1
|
Chen M, Wang T, Tian D, Hai C, Qiu Z. Induction, growth, drug resistance, and metastasis: A comprehensive summary of the relationship between STAT3 and gastric cancer. Heliyon 2024; 10:e37263. [PMID: 39309860 PMCID: PMC11416542 DOI: 10.1016/j.heliyon.2024.e37263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Gastric cancer is a prevalent and highly lethal malignancy that poses substantial challenges to healthcare systems globally. Owing to its often asymptomatic nature in early stages, diagnosis frequently occurs at advanced stages when surgical intervention is no longer a viable option, forcing most patients to rely on nonsurgical treatments such as chemotherapy, targeted therapies, and emerging immunotherapies. Unfortunately, the therapeutic response rates for these treatments are suboptimal, and even among responders, the eventual development of drug resistance remains a significant clinical hurdle. Signal transducer and activator of transcription 3 (STAT3) is a widely expressed cellular protein that plays crucial roles in regulating cellular processes such as growth, metabolism, and immune function. Aberrant activation of the STAT3 pathway has been implicated in the initiation, progression, and therapeutic resistance of several cancers, with gastric cancer being particularly affected. Dysregulated STAT3 signaling not only drives tumorigenesis but also facilitates the development of resistance to chemotherapy and targeted therapies, as well as promotes metastatic dissemination. In this study, we explored the critical role of the STAT3 signaling cascade in the pathogenesis of gastric cancer, its contribution to drug resistance, and its involvement in the metastatic process. Furthermore, we assess recent advances in the development of STAT3 inhibitors and their potential application as therapeutic agents in the treatment of gastric cancer. This work provides a comprehensive overview of the current understanding of STAT3 in gastric cancer and offers a foundation for future research aimed at improving therapeutic outcomes in this challenging disease.
Collapse
Affiliation(s)
- Muyang Chen
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Tongshan Wang
- Gastric Cancer Center, Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dianzhe Tian
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaorui Hai
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zixuan Qiu
- School of Public Health, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhao Y, Li S, Zhu L, Huang M, Xie Y, Song X, Chen Z, Lau HCH, Sung JJY, Xu L, Yu J, Li X. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep Med 2024; 5:101627. [PMID: 38964315 PMCID: PMC11293329 DOI: 10.1016/j.xcrm.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The efficacy of chemotherapy varies significantly among patients with gastric cancer (GC), and there is currently no effective strategy to predict chemotherapeutic outcomes. In this study, we successfully establish 57 GC patient-derived organoids (PDOs) from 73 patients with GC (78%). These organoids retain histological characteristics of their corresponding primary GC tissues. GC PDOs show varied responses to different chemotherapeutics. Through RNA sequencing, the upregulation of tumor suppression genes/pathways is identified in 5-fluorouracil (FU)- or oxaliplatin-sensitive organoids, whereas genes/pathways associated with proliferation and invasion are enriched in chemotherapy-resistant organoids. Gene expression biomarker panels, which could distinguish sensitive and resistant patients to 5-FU and oxaliplatin (area under the dose-response curve [AUC] >0.8), are identified. Moreover, the drug-response results in PDOs are validated in patient-derived organoids-based xenograft (PDOX) mice and are consistent with the actual clinical response in 91.7% (11/12) of patients with GC. Assessing chemosensitivity in PDOs can be utilized as a valuable tool for screening chemotherapeutic drugs in patients with GC.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangru Li
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingle Huang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinming Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Harry Cheuk-Hay Lau
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao-Yiu Sung
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Zaryouh H, De Pauw I, Baysal H, Melis J, Van den Bossche V, Hermans C, Lau HW, Lambrechts H, Merlin C, Corbet C, Peeters M, Vermorken JB, De Waele J, Lardon F, Wouters A. Establishment of head and neck squamous cell carcinoma mouse models for cetuximab resistance and sensitivity. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:709-728. [PMID: 38239393 PMCID: PMC10792481 DOI: 10.20517/cdr.2023.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/22/2024]
Abstract
Aim: Acquired resistance to the targeted agent cetuximab poses a significant challenge in finding effective anti-cancer treatments for head and neck squamous cell carcinoma (HNSCC). To accurately study novel combination treatments, suitable preclinical mouse models for cetuximab resistance are key yet currently limited. This study aimed to optimize an acquired cetuximab-resistant mouse model, with preservation of the innate immunity, ensuring intact antibody-dependent cellular cytotoxicity (ADCC) functionality. Methods: Cetuximab-sensitive and acquired-resistant HNSCC cell lines, generated in vitro, were subcutaneously engrafted in Rag2 knock-out (KO), BALB/c Nude and CB17 Scid mice with/without Matrigel or Geltrex. Once tumor growth was established, mice were intraperitoneally injected twice a week with cetuximab for a maximum of 3 weeks. In addition, immunohistochemistry was used to evaluate the tumor and its microenvironment. Results: Despite several adjustments in cell number, cell lines and the addition of Matrigel, Rag2 KO and BALB/C Nude mice proved to be unsuitable for xenografting our HNSCC cell lines. Durable tumor growth of resistant SC263-R cells could be induced in CB17 Scid mice. However, these cells had lost their resistance phenotype in vivo. Immunohistochemistry revealed a high infiltration of macrophages in cetuximab-treated SC263-R tumors. FaDu-S and FaDu-R cells successfully engrafted into CB17 Scid mice and maintained their sensitivity/resistance to cetuximab. Conclusion: We have established in vivo HNSCC mouse models with intact ADCC functionality for cetuximab resistance and sensitivity using the FaDu-R and FaDu-S cell lines, respectively. These models serve as valuable tools for investigating cetuximab resistance mechanisms and exploring novel drug combination strategies.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Jöran Melis
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Valentin Van den Bossche
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels B-1200, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Céline Merlin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
- Department of Medical Oncology, Antwerp University Hospital, Edegem 2650, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
- Department of Medical Oncology, Antwerp University Hospital, Edegem 2650, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
- The authors contributed equally
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
- The authors contributed equally
| |
Collapse
|
4
|
Islam MO, Thangaretnam K, Lu H, Peng D, Soutto M, El-Rifai W, Giordano S, Ban Y, Chen X, Bilbao D, Villarino AV, Schürer S, Hosein PJ, Chen Z. Smoking induces WEE1 expression to promote docetaxel resistance in esophageal adenocarcinoma. Mol Ther Oncolytics 2023; 30:286-300. [PMID: 37732296 PMCID: PMC10507159 DOI: 10.1016/j.omto.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) patients have poor clinical outcomes, with an overall 5-year survival rate of 20%. Smoking is a significant risk factor for EAC. The role of WEE1, a nuclear kinase that negatively regulates the cell cycle in normal conditions, in EAC tumorigenesis and drug resistance is not fully understood. Immunohistochemistry staining shows significant WEE1 overexpression in human EAC tissues. Nicotine, nicotine-derived nitrosamine ketone, or 2% cigarette smoke extract treatment induces WEE1 protein expression in EAC, detected by western blot and immunofluorescence staining. qRT-PCR and reporter assay indicates that smoking induces WEE1 expression through miR-195-5p downregulation in EAC. ATP-Glo cell viability and clonogenic assay confirmed that WEE1 inhibition sensitizes EAC cells to docetaxel treatment in vitro. A TE-10 smoking machine with EAC patient-derived xenograft mouse model demonstrated that smoking induces WEE1 protein expression and resistance to docetaxel in vivo. MK-1775 and docetaxel combined treatment improves EAC patient-derived xenograft mouse survival in vivo. Our findings demonstrate, for the first time, that smoking-induced WEE1 overexpression through miRNA dysregulation in EAC plays an essential role in EAC drug resistance. WEE1 inhibition is a promising therapeutic method to overcome drug resistance and target treatment refractory cancer cells.
Collapse
Affiliation(s)
- Md Obaidul Islam
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Krishnapriya Thangaretnam
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Heng Lu
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Mohammed Soutto
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL 33136, USA
| | - Silvia Giordano
- University of Torino, Candiolo Cancer Institute - FPO, IRCCS, 10060 Candiolo, Italy
| | - Yuguang Ban
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xi Chen
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alejandro V. Villarino
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephan Schürer
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
| | - Peter J. Hosein
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Zheng Chen
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Alam SK, Wang L, Zhu Z, Hoeppner LH. IKKα promotes lung adenocarcinoma growth through ERK signaling activation via DARPP-32-mediated inhibition of PP1 activity. NPJ Precis Oncol 2023; 7:33. [PMID: 36966223 PMCID: PMC10039943 DOI: 10.1038/s41698-023-00370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/08/2023] [Indexed: 03/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 80-85% cases of lung cancer cases. Diagnosis at advanced stages is common, after which therapy-refractory disease progression frequently occurs. Therefore, a better understanding of the molecular mechanisms that control NSCLC progression is necessary to develop new therapies. Overexpression of IκB kinase α (IKKα) in NSCLC correlates with poor patient survival. IKKα is an NF-κB-activating kinase that is important in cell survival and differentiation, but its regulation of oncogenic signaling is not well understood. We recently demonstrated that IKKα promotes NSCLC cell migration by physically interacting with dopamine- and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32), and its truncated splice variant, t-DARPP. Here, we show that IKKα phosphorylates DARPP-32 at threonine 34, resulting in DARPP-32-mediated inhibition of protein phosphatase 1 (PP1), subsequent inhibition of PP1-mediated dephosphorylation of ERK, and activation of ERK signaling to promote lung oncogenesis. Correspondingly, IKKα ablation in human lung adenocarcinoma cells reduced their anchorage-independent growth in soft agar. Mice challenged with IKKα-ablated HCC827 cells exhibited less lung tumor growth than mice orthotopically administered control HCC827 cells. Our findings suggest that IKKα drives NSCLC growth through the activation of ERK signaling via DARPP-32-mediated inhibition of PP1 activity.
Collapse
Affiliation(s)
- Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zhu Zhu
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Larsen ME, Lyu H, Liu B. HER3-targeted therapeutic antibodies and antibody-drug conjugates in non-small cell lung cancer refractory to EGFR-tyrosine kinase inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:11-17. [PMID: 39170873 PMCID: PMC11332908 DOI: 10.1016/j.pccm.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 08/23/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3) is a unique member of the human epidermal growth factor receptor (HER/EGFR) family, since it has negligible kinase activity. Therefore, HER3 must interact with a kinase-proficient receptor to form a heterodimer, leading to the activation of signaling cascades. Overexpression of HER3 is observed in various human cancers, including non-small cell lung cancer (NSCLC), and correlates with poor clinical outcomes in patients. Studies on the underlying mechanism demonstrate that HER3-initiated signaling promotes tumor metastasis and causes treatment failure in human cancers. Upregulation of HER3 is frequently observed in EGFR-mutant NSCLC treated with EGFR-tyrosine kinase inhibitors (TKIs). Increased expression of HER3 triggers the so-called EGFR-independent mechanism via interactions with other receptors to activate "bypass signaling pathways", thereby resulting in resistance to EGFR-TKIs. To date, no HER3-targeted therapy has been approved for cancer treatment. In both preclinical and clinical studies, targeting HER3 with a blocking antibody (Ab) is the only strategy being examined. Recent evaluations of an anti-HER3 Ab-drug conjugate (ADC) show promising results in patients with EGFR-TKI-resistant NSCLC. Herein, we summarize our understanding of the unique biology of HER3 in NSCLC refractory to EGFR-TKIs, with a focus on its dimerization partners and subsequent activation of signaling pathways. We also discuss the latest development of the therapeutic Abs and ADCs targeting HER3 to abrogate EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Margaret E. Larsen
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Lu H, Gomaa A, Wang-Bishop L, Ballout F, Hu T, McDonald O, Washington MK, Livingstone AS, Wang TC, Peng D, El-Rifai W, Chen Z. Unfolded Protein Response Is Activated by Aurora Kinase A in Esophageal Adenocarcinoma. Cancers (Basel) 2022; 14:1401. [PMID: 35326553 PMCID: PMC8946061 DOI: 10.3390/cancers14061401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Unfolded protein response (UPR) protects malignant cells from endoplasmic reticulum stress-induced apoptosis. We report that Aurora kinase A (AURKA) promotes cancer cell survival by activating UPR in esophageal adenocarcinoma (EAC). A strong positive correlation between AURKA and binding immunoglobulin protein (BIP) mRNA expression levels was found in EACs. The in vitro assays indicated that AURKA promoted IRE1α protein phosphorylation, activating prosurvival UPR in FLO-1 and OE33 cells. The use of acidic bile salts to mimic reflux conditions in patients induced high AURKA and IRE1α levels. This induction was abrogated by AURKA knockdown in EAC cells. AURKA and p-IRE1α protein colocalization was observed in neoplastic gastroesophageal lesions of the L2-IL1b mouse model of Barrett's esophageal neoplasia. The combined treatment using AURKA inhibitor and tunicamycin synergistically induced cancer cell death. The use of alisertib for AURKA inhibition in the EAC xenograft model led to a decrease in IRE1α phosphorylation with a significant reduction in tumor growth. These results indicate that AURKA activates UPR, promoting cancer cell survival during ER stress in EAC. Targeting AURKA can significantly reverse prosurvival UPR signaling mechanisms and decrease cancer cell survival, providing a promising approach for the treatment of EAC patients.
Collapse
Affiliation(s)
- Heng Lu
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.L.); (A.G.); (F.B.); (T.H.); (A.S.L.); (W.E.-R.)
| | - Ahmed Gomaa
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.L.); (A.G.); (F.B.); (T.H.); (A.S.L.); (W.E.-R.)
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA;
| | - Farah Ballout
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.L.); (A.G.); (F.B.); (T.H.); (A.S.L.); (W.E.-R.)
| | - Tianling Hu
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.L.); (A.G.); (F.B.); (T.H.); (A.S.L.); (W.E.-R.)
| | - Oliver McDonald
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Mary Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37235, USA;
| | - Alan S. Livingstone
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.L.); (A.G.); (F.B.); (T.H.); (A.S.L.); (W.E.-R.)
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - Dunfa Peng
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.L.); (A.G.); (F.B.); (T.H.); (A.S.L.); (W.E.-R.)
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.L.); (A.G.); (F.B.); (T.H.); (A.S.L.); (W.E.-R.)
| | - Zheng Chen
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.L.); (A.G.); (F.B.); (T.H.); (A.S.L.); (W.E.-R.)
| |
Collapse
|
8
|
DARPP-32 promotes ERBB3-mediated resistance to molecular targeted therapy in EGFR-mutated lung adenocarcinoma. Oncogene 2022; 41:83-98. [PMID: 34675407 PMCID: PMC8529229 DOI: 10.1038/s41388-021-02028-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-refractory lung adenocarcinoma (LUAD) progression is a major clinical problem. New approaches to predict and prevent acquired resistance to EGFR TKIs are urgently needed. Here, we show that dopamine and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32) physically recruits ERBB3 (HER3) to EGFR to mediate switching from EGFR homodimers to EGFR:ERBB3 heterodimers to bypass EGFR TKI-mediated inhibition by potentiating ERBB3-dependent activation of oncogenic signaling. In paired LUAD patient-derived specimens before and after EGFR TKI-refractory disease progression, we reveal that DARPP-32 and kinase-activated EGFR and ERBB3 proteins are overexpressed upon acquired resistance. In mice, DARPP-32 ablation sensitizes gefitinib-resistant xenografts to EGFR TKIs, while DARPP-32 overexpression increases gefitinib-refractory LUAD progression in gefitinib-sensitive lung tumors. We introduce a DARPP-32-mediated, ERBB3-dependent mechanism the LUAD cells use to evade EGFR TKI-induced cell death, potentially paving the way for the development of therapies to better combat therapy-refractory LUAD progression.
Collapse
|
9
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
10
|
Zhu S, Khalafi S, Chen Z, Poveda J, Peng D, Lu H, Soutto M, Que J, Garcia-Buitrago M, Zaika A, El-Rifai W. Silencing of miR490-3p by H. pylori activates DARPP-32 and induces resistance to gefitinib. Cancer Lett 2020; 491:87-96. [PMID: 32735911 PMCID: PMC7541786 DOI: 10.1016/j.canlet.2020.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) is the main risk factor for gastric carcinogenesis. In this study, we investigated the expression, molecular functions, and downstream effectors of miR490-3p in gastric cancer. We used in vitro and in vivo models to investigate the role of H. pylori in regulating miR490-3p, DARPP-32-dependent functions, and therapeutic resistance. Human and mouse neoplastic gastric lesions demonstrated a negative correlation between DARPP-32 and miR490-3p expression (R = -0.58, P < 0.01). This was also detected following infection with H. pylori (R = -0.66, P < 0.01). Molecular assays confirmed DARPP-32 as a direct target of miR490-3p. CHRM2, the host gene of miR490-3p, was hypermethylated and downregulated in neoplastic gastric tissues (P < 0.05). H. pylori induced methylation and downregulation of CHRM2 and miR490-3p. Functionally, the reconstitution of miR490-3p sensitized cancer cells to gefitinib by inactivating DRAPP-32-dependent AKT and STAT3 pathways. Patients with low miR490-3p or high DARPP-32 expression had decreased overall survival (P < 0.05). Hypermethylation-mediated silencing of CHRM2 and miR490-3p by H. pylori increased DARPP-32 expression. Downregulation of miR490-3p in gastric cancer plays a role in gefitinib response by inducing DARPP-32-mediated activation of PI3K/AKT, STAT3 signaling pathways.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Shayan Khalafi
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Zheng Chen
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| | - Julio Poveda
- Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Dunfa Peng
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Heng Lu
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Mohammed Soutto
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
| | | | - Alexander Zaika
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
11
|
Alam SK, Wang L, Ren Y, Hernandez CE, Kosari F, Roden AC, Yang R, Hoeppner LH. ASCL1-regulated DARPP-32 and t-DARPP stimulate small cell lung cancer growth and neuroendocrine tumour cell proliferation. Br J Cancer 2020; 123:819-832. [PMID: 32499571 PMCID: PMC7463034 DOI: 10.1038/s41416-020-0923-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
Background Small cell lung cancer (SCLC) is the most aggressive form of lung cancer, and new molecular insights are necessary for prognostic and therapeutic advances. Methods Dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32) and its N-terminally truncated splice variant, t-DARPP, were stably overexpressed or ablated in human DMS-53 and H1048 SCLC cells. Functional assays and immunoblotting were used to assess how DARPP-32 isoforms regulate SCLC cell growth, proliferation, and apoptosis. DARPP-32-modulated SCLC cells were orthotopically injected into the lungs of SCID mice to evaluate how DARPP-32 and t-DARPP regulate neuroendocrine tumour growth. Immunostaining for DARPP-32 proteins was performed in SCLC patient-derived specimens. Bioinformatics analysis and subsequent transcription assays were used to determine the mechanistic basis of DARPP-32-regulated SCLC growth. Results We demonstrate in mice that DARPP-32 and t-DARPP promote SCLC growth through increased Akt/Erk-mediated proliferation and anti-apoptotic signalling. DARPP-32 isoforms are overexpressed in SCLC patient-derived tumour tissue, but undetectable in physiologically normal lung. Achaete-scute homologue 1 (ASCL1) transcriptionally activates DARPP-32 isoforms in human SCLC cells. Conclusions We reveal new regulatory mechanisms of SCLC oncogenesis that suggest DARPP-32 isoforms may represent a negative prognostic indicator for SCLC and serve as a potential target for the development of new therapies.
Collapse
Affiliation(s)
- Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | | | - Farhad Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Che Y, Fu L. Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors. J Cancer 2020; 11:3502-3511. [PMID: 32284746 PMCID: PMC7150454 DOI: 10.7150/jca.42645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing facilitates the splicing of precursor RNA into different isoforms. Alternatively spliced transcripts often exhibit antagonistic functions or differential temporal or spatial expression patterns. There is increasing evidence that alternative splicing, especially by the serine-arginine rich (SR) protein family, leads to abnormal expression patterns and is closely related to the development of cancer. SRSF3, also known as SRp20, is a splicing factor. Through alternative splicing, it plays important roles in regulating various biological functions, such as cell cycle, cell proliferation, migration and invasion, under pathological and physiological conditions. Deregulation of SRSF3 is an essential feature of cancers. SRSF3 is also considered a candidate therapeutic target. Therefore, the involvement of abnormal splicing in tumorigenesis and the regulation of splicing factors deserve further analysis and discussion. Here, we summarize the function of SRSF3-regulated alternative transcripts in cancer cell biology at different stages of tumor development and the regulation of SRSF3 in tumorigenesis.
Collapse
Affiliation(s)
- Yingying Che
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| |
Collapse
|
13
|
|
14
|
Zhu S, Soutto M, Chen Z, Piazuelo MB, Washington MK, Belkhiri A, Zaika A, Peng D, El-Rifai W. Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells. Oncogene 2019; 38:5805-5816. [PMID: 31235784 PMCID: PMC6639157 DOI: 10.1038/s41388-019-0843-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 01/12/2023]
Abstract
Dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32), is frequently overexpressed in early stages of gastric cancers. We utilized in vitro assays, 3D gastric gland organoid cultures, mouse models, and human tissue samples to investigate the biological and molecular impact of DARPP-32 on activation of IGF1R and STAT3 signaling and gastric tumorigenesis. DARPP-32 enhanced phosphorylation of IGF1R (Y1135), a step that was critical for STAT3 phosphorylation at Y705, nuclear localization, and transcription activation. By using proximity ligation and co-immunoprecipitation assays, we found that IGF1R and DARPP-32 co-existed in the same protein complex. Binding of DARPP-32 to IGF1R promoted IGF1R phosphorylation with subsequent activation of downstream SRC and STAT3. Analysis of gastric tissues from the TFF1 knockout (KO) mouse model of gastric neoplasia, demonstrated phosphorylation of STAT3 in the early stages of gastric tumorigenesis. By crossing the TFF1 KO mice with DARPP-32 (DP) knockout (KO) mice, that have normal stomach, we obtained double knockout (TFF1 KO/DP KO). The gastric mucosa from the double KO mice did not show phosphorylation of IGF1R or STAT3. In addition, the TFF1 KO/DP KO mice had a significant delay in developing neoplastic gastric lesions. Analysis of human gastric cancer tissue microarrays, showed high levels of DARPP-32 and positive immunostaining for nuclear STAT3 in cancer tissues, as compared to non-cancer histologically normal tissues. In summary, the DARPP-32-IGF1R signaling axis plays a key role in regulating the STAT3 signaling, a critical step in gastric tumorigenesis.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Kay Washington
- Department of Pathology, and Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| |
Collapse
|
15
|
Chen Z, Li Z, Soutto M, Wang W, Piazuelo MB, Zhu S, Guo Y, Maturana MJ, Corvalan AH, Chen X, Xu Z, El-Rifai WM. Integrated Analysis of Mouse and Human Gastric Neoplasms Identifies Conserved microRNA Networks in Gastric Carcinogenesis. Gastroenterology 2019; 156:1127-1139.e8. [PMID: 30502323 PMCID: PMC6409191 DOI: 10.1053/j.gastro.2018.11.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS microRNAs (miRNAs) are small noncoding RNAs that bind to the 3' untranslated regions of mRNAs to promote their degradation or block their translation. Mice with disruption of the trefoil factor 1 gene (Tff1) develop gastric neoplasms. We studied these mice to identify conserved miRNA networks involved in gastric carcinogenesis. METHODS We performed next-generation miRNA sequencing analysis of normal gastric tissues (based on histology) from patients without evidence of gastric neoplasm (n = 64) and from TFF1-knockout mice (n = 22). We validated our findings using 270 normal gastric tissues (including 61 samples from patients without evidence of neoplastic lesions) and 234 gastric tumor tissues from 3 separate cohorts of patients and from mice. We performed molecular and functional assays using cell lines (MKN28, MKN45, STKM2, and AGS cells), gastric organoids, and mice with xenograft tumors. RESULTS We identified 117 miRNAs that were significantly deregulated in mouse and human gastric tumor tissues compared with nontumor tissues. We validated changes in levels of 6 miRNAs by quantitative real-time polymerase chain reaction analyses of neoplastic gastric tissues from mice (n = 39) and 3 independent patient cohorts (n = 332 patients total). We found levels of MIR135B-5p, MIR196B-5p, and MIR92A-5p to be increased in tumor tissues, whereas levels of MIR143-3p, MIR204-5p, and MIR133-3p were decreased in tumor tissues. Levels of MIR143-3p were reduced not only in gastric cancer tissues but also in normal tissues adjacent to tumors in humans and low-grade dysplasia in mice. Transgenic expression of MIR143-3p in gastric cancer cell lines reduced their proliferation and restored their sensitivity to cisplatin. AGS cells with stable transgenic expression of MIR143-3p grew more slowly as xenograft tumors in mice than control AGS cells; tumor growth from AGS cells that expressed MIR143-3p, but not control cells, was sensitive to cisplatin. We identified and validated bromodomain containing 2 (BRD2) as a direct target of MIR143-3p; increased levels of BRD2 in gastric tumors was associated with shorter survival times for patients. CONCLUSIONS In an analysis of miRNA profiles of gastric tumors from mice and human patients, we identified a conserved signature associated with the early stages of gastric tumorigenesis. Strategies to restore MIR143-3p or inhibit BRD2 might be developed for treatment of gastric cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Yan Guo
- Bioinformatics Shared Resources, University of New Mexico Comprehensive Cancer Center, New Mexico
| | - Maria J Maturana
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Xi Chen
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Wael M El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
16
|
Lamberti G, Peterle C, Gelsomino F. DARPP-32 and t-DARPP isoform in non-small cell lung cancer (NSCLC): could they drive patients' clinical management and be a therapeutic target? Transl Lung Cancer Res 2019; 7:S326-S328. [PMID: 30705846 DOI: 10.21037/tlcr.2018.12.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giuseppe Lamberti
- Medical Oncology Unit, Policlinico S.Orsola-Malpighi, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, Policlinico S.Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Chiara Peterle
- Medical Oncology Unit, Policlinico S.Orsola-Malpighi, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, Policlinico S.Orsola-Malpighi, University of Bologna, Bologna, Italy
| | | |
Collapse
|
17
|
Avanes A, Lenz G, Momand J. Darpp-32 and t-Darpp protein products of PPP1R1B: Old dogs with new tricks. Biochem Pharmacol 2018; 160:71-79. [PMID: 30552871 DOI: 10.1016/j.bcp.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
The PPP1R1B gene is located on chromosome 17q12 (39,626,208-39,636,626[GRCh38/hg38]), which codes for multiple transcripts and two experimentally-documented proteins Darpp-32 and t-Darpp. Darpp-32 (Dopamine and cAMP Regulated Phosphoprotein), discovered in the early 1980s, is a protein whose phosphorylation is upregulated in response to cAMP in dopamine-responsive tissues in the brain. It's phosphorylation profile modulates its ability to bind and inhibit Protein Phosphatase 1 activity, which, in turn, controls the activity of hundreds of phosphorylated proteins. PPP1R1B knockout mice exhibit subtle learning defects. In 2002, the second protein product of PPP1R1B was discovered in gastric cancers: t-Darpp (truncated Darpp-32). The start codon of t-Darpp is amino acid residue 37 of Darpp-32 and it lacks the domain responsible for modulating Protein Phosphatase 1. Aside from gastric cancers, t-Darpp and/or Darpp-32 is overexpressed in tumor cells from breast, colon, esophagus, lung and prostate tissues. More than one research team has demonstrated that these proteins, through mechanisms that to date remain cloudy, activate AKT, a protein whose phosphorylation leads to cell survival and blocks apoptosis. Furthermore, in Her2 positive breast cancers (an aggressive form of breast cancer), t-Darpp/Darpp-32 overexpression causes resistance to the frequently-administered anti-Her2 drug, trastuzumab (Herceptin), likely through AKT activation. Here we briefly describe how Darpp-32 and t-Darpp were discovered and report on the current state of knowledge of their involvement in cancers. We present a case for the development of an anti-t-Darpp therapeutic agent and outline the unique challenges this endeavor will likely encounter.
Collapse
Affiliation(s)
- Arabo Avanes
- Department of Chemistry and Biochemistry, California State University Los Angeles, CA, USA
| | - Gal Lenz
- Department of Cancer Biology, City of Hope, CA 91010, USA.
| | - Jamil Momand
- Department of Chemistry and Biochemistry, California State University Los Angeles, CA, USA.
| |
Collapse
|
18
|
Alam SK, Astone M, Liu P, Hall SR, Coyle AM, Dankert EN, Hoffman DK, Zhang W, Kuang R, Roden AC, Mansfield AS, Hoeppner LH. DARPP-32 and t-DARPP promote non-small cell lung cancer growth through regulation of IKKα-dependent cell migration. Commun Biol 2018; 1:43. [PMID: 29782621 PMCID: PMC5959014 DOI: 10.1038/s42003-018-0050-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Here we demonstrate that elevated expression of dopamine and cyclic adenosine monophosphate-regulated phosphoprotein, Mr 32000 (DARPP-32) and its truncated splice variant t-DARPP promote lung tumor growth, while abrogation of DARPP-32 expression in human non-small cell lung cancer (NSCLC) cells reduces tumor growth in orthotopic mouse models. We observe a novel physical interaction between DARPP-32 and inhibitory kappa B kinase-α (IKKα) that promotes NSCLC cell migration through non-canonical nuclear factor kappa-light-chain-enhancer of activated B cells 2 (NF-κB2) signaling. Bioinformatics analysis of 513 lung adenocarcinoma patients reveals elevated t-DARPP isoform expression is associated with poor overall survival. Histopathological investigation of 62 human lung adenocarcinoma tissues also shows that t-DARPP expression is elevated with increasing tumor (T) stage. Our data suggest that DARPP-32 isoforms serve as a negative prognostic marker associated with increasing stages of NSCLC and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Matteo Astone
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Ping Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Stephanie R Hall
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Abbygail M Coyle
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Erin N Dankert
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Dane K Hoffman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wei Zhang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rui Kuang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aaron S Mansfield
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
19
|
D'Abronzo LS, Pan CX, Ghosh PM. Evaluation of Protein Levels of the Receptor Tyrosine Kinase ErbB3 in Serum. Methods Mol Biol 2018; 1655:319-334. [PMID: 28889394 DOI: 10.1007/978-1-4939-7234-0_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTK) consists of four members: EGFR1/ErbB1/HER1, ErbB2/HER2, ErbB3/HER3, and HER4/ErbB4. Signaling through these receptors regulates many key cellular activities, such as cell division, migration, adhesion, differentiation, and apoptosis. The ErbB family has been shown to be overexpressed in different types of cancers and is a target of several inhibitors already in clinical trials. ErbB3 lacks a functional tyrosine kinase domain and therefore has not been as extensively studied as the other members of this family, but its importance in activating downstream pathways, such as the PI3K/Akt pathway, makes this RTK a worthy investigation target, especially in urothelial carcinoma where the PI3K/Akt pathway is vital for progression. In recent times, ErbB3 overexpression has been linked to drug resistance and progression of various diseases, especially cancer. ErbB3 levels in the serum were shown in many cases to be reflective of its role in disease progression, and therefore detection of serum ErbB3 levels during treatment may be of importance.Here we describe two methods for detecting ErbB3 protein in serum from patients who have undergone a clinical trial, utilizing two well-established methods in molecular biology-western blotting and ELISA, focusing on sample preparation and troubleshooting.
Collapse
Affiliation(s)
- Leandro S D'Abronzo
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA.,Department of Urology, University of California at Davis, Sacramento, CA, USA
| | - Chong-Xian Pan
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA.,Department of Urology, University of California at Davis, Sacramento, CA, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of California at Davis, Sacramento, CA, USA
| | - Paramita M Ghosh
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA. .,Department of Urology, University of California at Davis, Sacramento, CA, USA. .,Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA, USA. .,Department of Urology, University of California Davis School of Medicine, 4860 YStreet, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
20
|
Hong SH, Lee WJ, Kim YD, Kim H, Jeon YJ, Lim B, Cho DH, Heo WD, Yang DH, Kim CY, Yang HK, Yang JK, Jung YK. APIP, an ERBB3-binding partner, stimulates erbB2-3 heterodimer formation to promote tumorigenesis. Oncotarget 2017; 7:21601-17. [PMID: 26942872 PMCID: PMC5008309 DOI: 10.18632/oncotarget.7802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/20/2016] [Indexed: 01/07/2023] Open
Abstract
Despite the fact that the epidermal growth factor (EGF) family member ERBB3 (HER3) is deregulated in many cancers, the list of ERBB3-interacting partners remains limited. Here, we report that the Apaf-1-interacting protein (APIP) stimulates heregulin-β1 (HRG-β1)/ERBB3-driven cell proliferation and tumorigenesis. APIP levels are frequently increased in human gastric cancers and gastric cancer-derived cells. Cell proliferation and tumor formation are repressed by APIP downregulation and stimulated by its overexpression. APIP's role in the ERBB3 pathway is not associated with its functions within the methionine salvage pathway. In response to HRG-β1, APIP binds to the ERBB3 receptor, leading to an enhanced binding of ERBB3 and ERBB2 that results in sustained activations of ERK1/2 and AKT protein kinases. Furthermore, HRG-β1/ERBB3-dependent signaling is gained in APIP transgenic mouse embryonic fibroblasts (MEFs), but not lost in Apip−/− MEFs. Our findings offer compelling evidence that APIP plays an essential role in ERBB3 signaling as a positive regulator for tumorigenesis, warranting future development of therapeutic strategies for ERBB3-driven gastric cancer.
Collapse
Affiliation(s)
- Se-Hoon Hong
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Won Jae Lee
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Young Doo Kim
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Hyunjoo Kim
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Young-Jun Jeon
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Bitna Lim
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Gyeoggi-Do 446-701, Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Doo-Hyun Yang
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Chan-Young Kim
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Jin Kuk Yang
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 156-743, Korea
| | - Yong-Keun Jung
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| |
Collapse
|
21
|
Zhu S, Soutto M, Chen Z, Peng D, Romero-Gallo J, Krishna US, Belkhiri A, Washington MK, Peek R, El-Rifai W. Helicobacter pylori-induced cell death is counteracted by NF-κB-mediated transcription of DARPP-32. Gut 2017; 66:761-762. [PMID: 27590997 PMCID: PMC5334457 DOI: 10.1136/gutjnl-2016-312141] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE DARPP-32 is a frequently amplified and overexpressed gene that promotes several oncogenic functions in gastric cancer. Herein, we investigated the relationship between Helicobacter pylori infection, proinflammatory NF-κB activation and regulation of DARPP-32. DESIGN The study used in vivo and in vitro experiments. Luciferase reporter, quantitative real-time PCR, immunoblot, chromatin immunoprecipitation (ChIP), cell viability, H. pylori infection, tissue microarrays and immunohistochemical assays were used. RESULTS Our results indicated that H. pylori infection increased the DARPP-32 mRNA and protein levels in gastric cancer cell lines and gastric mucosa of mice. H. pylori infection increased the activity of NF-κB reporter and p-NF-κB (S536) protein level in vitro and in vivo. To investigate the transcriptional regulation of DARPP-32, we cloned a 3019 bp of the DARPP-32 promoter into the luciferase reporter (pGL3-Luc). Both H. pylori infection and tumour necrosis factor-α treatment induced DARPP-32 reporter activity (p<0.01). Using deletion constructs of DARPP-32 promoter and ChIP assay, we demonstrated that the sequence -996 to -1008 bp containing putative NF-κB-binding sites is the most active region. The induction of DARPP-32 expression by H. pylori infection counteracted H. pylori-induced cell death through activation of serine/threonine-specific protein kinase (AKT), as determined by ATP-Glo and clonogenic survival assays. Immunohistochemistry analysis demonstrated a significant positive correlation between NF-κB and DARPP-32 expression levels in gastric cancer tissues (r2=0.43, p<0.01). CONCLUSIONS Given the high frequency of DARPP-32 overexpression and its prosurvival oncogenic functions, the induction of DARPP-32 expression following H. pylori infection and activation of NF-κB provides a link between infection, inflammation and gastric tumourigenesis.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mohammed Soutto
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - DunFa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Judith Romero-Gallo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Uma S Krishna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard Peek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Merchant JL. NF-κB mediated transcription of DARPP-32 prevents Helicobacter pylori-induced cell death. Gut 2017; 66:761-762. [PMID: 27789656 DOI: 10.1136/gutjnl-2016-312822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/08/2022]
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine-GI, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Chen Z, Soutto M, Rahman B, Fazili MW, Peng D, Blanca Piazuelo M, Chen H, Kay Washington M, Shyr Y, El-Rifai W. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia. Genes Chromosomes Cancer 2017; 56:535-547. [PMID: 28281307 DOI: 10.1002/gcc.22456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Mohammed Soutto
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Bushra Rahman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Muhammad W Fazili
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - DunFa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Maria Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Heidi Chen
- Center of Quantitative Sciences, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - Yu Shyr
- Center of Quantitative Sciences, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - Wael El-Rifai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| |
Collapse
|
24
|
Belkhiri A, Zhu S, El-Rifai W. DARPP-32: from neurotransmission to cancer. Oncotarget 2017; 7:17631-40. [PMID: 26872373 PMCID: PMC4951238 DOI: 10.18632/oncotarget.7268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32), also known as phosphoprotein phosphatase-1 regulatory subunit 1B (PPP1R1B), was initially discovered as a substrate of dopamine-activated protein kinase A (PKA) in the neostriatum in the brain. While phosphorylation at Thr-34 by PKA converts DARPP-32 into a potent inhibitor of protein phosphatase 1 (PP1), phosphorylation at Thr-75 transforms DARPP-32 into an inhibitor of PKA. Through regulation of DARPP-32 phosphorylation and modulation of protein phosphatase and kinase activities, DARPP-32 plays a critical role in mediating the biochemical, electrophysiological, and behavioral effects controlled by dopamine and other neurotransmitters in response to drugs of abuse and psychostimulants. Altered expression of DARPP-32 and its truncated isoform (t-DARPP), specifically in the prefrontal cortex, has been associated with schizophrenia and bipolar disorder. Moreover, cleavage of DARPP-32 by calpain has been implicated in Alzheimer's disease. Amplification of the genomic locus of DARPP-32 at 17q12 has been described in several cancers. DARPP-32 and t-DARPP are frequently overexpressed at the mRNA and protein levels in adenocarcinomas of the breast, prostate, colon, and stomach. Several studies demonstrated the pro-survival, pro-invasion, and pro-angiogenic functions of DARPP-32 in cancer. Overexpression of DARPP-32 and t-DARPP also promotes chemotherapeutic drug resistance and cell proliferation in gastric and breast cancers through regulation of pro-oncogenic signal transduction pathways. The expansion of DARPP-32 research from neurotransmission to cancer underscores the broad scope and implication of this protein in disparate human diseases.
Collapse
Affiliation(s)
- Abbes Belkhiri
- Department of Surgery, Cancer Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shoumin Zhu
- Department of Surgery, Cancer Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wael El-Rifai
- Department of Surgery, Cancer Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
25
|
Katsha A, Wang L, Arras J, Omar OM, Ecsedy J, Belkhiri A, El-Rifai W. Activation of EIF4E by Aurora Kinase A Depicts a Novel Druggable Axis in Everolimus-Resistant Cancer Cells. Clin Cancer Res 2017; 23:3756-3768. [PMID: 28073841 DOI: 10.1158/1078-0432.ccr-16-2141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 01/11/2023]
Abstract
Purpose: Aurora kinase A (AURKA) is overexpressed in several cancer types, making it an attractive druggable target in clinical trials. In this study, we investigated the role of AURKA in regulating EIF4E, cap-dependent translation, and resistance to mTOR inhibitor, RAD001 (everolimus).Experimental Design: Tumor xenografts and in vitro cell models of upper gastrointestinal adenocarcinomas (UGC) were used to determine the role of AURKA in the activation of EIF4E and cap-dependent translation. Overexpression, knockdown, and pharmacologic inhibition of AURKA were used in vitro and in vivoResults: Using in vitro cell models, we found that high protein levels of AURKA mediate phosphorylation of EIF4E and upregulation of c-MYC. Notably, we detected overexpression of endogenous AURKA in everolimus-resistant UGC cell models. AURKA mediated phosphorylation of EIF4E, activation of cap-dependent translation, and an increase in c-MYC protein levels. Targeting AURKA using genetic knockdown or a small-molecule inhibitor, alisertib, reversed these molecular events, leading to a decrease in cancer cell survival in acquired and intrinsic resistant cell models. Mechanistic studies demonstrated that AURKA binds to and inactivates protein phosphatase 2A, a negative regulator of EIF4E, leading to phosphorylation and activation of EIF4E in an AKT-, ERK1/2-, and mTOR-independent manner. Data from tumor xenograft mouse models confirmed that everolimus-resistant cancer cells are sensitive to alisertib.Conclusions: Our results indicate that AURKA plays an important role in the activation of EIF4E and cap-dependent translation. Targeting the AURKA-EIF4E-c-MYC axis using alisertib is a novel therapeutic strategy that can be applicable for everolimus-resistant tumors and/or subgroups of cancers that show overexpression of AURKA and activation of EIF4E and c-MYC. Clin Cancer Res; 23(14); 3756-68. ©2017 AACR.
Collapse
Affiliation(s)
- Ahmed Katsha
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Science and Engineering, Raritan Valley Community College, Branchburg, New Jersey
| | - Lihong Wang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Janet Arras
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar M Omar
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey Ecsedy
- Translational Medicine, Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. .,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
26
|
Chen Z, Zhu S, Hong J, Soutto M, Peng D, Belkhiri A, Xu Z, El-Rifai W. Gastric tumour-derived ANGPT2 regulation by DARPP-32 promotes angiogenesis. Gut 2016; 65:925-34. [PMID: 25779598 PMCID: PMC4573388 DOI: 10.1136/gutjnl-2014-308416] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/27/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Overexpression of dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32), and its truncated isoform (t-DARPP) are associated with gastric tumorigenesis. Herein, we investigated the role of DARPP-32 proteins in regulating angiopoietin 2 (ANGPT2) and promoting tumour angiogenesis. DESIGN Quantitative real-time RT-PCR, immunoblotting, luciferase reporter, immunofluorescence, immunohistochemistry and angiogenesis assays were applied to investigate the regulation of angiogenesis by DARPP-32 proteins. RESULTS Overexpression of DARPP-32 significantly increased the mRNA and protein levels of ANGPT2 in gastric cancer cells. The overexpression of DARPP-32 T34A mutant or the N-terminal truncated isoform, t-DARPP, led to similar effects ruling out the T34-dependent regulation of protein phosphatase 1 activity in regulating ANGPT2. DARPP-32 proteins induced a secreted form of ANGPT2, which was detectable in the media, functionally active, and able to induce angiogenesis, measured by the human umbilical vein endothelial cells tube formation assay. Antibody blocking of the secreted ANGPT2 abrogated its function. To identify the mechanism by which DARPP-32 regulates ANGPT2, we examined the activities of NF-κB and signal transducer and activator of transcription 3 (STAT3), known regulators of angiogenesis. The results ruled out NF-κB and showed induction of STAT3 phosphorylation, activation and nuclear localisation. Inhibition or knockdown of STAT3 significantly attenuated the induction of ANGPT2 by DARPP-32 proteins. In vivo xenograft models demonstrated that overexpression of DARPP-32 promotes angiogenesis and tumour growth. Analyses of human gastric cancer tissues showed a strong correlation between DARPP-32 and ANGPT2. CONCLUSIONS Our novel findings establish the role of DARPP-32-STAT3 axis in regulating ANGPT2 in cancer cells to promote angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shoumin Zhu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammed Soutto
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - DunFa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
27
|
Liu GX, Xi HQ, Sun XY, Geng ZJ, Yang SW, Lu YJ, Wei B, Chen L. Isoprenaline Induces Periostin Expression in Gastric Cancer. Yonsei Med J 2016; 57:557-64. [PMID: 26996552 PMCID: PMC4800342 DOI: 10.3349/ymj.2016.57.3.557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Periostin mediates critical steps in gastric cancer and is involved in various signaling pathways. However, the roles of periostin in promoting gastric cancer metastasis are not clear. The aim of this study was to investigate the relevance between periostin expression and gastric cancer progression and the role of stress-related hormones in the regulation of cancer development and progression. MATERIALS AND METHODS Normal, cancerous and metastatic gastric tissues were collected from patients diagnosed with advanced gastric cancer. The in vivo expression of periostin was evaluated by in situ hybridization and immunofluorescent staining. Meanwhile, human gastric adenocarcinoma cell lines MKN-45 and BGC-803 were used to detect the in vitro expression of periostin by using quantitative real-time polymerase chain reaction (PCR) and western blotting. RESULTS Periostin is expressed in the stroma of the primary gastric tumors and metastases, but not in normal gastric tissue. In addition, we observed that periostin is located mainly in pericryptal fibroblasts, but not in the tumor cells, and strongly correlated to the expression of α-smooth muscle actin (SMA). Furthermore, the distribution patterns of periostin were broader as the clinical staging of tumors progressed. We also identified a role of stress-related signaling in promoting cancer development and progression, and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells. CONCLUSION These findings suggest that the distribution pattern of periostin was broader as the clinical staging of the tumor progressed and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells.
Collapse
Affiliation(s)
- Guo-Xiao Liu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Hong-Qing Xi
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yan Sun
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Jun Geng
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing, China
| | - Shao-Wei Yang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing, China
| | - Yan-Jie Lu
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Lin Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
28
|
Regulation of CD44E by DARPP-32-dependent activation of SRp20 splicing factor in gastric tumorigenesis. Oncogene 2015; 35:1847-56. [PMID: 26119931 PMCID: PMC4486340 DOI: 10.1038/onc.2015.250] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/11/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Objective CD44E is a frequently overexpressed variant of CD44 in gastric cancer. Mechanisms that regulate CD44 splicing and expression in gastric cancer remain unknown. Herein, we investigated the role of DARPP-32 (dopamine and cAMP-regulated phosphoprotein, Mr 32000) in promoting tumor growth through regulation of CD44 splicing. Design Quantitative luciferase reporter, quantitative real-time RT-PCR (qRT-PCR), Western blot, co-immunoprecipitation, ubiquitination, and tumor xenograft experiments were performed. Results Western blot and qRT-PCR results indicated that knockdown of endogenous DARPP-32 markedly reduces expression of CD44 V8-V10 (CD44E). Using a quantitative splicing luciferase reporter system, we detected a significant increase in the reporter activity following DARPP-32 overexpression (p < 0.001). Conversely, knocking down endogenous DARPP-32 significantly attenuated the splicing activity (p < 0.001). Further experiments showed that DARPP-32 regulates the expression of SRp20 splicing factor and co-exists with it in the same protein complex. Inhibition of alternative splicing with digitoxin followed by immunoprecipitation and immunoblotting indicated that DARPP-32 plays an important role in regulating SRp20 protein stability. The knockdown of endogenous DARPP-32 confirmed that DARPP-32 regulates the SRp20-dependent CD44E splicing. Using tumor xenograft mouse model, knocking down endogenous DARPP-32 markedly reduced SRp20 and CD44E protein levels with a decreased tumor growth. The reconstitution of SRp20 expression in these cells rescued tumor growth. In addition, we also demonstrated frequent co-overexpression and positive correlation of DARPP-32, SRp20 and CD44E expression levels in human gastric primary tumors. Conclusion Our novel findings establish for the first time the role of DARPP-32 in regulating splicing factors in gastric cancer cells. The DARPP-32–SRp20 axis plays a key role in regulating the CD44E splice variant that promotes gastric tumorigenesis.
Collapse
|
29
|
Kopljar M, Patrlj L, Korolija-Marinic D, Horzic M, Cupurdija K, Bakota B. High Expression of DARPP-32 in Colorectal Cancer Is Associated With Liver Metastases and Predicts Survival for Dukes A and B Patients: Results of a Pilot Study. Int Surg 2015; 100:213-220. [PMID: 25692420 PMCID: PMC4337432 DOI: 10.9738/intsurg-d-14-00022.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate prognostic significance of Dopamine and cAMP-Regulated neuronal Phosphoprotein 32 (DARPP-32) expression in primary colorectal cancer. The study material consisted of clinical and histopathological data of 100 patients operated for colorectal cancer between 1994 and 1997. For immunohistochemical analysis, specific rabbit antibodies for DARPP-32 were used and the percentage of stained tumor cells was calculated under gross magnification (400 times) on a sample of 500 tumor cells. DARPP-32 expression in the primary tumor was significantly greater in patients with distant metastases compared to patients with no distant metastases (p=0.002). In multivariate regression analysis, DARPP-32 expression in the primary tumor was a significant predictor of distant metastases. With a cut-off point of 76.5%, DARPP-32 expression in the primary tumor significantly influenced both overall and disease free survival, especially for Dukes A and B patients (p=0.037). The results of this study indicate that DARPP-32 may be a potential marker of worse prognosis and a valuable tool for managing further adjuvant treatment in patients with stages Dukes A and B colorectal cancer.
Collapse
Affiliation(s)
- Mario Kopljar
- Department of Surgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Leonardo Patrlj
- Department of Surgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | | | - Matija Horzic
- Department of Surgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | | | - Bore Bakota
- Department of Surgery, General Hospital Karlovac, Karlovac, Croatia
| |
Collapse
|
30
|
The evolutionary strata of DARPP-32 tail implicates hierarchical functional expansion in higher vertebrates. J Biosci 2014; 39:493-504. [PMID: 24845512 DOI: 10.1007/s12038-014-9438-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DARPP-32 (dopamine and adenosine 3', 5'-monophosphate-regulated phosphoprotein of 32 kDa), which belongs to PPP1R1 gene family, is known to act as an important integrator in dopamine-mediated neurotransmission via the inhibition of protein phosphatase-1 (PP1). Besides its neuronal roles, this protein also behaves as a key player in pathological and pharmacological aspects. Use of bioinformatics and phylogenetics approaches to further characterize the molecular features of DARPP-32 can guide future works. Predicted phosphorylation sites on DARPP-32 show conservation across vertebrates. Phylogenetics analysis indicates evolutionary strata of phosphorylation site acquisition at the C-terminus, suggesting functional expansion of DARPP-32, where more diverse signalling cues may involve in regulating DARPP-32 in inhibiting PP1 activity. Moreover, both phylogenetics and synteny analyses suggest de novo origination of PPP1R1 gene family via chromosomal rearrangement and exonization.
Collapse
|
31
|
Hong L, Han Y, Brain L. The role of epidermal growth factor receptor in prognosis and treatment of gastric cancer. Expert Rev Gastroenterol Hepatol 2014; 8:111-7. [PMID: 24410474 DOI: 10.1586/17474124.2014.844648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite tremendous efforts to reduce deaths due to gastric cancer, it represents the second leading cause of cancer-related deaths worldwide. EGF receptor (EGFR) plays important roles in gastric carcinogenesis by regulation of cell cycle, angiogenesis and apoptosis. This review evaluates the functions, mechanisms and clinical uses of EGFR in gastric cancer. Although EGFR targeted single therapy shows limited effect, the combination of EGFR targeted agents with traditional chemotherapy regimens may bring about important progress in cancer therapy. More clinical trials should be performed to clarify both the prognostic and therapeutic value of EGFR in gastric cancer.
Collapse
Affiliation(s)
- Liu Hong
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | | | | |
Collapse
|
32
|
Yun SM, Yoon K, Lee S, Kim E, Kong SH, Choe J, Kang JM, Han TS, Kim P, Choi Y, Jho S, Yoo H, Bhak J, Yang HK, Kim SJ. PPP1R1B-STARD3 chimeric fusion transcript in human gastric cancer promotes tumorigenesis through activation of PI3K/AKT signaling. Oncogene 2013; 33:5341-7. [DOI: 10.1038/onc.2013.472] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/28/2022]
|
33
|
The function of human epidermal growth factor receptor-3 and its role in tumors (Review). Oncol Rep 2013; 30:2563-70. [DOI: 10.3892/or.2013.2754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/06/2013] [Indexed: 11/05/2022] Open
|
34
|
Vera J, Schmitz U, Lai X, Engelmann D, Khan FM, Wolkenhauer O, Pützer BM. Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. Cancer Res 2013; 73:3511-24. [PMID: 23447575 DOI: 10.1158/0008-5472.can-12-4095] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug resistance is a major cause of deaths from cancer. E2F1 is a transcription factor involved in cell proliferation, apoptosis. and metastasis through an intricate regulatory network, which includes other transcription factors like p73 and cancer-related microRNAs like miR-205. To investigate the emergence of drug resistance, we developed a methodology that integrates experimental data with a network biology and kinetic modeling. Using a regulatory map developed to summarize knowledge on E2F1 and its interplay with p73/DNp73 and miR-205 in cancer drug responses, we derived a kinetic model that represents the network response to certain genotoxic and cytostatic anticancer drugs. By perturbing the model parameters, we simulated heterogeneous cell configurations referred to as in silico cell lines. These were used to detect genetic signatures characteristic for single or double drug resistance. We identified a signature composed of high E2F1 and low miR-205 expression that promotes resistance to genotoxic drugs. In this signature, downregulation of miR-205, can be mediated by an imbalance in the p73/DNp73 ratio or by dysregulation of other cancer-related regulators of miR-205 expression such as TGFβ-1 or TWIST1. In addition, we found that a genetic signature composed of high E2F1, low miR-205, and high ERBB3 can render tumor cells insensitive to both cytostatic and genotoxic drugs. Our model simulations also suggested that conventional genotoxic drug treatment favors selection of chemoresistant cells in genetically heterogeneous tumors, in a manner requiring dysregulation of incoherent feedforward loops that involve E2F1, p73/DNp73, and miR-205.
Collapse
Affiliation(s)
- Julio Vera
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock.
| | | | | | | | | | | | | |
Collapse
|
35
|
Longati P, Jia X, Eimer J, Wagman A, Witt MR, Rehnmark S, Verbeke C, Toftgård R, Löhr M, Heuchel RL. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 2013; 13:95. [PMID: 23446043 PMCID: PMC3617005 DOI: 10.1186/1471-2407-13-95] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 02/24/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer related death. It is lethal in nearly all patients, due to an almost complete chemoresistance. Most if not all drugs that pass preclinical tests successfully, fail miserably in the patient. This raises the question whether traditional 2D cell culture is the correct tool for drug screening. The objective of this study is to develop a simple, high-throughput 3D model of human PDAC cell lines, and to explore mechanisms underlying the transition from 2D to 3D that might be responsible for chemoresistance. METHODS Several established human PDAC and a KPC mouse cell lines were tested, whereby Panc-1 was studied in more detail. 3D spheroid formation was facilitated with methylcellulose. Spheroids were studied morphologically, electron microscopically and by qRT-PCR for selected matrix genes, related factors and miRNA. Metabolic studies were performed, and a panel of novel drugs was tested against gemcitabine. RESULTS Comparing 3D to 2D cell culture, matrix proteins were significantly increased as were lumican, SNED1, DARP32, and miR-146a. Cell metabolism in 3D was shifted towards glycolysis. All drugs tested were less effective in 3D, except for allicin, MT100 and AX, which demonstrated effect. CONCLUSIONS We developed a high-throughput 3D cell culture drug screening system for pancreatic cancer, which displays a strongly increased chemoresistance. Features associated to the 3D cell model are increased expression of matrix proteins and miRNA as well as stromal markers such as PPP1R1B and SNED1. This is supporting the concept of cell adhesion mediated drug resistance.
Collapse
Affiliation(s)
- Paola Longati
- CLINTEC, Karolinska Institutet, Stockholm 14186, Sweden
- Center of Biosciences, Karolinska Institutet, Stockholm 14186, Sweden
| | - Xiaohui Jia
- CLINTEC, Karolinska Institutet, Stockholm 14186, Sweden
- Center of Biosciences, Karolinska Institutet, Stockholm 14186, Sweden
| | - Johannes Eimer
- CLINTEC, Karolinska Institutet, Stockholm 14186, Sweden
- Center of Biosciences, Karolinska Institutet, Stockholm 14186, Sweden
| | - Annika Wagman
- CLINTEC, Karolinska Institutet, Stockholm 14186, Sweden
- Center of Biosciences, Karolinska Institutet, Stockholm 14186, Sweden
| | | | - Stefan Rehnmark
- Axcentua Pharmaceuticals AB, Nobels Allé 10, Stockholm, 14157, Sweden
| | - Caroline Verbeke
- Department of Pathology, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Rune Toftgård
- Center of Biosciences, Karolinska Institutet, Stockholm 14186, Sweden
| | - Matthias Löhr
- CLINTEC, Karolinska Institutet, Stockholm 14186, Sweden
- Center of Biosciences, Karolinska Institutet, Stockholm 14186, Sweden
| | - Rainer L Heuchel
- CLINTEC, Karolinska Institutet, Stockholm 14186, Sweden
- Center of Biosciences, Karolinska Institutet, Stockholm 14186, Sweden
| |
Collapse
|
36
|
Zhu S, Hong J, Tripathi MK, Sehdev V, Belkhiri A, El-Rifai W. Regulation of CXCR4-mediated invasion by DARPP-32 in gastric cancer cells. Mol Cancer Res 2012; 11:86-94. [PMID: 23160836 DOI: 10.1158/1541-7786.mcr-12-0243-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although Dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32) is overexpressed in two-thirds of gastric cancers, its impact on molecular functions has not been fully characterized. In this study, we examined the role of DARPP-32 in gastric cancer cell invasion. Using matrigel-coated Boyden chamber invasion assay, DARPP-32-overexpressing AGS cells showed a three-fold increase in invasion relative to the vector control (P < 0.01). We also tested the transendothelial cell invasion as a measure of cell aggressiveness using the impedance-based human umbilical vein endothelial cells invasion assay and obtained similar results (P < 0.001). Western blot analysis indicated that overexpression of DARPP-32 mediated an increase in the membrane-type 1 matrix metalloproteinase (MT1-MMP) and CXCR4 protein levels. Consistent with the role of MT1-MMP in cleaving extracellular matrix proteins initiating the activation of soluble MMPs, we detected a robust increase in MMP-2 activity in DARPP-32-overexpressing cells. The knockdown of endogenous DARPP-32 in the MKN-45 cells reversed these signaling events and decreased cell invasive activity. We tested whether the invasive activity mediated by DARPP-32 might involve sustained signaling via CXCR4-dependent activation of the MT1-MMP/MMP-2 pathway. The small-molecule CXCR4 antagonist (AMD3100) and CXCR4-siRNA blocked DARPP-32-induced cell invasion. We further examined our hypothesis that DARPP-32 could interact with CXCR4 and stabilize its levels following stimulation with its ligand, CXCL12. Using reciprocal coimmunoprecipitation and immunofluorescence experiments, we found that DARPP-32 and CXCR4 coexist in the same protein complex. DARPP-32 prolonged the CXCR4 protein half-life and reduced ubiquitination of the CXCR4 protein, following treatment with its ligand, CXCL12. In conclusion, these findings show a novel mechanism by which DARPP-32 promotes cell invasion by regulating CXCR4-mediated activation of the MT1-MMP/MMP-2 pathway.
Collapse
Affiliation(s)
- Shoumin Zhu
- Vanderbilt University Medical Center, 1255 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
37
|
Quesnelle KM, Wheeler SE, Ratay MK, Grandis JR. Preclinical modeling of EGFR inhibitor resistance in head and neck cancer. Cancer Biol Ther 2012; 13:935-45. [PMID: 22785204 DOI: 10.4161/cbt.20846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is widely expressed in head and neck squamous cell carcinomas (HNSCC) and can activate many growth and survival pathways within tumor cells. Despite ubiquitous EGFR expression, therapies targeting the receptor are only modestly effective in the treatment of HNSCC. A consistent mechanism of resistance to EGFR targeting agents has not yet been identified in HNSCC likely due, in part, to the paucity of preclinical models. We assessed the in vitro and in vivo responses of a panel of 10 genotypically validated HNSCC cell lines to the EGFR inhibitors erlotinib and cetuximab to determine their validity as models of resistance to these agents. We defined a narrow range of response to erlotinib in HNSCC cells in vitro and found a positive correlation between EGFR protein expression and erlotinib response. We observed cross-sensitivity in one HNSCC cell line, 686LN, between erlotinib and cetuximab in vivo. We attempted to generate models of cetuximab resistance in HNSCC cell line-derived xenografts and heterotopic tumorgrafts generated directly from primary patient tumors. While all 10 HNSCC cell line xenografts tested were sensitive to cetuximab in vivo, heterotopic patient tumorgrafts varied in response to cetuximab indicating that these models may be more representative of clinical responses. These studies demonstrate the limitations of using HNSCC cell lines to reflect the heterogeneous clinical responses to erlotinib and cetuximab, and suggest that different approaches including heterotopic tumorgrafts may prove more valuable to elucidate mechanisms of clinical resistance to EGFR inhibitors in HNSCC.
Collapse
Affiliation(s)
- Kelly M Quesnelle
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|