1
|
Chrétien NM, Zenab Linda FN, Brice Junior NN, Marcelle Olga FY, Vanessa Mba MM, Stephanie Flore DN, Yacine Karelle MK, Elvira NA, Marius M, Gilbert A. Anti-inflammatory, anti-oxidant and anti-ulcer activities of aqueous lyophilizate of Markhamia lutea (Bignoniaceae). JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:248-257. [PMID: 38721816 DOI: 10.1515/jcim-2024-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES This work was carried out with a view to determining the antioxidant, anti-inflammatory and anti-ulcer properties of the aqueous lyophilized extract of Markhamia lutea. METHODS In vitro proteinases inhibition, albumin denaturation, hemolysis of red blood cells by heat, inhibition of the proton pump H+/K+ATPase, FRAP (Ferric reducing antioxidant power) and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays were performed. In vivo, cold water immersion-induced ulceration and methylene blue-induced ulceration was used to determine the anti-ulcer properties of the lyophilizate (100, 200 and 300 mg/kg). RESULTS In vitro, the lyophilizate (400 μg/mL) significantly inhibited protein denaturation (66.65 %), hemolysis of red blood cells (56.54 %), proteinase activity (69.22 %); then the IC50 was 26.31 μg/mL on proton pump activity. It has also developed a strong ferric reducing antioxidant power (EC50=52.96 mmol FeSO4/g) as well as free radicals scavenging activity (EC50=22.38 μg/mL). In vivo, the aqueous lyophilizate (200 and 300 mg/kg) protected the gastric mucosa (70.68 and 79.00 % protection respectively) and reduced (p<0.05) acetylcholine, calcium and corticosterone concentrations. A decrease in malondialdehyde level, an increased glutathione level and an increased in catalase and SOD activities were recorded. In the methylene blue test, it significantly increased gastric fluid pH, while reducing gastric volume and improving hematological parameters in ulcer animals. In addition, the histological sections show that the aqueous lyophilizate of M. lutea protected the gastric mucosa from the deleterious effects of stress. CONCLUSIONS The aqueous lyophilizate of M. lutea has anti-ulcer properties thanks to its anti-inflammatory, antioxidant and anti-secretory properties.
Collapse
Affiliation(s)
- Noungoua Mbeugangkeng Chrétien
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, 107819 University of Dschang , Douala, Cameroon
| | - Fagni Njoya Zenab Linda
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, 107819 University of Dschang , Douala, Cameroon
| | - Nzeumo Nziid Brice Junior
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, 107819 University of Dschang , Douala, Cameroon
| | - Feigni Youyi Marcelle Olga
- Laboratory of Biology and Physiology of Animal Organisms, Department of Biology of Animal Organisms, Faculty of Science, The University of Douala Cameroon, Douala, Cameroon
| | - Matah Marthe Vanessa Mba
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, 107819 University of Dschang , Douala, Cameroon
| | | | - Madjo Kouam Yacine Karelle
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, 107819 University of Dschang , Douala, Cameroon
| | - Ngoufack Azanze Elvira
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, 107819 University of Dschang , Douala, Cameroon
| | - Mbiantcha Marius
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, 107819 University of Dschang , Douala, Cameroon
| | - Ateufack Gilbert
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, 107819 University of Dschang , Douala, Cameroon
| |
Collapse
|
2
|
Chi ZC. Hedgehog/GLI and gastric cancer: Research progress and current status. Shijie Huaren Xiaohua Zazhi 2023; 31:389-396. [DOI: 10.11569/wcjd.v31.i10.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Hedgehog/GLI (Hh/GLI) is an important signaling pathway. It has been confirmed in various cancer studies that mutated or dysregulated Hh signals may be the behavioral phenotype of tumors, leading to the occurrence of various cancers. The abnormally activated Hh pathway endows tumor cells with a tendency to occur, proliferate, and migrate. In recent years, studies have found that the Hh signaling pathway induces gastric cancer (GC) invasion and epithelial mesenchymal transition. This article reviews the research progress and current status of Hh/GLI related to GC. Unveiling the new veil of GC occurrence will open a new approach for targeted therapy of this malignancy.
Collapse
|
3
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
4
|
Morphogen Signals Shaping the Gastric Glands in Health and Disease. Int J Mol Sci 2022; 23:ijms23073632. [PMID: 35408991 PMCID: PMC8998987 DOI: 10.3390/ijms23073632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022] Open
Abstract
The adult gastric mucosa is characterised by deep invaginations of the epithelium called glands. These tissue architectural elements are maintained with the contribution of morphogen signals. Morphogens are expressed in specific areas of the tissue, and their diffusion generates gradients in the microenvironment. Cells at different positions in the gland sense a specific combination of signals that instruct them to differentiate, proliferate, regenerate, or migrate. Differentiated cells perform specific functions involved in digestion, such as the production of protective mucus and the secretion of digestive enzymes or gastric acid. Biopsies from gastric precancerous conditions usually display tissue aberrations and change the shape of the glands. Alteration of the morphogen signalling microenvironment is likely to underlie those conditions. Furthermore, genes involved in morphogen signalling pathways are found to be frequently mutated in gastric cancer. We summarise the most recent findings regarding alterations of morphogen signalling during gastric carcinogenesis, and we highlight the new stem cell technologies that are improving our understanding of the regulation of human tissue shape.
Collapse
|
5
|
Sonic Hedgehog acts as a macrophage chemoattractant during regeneration of the gastric epithelium. NPJ Regen Med 2022; 7:3. [PMID: 35022438 PMCID: PMC8755719 DOI: 10.1038/s41536-021-00196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Sonic Hedgehog (Shh), secreted from gastric parietal cells, contributes to the regeneration of the epithelium. The recruitment of macrophages plays a central role in the regenerative process. The mechanism that regulates macrophage recruitment in response to gastric injury is largely unknown. Here we tested the hypothesis that Shh stimulates macrophage chemotaxis to the injured epithelium and contributes to gastric regeneration. A mouse model expressing a myeloid cell-specific deletion of Smoothened (LysMcre/+;Smof/f) was generated using transgenic mice bearing loxP sites flanking the Smo gene (Smo loxP) and mice expressing a Cre recombinase transgene from the Lysozyme M locus (LysMCre). Acetic acid injury was induced in the stomachs of both control and LysMcre/+;Smof/f (SmoKO) mice and gastric epithelial regeneration and macrophage recruitment analyzed over a period of 7 days post-injury. Bone marrow-derived macrophages (BM-Mø) were collected from control and SmoKO mice. Human-derived gastric organoid/macrophage co-cultures were established, and macrophage chemotaxis measured. Compared to control mice, SmoKO animals exhibited inhibition of ulcer repair and normal epithelial regeneration, which correlated with decreased macrophage infiltration at the site of injury. Bone marrow chimera experiments using SmoKO donor cells showed that control chimera mice transplanted with SmoKO bone marrow donor cells exhibited a loss of ulcer repair, and transplantation of control bone marrow donor cells to SmoKO mice rescued epithelial cell regeneration. Histamine-stimulated Shh secretion in human organoid/macrophage co-cultures resulted in macrophage migration toward the gastric epithelium, a response that was blocked with Smo inhibitor Vismodegib. Shh-induced macrophage migration was mediated by AKT signaling. In conclusion, Shh signaling acts as a macrophage chemoattractant via a Smo-dependent mechanism during gastric epithelial regeneration in response to injury.
Collapse
|
6
|
Ding L, Sontz EA, Saqui-Salces M, Merchant JL. Interleukin-1β Suppresses Gastrin via Primary Cilia and Induces Antral Hyperplasia. Cell Mol Gastroenterol Hepatol 2021; 11:1251-1266. [PMID: 33347972 PMCID: PMC8005816 DOI: 10.1016/j.jcmgh.2020.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection in humans typically begins with colonization of the gastric antrum. The initial Th1 response occasionally coincides with an increase in gastrin secretion. Subsequently, the gastritis segues to chronic atrophic gastritis, metaplasia, dysplasia and distal gastric cancer. Despite these well characterized clinical events, the link between inflammatory cytokines and non-cardia gastric cancer remains difficult to study in mouse models. Prior studies have demonstrated that overexpression of the Hedgehog (HH) effector GLI2 induces loss of gastrin (atrophy) and antral hyperplasia. To determine the link between specific cytokines, HH signaling and pre-neoplastic changes in the gastric antrum. METHODS Mouse lines were created to conditionally direct IL1β or IFN-γ to the antrum using the Gastrin-CreERT2 and Tet activator. Primary cilia, which transduces HH signaling, on G cells were disrupted by deleting the ciliary motor protein KIF3a. Phenotypic changes were assessed by histology and western blots. A subclone of GLUTag enteroendocrine cells selected for gastrin expression and the presence of primary cilia was treated with recombinant SHH, IL1β or IFN-γ with or without kif3a siRNA. RESULTS IFN-γ increased gastrin and induced antral hyperplasia. However, antral expression of IL1β suppressed tissue and serum gastrin, while also inducing antral hyperplasia. IFN-γ treatment of GLUTAg cells suppressed GLI2 and induced gastrin, without affecting cilia length. By contrast, IL1β treatment doubled primary cilia length, induced GLI2 and suppressed gastrin gene expression. Knocking down kif3a in GLUTAg cells mitigated SHH or IL1β suppression of gastrin. CONCLUSIONS Overexpression of IL1β in the antrum was sufficient to induce antral hyperplasia coincident with suppression of gastrin via primary cilia. ORCID: #0000-0002-6559-8184.
Collapse
Affiliation(s)
- Lin Ding
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan; Department of Medicine-Gastroenterology, University of Arizona, Tucson, Arizona
| | - Erica A Sontz
- Department of Medicine-Gastroenterology, University of Arizona, Tucson, Arizona
| | | | - Juanita L Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan; Department of Medicine-Gastroenterology, University of Arizona, Tucson, Arizona.
| |
Collapse
|
7
|
Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, Kefalov Y, He Z, Wang ZN, Mills JC. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell 2020; 26:910-925.e6. [PMID: 32243780 DOI: 10.1016/j.stem.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Cellular metabolism plays important functions in dictating stem cell behaviors, although its role in stomach epithelial homeostasis has not been evaluated in depth. Here, we show that the energy sensor AMP kinase (AMPK) governs gastric epithelial progenitor differentiation. Administering the AMPK activator metformin decreases epithelial progenitor proliferation and increases acid-secreting parietal cells (PCs) in mice and organoids. AMPK activation targets Krüppel-like factor 4 (KLF4), known to govern progenitor proliferation and PC fate choice, and PGC1α, which we show controls PC maturation after their specification. PC-specific deletion of AMPKα or PGC1α causes defective PC maturation, which could not be rescued by metformin. However, metformin treatment still increases KLF4 levels and suppresses progenitor proliferation. Thus, AMPK activates KLF4 in progenitors to reduce self-renewal and promote PC fate, whereas AMPK-PGC1α activation within the PC lineage promotes maturation, providing a potential suggestion for why metformin increases acid secretion and reduces gastric cancer risk in humans.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph R Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Luciana H Osaki
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Yan Kefalov
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zheng He
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Fujii T, Phutthatiraphap S, Shimizu T, Takeshima H, Sakai H. Non-morphogenic effect of Sonic Hedgehog on gastric H+,K+-ATPase activity. Biochem Biophys Res Commun 2019; 518:605-609. [DOI: 10.1016/j.bbrc.2019.08.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022]
|
9
|
Holokai L, Chakrabarti J, Broda T, Chang J, Hawkins JA, Sundaram N, Wroblewski LE, Peek RM, Wang J, Helmrath M, Wells JM, Zavros Y. Increased Programmed Death-Ligand 1 is an Early Epithelial Cell Response to Helicobacter pylori Infection. PLoS Pathog 2019; 15:e1007468. [PMID: 30703170 PMCID: PMC6380601 DOI: 10.1371/journal.ppat.1007468] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/19/2019] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) is the major risk factor for the development of gastric cancer. Our laboratory has reported that the Sonic Hedgehog (Shh) signaling pathway is an early response to infection that is fundamental to the initiation of H. pylori-induced gastritis. H. pylori also induces programmed death ligand 1 (PD-L1) expression on gastric epithelial cells, yet the mechanism is unknown. We hypothesize that H. pylori-induced PD-L1 expression within the gastric epithelium is mediated by the Shh signaling pathway during infection. To identify the role of Shh signaling as a mediator of H. pylori-induced PD-L1 expression, human gastric organoids generated from either induced pluripotent stem cells (HGOs) or tissue (huFGOs) were microinjected with bacteria and treated with Hedgehog/Gli inhibitor GANT61. Gastric epithelial monolayers generated from the huFGOs were also infected with H. pylori and treated with GANT61 to study the role of Hedgehog signaling as a mediator of induced PD-1 expression. A patient-derived organoid/autologous immune cell co-culture system infected with H. pylori and treated with PD-1 inhibitor (PD-1Inh) was developed to study the protective mechanism of PD-L1 in response to bacterial infection. H. pylori significantly increased PD-L1 expression in organoid cultures 48 hours post-infection when compared to uninfected controls. The mechanism was cytotoxic associated gene A (CagA) dependent. This response was blocked by pretreatment with GANT61. Anti-PD-L1 treatment of H. pylori infected huFGOs, co-cultured with autologous patient cytotoxic T lymphocytes and dendritic cells, induced organoid death. H. pylori-induced PD-L1 expression is mediated by the Shh signaling pathway within the gastric epithelium. Cells infected with H. pylori that express PD-L1 may be protected from the immune response, creating premalignant lesions progressing to gastric cancer.
Collapse
Affiliation(s)
- Loryn Holokai
- Department of Molecular Genetics, Biochemistry, and Microbiology, Cincinnati OH, United States of America
| | - Jayati Chakrabarti
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati OH, United States of America
| | - Taylor Broda
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH, United States of America
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati OH, United States of America
| | - Julie Chang
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati OH, United States of America
| | - Jennifer A. Hawkins
- Department of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati OH, United States of America
| | - Nambirajan Sundaram
- Department of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati OH, United States of America
| | - Lydia E. Wroblewski
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jiang Wang
- Department of Pathology and Lab Medicine, University of Cincinnati College of Medicine, Cincinnati OH, United States of America
| | - Michael Helmrath
- Department of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati OH, United States of America
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH, United States of America
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati OH, United States of America
| | - Yana Zavros
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati OH, United States of America
| |
Collapse
|
10
|
Abstract
Ever since its initial discovery in Drosophila, hedgehog signaling has been linked to foregut development, The mammalian genome expresses three Hedgehog paralogues, sonic hedgehog (Shh), Indian Hedgehog, and desert hedgehog. In the mucosa of the embryonic and adult foregut, Shh expression is the highest. It has now become clear that hedgehog signaling is of pivotal importance in gastric homeostasis. Aberrant activation of hedgehog signaling is associated with a range of pathological consequences including various cancers. Also in gastric cancer, clinical and preclinical data support a role of Hedgehog signaling in neoplastic transformation, and gastrointestinal cancer development, also through cancer stroma interaction. Technological advance are facilitating monitoring Hedgehog signaling broadening options for the more efficient screening of individuals predisposed to eventually developing gastric cancer and targeting Hedgehog signaling may provide opportunities for prophylactic therapy once atrophic gastritis develops. Nevertheless, convincing evidence that Hedgehog antagonists are of clinically useful in the context of gastric cancer is still conspicuously lacking. Here we analyze review the role of Hedgehog in gastric physiology and the potential usefulness of targeting Hedgehog signaling in gastric cancer.
Collapse
Affiliation(s)
- Adamu Ishaku Akyala
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University, Rotterdam, Rotterdam, The Netherlands.,Department of Microbiology, Faculty of Natural and Applied Sciences Nasarawa State University, Keffi, Nasarawa, Nigeria
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University, Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Ballweg R, Schozer F, Elliott K, Kuhn A, Spotts L, Aihara E, Zhang T. Multiscale positive feedbacks contribute to unidirectional gastric disease progression induced by helicobacter pylori infection. BMC SYSTEMS BIOLOGY 2017; 11:111. [PMID: 29166909 PMCID: PMC5700561 DOI: 10.1186/s12918-017-0497-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022]
Abstract
Background Helicobacter Pylori (HP) is the most common risk factor for gastric cancer. Nearly half the world’s population is infected with HP, but only a small percentage of those develop significant pathology. The bacteria itself does not directly cause cancer; rather it promotes an environment that is conducive to tumor formation. Upon infection, HP induces transcriptional changes in the host, leading to enhanced proliferation and host immune response. In addition, HP causes direct damage to gastric epithelial cells. Results We present a multiscale mechanistic model of HP induced changes. The model includes four modules representing the host transcriptional changes in response to infection, gastric atrophy, the Hedgehog pathway response, and the restriction point that controls cell cycle. This model was able to recapture a number of literature reported observations and was used as an “in silico” representation of the biological system for further analysis. Dynamical analysis of the model revealed that HP might induce the activation of multiple interplayed positive feedbacks, which in turn might result in a “ratchet ladder” system that promotes a unidirectional progression of gastric disease. Conclusions The current multiscale model is able to recapitulate the observed experimental features of HP host interactions and provides dynamic insights on the epidemiologically observed heterogeneity in disease progression. This model provides a solid framework that can be further expanded and validated to include additional experimental evidence, to understand the complex multi-pathway interactions characterizing HP infection, and to design novel treatment protocols for HP induced diseases. Electronic supplementary material The online version of this article (10.1186/s12918-017-0497-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Ballweg
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Frederick Schozer
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelsey Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander Kuhn
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Logan Spotts
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tongli Zhang
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Gómez-Santos L, Alonso E, Díaz-Flores L, Madrid JF, Sáez FJ. Characterization by Lectin Histochemistry of Two Subpopulations of Parietal Cells in the Rat Gastric Glands. J Histochem Cytochem 2017; 65:261-272. [PMID: 28438092 DOI: 10.1369/0022155417694871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parietal cells undergo a differentiation process while they move from the isthmus toward the pits and the base region of the gastric gland. The aim of this work was to analyze the rat gastric glands by lectin histochemistry to show the glycans expressed by upper (young) and lower (old) parietal cells. We used lectins recognizing the most frequent sugar moieties in mammals. Each lectin was assayed alone and in combination with several deglycosylation pretreatments: (1) β-elimination, which removes O-linked oligosaccharides; (2) incubation with Peptide-N-glycosidase F, to remove N-linked glycans; (3) acid hydrolysis, which removes terminal sialic acid moieties; (4) methylation-saponification, to remove sulfate groups from sugar residues; and (5) glucose oxidase, a technique carried out with the lectin concanavalin A to convert glucose into gluconic acid. The lectins from Helix pomatia, Dolichos biflorus (DBA), Glycine max (soybean), Maclura pomifera, Arachis hypogaea (peanut), Bandeiraea simplicifolia (lectin I-B4), and Datura stramonium showed a different glycan expression in the parietal cells throughout the gastric gland. This difference supports that parietal cells undergo a maturation/degeneration process while the cells descend along the gland. The role of DBA as a marker of parietal cells previously reported should be taken with caution because these cells showed different reactivity for the lectin, ranging from negative to strong labeling.
Collapse
Affiliation(s)
- Laura Gómez-Santos
- Department of Cell Biology and Histology, Training and Research Unit: Reproduction, Development, Aging and Cancer (TRU/UFI 11/44), School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain (LG-S, EA, FJS)
| | - Edurne Alonso
- Department of Cell Biology and Histology, Training and Research Unit: Reproduction, Development, Aging and Cancer (TRU/UFI 11/44), School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain (LG-S, EA, FJS)
| | - Lucio Díaz-Flores
- Department of Anatomy, Pathology, Histology and Radiology, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain (LD-F)
| | - Juan F Madrid
- Department of Cell Biology and Histology, Regional Campus of International Excellence "Campus Mare Nostrum," IMIB-Arrixaca, School of Medicine, University of Murcia, Espinardo, Murcia, Spain (JFM)
| | - Francisco J Sáez
- Department of Cell Biology and Histology, Training and Research Unit: Reproduction, Development, Aging and Cancer (TRU/UFI 11/44), School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain (LG-S, EA, FJS)
| |
Collapse
|
13
|
Wessler S, Krisch LM, Elmer DP, Aberger F. From inflammation to gastric cancer - the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun Signal 2017; 15:15. [PMID: 28427431 PMCID: PMC5397778 DOI: 10.1186/s12964-017-0171-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) are closely associated with the development of inflammatory disorders and neoplastic transformation of the gastric epithelium. Drastic changes in the micromilieu involve a complex network of H. pylori-regulated signal transduction pathways leading to the release of proinflammatory cytokines, gut hormones and a wide range of signaling molecules. Besides controlling embryonic development, the Hedgehog/GLI signaling pathway also plays important roles in epithelial proliferation, differentiation, and regeneration of the gastric physiology, but also in the induction and progression of inflammation and neoplastic transformation in H. pylori infections. Here, we summarize recent findings of H. pylori-associated Hedgehog/GLI signaling in gastric homeostasis, malignant development and the modulation of the gastric tumor microenvironment.
Collapse
Affiliation(s)
- Silja Wessler
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria.
| | - Linda M Krisch
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria
| | - Dominik P Elmer
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| | - Fritz Aberger
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria.
| |
Collapse
|
14
|
Su Y, Yuan Y, Feng S, Ma S, Wang Y. High frequency stimulation induces sonic hedgehog release from hippocampal neurons. Sci Rep 2017; 7:43865. [PMID: 28262835 PMCID: PMC5338313 DOI: 10.1038/srep43865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons.
Collapse
Affiliation(s)
- Yujuan Su
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Feng
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shaorong Ma
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Merchant JL, Ding L. Hedgehog Signaling Links Chronic Inflammation to Gastric Cancer Precursor Lesions. Cell Mol Gastroenterol Hepatol 2017; 3:201-210. [PMID: 28275687 PMCID: PMC5331830 DOI: 10.1016/j.jcmgh.2017.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
Abstract
Since its initial discovery in Drosophila, Hedgehog (HH) signaling has long been associated with foregut development. The mammalian genome expresses 3 HH ligands, with sonic hedgehog (SHH) levels highest in the mucosa of the embryonic foregut. More recently, interest in the pathway has shifted to improving our understanding of its role in gastrointestinal cancers. The use of reporter mice proved instrumental in our ability to probe the expression pattern of SHH ligand and the cell types responding to canonical HH signaling during homeostasis, inflammation, and neoplastic transformation. SHH is highly expressed in parietal cells and is required for these cells to produce gastric acid. Furthermore, myofibroblasts are the predominant cell type responding to HH ligand in the uninfected stomach. Chronic infection caused by Helicobacter pylori and associated inflammation induces parietal cell atrophy and the expansion of metaplastic cell types, a precursor to gastric cancer in human subjects. During Helicobacter infection in mice, canonical HH signaling is required for inflammatory cells to be recruited from the bone marrow to the stomach and for metaplastic development. Specifically, polarization of the invading myeloid cells to myeloid-derived suppressor cells requires the HH-regulated transcription factor GLI1, thereby creating a microenvironment favoring wound healing and neoplastic transformation. In mice, GLI1 mediates the phenotypic shift to gastric myeloid-derived suppressor cells by directly inducing Schlafen 4 (slfn4). However, the human homologs of SLFN4, designated SLFN5 and SLFN12L, also correlate with intestinal metaplasia and could be used as biomarkers to predict the subset of individuals who might progress to gastric cancer and benefit from treatment with HH antagonists.
Collapse
Key Words
- ATPase, adenosine triphosphatase
- DAMP, damage-associated molecular pattern
- DAMPs
- GLI, glioma-associated protein
- GLI1
- Gr-MDSC, granulocytic myeloid-derived suppressor cell
- HH, hedgehog
- HHIP, hedgehog-interacting protein
- IFN, interferon
- IL, interleukin
- MDSC, myeloid-derived suppressor cell
- MDSCs
- Metaplasia
- Mo-MDSC, monocytic myeloid-derived suppressor cell
- PTCH, Patched
- SHH
- SHH, sonic hedgehog
- SLFN4, Schlafen 4
- SMO, Smoothened
- SP, spasmolytic polypeptide
- SPEM
- SPEM, spasmolytic polypeptide–expressing mucosa
- SST, somatostatin
- TLR, Toll-like receptor
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Juanita L. Merchant, MD, PhD, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200. fax: (734) 763-4686.University of Michigan109 Zina Pitcher PlaceAnn ArborMichigan 48109-2200
| | - Lin Ding
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Konstantinou D, Bertaux-Skeirik N, Zavros Y. Hedgehog signaling in the stomach. Curr Opin Pharmacol 2016; 31:76-82. [PMID: 27750091 PMCID: PMC5154826 DOI: 10.1016/j.coph.2016.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease, and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration, and disease.
Collapse
Affiliation(s)
- Daniel Konstantinou
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Zhang G, Ducatelle R, Mihi B, Smet A, Flahou B, Haesebrouck F. Helicobacter suis affects the health and function of porcine gastric parietal cells. Vet Res 2016; 47:101. [PMID: 27756386 PMCID: PMC5070140 DOI: 10.1186/s13567-016-0386-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
The stomach of pigs at slaughter age is often colonized by Helicobacter (H.) suis, which is also the most prevalent gastric non-H. pylori Helicobacter (NHPH) species in humans. It is associated with chronic gastritis, gastric ulceration and other gastric pathological changes in both hosts. Parietal cells are highly specialized, terminally differentiated epithelial cells responsible for gastric acid secretion and regulation. Dysfunction of these cells is closely associated with gastric pathology and disease. Here we describe a method for isolation and culture of viable and responsive parietal cells from slaughterhouse pigs. In addition, we investigated the interactions between H. suis and gastric parietal cells both in H. suis-infected six-month-old slaughter pigs, as well as in our in vitro parietal cell model. A close interaction of H. suis and parietal cells was observed in the fundic region of stomachs from H. suis positive pigs. The bacterium was shown to be able to directly interfere with cultured porcine parietal cells, causing a significant impairment of cell viability. Transcriptional levels of Atp4a, essential for gastric acid secretion, showed a trend towards an up-regulation in H. suis positive pigs compared to H. suis-negative pigs. In addition, sonic hedgehog, an important factor involved in gastric epithelial differentiation, gastric mucosal repair, and stomach homeostasis, was also significantly up-regulated in H. suis positive pigs. In conclusion, this study describes a successful approach for the isolation and culture of porcine gastric parietal cells. The results indicate that H. suis affects the viability and function of this cell type.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium. .,Department of Molecular and Cell Biology, University of California, Berkeley, USA.
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Belgacem Mihi
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
18
|
Zhou D, Tan RJ, Liu Y. Sonic hedgehog signaling in kidney fibrosis: a master communicator. SCIENCE CHINA. LIFE SCIENCES 2016; 59:920-929. [PMID: 27333788 PMCID: PMC5540157 DOI: 10.1007/s11427-016-0020-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/06/2016] [Indexed: 11/25/2022]
Abstract
The hedgehog signaling cascade is an evolutionarily conserved pathway that regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis. As the best studied member of three hedgehog ligands, sonic hedgehog (Shh) is known to be associated with kidney development and tissue repair after various insults. Recent studies uncover an intrinsic link between dysregulated Shh signaling and renal fibrogenesis. In various types of chronic kidney disease (CKD), Shh is upregulated specifically in renal tubular epithelium but targets interstitial fibroblasts, thereby mediating a dynamic epithelial- mesenchymal communication (EMC). Tubule-derived Shh acts as a growth factor for interstitial fibroblasts and controls a hierarchy of fibrosis-related genes, which lead to the excessive deposition of extracellular matrix in renal interstitium. In this review, we recapitulate the principle of Shh signaling, its activation and regulation in a variety of kidney diseases. We also discuss the potential mechanisms by which Shh promotes renal fibrosis and assess the efficacy of blocking this signaling in preclinical settings. Continuing these lines of investigations will provide novel opportunities for designing effective therapies to improve CKD prognosis in patients.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | - Roderick J Tan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA.
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Recapitulating Human Gastric Cancer Pathogenesis: Experimental Models of Gastric Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:441-78. [PMID: 27573785 DOI: 10.1007/978-3-319-41388-4_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the various experimental models to study gastric cancer pathogenesis, with the role of genetically engineered mouse models (GEMMs) used as the major examples. We review differences in human stomach anatomy compared to the stomachs of the experimental models, including the mouse and invertebrate models such as Drosophila and C. elegans. The contribution of major signaling pathways, e.g., Notch, Hedgehog, AKT/PI3K is discussed in the context of their potential contribution to foregut tumorigenesis. We critically examine the rationale behind specific GEMMs, chemical carcinogens, dietary promoters, Helicobacter infection, and direct mutagenesis of relevant oncogenes and tumor suppressor that have been developed to study gastric cancer pathogenesis. Despite species differences, more efficient and effective models to test specific genes and pathways disrupted in human gastric carcinogenesis have yet to emerge. As we better understand these species differences, "humanized" versions of mouse models will more closely approximate human gastric cancer pathogenesis. Towards that end, epigenetic marks on chromatin, the gut microbiota, and ways of manipulating the immune system will likely move center stage, permitting greater overlap between rodent and human cancer phenotypes thus providing a unified progression model.
Collapse
|
20
|
Feng R, Aihara E, Kenny S, Yang L, Li J, Varro A, Montrose MH, Shroyer NF, Wang TC, Shivdasani RA, Zavros Y. Indian Hedgehog mediates gastrin-induced proliferation in stomach of adult mice. Gastroenterology 2014; 147:655-666.e9. [PMID: 24859162 PMCID: PMC4211430 DOI: 10.1053/j.gastro.2014.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Loss of expression of Sonic Hedgehog (Shh) from parietal cells results in hypergastrinemia in mice, accompanied by increased expression of Indian Hedgehog (Ihh) and hyperproliferation of surface mucous cells. We investigated whether hypergastrinemia induces gastric epithelial proliferation by activating Ihh signaling in mice. METHODS We studied mice with parietal cell-specific deletion of Shh (PC-Shh(KO)) and hypergastrinemia, crossed with gastrin-deficient (GKO) mice (PC-Shh(KO)/GKO). When mice were 3-4 months old, gastric tissues were collected and analyzed by histology, for incorporation of bromodeoxyuridine, and for expression of the surface mucous cell marker Ulex europaeus. PC-Shh(KO)/GKO mice were given gastrin infusions for 7 days; gastric surface epithelium was collected and expression of Ihh was quantified by laser capture microdissection followed by quantitative reverse transcriptase polymerase chain reaction. Mouse stomach-derived organoids were incubated with or without inhibitors of WNT (DKK1) or Smoothened (vismodegib) and then cocultured with immortalized stomach mesenchymal cells, to assess proliferative responses to gastrin. RESULTS Gastric tissues from PC-Shh(KO)/GKO mice with hypergastrinemia had an expanded surface pit epithelium, indicated by a significant increase in numbers of bromodeoxyuridine- and Ulex europaeus-positive cells, but there was no evidence for hyperproliferation. Gastrin infusion of PC PC-Shh(KO)/GKO mice increased expression of Ihh and proliferation within the surface epithelium compared with mice given infusions of saline. In gastric organoids cocultured with immortalized stomach mesenchymal cells, antagonists of WNT and Smoothened inhibited gastrin-induced proliferation and WNT activity. Activity of WNT in media collected from immortalized stomach mesenchymal cells correlated with increased expression of glioma-associated oncogene homolog 1, and was inhibited by DKK1 or vismodegib. CONCLUSIONS Ihh signaling mediates gastrin-induced proliferation of epithelial cells in stomachs of adult mice.
Collapse
Affiliation(s)
- Rui Feng
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Susan Kenny
- The Physiological Laboratory, School of Biomedical Sciences, Crown Street, University of Liverpool, Liverpool, UK
| | - Li Yang
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Jing Li
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Andrea Varro
- The Physiological Laboratory, School of Biomedical Sciences, Crown Street, University of Liverpool, Liverpool, UK
| | - Marshall H. Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Noah F. Shroyer
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, USA
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, NY, USA
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
21
|
El-Zaatari M, Kao JY, Tessier A, Bai L, Hayes MM, Fontaine C, Eaton KA, Merchant JL. Gli1 deletion prevents Helicobacter-induced gastric metaplasia and expansion of myeloid cell subsets. PLoS One 2013; 8:e58935. [PMID: 23520544 PMCID: PMC3592845 DOI: 10.1371/journal.pone.0058935] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/08/2013] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation in the stomach induces metaplasia, the pre-cancerous lesion that precedes inflammation-driven neoplastic transformation. While Hedgehog signaling contributes to the initiation of some cancers, its role in gastric transformation remains poorly defined. We found that Helicobacter-infected C57BL/6 mice develop extensive mucous cell metaplasia at 6 month but not at 2 months post-infection. Gastric metaplasia coincided with the appearance of CD45+MHCII+CD11b+CD11c+ myeloid cells that were normally not present in the chronic gastritis at 2 months. The myeloid regulatory gene Schlafen-4 was identified in a microarray analysis comparing infected WT versus Gli1 null mice and was expressed in the CD11b+CD11c+ myeloid population. Moreover this same population expressed IL-1β and TNFα pro-inflammatory cytokines. By 6 months, the mucous neck cell metaplasia (SPEM) expressed IL-6, phosphorylated STAT3 and the proliferative marker Ki67. Expression was not observed in Gli1 mutant mice consistent with the requirement of Gli1 to induce this pre-neoplastic phenotype. Ectopic Shh ligand expression alone was not sufficient to induce SPEM, but with Helicobacter infection synergistically increased the histologic severity observed with the inflammation. Therefore Hedgehog signaling is required, but is not sufficient to generate pre-neoplastic changes during chronic gastritis. Gli1-dependent myeloid cell differentiation plays a pivotal role in the appearance of myeloid cell subtypes ostensibly required for SPEM development. Moreover, it suggests that therapies capable of targeting this phenotypic switch might prevent progression to metaplasia, the pre-neoplastic change that develops prior to dysplasia and gastric cancer, which also occurs in other epithelial-derived neoplasias initiated by chronic inflammation.
Collapse
Affiliation(s)
- Mohamad El-Zaatari
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John Y. Kao
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Art Tessier
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Longchuan Bai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael M. Hayes
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Clinton Fontaine
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathryn A. Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Juanita L. Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sokolova O, Vieth M, Naumann M. Protein kinase C isozymes regulate matrix metalloproteinase-1 expression and cell invasion in Helicobacter pylori infection. Gut 2013; 62:358-67. [PMID: 22442164 PMCID: PMC3585490 DOI: 10.1136/gutjnl-2012-302103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein kinase C (PKC) signalling is often dysregulated in gastric cancer and therefore represents a potential target in cancer therapy. The Gram-negative bacterium Helicobacter pylori, which colonises the human stomach, plays a major role in the development of gastritis, peptic ulcer and gastric adenocarcinoma. OBJECTIVE To analyse the role of PKC isozymes as mediators of H pylori-induced pathogenesis. METHODS PKC phosphorylation was evaluated by immunoblotting and immunohistochemistry. Gene reporter assays, RT-PCR and invasion assays were performed to assess the role of PKC in the regulation of activator protein-1 (AP-1), matrix metalloproteinase-1 (MMP-1) and the invasion of H pylori-infected epithelial cells. RESULTS H pylori induced phosphorylation of PKC isozymes α, δ, θ in AGS cells, which was accompanied by the phosphorylation of PKC substrates, including PKCμ and myristoylated alanine-rich C kinase substrate (MARCKS), in a CagA-independent manner. Phospholipase C, phosphatidylinositol 3-kinase and Ca(2+) were crucial for PKC activation on infection; inhibition of PKC diminished AP-1 induction and, subsequently, MMP-1 expression. Invasion assays confirmed PKC involvement in H pylori-induced MMP-1 secretion. In addition, analysis of biopsies from human gastric mucosa showed increased phosphorylation of PKC in active H pylori gastritis and gastric adenocarcinoma. CONCLUSION The targeting of certain PKC isozymes might represent a suitable strategy to interfere with the MMP-1-dependent remodelling of infected tissue and to overcome the invasive behaviour of gastric cancer cells.
Collapse
Affiliation(s)
- Olga Sokolova
- Medical Faculty, Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
23
|
El-Zaatari M, Daignault S, Tessier A, Kelsey G, Travnikar LA, Cantu EF, Lee J, Plonka CM, Simeone DM, Anderson MA, Merchant JL. Plasma Shh levels reduced in pancreatic cancer patients. Pancreas 2012; 41:1019-28. [PMID: 22513293 PMCID: PMC3404255 DOI: 10.1097/mpa.0b013e31824a0eeb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Normally, sonic hedgehog (Shh) is expressed in the pancreas during fetal development and transiently after tissue injury. Although pancreatic cancers express Shh, it is not known if the protein is secreted into the blood and whether its plasma levels change with pancreatic transformation. The goal of this study was to develop an enzyme-linked immunosorbent assay to detect human Shh in blood and determine its levels in subjects with and without pancreatic cancer. METHODS A human Shh enzyme-linked immunosorbent assay was developed, and plasma Shh levels were measured in blood samples from healthy subjects and patients with pancreatitis or pancreatic cancer. The biological activity of plasma Shh was tested using NIH-3T3 cells. RESULTS The mean levels of Shh in human blood were lower in patients with pancreatitis and pancreatic cancer than in healthy subjects. Hematopoietic cells did not express Shh, suggesting that Shh is secreted into the bloodstream. Plasma fractions enriched with Shh did not induce Gli-1 messenger RNA, suggesting that the protein was not biologically active. CONCLUSIONS Shh is secreted from tissues and organs into the circulation, but its activity is blocked by plasma proteins. Reduced plasma levels were found in pancreatic cancer patients, but alone were not sufficient to predict pancreatic cancer.
Collapse
Affiliation(s)
- Mohamad El-Zaatari
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | | | - Art Tessier
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Gail Kelsey
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Lisa A. Travnikar
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Esperanza F. Cantu
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Jamie Lee
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Caitlyn M. Plonka
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | | | - Michelle A. Anderson
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI,Correspondence: Juanita L. Merchant, M.D., Ph.D., 109 Zina Pitcher Place, BSRB, Rm. 2051, Ann Arbor, MI 48109-2200, Phone: (734) 647-2944, Fax: (734) 736-4686,
| |
Collapse
|
24
|
Protein kinase C-δ (PKC-δ) and PKC-α mediate Ca2+-dependent increases in CNP mRNA in human vascular cells. Vascul Pharmacol 2012; 57:98-104. [DOI: 10.1016/j.vph.2012.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/04/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022]
|
25
|
Yang L, Su X, Xie J. Activation of Hedgehog pathway in gastrointestinal cancers. VITAMINS AND HORMONES 2012; 88:461-72. [PMID: 22391316 DOI: 10.1016/b978-0-12-394622-5.00020-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog (Hh) pathway is a major regulator for cell differentiation, tissue polarity, and cell proliferation in embryonic development and homeostasis in adult tissue. Studies from many laboratories reveal activation of this pathway in a variety of human cancer, including basal cell carcinomas (BCCs), medulloblastomas, leukemia, gastrointestinal, lung, ovarian, breast, and prostate cancers. It is thus believed that targeted inhibition of Hh signaling may be effective in treatment and prevention of human cancer. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. In this review, we summarize major advances in the past 2 years in our understanding of Hh signaling activation in human gastrointestinal cancer and their potential in clinical treatment with Hh pathway inhibitors.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Research Center of the Affiliated Hospital, Inner Mongolia Medical College, Hohhot, Inner Mongolia, China
| | | | | |
Collapse
|
26
|
The role of Sonic Hedgehog as a regulator of gastric function and differentiation. VITAMINS AND HORMONES 2012; 88:473-489. [PMID: 22391317 DOI: 10.1016/b978-0-12-394622-5.00021-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Hedgehog (Hh) genes play a key role in the regulation of embryonic development and govern processes such as cell differentiation, cell proliferation, and tissue patterning. In vertebrate embryos, Hh gene expression regulates correct formation of limbs, skeleton, muscles, and organs including stomach. In the adult, the Hh pathway functions in tissue repair and regeneration, along with maintenance of stem cells. Sonic Hedgehog (Shh) signaling has been extensively studied for its role in developmental and cancer biology. Recent advances in the field of gastroenterology show that in the stomach, Shh is responsible for proper differentiation of the gastric glands. The aberrant activity of the Shh signaling pathway leads to an altered gastric differentiation program and loss of gastric acid secretion that is the predominant function of the stomach. In this chapter, we review the most recent findings that reveal the role of Shh as a regulator of gastric function and differentiation and how this signaling is dysregulated during the development of gastric cancer in response bacterial infection.
Collapse
|
27
|
Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA. Noncanonical Hedgehog signaling. VITAMINS AND HORMONES 2012; 88:55-72. [PMID: 22391299 DOI: 10.1016/b978-0-12-394622-5.00003-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The notion of noncanonical hedgehog (Hh) signaling in mammals has started to receive support from numerous observations. By noncanonical, we refer to all those cellular and tissue responses to any of the Hh isoforms that are independent of transcriptional changes mediated by the Gli family of transcription factors. In this chapter, we discuss the most recent findings that suggest that Patched1 can regulate cell proliferation and apoptosis independently of Smoothened (Smo) and Gli and the reports that Smo modulates actin cytoskeleton-dependent processes such as fibroblast migration, endothelial cell tubulogenesis, axonal extension, and neurite formation by diverse mechanisms that exclude any involvement of Gli-dependent transcription. We also acknowledge the existence of less stronger evidence of noncanonical signaling in Drosophila.
Collapse
Affiliation(s)
- Donna Brennan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The Hedgehog pathway is one of the most common signal transduction pathways used by mammalian cells. Most studies have focused on its role during development, primarily of the nervous system, skin, bone and pancreas. Due to the activation of this pathway during proliferation and neoplastic transformation, more recent studies have examined its role in adult tissues. Significant levels of sonic hedgehog are expressed in the gastric mucosa, which has served to direct analysis of its role during organogenesis, gastric acid secretion and neoplastic transformation. Therefore the goal of this review is to apply current knowledge of this pathway to further our understanding of gastrointestinal physiology and neoplasia, using the stomach as a prototype.
Collapse
Affiliation(s)
- Juanita L Merchant
- Internal Medicine, 109 Zina Pitcher PL, BSRB, 2051, University of Michigan, Ann Arbor, MI 48105-2200, USA.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The review summarizes the past year's literature regarding the regulation of gastric exocrine and endocrine secretion, both basic science and clinical. RECENT FINDINGS Gastric acid secretion is an elaborate and dynamic process that is regulated by neural (efferent and afferent), hormonal (e.g. gastrin), and paracrine (e.g. histamine, ghrelin, somatostatin) pathways as well as mechanical (e.g. distension) and chemical (e.g. amino acids) stimuli. Secretion of hydrochloric acid (HCl) by parietal cells involves translocation of HK-ATPase-containing cytoplasmic tubulovesicles to the apical membrane with subsequent electroneutral transport of hydronium ions in exchange for potassium. The main apical potassium channel is KCNQ1 which, when activated, assembles with its β-subunit KCNE2 to function as a constitutively open, voltage-insensitive, and acid-resistant luminal potassium channel. Proton pump inhibitors block acid secretion by covalently binding to cysteine residues accessible from the luminal surface of the HK-ATPase. Potassium-competitive ATPase blockers (P-CABs) act by competing for K on the luminal surface of HK-ATPase. As they are acid-stable and do not require acid-dependent activation, P-CABs hold promise for rapid and prolonged inhibition of acid secretion. SUMMARY We continue to make progress in our understanding of the physiologic regulation of gastric acid secretion. A better understanding of the pathways and mechanisms regulating acid secretion should lead to improved management of patients with acid-induced disorders.
Collapse
|
30
|
|