleeve gastrectomy. Metabolism 2022; 128:155119. [PMID: 34990711 DOI: 10.1016/j.metabol.2021.155119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND The biological mediators supporting long-term weight loss and changes in dietary choice behaviour after sleeve gastrectomy remain unclear. Guanylin and uroguanylin are gut hormones involved in the regulation of satiety, food preference and adiposity. Thus, we sought to analyze whether the guanylin system is involved in changes in food preference after sleeve gastrectomy in obesity. METHODS Proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were determined in patients with severe obesity (n = 41) as well as in rats with diet-induced obesity (n = 48), monogenic obesity (Zucker fa/fa) (n = 18) or in a food choice paradigm (normal diet vs high-fat diet) (n = 16) submitted to sleeve gastrectomy. Lingual distribution and expression of guanylins (GUCA2A and GUCA2B) and their receptor GUCY2C as well as the fatty acid receptor CD36 were evaluated in the preclinical models. RESULTS Circulating concentrations of GUCA2A and GUCA2B were increased after sleeve gastrectomy in patients with severe obesity as well as in rats with diet-induced and monogenic (fa/fa) obesity. Interestingly, the lower dietary fat preference observed in obese rats under the food choice paradigm as well as in patients with obesity after sleeve gastrectomy were negatively associated with post-surgical GUCA2B levels. Moreover, sleeve gastrectomy upregulated the low expression of GUCA2A and GUCA2B in taste bud cells of tongues from rats with diet-induced and monogenic (fa/fa) obesity in parallel to a downregulation of the lingual lipid sensor CD36. CONCLUSIONS The increased circulating and lingual GUCA2B after sleeve gastrectomy suggest an association between the uroguanylin-GUCY2C endocrine axis and food preference through the regulation of gustatory responses.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marina Martín
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - María A Burrell
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Javier Escalada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
16
|
Ren LL, Zhou JY, Liang SJ, Wang XQ. Impaired intestinal stem cell activity in ETEC infection: enterotoxins, cyclic nucleotides, and Wnt signaling. Arch Toxicol 2022; 96:1213-1225. [PMID: 35226135 DOI: 10.1007/s00204-021-03213-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) in humans and animals colonizes the intestine and thereafter secrets heat-stable enterotoxin (ST) with or without heat-labile enterotoxin (LT), which triggers massive fluid and electrolyte secretion into the gut lumen. The crosstalk between the cyclic nucleotide-dependent protein kinase/cystic fibrosis transmembrane conductance regulator (cAMP or cGMP/CFTR) pathway involved in ETEC-induced diarrhea channels, and the canonical Wnt/β-catenin signaling pathway leads to changes in intestinal stem cell (ISC) fates, which are strongly associated with developmental disorders caused by diarrhea. We review how alterations in enterotoxin-activated ion channel pathways and the canonical Wnt/β-catenin signaling pathway can explain inhibited intestinal epithelial activity, characterize alterations in the crosstalk of cyclic nucleotides, and predict harmful effects on ISCs in targeted therapy. Besides, we discuss current deficits in the understanding of enterotoxin-intestinal epithelial cell activity relationships that should be considered when interpreting sequelae of diarrhea.
Collapse
Affiliation(s)
- Lu-Lu Ren
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Shao-Jie Liang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Islam BN, Sharman SK, Hou Y, Wang R, Ashby J, Li H, Liu K, Vega KJ, Browning DD. Type-2 cGMP-dependent protein kinase suppresses proliferation and carcinogenesis in the colon epithelium. Carcinogenesis 2022; 43:584-593. [PMID: 35188962 PMCID: PMC9234760 DOI: 10.1093/carcin/bgac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
A large body of evidence has demonstrated that cyclic-guanosine monophosphate (cGMP), signaling has anti-tumor effects that might be used for colon cancer prevention. The tumor-suppressive mechanism and the signaling components downstream of cGMP remain largely unknown. The present study has characterized the expression of cGMP-dependent protein kinases (PKG1, PKG2) in normal and cancerous tissue from human colon. PKG1 was detected in both normal and tumor tissue, where it localized exclusively to the lamina propria and stroma (respectively). In contrast, PKG2 localized specifically to the epithelium where its expression decreased markedly in tumors compared to matched normal tissue. Neither PKG isoform was detected at the RNA or protein level in established colon cancer cell lines. To test for a potential tumor-suppressor role of PKG2 in the colon epithelium, Prkg2 knockout (KO) mice were subjected to azoxymethane/dextran sulfate-sodium (AOM/DSS) treatment. PKG2 deficiency was associated with crypt hyperplasia (Ki67) and almost twice the number of polyps per mouse as wild-type (WT) siblings. In vitro culture of mouse colon epithelium as organoids confirmed that PKG2 was the only isoform expressed, and it was detected in both proliferating and differentiating epithelial compartments. Colon organoids derived from Prkg2 KO mice proliferated more rapidly and exhibited a reduced ability to differentiate compared to WT controls. Taken together our results highlight PKG2 as the central target of cGMP in the colon, where it suppresses carcinogenesis by controlling proliferation in an epithelial-cell intrinsic manner.
Collapse
Affiliation(s)
- Bianca N Islam
- Department of Internal Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yali Hou
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Justin Ashby
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kenneth J Vega
- Department of Medicine, Section of Gastroenterology and Hepatology, Augusta University, Augusta, GA, USA
| | - Darren D Browning
- To whom correspondence should be addressed. Tel: +1 706 7219526; Fax: +1 706 7216608;
| |
Collapse
|
18
|
Prasad H, Mathew JKK, Visweswariah SS. Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and Therapeutic Opportunities. Front Endocrinol (Lausanne) 2022; 13:911459. [PMID: 35846281 PMCID: PMC9276936 DOI: 10.3389/fendo.2022.911459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances have been fueled in part by identifying mutations or changes in gene expression in GC-C or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are associated with a wide range of clinical phenotypes. In this review, we highlight aspects of the current knowledge of the GC-C signaling pathway in homeostasis and disease, emphasizing recent advances in the field. The review summarizes extra gastrointestinal functions for GC-C signaling, such as appetite control, energy expenditure, visceral nociception, and behavioral processes. Recent research has expanded the homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune axis, which acts as a mechanistic driver in inflammatory bowel disease. The development of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its relationship to whole-animal physiology. A deeper understanding of the various aspects of GC-C biology and their relationships with pathologies such as inflammatory bowel disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | - Sandhya S. Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- *Correspondence: Sandhya S. Visweswariah,
| |
Collapse
|
19
|
A β-Catenin-TCF-Sensitive Locus Control Region Mediates GUCY2C Ligand Loss in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 13:1276-1296. [PMID: 34954189 PMCID: PMC9073733 DOI: 10.1016/j.jcmgh.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic β-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by β-catenin/TCF signaling. METHODS We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of β-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of β-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant β-catenin/TCF signaling. CONCLUSIONS These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by β-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.
Collapse
|
20
|
Weinberg DS, Foster NR, Della'Zanna G, McMurray RP, Kraft WK, Pallotto A, Kastenberg DM, Katz LC, Henry CH, Moleski SM, Limburg PJ, Waldman SA. Phase I double-blind, placebo-controlled trial of dolcanatide (SP-333) 27 mg to explore colorectal bioactivity in healthy volunteers. Cancer Biol Ther 2021; 22:544-553. [PMID: 34632925 DOI: 10.1080/15384047.2021.1967036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Guanylyl cyclase C (GUCY2C) is a tumor-suppressing receptor silenced by loss of expression of the luminocrine hormones guanylin and uroguanylin early in colorectal carcinogenesis. This observation suggests oral replacement with a GUCY2C agonist may be an effective targeted chemoprevention agent. Previous studies revealed that linaclotide, an oral GUCY2C agonist formulated for gastric release, did not persist to activate guanylyl cyclase signaling in the distal rectum. Dolcanatide is an investigational oral uroguanylin analog, substituted with select D amino acids, for enhanced stability and extended persistence to activate GUCY2C in small and large intestine. However, the ability of oral dolcanatide to induce a pharmacodynamic (PD) response by activating GUCY2C in epithelial cells of the colorectum in humans remains undefined. Here, we demonstrate that administration of oral dolcanatide 27 mg daily for 7 d to healthy volunteers did not activate GUCY2C, quantified as accumulation of its product cyclic GMP, in epithelial cells of the distal rectum. These data reveal that the enhanced stability of dolcanatide, with persistence along the rostral-caudal axis of the small and large intestine, is inadequate to regulate GUCY2C across the colorectum to prevent tumorigenesis. These results highlight the importance of developing a GUCY2C agonist for cancer prevention formulated for release and activity targeted to the colorectum.
Collapse
Affiliation(s)
- David S Weinberg
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nathan R Foster
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Ryan P McMurray
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Walter K Kraft
- Department of Pharmacology and Experimental Therapeutics and Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, PA, USa
| | - Angela Pallotto
- Department of Pharmacology and Experimental Therapeutics and Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, PA, USa
| | - David M Kastenberg
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USa
| | - Leo C Katz
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USa
| | | | | | - Paul J Limburg
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Scott A Waldman
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USa
| |
Collapse
|
21
|
Nouri R, Hasani A, Shirazi KM, Aliand MR, Sepehri B, Sotoodeh S, Hemmati F, Rezaee MA. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship. Curr Pharm Biotechnol 2021; 23:1257-1268. [PMID: 34514986 DOI: 10.2174/1389201022666210910094827] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world. Specific strains of intestinal Escherichia coli (E. coli) may influence the initiation and development of CRC by exploiting virulence factors and inflammatory pathways. Mucosa-associated E. coli strains are more prevalent in CRC biopsies in comparison to healthy controls. Moreover, these strains can survive and replicate within macrophages and induce a pro-inflammatory response. Chronic exposure to inflammatory mediators can lead to increased cell proliferation and cancer. Production of colobactin toxin by the majority of mucosa-associated E. coli isolated from CRC patients is another notable finding. Colibactin-producing E. coli strains, in particular, induce double-strand DNA breaks, stop the cell cycle, involve in chromosomal rearrangements of mammalian cells and are implicated in carcinogenic effects in animal models. Moreover, some enteropathogenic E. coli (EPEC) strains are able to survive and replicate in colon cells as chronic intracellular pathogens and may promote susceptibility to CRC by downregulation of DNA Mismatch Repair (MMR) proteins. In this review, we discuss current evidence and focus on the mechanisms by which E. coli can influence the development of CRC.
Collapse
Affiliation(s)
- Rogayeh Nouri
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Reza Aliand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bita Sepehri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Simin Sotoodeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | | |
Collapse
|
22
|
Bouzo BL, Lores S, Jatal R, Alijas S, Alonso MJ, Conejos-Sánchez I, de la Fuente M. Sphingomyelin nanosystems loaded with uroguanylin and etoposide for treating metastatic colorectal cancer. Sci Rep 2021; 11:17213. [PMID: 34446776 PMCID: PMC8390746 DOI: 10.1038/s41598-021-96578-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the third most frequently diagnosed cancer malignancy and the second leading cause of cancer-related deaths worldwide. Therefore, it is of utmost importance to provide new therapeutic options that can improve survival. Sphingomyelin nanosystems (SNs) are a promising type of nanocarriers with potential for association of different types of drugs and, thus, for the development of combination treatments. In this work we propose the chemical modification of uroguanylin, a natural ligand for the Guanylyl Cyclase (GCC) receptor, expressed in metastatic colorectal cancer tumors, to favour its anchoring to SNs (UroGm-SNs). The anti-cancer drug etoposide (Etp) was additionally encapsulated for the development of a combination strategy (UroGm-Etp-SNs). Results from in vitro studies showed that UroGm-Etp-SNs can interact with colorectal cancer cells that express the GCC receptor and mediate an antiproliferative response, which is more remarkable for the drugs in combination. The potential of UroGm-Etp-SNs to treat metastatic colorectal cancer cells was complemented with an in vivo experiment in a xenograft mice model.
Collapse
Affiliation(s)
- Belén L Bouzo
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Av. Barcelona s/n Campus Vida, 15706, Santiago de Compostela, Spain
| | - Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Raneem Jatal
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain
| | - María José Alonso
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Av. Barcelona s/n Campus Vida, 15706, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Faculty of Pharmacy, University of Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Inmaculada Conejos-Sánchez
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Av. Barcelona s/n Campus Vida, 15706, Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Entezari AA, Snook AE, Waldman SA. Guanylyl cyclase 2C (GUCY2C) in gastrointestinal cancers: recent innovations and therapeutic potential. Expert Opin Ther Targets 2021; 25:335-346. [PMID: 34056991 DOI: 10.1080/14728222.2021.1937124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gastrointestinal (GI) cancers account for the second leading cause of cancer-related deaths in the United States. Guanylyl cyclase C (GUCY2C) is an intestinal signaling system that regulates intestinal fluid and electrolyte secretion as well as intestinal homeostasis. In recent years, it has emerged as a promising target for chemoprevention and therapy for GI malignancies. AREAS COVERED The loss of GUCY2C signaling early in colorectal tumorigenesis suggests it could have a significant impact on tumor initiation. Recent studies highlight the importance of GUCY2C signaling in preventing colorectal tumorigenesis using agents such as linaclotide, plecanatide, and sildenafil. Furthermore, GUCY2C is a novel target for immunotherapy and a diagnostic marker for primary and metastatic diseases. EXPERT OPINION There is an unmet need for prevention and therapy in GI cancers. In that context, GUCY2C is a promising target for prevention, although the precise mechanisms by which GUCY2C signaling affects tumorigenesis remain to be defined. Furthermore, clinical trials are exploring its role as an immunotherapeutic target for vaccines to prevent metastatic disease. Indeed, GUCY2C is an emerging target across the disease continuum from chemoprevention, to diagnostic management, through the treatment and prevention of metastatic diseases.
Collapse
Affiliation(s)
- Ariana A Entezari
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Wang B, Huang Q, Li S, Wu J, Yuan X, Sun H, Tang L. [Changes of guanylate cyclase C in colon tissues of rats with intestinal injury associated with severe acute pancreatitis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:376-383. [PMID: 33849828 DOI: 10.12122/j.issn.1673-4254.2021.03.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the dynamic changes of guanylate cyclase C (GC-C) in the colon tissues of rats with intestinal injury associated with severe acute pancreatitis (SAP). OBJECTIVE Thirty-six SD rats were randomized equally into two groups to receive either sham operation or retrograde pumping of 5% sodium taurocholate (0.1 mL/100 g) into the pancreaticobiliary duct following laparotomy to induce SAP. At 12, 24, and 48 h after modeling, 6 rats from each group were euthanized and the colon tissues were collected for Western blotting, immunohistochemistry and RT-PCR to determine the changes in GC-C expression, and the lowest GC-C expression was deemed to indicate the most serious intestinal injury and the time window for intervention. Another 18 SD rats were randomized into 3 groups for sham operation, SAP modeling or intragastric administration of linaclotide (a GC-C agonist) solution once daily at the dose of 10 μg/kg. At 12 h after modeling, the pathological changes in the pancreas and colon were observed with HE staining; the serum level of AMY, DAO, D-Lac and TNF-α were measured with ELISA, and the expressions of GC-C and claudin-1 were detected using Western blotting, immunohistochemical and transmission electron microscopy. OBJECTIVE The expression of GC-C was significantly reduced in the colon of rats in SAP group, and its lowest expression occurred at 12 h after modeling (P < 0.05) followed by gradual increase over time. Claudin-1 showed a similar trend in the colon. Compared with the sham-operated rats, the rats in SAP and Linaclotide groups showed significantly increased pathological scores of the colon tissues (P < 0.05) and serum levels of AMY, DAO, D-Lac and TNF-α and decreased expressions of GC-C and claudin-1 in the colon (P < 0.05). Compared with those in SAP group, the rats in linaclotide group had significantly lower colonic histopathological scores, lower serum levels of AMY, DAO, D-Lac and TNF-α, and higher expression levels of GC-C and claudin-1 in the colon tissue. OBJECTIVE In rats with SAP-related intestinal injury, the expression of GC-C in the colon tissue decreases to the lowest level at 12 h after SAP onset followed by gradual increase. activating GC-C can increase the expression levels of GC-C and claudin-1 and alleviate intestinal injury, suggesting the role of GC-C in maintaining intestinal barrier integrity by regulating the expression of tight junction proteins.
Collapse
Affiliation(s)
- B Wang
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Q Huang
- Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - S Li
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - J Wu
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - X Yuan
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - H Sun
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - L Tang
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
25
|
Lisby AN, Flickinger JC, Bashir B, Weindorfer M, Shelukar S, Crutcher M, Snook AE, Waldman SA. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:117-129. [PMID: 34027103 DOI: 10.1080/23808993.2021.1876518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. Areas covered We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. Expert opinion The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.
Collapse
Affiliation(s)
- Amanda N Lisby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Megan Weindorfer
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sanjna Shelukar
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Madison Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
26
|
Lü P, Qiu S, Pan Y, Yu F, Chen K. Preclinical Chimeric Antibody Chimeric Antigen Receptor T Cell Progress in Digestive System Cancers. Cancer Biother Radiopharm 2021; 36:307-315. [PMID: 33481647 DOI: 10.1089/cbr.2020.4089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers, including hepatocellular carcinoma, colorectal and gastric tumors, are characterized by high rates of incidence and mortality. Digestive cancers are difficult to diagnose during the early stages, and the side effects of chemotherapy are often severe and may outweigh the therapeutic benefits. Chimeric antibody chimeric antigen receptor T cell (CAR-T) therapy, a novel immunotherapy, has achieved excellent results for the treatment of hematological tumors. However, CAR-T treatment of solid tumors has struggled due to a lack of target specificity, a difficult tumor microenvironment, and T cell homing. Despite the challenges, CAR-T treatment of digestive cancers is progressing. Combining CAR-T with other targets and/or modifying the CAR may represent the most promising approaches for future treatment of digestive cancers.
Collapse
Affiliation(s)
- Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Songlin Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Pan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
27
|
Rappaport JA, Waldman SA. An update on guanylyl cyclase C in the diagnosis, chemoprevention, and treatment of colorectal cancer. Expert Rev Clin Pharmacol 2020; 13:1125-1137. [PMID: 32945718 DOI: 10.1080/17512433.2020.1826304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Colorectal cancer remains the second leading cause of cancer death in the United States, underscoring the need for novel therapies. Despite the successes of new targeted agents for other cancers, colorectal cancer suffers from a relative scarcity of actionable biomarkers. In this context, the intestinal receptor, guanylyl cyclase C (GUCY2C), has emerged as a promising target.Areas covered: GUCY2C regulates a tumor-suppressive signaling axis that is silenced through loss of its endogenous ligands at the earliest stages of tumorigenesis. A body of literature supports a cancer chemoprevention strategy involving reactivation of GUCY2C through FDA-approved cGMP-elevating agents such as linaclotide, plecanatide, and sildenafil. Its limited expression in extra-intestinal tissues, and retention on the surface of cancer cells, also positions GUCY2C as a target for immunotherapies to treat metastatic disease, including vaccines, chimeric antigen receptor T-cells, and antibody-drug conjugates. Likewise, GUCY2C mRNA identifies metastatic cells, enhancing colorectal cancer detection, and staging. Pre-clinical and clinical programs exploring these GUCY2C-targeting strategies will be reviewed.Expert opinion: Recent mechanistic insights characterizing GUCY2C ligand loss early in tumorigenesis, coupled with results from the first clinical trials testing GUCY2C-targeting strategies, continue to elevate GUCY2C as an ideal target for prevention, detection, and therapy.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| |
Collapse
|
28
|
Pattison AM, Barton JR, Entezari AA, Zalewski A, Rappaport JA, Snook AE, Waldman SA. Silencing the intestinal GUCY2C tumor suppressor axis requires APC loss of heterozygosity. Cancer Biol Ther 2020; 21:799-805. [PMID: 32594830 PMCID: PMC7515455 DOI: 10.1080/15384047.2020.1779005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most sporadic colorectal cancer reflects acquired mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, while germline heterozygosity for mutant APC produces the autosomal dominant disorder Familial Adenomatous Polyposis (FAP) with a predisposition to colorectal cancer. In these syndromes, loss of heterozygosity (LOH) silences the remaining normal allele of APC, through an unknown mechanism, as the initiating step in transformation. Guanylyl cyclase C receptor (GUCY2C) and its hormones, uroguanylin and guanylin, have emerged as a key signaling axis opposing mutations driving intestinal tumorigenesis. Indeed, uroguanylin and guanylin are among the most commonly repressed genes in colorectal cancer. Here, we explored the role of APC heterozygosity in mechanisms repressing hormone expression which could contribute to LOH. In genetic mouse models of APC loss, uroguanylin and guanylin expression were quantified following monoallelic or biallelic deletion of the Apc gene. Induced biallelic loss of APC repressed uroguanylin and guanylin expression. However, monoallelic APC loss in Apcmin/+ mice did not alter hormone expression. Similarly, in FAP patients, normal colonic mucosa (monoallelic APC loss) expressed guanylin while adenomas and an invasive carcinoma (biallelic APC loss) were devoid of hormone expression. Thus, uroguanylin and guanylin expression by normal intestinal epithelial cells persists in the context of APC heterozygosity and is lost only after tumor initiation by APC LOH. These observations reveal a role for loss of the hormones silencing the GUCY2C axis in tumor progression following biallelic APC loss, but not in mechanisms creating the genetic vulnerability in epithelial cells underlying APC LOH initiating tumorigenesis.
Collapse
Affiliation(s)
- Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Joshua R Barton
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Ariana A Entezari
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Alicja Zalewski
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Jeff A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| |
Collapse
|
29
|
Blomain ES, Rappaport JA, Pattison AM, Bashir B, Caparosa E, Stem J, Snook AE, Waldman SA. APC-β-catenin-TCF signaling silences the intestinal guanylin-GUCY2C tumor suppressor axis. Cancer Biol Ther 2020; 21:441-451. [PMID: 32037952 PMCID: PMC7515458 DOI: 10.1080/15384047.2020.1721262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic colorectal cancer initiates with mutations in APC or its degradation target β-catenin, producing TCF-dependent nuclear transcription driving tumorigenesis. The intestinal epithelial receptor, GUCY2C, with its canonical paracrine hormone guanylin, regulates homeostatic signaling along the crypt-surface axis opposing tumorigenesis. Here, we reveal that expression of the guanylin hormone, but not the GUCY2C receptor, is lost at the earliest stages of transformation in APC-dependent tumors in humans and mice. Hormone loss, which silences GUCY2C signaling, reflects transcriptional repression mediated by mutant APC-β-catenin-TCF programs in the nucleus. These studies support a pathophysiological model of intestinal tumorigenesis in which mutant APC-β-catenin-TCF transcriptional regulation eliminates guanylin expression at tumor initiation, silencing GUCY2C signaling which, in turn, dysregulates intestinal homeostatic mechanisms contributing to tumor progression. They expand the mechanistic paradigm for colorectal cancer from a disease of irreversible mutations in APC and β-catenin to one of guanylin hormone loss whose replacement, and reconstitution of GUCY2C signaling, could prevent tumorigenesis
Collapse
Affiliation(s)
- Erik S Blomain
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ellen Caparosa
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan Stem
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
30
|
Browning DD. The enduring promise of phosphodiesterase 5 inhibitors for colon cancer prevention. Transl Gastroenterol Hepatol 2019; 4:83. [PMID: 32039288 DOI: 10.21037/tgh.2019.12.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023] Open
Affiliation(s)
- Darren D Browning
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
31
|
Merlino DJ, Barton JR, Charsar BA, Byrne MD, Rappaport JA, Smeyne RJ, Lepore AC, Snook AE, Waldman SA. Two distinct GUCY2C circuits with PMV (hypothalamic) and SN/VTA (midbrain) origin. Brain Struct Funct 2019; 224:2983-2999. [PMID: 31485718 DOI: 10.1007/s00429-019-01949-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Guanylyl cyclase C (GUCY2C) is the afferent central receptor in the gut-brain endocrine axis regulated by the anorexigenic intestinal hormone uroguanylin. GUCY2C mRNA and protein are produced in the hypothalamus, a major center regulating appetite and metabolic homeostasis. Further, GUCY2C mRNA and protein are expressed in the ventral midbrain, a principal structure regulating hedonic reward from behaviors including eating. While GUCY2C is expressed in hypothalamus and midbrain, its precise neuroanatomical organization and relationship with circuits regulating satiety remain unknown. Here, we reveal that hypothalamic GUCY2C mRNA is confined to the ventral premammillary nucleus (PMV), while in midbrain it is produced by neurons in the ventral tegmental area (VTA) and substantia nigra (SN). GUCY2C in the PMV is produced by 46% of neurons expressing anorexigenic leptin receptors, while in the VTA/SN it is produced in most tyrosine hydroxylase-immunoreactive neurons. In contrast to mRNA, GUCY2C protein is widely distributed throughout the brain in canonical sites of PMV and VTA/SN axonal projections. Selective stereotaxic ablation of PMV or VTA/SN neurons eliminated GUCY2C only in their respective canonical projection sites. Conversely, specific anterograde tracer analyses of PMV or VTA/SN neurons confirmed distinct GUCY2C-immunoreactive axons projecting to those canonical locations. Together, these findings reveal two discrete neuronal circuits expressing GUCY2C originating in the PMV in the hypothalamus and in the VTA/SN in midbrain, which separately project to other sites throughout the brain. They suggest a structural basis for a role for the GUCY2C-uroguanylin gut-brain endocrine axis in regulating homeostatic and behavioral components contributing to satiety.
Collapse
Affiliation(s)
- D J Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA
| | - J R Barton
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA
| | - B A Charsar
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - M D Byrne
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - J A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA
| | - R J Smeyne
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - A C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - A E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA
| | - S A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA.
| |
Collapse
|
32
|
Jovani M, Chan AT. Are Phosphodiesterase-5 Inhibitors a New Frontier for Prevention of Colorectal Cancer? Gastroenterology 2019; 157:602-604. [PMID: 31310742 DOI: 10.1053/j.gastro.2019.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Manol Jovani
- Division of Gastroenterology and Hepatology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School and Division of Gastroenterology, Massachusetts General Hospital and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
33
|
Integrated Analysis of Oncogenic Networks in Colorectal Cancer Identifies GUCA2A as a Molecular Marker. Biochem Res Int 2019; 2019:6469420. [PMID: 31467713 PMCID: PMC6701329 DOI: 10.1155/2019/6469420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and deadly malignancies in the world. In China, the morbidity rate of CRC has increased during the period 2000 to 2011. Biomarker detection for early CRC diagnosis can effectively reduce the mortality of patients with CRC. To explore the underlying mechanisms of effective biomarkers and identify more of them, we performed weighted correlation network analysis (WGCNA) on a GSE68468 dataset generated from 378 CRC tissue samples. We screened the gene set (module), which was significantly associated with CRC histology, and analyzed the hub genes. The key genes were identified by obtaining six colorectal raw data (i.e., GSE25070, GSE44076, GSE44861, GSE21510, GSE9348, and GSE21815) from the GEO database (https://www.ncbi.nlm.nih.gov/geo). The robust differentially expressed genes (DEGs) in all six datasets were calculated and obtained using the library “RobustRankAggreg” package in R 3.5.1. An integrated analysis of CRC based on the top 50 downregulated DEGs and hub genes in the red module from WGCNA was conducted, and the intersecting genes were screened. The Kaplan–Meier plot was further analyzed, and the genes associated with CRC prognosis based on patients from the TCGA database were determined. Finally, we validated the candidate gene in our clinical CRC specimens. We postulated that the candidate genes screened from the database and verified by our clinical pathological data may contribute to understanding the molecular mechanisms of tumorigenesis and may serve as potential biomarkers for CRC diagnosis and treatment.
Collapse
|
34
|
Waldman SA, Tenenbaum R, Foehl HC, Winkle P, Griffin P. Blunted Evoked Prouroguanylin Endocrine Secretion in Chronic Constipation. Clin Transl Gastroenterol 2019; 10:e00016. [PMID: 31318728 PMCID: PMC6708669 DOI: 10.14309/ctg.0000000000000016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Prouroguanylin (ProUGN) in the intestine is cleaved to form uroguanylin (UGN), which stimulates guanylate cyclase C (GUCY2C), inducing cyclic guanosine monophosphate signaling. Paracrine release regulates fluid secretion, contributing to bowel function, whereas endocrine secretion evoked by eating forms a gut-brain axis, controlling appetite. Whereas hormone insufficiency contributes to hyperphagia in obesity, its contribution to the pathophysiology of constipation syndromes remains unexplored. Here, we compared circulating ProUGN and UGN in healthy subjects and in patients with chronic idiopathic constipation (CIC) and patients with irritable bowel syndrome with constipation (IBS-C). METHODS Circulating ProUGN and UGN levels were measured in 60 healthy subjects, 53 patients with CIC, and 54 patients with IBS-C. After an overnight fast, the participants ingested a standardized meal; blood samples were drawn at fasting and at 30, 60, and 90 minutes thereafter, and hormone levels were quantified by enzyme-linked immunosorbent assay. RESULTS Fasting ProUGN levels were >30% lower in patients with CIC and those with IBS-C compared with healthy subjects regardless of age, sex, or disease state. After eating, ProUGN levels increased compared with fasting levels, although the rate of change was slower and maximum levels were lower in patients with CIC and those with IBS-C. Similarly, fasting UGN levels were lower in patients with CIC and those with IBS-C compared with healthy subjects. However, unlike ProUGN levels, UGN levels did not increase after eating. DISCUSSION These observations support a novel pathophysiologic model in which CIC and IBS-C reflect a contribution of ProUGN insufficiency dysregulating intestinal fluid and electrolyte secretion. TRANSLATIONAL IMPACT This study suggests that CIC and IBS-C can be treated by oral GUCY2C hormone replacement. Indeed, these observations provide a mechanistic framework for the clinical utility of oral GUCY2C ligands like plecanatide (Trulance) and linaclotide (Linzess) to treat CIC and IBS-C.
Collapse
Affiliation(s)
- Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Henry C. Foehl
- Foehl Statistics & Analysis LLC, Philadelphia, Pennsylvania, USA
| | - Peter Winkle
- Anaheim Clinical Trials, Anaheim, California, USA
| | | |
Collapse
|
35
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
36
|
Therapeutic opportunities in colon cancer: Focus on phosphodiesterase inhibitors. Life Sci 2019; 230:150-161. [PMID: 31125564 DOI: 10.1016/j.lfs.2019.05.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Despite novel technologies, colon cancer remains undiagnosed and 25% of patients are diagnosed with metastatic colon cancer. Resistant to chemotherapeutic agents is one of the major problems associated with treating colon cancer which creates the need to develop novel agents targeting towards newer targets. A phosphodiesterase is a group of isoenzyme, which, hydrolyze cyclic nucleotides and thereby lowers intracellular levels of cAMP and cGMP leading to tumorigenic effects. Many in vitro and in vivo studies have confirmed increased PDE expression in different types of cancers including colon cancer. cAMP-specific PDE inhibitors increase intracellular cAMP that leads to activation of effector molecules-cAMP-dependent protein kinase A, exchange protein activated by cAMP and cAMP gated ion channels. These molecules regulate cellular responses and exert its anticancer role through different mechanisms including apoptosis, inhibition of angiogenesis, upregulating tumor suppressor genes and suppressing oncogenes. On the other hand, cGMP specific PDE inhibitors exhibit anticancer effects through cGMP dependent protein kinase and cGMP dependent cation channels. Elevation in cGMP works through activation of caspases, suppression of Wnt/b-catenin pathway and TCF transcription leading to inhibition of CDK and survivin. These studies point out towards the fact that PDE inhibition is associated with anti-proliferative, anti-apoptotic and anti-angiogenic pathways involved in its anticancer effects in colon cancer. Thus, inhibition of PDE enzymes can be used as a novel approach to treat colon cancer. This review will focus on cAMP and cGMP signaling pathways leading to tumorigenesis and the use of PDE inhibitors in colon cancer.
Collapse
|
37
|
Uroguanylin Improves Leptin Responsiveness in Diet-Induced Obese Mice. Nutrients 2019; 11:nu11040752. [PMID: 30935076 PMCID: PMC6520813 DOI: 10.3390/nu11040752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal-brain axis is a key mediator of the body weight and energy homeostasis regulation. Uroguanylin (UGN) has been recently proposed to be a part of this gut-brain axis regulating food intake, body weight and energy expenditure. Expression of UGN is regulated by the nutritional status and dependent on leptin levels. However, the exact molecular mechanisms underlying this UGN-leptin metabolic regulation at a hypothalamic level still remains unclear. Using leptin resistant diet-induced obese (DIO) mice, we aimed to determine whether UGN could improve hypothalamic leptin sensitivity. The present work demonstrates that the central co-administration of UGN and leptin potentiates leptin’s ability to decrease the food intake and body weight in DIO mice, and that UGN activates the hypothalamic signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositide 3-kinases (PI3K) pathways. At a functional level, the blockade of PI3K, but not STAT3, blunted UGN-mediated leptin responsiveness in DIO mice. Overall, these findings indicate that UGN improves leptin sensitivity in DIO mice.
Collapse
|
38
|
Abstract
INTRODUCTION In men, lower urinary tract symptoms (LUTS) are primarily attributed to benign prostatic hyperplasia (BPH). Therapeutic options are targeted to relax prostate smooth muscle and/or reduce prostate enlargement. Areas covered: This article reviews the major preclinical and clinical data on PDE5 inhibitors with a specific focus on tadalafil. It includes details of the role of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) - PDE5 pathway in the LUT organs (bladder and prostate) in addition to the available data on tadalafil in patients with LUTS secondary to BPH with or without erectile dysfunction (ED). Expert opinion: Preclinical and clinical data have clearly demonstrated that PDE5 inhibitors induce bladder and prostate relaxation, which contributes to the improvement seen in storage symptoms in both animal models of bladder and prostate hypercontractility. Tadalafil is effective both as a monotherapy and add-on therapy in patients with LUTS secondary to BPH. Furthermore, as LUTS-BPH and ED are urological disorders that commonly coexist in aging men, tadalafil is more advantageous than α1-adrenoceptors and should be used as the first option. Tadalafil is a safe and tolerable therapy and unlike α1- adrenoceptors and 5-alpha reductase inhibitors, which can cause sexual dysfunctions, tadalafil improves sexual function.
Collapse
Affiliation(s)
- Fabiola Zakia Mónica
- a Department of Pharmacology, Faculty of Medical Sciences , University of Campinas , Campinas , Sao Paulo , Brazil
| | - Gilberto De Nucci
- a Department of Pharmacology, Faculty of Medical Sciences , University of Campinas , Campinas , Sao Paulo , Brazil
| |
Collapse
|
39
|
Bashir B, Merlino DJ, Rappaport JA, Gnass E, Palazzo JP, Feng Y, Fearon ER, Snook AE, Waldman SA. Silencing the GUCA2A-GUCY2C tumor suppressor axis in CIN, serrated, and MSI colorectal neoplasia. Hum Pathol 2019; 87:103-114. [PMID: 30716341 DOI: 10.1016/j.humpath.2018.11.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Colorectal cancers (CRCs) initiate through distinct mutations, including in APC pathway components leading to tubular adenomas (TAs); in BRAF, with epigenetic silencing of CDX2, leading to serrated adenomas (SAs); and in the DNA mismatch repair machinery driving microsatellite instability (MSI). Transformation through the APC pathway involves loss of the hormone GUCA2A that silences the tumor-suppressing receptor GUCY2C. Indeed, oral hormone replacement is an emerging strategy to reactivate GUCY2C and prevent CRC initiation and progression. Moreover, retained expression by tumors arising from TAs has established GUCY2C as a diagnostic and therapeutic target to prevent and treat metastatic CRC. Here, we defined the potential role of the GUCA2A-GUCY2C axis and its suitability as a target in tumors arising through the SA and MSI pathways. GUCA2A hormone expression was eliminated in TAs, SAs, and MSI tumors compared to their corresponding normal adjacent tissues. In contrast to the hormone, the tumor-suppressing receptor GUCY2C was retained in TA and MSI tumors. Surprisingly, GUCY2C expression was nearly eliminated in SAs, reflecting loss of the transcription factor CDX2. Changes in the GUCA2A-GUCY2C axis in human SAs and MSI tumors were precisely recapitulated in genetic mouse models. These data reveal the possibility of GUCA2A loss silencing GUCY2C in the pathophysiology of, and oral hormone replacement to restore GUCY2C signaling to prevent, MSI tumors. Also, they highlight the potential for targeting GUCY2C to prevent and treat metastases arising from TA and MSI tumors. In contrast, loss of GUCY2C excludes patients with SAs as candidates for GUCY2C-based prevention and therapy.
Collapse
Affiliation(s)
- Babar Bashir
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Dante J Merlino
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Jeffrey A Rappaport
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Esteban Gnass
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Juan P Palazzo
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Ying Feng
- Departments of Internal Medicine and Pathology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Eric R Fearon
- Departments of Internal Medicine and Pathology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
40
|
Yarla NS, Gali H, Pathuri G, Smriti S, Farooqui M, Panneerselvam J, Kumar G, Madka V, Rao CV. Targeting the paracrine hormone-dependent guanylate cyclase/cGMP/phosphodiesterases signaling pathway for colorectal cancer prevention. Semin Cancer Biol 2018; 56:168-174. [PMID: 30189250 DOI: 10.1016/j.semcancer.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer related-deaths. The risk of development of CRC is complex and multifactorial, and includes disruption of homeostasis of the intestinal epithelial layer mediated though dysregulations of tumor suppressing/promoting signaling pathways. Guanylate cyclase 2C (GUCY2C), a membrane-bound guanylate cyclase receptor, is present in the apical membranes of intestinal epithelial cells and maintains homeostasis. GUCY2C is activated upon binding of paracrine hormones (guanylin and uroguanylin) that lead to formation of cyclic GMP from GTP and activation of downstream signaling pathways that are associated with normal homeostasis. Dysregulation/suppression of the GUCY2C-mediated signaling promotes CRC tumorigenesis. High-calorie diet-induced obesity is associated with deficiency of guanylin expression and silencing of GUCY2C-signaling in colon epithelial cells, leading to tumorigenesis. Thus, GUCY2C agonists, such as linaclotide, exhibit considerable role in preventing CRC tumorigenesis. However, phosphodiesterases (PDEs) are elevated in intestinal epithelial cells during CRC tumorigenesis and block GUCY2C-mediated signaling by degrading cyclic GMP to 5`-GMP. PDE5-specific inhibitors, such as sildenafil, show considerable anti-tumorigenic potential against CRC by amplifying the GUCY2C/cGMP signaling pathway, but cannot achieve complete anti-tumorigenic effects. Hence, dual targeting the elevation of cGMP by providing paracrine hormone stimuli to GUCY2C and by inhibition of PDEs may be a better strategy for CRC prevention than alone. This review delineates the involvement of the GUCY2C/cGMP/PDEs signaling pathway in the homeostasis of intestinal epithelial cells. Further, the events are associated with dysregulation of this pathway during CRC tumorigenesis are also discussed. In addition, current updates on targeting the GUCY2C/cGMP/PDEs pathway with GUCY2C agonists and PDEs inhibitors for CRC prevention and treatment are described in detail.
Collapse
Affiliation(s)
- N S Yarla
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - H Gali
- Department of Pharmaceutical Sciences, College of Pharmacy, and Stephenson Oklahoma Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - S Smriti
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - M Farooqui
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Panneerselvam
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; VA Medical Center, Oklahoma City, OK, USA
| | - V Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
41
|
Rappaport JA, Waldman SA. The Guanylate Cyclase C-cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Front Oncol 2018; 8:299. [PMID: 30131940 PMCID: PMC6091576 DOI: 10.3389/fonc.2018.00299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Guanylate cyclase C (GUCY2C) is a transmembrane receptor expressed on the luminal aspect of the intestinal epithelium. Its ligands include bacterial heat-stable enterotoxins responsible for traveler's diarrhea, the endogenous peptide hormones uroguanylin and guanylin, and the synthetic agents, linaclotide, plecanatide, and dolcanatide. Ligand-activated GUCY2C catalyzes the synthesis of intracellular cyclic GMP (cGMP), initiating signaling cascades underlying homeostasis of the intestinal epithelium. Mouse models of GUCY2C ablation, and recently, human populations harboring GUCY2C mutations, have revealed the diverse contributions of this signaling axis to epithelial health, including regulating fluid secretion, microbiome composition, intestinal barrier integrity, epithelial renewal, cell cycle progression, responses to DNA damage, epithelial-mesenchymal cross-talk, cell migration, and cellular metabolic status. Because of these wide-ranging roles, dysregulation of the GUCY2C-cGMP signaling axis has been implicated in the pathogenesis of bowel transit disorders, inflammatory bowel disease, and colorectal cancer. This review explores the current understanding of cGMP signaling in the intestinal epithelium and mechanisms by which it opposes intestinal injury. Particular focus will be applied to its emerging role in tumor suppression. In colorectal tumors, endogenous GUCY2C ligand expression is lost by a yet undefined mechanism conserved in mice and humans. Further, reconstitution of GUCY2C signaling through genetic or oral ligand replacement opposes tumorigenesis in mice. Taken together, these findings suggest an intriguing hypothesis that colorectal cancer arises in a microenvironment of functional GUCY2C inactivation, which can be repaired by oral ligand replacement. Hence, the GUCY2C signaling axis represents a novel therapeutic target for preventing colorectal cancer.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
42
|
Waldman SA, Camilleri M. Guanylate cyclase-C as a therapeutic target in gastrointestinal disorders. Gut 2018; 67:1543-1552. [PMID: 29563144 PMCID: PMC6204952 DOI: 10.1136/gutjnl-2018-316029] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022]
Abstract
Functional gastrointestinal disorders (FGIDs) and IBDs are two of the most prevalent disorders of the GI tract and consume a significant proportion of healthcare resources. Recent studies have shown that membrane-bound guanylate cyclase-C (GC-C) receptors lining the GI tract may serve as novel therapeutic targets in the treatment of FGIDs and IBDs. GC-C receptor activation by its endogenous paracrine hormones uroguanylin and guanylin, and the resulting intracellular production of its downstream effector cyclic GMP, occurs in a pH-dependent manner and modulates key physiological functions. These include fluid and electrolyte homeostasis, maintenance of the intestinal barrier, anti-inflammatory activity and regulation of epithelial regeneration. Studies of the GC-C paracrine signalling axis have revealed the therapeutic potential of these receptors in treating GI disorders, including chronic idiopathic constipation and irritable bowel syndrome-constipation. This review focuses on the evolving understanding of GC-C function in health and disease, and strategies for translating these principles into new treatments for FGIDs and IBDs.
Collapse
Affiliation(s)
- Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael Camilleri
- Clinical Enteric Neurosciences Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
43
|
Abstract
The intestinal epithelium is a multicellular interface in close proximity to a dense microbial milieu that is completely renewed every 3-5 days. Pluripotent stem cells reside at the crypt, giving rise to transient amplifying cells that go through continuous steps of proliferation, differentiation and finally anoikis (a form of programmed cell death) while migrating upwards to the villus tip. During these cellular transitions, intestinal epithelial cells (IECs) possess distinct metabolic identities reflected by changes in mitochondrial activity. Mitochondrial function emerges as a key player in cell fate decisions and in coordinating cellular metabolism, immunity, stress responses and apoptosis. Mediators of mitochondrial signalling include molecules such as ATP and reactive oxygen species and interrelate with pathways such as the mitochondrial unfolded protein response (MT-UPR) and AMP kinase signalling, in turn affecting cell cycle progression and stemness. Alterations in mitochondrial function and MT-UPR activation are integral aspects of pathologies, including IBD and cancer. Mitochondrial signalling and concomitant changes in metabolism contribute to intestinal homeostasis and regulate IEC dedifferentiation-differentiation programmes in the context of diseases, suggesting that mitochondrial function as a cellular checkpoint critically contributes to disease outcome. This Review highlights mitochondrial function and MT-UPR signalling in epithelial cell stemness, differentiation and lineage commitment and illustrates mitochondrial function in intestinal diseases.
Collapse
|
44
|
Fernandez-Cachon ML, Pedersen SL, Rigbolt KT, Zhang C, Fabricius K, Hansen HH, Elster L, Fink LN, Schäfer M, Rhee NA, Langholz E, Wandall E, Friis SU, Vilmann P, Kristiansen VB, Schmidt C, Schreiter K, Breitschopf K, Hübschle T, Jorsal T, Vilsbøll T, Schmidt T, Theis S, Knop FK, Larsen PJ, Jelsing J. Guanylin and uroguanylin mRNA expression is increased following Roux-en-Y gastric bypass, but guanylins do not play a significant role in body weight regulation and glycemic control. Peptides 2018; 101:32-43. [PMID: 29289697 DOI: 10.1016/j.peptides.2017.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 02/07/2023]
Abstract
AIM To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides for potentially contributing to the beneficial metabolic effects of RYGB. METHODS Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects on food intake and glucose regulation. The effect of pro-UGN or UGN overexpression, using adeno-associated virus (AAV) vectors, was assessed in diet-induced obese (DIO) mice. Intracerebroventricular administration of GN and UGN was performed in rats for assessment of putative centrally mediated effects on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas. RESULTS GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral administration of guanylins or prohormones did not influence food intake, oral glucose tolerance, and GSIS. Central administration of GN and UGN did not affect food intake in rats. Chronic AVV-mediated overexpression of UGN and proUGN had no effect on body weight or glucose homeostasis in DIO mice. CONCLUSION GN and UGN, as well as their prohormones, do not seem to play a significant role in body weight regulation and glycemic control, suggesting that guanylin-family peptides do not show promise as targets for the treatment of obesity or diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nicolai A Rhee
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Ebbe Langholz
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Erik Wandall
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Steffen U Friis
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Peter Vilmann
- Gastro Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | | | | | | | | | - Tina Jorsal
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | |
Collapse
|
45
|
Sharman SK, Islam BN, Hou Y, Singh N, Berger FG, Sridhar S, Yoo W, Browning DD. Cyclic-GMP-Elevating Agents Suppress Polyposis in ApcMin mice by Targeting the Preneoplastic Epithelium. Cancer Prev Res (Phila) 2018; 11:81-92. [PMID: 29301746 DOI: 10.1158/1940-6207.capr-17-0267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/09/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
The cGMP signaling axis has been implicated in the suppression of intestinal cancers, but the inhibitory mechanism and the extent to which this pathway can be targeted remains poorly understood. This study has tested the effect of cGMP-elevating agents on tumorigenesis in the ApcMin/+ mouse model of intestinal cancer. Treatment of ApcMin/+ mice with the receptor guanylyl-cyclase C (GCC) agonist linaclotide, or the phosphodiesterase-5 (PDE5) inhibitor sildenafil, significantly reduced the number of polyps per mouse (67% and 50%, respectively). Neither of the drugs affected mean polyp size, or the rates of apoptosis and proliferation. This was possibly due to increased PDE10 expression, as endogenous GCC ligands were not deficient in established polyps. These results indicated that the ability of these drugs to reduce polyp multiplicity was primarily due to an effect on nonneoplastic tissues. In support of this idea, ApcMin/+ mice exhibited reduced levels of endogenous GCC agonists in the nonneoplastic intestinal mucosa compared with wild-type animals, and this was associated with crypt hyperplasia and a loss of goblet cells. Administration of either sildenafil or linaclotide suppressed proliferation, and increased both goblet cell numbers and luminal apoptosis in the intestinal mucosa. Taken together, the results demonstrate that targeting cGMP with either PDE5 inhibitors or GCC agonists alters epithelial homeostasis in a manner that reduces neoplasia, and suggests that this could be a viable chemoprevention strategy for patients at high risk of developing colorectal cancer. Cancer Prev Res; 11(2); 81-92. ©2018 AACR.
Collapse
Affiliation(s)
- Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Bianca N Islam
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Yali Hou
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Franklin G Berger
- Department of Biology, University of South Carolina, Columbia, South Carolina
| | - Subbaramiah Sridhar
- Department of Medicine, Section of Gastroenterology and Hepatology, Augusta University, Augusta, Georgia
| | - Wonsuk Yoo
- Institute of Public and Preventative Health, Augusta University, Augusta, Georgia
| | - Darren D Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.
| |
Collapse
|
46
|
Kraft CL, Rappaport JA, Snook AE, Pattison AM, Lynch JP, Waldman SA. GUCY2C maintains intestinal LGR5 + stem cells by opposing ER stress. Oncotarget 2017; 8:102923-102933. [PMID: 29262534 PMCID: PMC5732700 DOI: 10.18632/oncotarget.22084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
Long-lived multipotent stem cells (ISCs) at the base of intestinal crypts adjust their phenotypes to accommodate normal maintenance and post-injury regeneration of the epithelium. Their long life, lineage plasticity, and proliferative potential underlie the necessity for tight homeostatic regulation of the ISC compartment. In that context, the guanylate cyclase C (GUCY2C) receptor and its paracrine ligands regulate intestinal epithelial homeostasis, including proliferation, lineage commitment, and DNA damage repair. However, a role for this axis in maintaining ISCs remains unknown. Transgenic mice enabling analysis of ISCs (Lgr5-GFP) in the context of GUCY2C elimination (Gucy2c–/–) were combined with immunodetection techniques and pharmacological treatments to define the role of the GUCY2C signaling axis in supporting ISCs. ISCs were reduced in Gucy2c–/– mice, associated with loss of active Lgr5+ cells but a reciprocal increase in reserve Bmi1+ cells. GUCY2C was expressed in crypt base Lgr5+ cells in which it mediates canonical cyclic (c) GMP-dependent signaling. Endoplasmic reticulum (ER) stress, typically absent from ISCs, was elevated throughout the crypt base in Gucy2c–/– mice. The chemical chaperone tauroursodeoxycholic acid resolved this ER stress and restored the balance of ISCs, an effect mimicked by the GUCY2C effector 8Br-cGMP. Reduced ISCs in Gucy2c–/–mice was associated with greater epithelial injury and impaired regeneration following sub-lethal doses of irradiation. These observations suggest that GUCY2C provides homeostatic signals that modulate ER stress and cell vulnerability as part of the machinery contributing to the integrity of ISCs.
Collapse
Affiliation(s)
- Crystal L Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| | - Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| | - John P Lynch
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, United States of America, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| |
Collapse
|
47
|
Li P, Wuthrick E, Rappaport JA, Kraft C, Lin JE, Marszalowicz G, Snook AE, Zhan T, Hyslop TM, Waldman SA. GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome. Cancer Res 2017; 77:5095-5106. [PMID: 28916678 PMCID: PMC5678756 DOI: 10.1158/0008-5472.can-17-0859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023]
Abstract
High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Apoptosis/radiation effects
- Cell Proliferation/radiation effects
- Colonic Neoplasms/enzymology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/radiotherapy
- Female
- Gamma Rays/adverse effects
- Gastrointestinal Hormones/metabolism
- Gastrointestinal Tract/radiation effects
- Humans
- Irritable Bowel Syndrome/enzymology
- Irritable Bowel Syndrome/etiology
- Irritable Bowel Syndrome/prevention & control
- Lymphoma/enzymology
- Lymphoma/pathology
- Lymphoma/radiotherapy
- Male
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/radiotherapy
- Mice
- Mice, Inbred C57BL
- Natriuretic Peptides/metabolism
- Paracrine Communication/radiation effects
- Radiation Injuries, Experimental/enzymology
- Radiation Injuries, Experimental/etiology
- Radiation Injuries, Experimental/prevention & control
- Receptors, Enterotoxin
- Receptors, Guanylate Cyclase-Coupled/metabolism
- Receptors, Peptide/metabolism
- Signal Transduction/radiation effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Peng Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, The University of Florida, Gainesville, Florida
| | - Evan Wuthrick
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jeff A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Crystal Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jieru E Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Glen Marszalowicz
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tingting Zhan
- Divisions of Clinical Pharmacology and Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Terry M Hyslop
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
48
|
Li P, Lin JE, Snook AE, Waldman SA. ST-Producing E. coli Oppose Carcinogen-Induced Colorectal Tumorigenesis in Mice. Toxins (Basel) 2017; 9:toxins9090279. [PMID: 28895923 PMCID: PMC5618212 DOI: 10.3390/toxins9090279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 01/04/2023] Open
Abstract
There is a geographic inequality in the incidence of colorectal cancer, lowest in developing countries, and greatest in developed countries. This disparity suggests an environmental contribution to cancer resistance in endemic populations. Enterotoxigenic bacteria associated with diarrheal disease are prevalent in developing countries, including enterotoxigenic E. coli (ETEC) producing heat-stable enterotoxins (STs). STs are peptides that are structurally homologous to paracrine hormones that regulate the intestinal guanylyl cyclase C (GUCY2C) receptor. Beyond secretion, GUCY2C is a tumor suppressor universally silenced by loss of expression of its paracrine hormone during carcinogenesis. Thus, the geographic imbalance in colorectal cancer, in part, may reflect chronic exposure to ST-producing organisms that restore GUCY2C signaling silenced by hormone loss during transformation. Here, mice colonized for 18 weeks with control E. coli or those engineered to secrete ST exhibited normal growth, with comparable weight gain and normal stool water content, without evidence of secretory diarrhea. Enterotoxin-producing, but not control, E. coli, generated ST that activated colonic GUCY2C signaling, cyclic guanosine monophosphate (cGMP) production, and cGMP-dependent protein phosphorylation in colonized mice. Moreover, mice colonized with ST-producing E. coli exhibited a 50% reduction in carcinogen-induced colorectal tumor burden. Thus, chronic colonization with ETEC producing ST could contribute to endemic cancer resistance in developing countries, reinforcing a novel paradigm of colorectal cancer chemoprevention with oral GUCY2C-targeted agents.
Collapse
Affiliation(s)
- Peng Li
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Jieru E Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.
- University of Illinois Chicago School of Medicine, Chicago, IL 60612, USA.
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
49
|
Weinberg DS, Lin JE, Foster NR, Della'Zanna G, Umar A, Seisler D, Kraft WK, Kastenberg DM, Katz LC, Limburg PJ, Waldman SA. Bioactivity of Oral Linaclotide in Human Colorectum for Cancer Chemoprevention. Cancer Prev Res (Phila) 2017; 10:345-354. [PMID: 28396341 PMCID: PMC5758862 DOI: 10.1158/1940-6207.capr-16-0286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/31/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
Guanylate cyclase C (GUCY2C) is a tumor-suppressing receptor silenced by loss of expression of its luminocrine hormones guanylin and uroguanylin early in colorectal carcinogenesis. This observation suggests oral replacement with a GUCY2C agonist may be an effective targeted chemoprevention agent. Linaclotide is an FDA-approved oral GUCY2C agonist formulated for gastric release, inducing fluid secretion into the small bowel to treat chronic idiopathic constipation. The ability of oral linaclotide to induce a pharmacodynamic response in epithelial cells of the colorectum in humans remains undefined. Here, we demonstrate that administration of 0.87 mg of oral linaclotide daily for 7 days to healthy volunteers, after oral colon preparation with polyethylene glycol solution (MoviPrep), activates GUCY2C, resulting in accumulation of its product cyclic (c)GMP in epithelial cells of the cecum, transverse colon, and distal rectum. GUCY2C activation by oral linaclotide was associated with homeostatic signaling, including phosphorylation of vasodilator-stimulated phosphoprotein and inhibition of proliferation quantified by reduced Ki67-positive epithelial cells. In the absence of the complete oral colonoscopy preparation, linaclotide did not alter cGMP production in epithelial cells of the colorectum, demonstrating that there was an effect related to the laxative preparation. These data show that the current FDA-approved formulation of oral linaclotide developed for small-bowel delivery to treat chronic idiopathic constipation is inadequate for reliably regulating GUCY2C in the colorectum to prevent tumorigenesis. The study results highlight the importance of developing a novel GUCY2C agonist formulated for release and activity targeted to the large intestine for colorectal cancer prevention. Cancer Prev Res; 10(6); 345-54. ©2017 AACR.
Collapse
Affiliation(s)
- David S Weinberg
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jieru E Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nathan R Foster
- Mayo Foundation for Medical Education and Research, Mayo Clinic, Rochester, Minnesota
| | | | - Asad Umar
- Division of Cancer Prevention, NCI, NIH, Bethesda, Maryland
| | - Drew Seisler
- Mayo Foundation for Medical Education and Research, Mayo Clinic, Rochester, Minnesota
| | - Walter K Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David M Kastenberg
- Division of Gastroenterology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leo C Katz
- Division of Gastroenterology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paul J Limburg
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
50
|
Islam BN, Sharman SK, Hou Y, Bridges AE, Singh N, Kim S, Kolhe R, Trillo-Tinoco J, Rodriguez PC, Berger FG, Sridhar S, Browning DD. Sildenafil Suppresses Inflammation-Driven Colorectal Cancer in Mice. Cancer Prev Res (Phila) 2017; 10:377-388. [PMID: 28468928 DOI: 10.1158/1940-6207.capr-17-0015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022]
Abstract
Intestinal cyclic guanosine monophosphate (cGMP) signaling regulates epithelial homeostasis and has been implicated in the suppression of colitis and colon cancer. In this study, we investigated the cGMP-elevating ability of the phosphodiesterase-5 (PDE5) inhibitor sildenafil to prevent disease in the azoxymethane/dextran sulfate sodium (AOM/DSS) inflammation-driven colorectal cancer model. Treatment of mice with sildenafil activated cGMP signaling in the colon mucosa and protected against dextran-sulfate sodium (DSS)-induced barrier dysfunction. In mice treated with AOM/DSS, oral administration of sildenafil throughout the disease course reduced polyp multiplicity by 50% compared with untreated controls. Polyps that did form in sildenafil treated mice were less proliferative and more differentiated compared with polyps from untreated mice, but apoptosis was unaffected. Polyps in sildenafil treated mice were also less inflamed; they exhibited reduced myeloid-cell infiltration and reduced expression of iNOS, IFNγ, and IL6 compared with untreated controls. Most of the protection conferred by sildenafil was during the initiation stage of carcinogenesis (38% reduction in multiplicity). Administration of sildenafil during the later promotion stages did not affect multiplicity but had a similar effect on the polyp phenotype, including increased mucus production, and reduced proliferation and inflammation. In summary, the results demonstrate that oral administration of sildenafil suppresses polyp formation and inflammation in mice treated with AOM/DSS. This validation of PDE5 as a target highlights the potential therapeutic value of PDE5 inhibitors for the prevention of colitis-driven colon cancer in humans. Cancer Prev Res; 10(7); 377-88. ©2017 AACRSee related editorial by Piazza, p. 373.
Collapse
Affiliation(s)
- Bianca N Islam
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Yali Hou
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Allison E Bridges
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Sangmi Kim
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Ravindra Kolhe
- Department of Pathology, Section of Anatomic Pathology, Augusta University, Augusta, Georgia
| | | | | | - Franklin G Berger
- Department of Biology, University of South Carolina, Columbia, South Carolina
| | - Subbaramiah Sridhar
- Department of Medicine, Section of Gastroenterology and Hepatology, Augusta University, Augusta, Georgia
| | - Darren D Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.
| |
Collapse
|