1
|
Li R, Liu Y, Liu Q, Guo Z, Wang B, Huang S, Wang Z, Liu F, Zhou Y, Wang P, Li T, Fu W, Han W. CMTM3 Promotes Colitis-associated Carcinogenesis Via CLTC Stabilization and Modulation of VE-cadherin. Cell Mol Gastroenterol Hepatol 2025:101528. [PMID: 40306490 DOI: 10.1016/j.jcmgh.2025.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease leads to increased risk of developing colitis-associated colon cancer (CAC). CMTM3 has a higher methylation level in colon cancer, and accumulating evidence suggests that chemokine-like factor-like MARVEL transmembrane domain-containing member 3 (CMTM3) participates in inflammation and cancer development. METHODS We explored the signs of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CAC in wild-type (WT) and Cmtm3 deficiency (Cmtm3-/-) mice. Experimental colitis was induced in Cmtm3-/- mice as well as mice with endothelial cell-specific deletion of Cmtm3. Disease phenotypes were investigated by body weight, disease activity index (DAI), colon length, histology, immune cell infiltration, and intestinal permeability. The mechanism was analyzed using bone marrow reconstitution, immunofluorescent staining, Western blot, immunoprecipitation, and pull-down experiments. RESULTS We found CMTM3 promoted CAC by aggravating colitis. Further, we revealed endothelial cell-specific deletion of Cmtm3 inhibited the colitis development. In vitro and in vivo mechanistic studies revealed that CMTM3 drove colitis by increasing clathrin-dependent downregulation of vascular endothelial-cadherin, thus causing vascular permeability. We further identified that CMTM3 interacted with clathrin heavy chain and inhibited clathrin heavy chain ubiquitination and proteasome-dependent degradation. Interestingly, Cmtm3 knockout and imatinib mesylate both targeted vascular permeability and had comparable efficacy. CONCLUSIONS Our study indicates that CMTM3 promotes CAC by aggravating colitis through causing vascular permeability, providing insights into targets for development of future therapies.
Collapse
Affiliation(s)
- Rongbin Li
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Yuan Liu
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Qiyao Liu
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China; Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine (BUCM), Institute of Liver Diseases, BUCM, Dongcheng District, Beijing, China
| | - Zixia Guo
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Bingsu Wang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Sihua Huang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Zelin Wang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China; School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China; Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Fujun Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Yifan Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing, China.
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China.
| |
Collapse
|
2
|
Yuan Q, Shi Y, Wang J, Xie Y, Li X, Zhao J, Jiang Y, Qiao Y, Guo Y, Zhang C, Lu J, Zhao T, Dong Z, Li P, Dong Z, Liu K. p38 mediated ACSL4 phosphorylation drives stress-induced esophageal squamous cell carcinoma growth through Src myristoylation. Nat Commun 2025; 16:3319. [PMID: 40195298 PMCID: PMC11976994 DOI: 10.1038/s41467-025-58342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
The comprehension of intricate molecular mechanisms underlying how external stimuli promote malignancy is conducive to cancer early prevention. Esophageal squamous cell carcinoma (ESCC) is considered as an external stimuli (hot foods, tobacco, chemo-compounds) induced cancer, characterized by stepwise progression from hyperplasia, dysplasia, carcinoma in situ and invasive carcinoma. However, the underlying molecular mechanism governing the transition from normal epithelium to neoplastic processes in ESCC under persistent external stimuli has remained elusive. Herein, we show that a positive correlation between p38 and ERK1/2 activation during the progression of ESCC. We identify that phosphorylation of ACSL4 at T679 by p38 enhances its enzymatic activity, resulting in increased production of myristoyl-CoA (C14:0 CoA). This subsequently promotes Src myristoylation and activates downstream ERK signaling. Our results partially elucidate the role of ACSL4 in mediating stress-induced signaling pathways that activate growth cascades and contribute to tumorigenesis.
Collapse
Affiliation(s)
- Qiang Yuan
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Yunshu Shi
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Junyong Wang
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
| | - Yifei Xie
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyu Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jimin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yanan Jiang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yan Qiao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yaping Guo
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Chengjuan Zhang
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Lu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Tongjin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai, China
| | - Ziming Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Peng Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
| | - Zigang Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Wu Z, Xiao H, Kloeber JA, Ouyang Y, Yin P, Huang J, Chen B, Zhu S, Lu J, Han Y, Tu X, Dragojevic S, Luo K, Ting AT, Welliver M, Lou Z. Parkin deficiency promotes colorectal tumorigenesis and progression through RIPK3-dependent necroptotic inflammation. Cancer Commun (Lond) 2025; 45:406-410. [PMID: 39754711 PMCID: PMC11999878 DOI: 10.1002/cac2.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025] Open
Affiliation(s)
- Zheming Wu
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
- Department of Radiation OncologyMayo ClinicRochesterUSA
| | - Huaping Xiao
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
- Department of Radiation OncologyMayo ClinicRochesterUSA
| | - Jake A Kloeber
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
- Mayo Clinic Medical Scientist Training ProgramMayo ClinicRochesterUSA
| | - Yaobin Ouyang
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
| | - Ping Yin
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
| | - Jinzhou Huang
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
| | - Bin Chen
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
- Department of Radiation OncologyMayo ClinicRochesterUSA
| | - Shouhai Zhu
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
| | - Jing Lu
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
| | - Yiqun Han
- Department of Radiation OncologyMayo ClinicRochesterUSA
| | - Xinyi Tu
- Department of Radiation OncologyMayo ClinicRochesterUSA
| | | | - Kuntian Luo
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
| | | | - Meng Welliver
- Department of Radiation OncologyMayo ClinicRochesterUSA
| | - Zhenkun Lou
- Division of Oncology ResearchDepartment of OncologyMayo ClinicRochesterUSA
| |
Collapse
|
4
|
Tang C, Tang C, Zhu X, Wang S, Yang Y, Miao Y, Zhao X, Jia L, Yang J, Su Y, Wang L, Wu C. Loss of AXIN1 regulates response to lenvatinib through a WNT/KDM5B/p15 signalling axis in hepatocellular carcinoma. Br J Pharmacol 2025; 182:1394-1409. [PMID: 39653061 DOI: 10.1111/bph.17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE As a highly heterogeneous cancer, hepatocellular carcinoma (HCC) shows different response rates to the multi-kinase inhibitor lenvatinib. Thus, it is important to explore genetic biomarkers for precision lenvatinib therapy in HCC. EXPERIMENTAL APPROACH The effect and mechanism of AXIN1 mutation on HCC were revealed by cell proliferation assay, long-term clone formation assay, sphere formation assay and small molecule inhibitor library screening. A new therapeutic strategy targeting HCC with AXIN1 mutation was evaluated in humanized models (patient-derived xenograft [PDX] and patient-derived organoid [PDO]). KEY RESULTS Based on The Cancer Genome Atlas (TCGA) data, we screened 6 most frequently lost tumour suppressor genes in HCC (TP53, ARID1A, AXIN1, CDKN2A, ARID2 and PTEN) and identified AXIN1 as the most crucial gene for lenvatinib sensitivity. Further study showed that AXIN1-knockout HCC cells had a more malignant phenotype and lower sensitivity to lenvatinib in vitro and in vivo. Mechanistically, the WNT pathway and its target gene c-Myc were activated when AXIN1 was missing, and the expression of tumour suppressor p15 was inhibited by transcription co-repressors c-Myc and Miz-1, resulting in the exacerbation of the resistant phenotype. Screening of a library of epigenetic-related enzyme inhibitors showed that a KDM5B inhibitor up-regulated p15 expression, leading to increased sensitivity to lenvatinib in vitro and in vivo. CONCLUSION AND IMPLICATIONS AXIN1-deficient patients have a lower response to lenvatinib, which may be associated with suppression of p15 mediated by WNT pathway activation. KDM5B inhibitors can restore p15 levels, resulting in efficient killing of resistant cells in HCC.
Collapse
MESH Headings
- Xenograft Model Antitumor Assays
- Organoids
- Tumor Cells, Cultured
- Primary Cell Culture
- Axin Protein/genetics
- Axin Protein/metabolism
- Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Wnt Proteins/metabolism
- Cyclin-Dependent Kinase Inhibitor p15/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Precision Medicine/methods
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Humans
- Animals
- Mice
- Genes, Tumor Suppressor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Male
- Mice, Inbred BALB C
- RNA-Seq
- Loss of Function Mutation
- Down-Regulation
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Drug Synergism
- Adult
- Middle Aged
Collapse
Affiliation(s)
- Chengfang Tang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Chu Tang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Xuanchi Zhu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Simeng Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Yuan Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Yu Miao
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyao Zhao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| |
Collapse
|
5
|
de Melo Viana TC, Nakamura ET, Park A, Filardi KFXC, de Almeida Leite RM, Baltazar LFSR, Usón Junior PLS, Tustumi F. Molecular Abnormalities and Carcinogenesis in Barrett's Esophagus: Implications for Cancer Treatment and Prevention. Genes (Basel) 2025; 16:270. [PMID: 40149421 PMCID: PMC11942460 DOI: 10.3390/genes16030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is described by the transformation of the normal squamous epithelium into metaplastic columnar epithelium, driven by chronic gastroesophageal reflux disease (GERD). BE is a recognized premalignant condition and the main precursor to esophageal adenocarcinoma (EAC). Understanding the molecular mechanisms underlying BE carcinogenesis is crucial for improving prevention, surveillance, and treatment strategies. METHODS This narrative review examines the molecular abnormalities associated with the progression of BE to EAC. RESULTS This study highlights inflammatory, genetic, epigenetic, and chromosomal alterations, emphasizing key pathways and biomarkers. BE progression follows a multistep process involving dysplasia and genetic alterations such as TP53 and CDKN2A (p16) mutations, chromosomal instability, and dysregulation of pathways like PI3K/AKT/mTOR. Epigenetic alterations, including aberrant microRNA expression or DNA methylation, further contribute to this progression. These molecular changes are stage-specific, with some alterations occurring early in BE during the transition to high-grade dysplasia or EAC. Innovations in chemoprevention, such as combining proton pump inhibitors and aspirin, and the potential of antireflux surgery to halt disease progression are promising. Incorporating molecular biomarkers into surveillance strategies and advancing precision medicine may enable earlier detection and personalized treatments. CONCLUSIONS BE is the primary preneoplastic condition for EAC. A deeper understanding of its molecular transformation can enhance surveillance protocols, optimize the management of gastroesophageal reflux inflammation, and refine prevention and therapeutic strategies, ultimately contributing to a reduction in the global burden of EAC.
Collapse
Affiliation(s)
| | | | - Amanda Park
- Department of Evidenced-Based Medicine, Centro Universitário Lusíada, Santos 11050-071, Brazil
| | | | | | | | | | - Francisco Tustumi
- Department of Gastroenterology, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Department of Health Sciences, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil
| |
Collapse
|
6
|
Zhu Y, Shen L, Huo Y, Wan Q, Qin Y, Hu R, Shi L, Su Q, Yu X, Yan L, Qin G, Tang X, Chen G, Xu Y, Wang T, Zhao Z, Gao Z, Wang G, Shen F, Gu X, Luo Z, Chen L, Li Q, Ye Z, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Chen L, Zeng T, Zhao J, Mu Y, Wang W, Ning G, Lu J, Xu M, Bi Y, Hu W. Gallstones, cholecystectomy, and cancer risk: an observational and Mendelian randomization study. Front Med 2025; 19:79-89. [PMID: 39722067 DOI: 10.1007/s11684-024-1111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 12/28/2024]
Abstract
This study aimed to comprehensively examine the association of gallstones, cholecystectomy, and cancer risk. Multivariable logistic regressions were performed to estimate the observational associations of gallstones and cholecystectomy with cancer risk, using data from a nationwide cohort involving 239 799 participants. General and gender-specific two-sample Mendelian randomization (MR) analysis was further conducted to assess the causalities of the observed associations. Observationally, a history of gallstones without cholecystectomy was associated with a high risk of stomach cancer (adjusted odds ratio (aOR)=2.54, 95% confidence interval (CI) 1.50-4.28), liver and bile duct cancer (aOR=2.46, 95% CI 1.17-5.16), kidney cancer (aOR=2.04, 95% CI 1.05-3.94), and bladder cancer (aOR=2.23, 95% CI 1.01-5.13) in the general population, as well as cervical cancer (aOR=1.69, 95% CI 1.12-2.56) in women. Moreover, cholecystectomy was associated with high odds of stomach cancer (aOR=2.41, 95% CI 1.29-4.49), colorectal cancer (aOR=1.83, 95% CI 1.18-2.85), and cancer of liver and bile duct (aOR=2.58, 95% CI 1.11-6.02). MR analysis only supported the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer. This study added evidence to the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer, highlighting the importance of cancer screening in individuals with gallstones.
Collapse
Affiliation(s)
- Yuanyue Zhu
- Department of Geriatrics, Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Linhui Shen
- Department of Geriatrics, Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanan Huo
- Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, China
| | - Qin Wan
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yingfen Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ruying Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Lixin Shi
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qing Su
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Yan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xulei Tang
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Gang Chen
- Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350003, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengnan Gao
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, 116033, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Feixia Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejiang Gu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zuojie Luo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Chen
- Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qiang Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhen Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Yinfei Zhang
- Central Hospital of Shanghai Jiading District, Shanghai, 201899, China
| | - Chao Liu
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, 210028, China
| | - Youmin Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shengli Wu
- Karamay Municipal People's Hospital, Karamay, 834000, China
| | - Tao Yang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huacong Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lulu Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianshu Zeng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiajun Zhao
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250012, China
| | - Yiming Mu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiguo Hu
- Department of Geriatrics, Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Niu ZH, Lin L, Peng HY, Zheng XZ, Wang MY, Sun FX, Xu CJ. The prognostic value of systemic inflammation response index in digestive system carcinomas: a systematic review and meta-analysis. BMC Gastroenterol 2025; 25:34. [PMID: 39856542 PMCID: PMC11761727 DOI: 10.1186/s12876-025-03635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Digestive system carcinomas (DSC) constitute a significant proportion of solid tumors, with incidence rates rising steadily each year. The systemic inflammation response index (SIRI) has been identified as a potential prognostic marker for survival in various types DSC. This meta-analysis aimed to evaluate the prognostic value of SIRI in patients with DSC. METHODS We conducted a comprehensive literature search of PubMed, Web of Science Core Collection, Embase, and Cochrane Library databases, searching for studies published from inception to May 30, 2023. Eligible studies included cohort studies that assessed the association between pre-treatment SIRI levels and DSC prognosis. We extracted and synthesized hazard ratios (HRs) and 95% confidence intervals (CIs) using STATA/SE 12.0, stratifying HRs based on univariable and multivariable analysis. Due to substantial heterogeneity, we applied a random-effect model for all pooled analyses. The primary outcome of interest was the overall survival (OS), while secondary outcomes included progression-free survival (PFS), disease-free survival (DFS), time to progression (TTP), and disease specific survival (DSS). Publication bias was evaluated using Begg's test and Egger's tests. RESULTS A total of 34 cohort studies encompassing 9628 participants were included in this meta-analysis. Notable heterogeneity was observedin the OS (I2 = 76.5%, p < 0.001) and PFS (I2 = 82.8%, p = 0.001) subgroups, whereas no significant heterogeneity was detected in the DFS, TTP, and DSS subgroups. Elevated SIRI was found to be significantly associated with shorter OS (HR = 1.98, 95% CI: 1.70-2.30, tau2 = 0.0966) and poorer PFS (HR = 2.36, 95% CI: 1.58-3.53, tau2 = 0.1319), DFS (HR = 1.80, 95% CI: 1.61-2.01, tau2 < 0.0001), TTP (HR = 2.03, 95% CI: 1.47-2.81, tau2 = 0.0232), and DSS (HR = 1.99, 95% CI: 1.46-2.72, tau2 < 0.0001). Furthermore, an increase in SIRI following treatment was linked to reduced OS, TTP, and DFS, while a decrease in SIRI post-treatment corresponded with improved OS, TTP, and DFS compared to baseline levels. CONCLUSIONS Elevated SIRI is associated with poorer clinical outcomes in patients with DSC. This index may serve as a valuable prognostic biomarker, offering a promising tool for predicting survival in DSC patients. PROSPERO REGISTRATION NUMBER: CRD42023430962.
Collapse
Affiliation(s)
- Zuo-Hu Niu
- Department of Infections, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Li Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hong-Ye Peng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Zhuo Zheng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mi-Yuan Wang
- School of Management, Beijing University of Chinese medicine, Beijing, China
| | - Feng-Xia Sun
- Department of Infections, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Chun-Jun Xu
- Department of Infections, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Yang F, Xiao H, Dai X, Xu M, Li M, Bai J, Dai N. Impact of APOBEC3s on the occurrence, development and prognosis of esophageal squamous cell carcinoma. Future Oncol 2025; 21:117-125. [PMID: 39840662 PMCID: PMC11852747 DOI: 10.1080/14796694.2024.2442300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a severe malignant tumor of the digestive system that poses a significant threat to human health. Despite its significance, the complex molecular mechanism regulating the occurrence and development of ESCC remain elusive. The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) members constitute a pivotal subfamily of the APOBEC family that possess cytidine deaminase activity. In recent years, APOBEC3s (A3s) have received increasing attention due to their pivotal roles in the occurrence, development, and prognosis of ESCC. This comprehensive review systematically summarizes the latest research progress on the mechanisms of action of A3s in ESCC and discusses their impact on the development and therapeutic considerations for ESCC, with a particular focus on their potential role in immunotherapy. These insights may be of great value in continued exploration of ESCC pathogenesis and provides a theoretical foundation for the development of clinical treatment strategies for ESCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - He Xiao
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyan Dai
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingfang Xu
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mengxia Li
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianying Bai
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Nan Dai
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Zerrad C, Lkhider M, Bouqdayr M, Belkouchi A, Badre W, Tahiri M, Pineau P, Benjelloun S, Ezzikouri S. NOD1 and NOD2 genetic variants: Impact on hepatocellular carcinoma susceptibility and progression in Moroccan population. Gene 2024; 931:148847. [PMID: 39147112 DOI: 10.1016/j.gene.2024.148847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 are involved in carcinogenic processes by recognizing bacterial cell wall components and triggering inflammation. This study explored the association between genetic variations in NOD1 and NOD2 and susceptibility to hepatocellular carcinoma (HCC) and its progression in a Moroccan population. METHODS Genotyping of NOD1 rs2075820 (C>T) and NOD2 rs718226 (A>G) was performed using the TaqMan allelic discrimination assay in 467 Moroccan individuals. The cohort included 156 patients with hepatocellular carcinoma (HCC), 155 patients with liver cirrhosis (LC) diagnosed with HBV, HCV, or MASLD, and 156 controls. RESULTS The NOD1 rs2075820 variant showed no association with HCC susceptibility or progression, which is consistent with in silico predictions. However, the NOD2 rs718226 G allele and GG genotype were more common in the HCC group compared to the cirrhosis and control groups. Individuals with the homozygous G variant had a 2-fold higher risk for HCC (ORad = 2.12; CI=1.01-4.44; Pad = 0.04). Those with the GG genotype also had an increased risk of HCC (GG vs. AG+AA ORad = 2.28; CI=1.15-4.54; Pad = 0.016). Furthermore, GG genotype carriers had a significantly higher risk of HCC progression (ORad = 2.58; CI=1.26-5.31; Pad = 0.031). Individuals with the rs718226 minor allele had a significantly elevated risk of progressing from LC to HCC (ORad = 1.50; CI=1.07-2.09; Pad = 0.016). Stratification analysis indicated that men had a higher risk of HCC progression compared to women (ORad = 4.63; CI=1.53-14.00 vs. ORad = 2.73; CI=1.05-7.09). CONCLUSION The NOD1 rs2075820 polymorphism does not appear to be a genetic risk factor for susceptibility to HCC. In contrast, the non-coding NOD2 rs718226 variant significantly increases HCC susceptibility and promotes liver cancer progression in the Moroccan population. Further studies involving larger cohorts are warranted to definitively confirm or refute the effects of NOD1 and NOD2 genetic variants on liver cancer susceptibility and progression.
Collapse
Affiliation(s)
- Chaimaa Zerrad
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratoire de Virologie, Oncologie, Biosciences, Environnement et Énergies Nouvelles, Hassan II, Casablanca Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Mustapha Lkhider
- Laboratoire de Virologie, Oncologie, Biosciences, Environnement et Énergies Nouvelles, Hassan II, Casablanca Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Meryem Bouqdayr
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Wafaa Badre
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco; Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
10
|
Wu ZY, Li H, Chen JL, Su K, Weng ML, Han YW. Nomogram model based on γ-glutamyl transferase to albumin ratio predicts survival in hepatocellular carcinoma patients with transarterial chemoembolization treatment. World J Gastrointest Oncol 2024; 16:4650-4662. [PMID: 39678787 PMCID: PMC11577374 DOI: 10.4251/wjgo.v16.i12.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND The development of tumor is closely linked to inflammation. Therefore, targeting molecules involved in inflammation may be effective in predicting cancer prognosis. Transarterial chemoembolization (TACE) holds significant therapeutic significance in addressing hepatocellular carcinoma (HCC). At present, no studies have evaluated the predictive value of γ-glutamyl transferase to albumin ratio (GAR) on the prognosis of HCC undergoing TACE. AIM To explore the potential prognostic significance of the GAR in individuals undergoing TACE for HCC. METHODS A total of 1231 patients from seven hospitals in China were randomized into a training cohort (n = 862) and a validation cohort (n = 369). To establish independent prognostic factors for overall survival (OS), we utilized multivariate and univariate Cox regression models. The best cut-off value of the GAR was determined with the X-tile software, with OS as the basis. Validations were performed using dual therapy cohort and triple therapy cohort. RESULTS X-tile software revealed a GAR threshold of 4.75 as optimal. Both pre- and post-propensity score matching analyses demonstrated that the median OS in the low-GAR group (< 4.75) was notably longer compared to the high-GAR group (≥ 4.75), showing results of 26.9 vs 9.8 months (P < 0.001) initially, and 18.1 vs 11.3 months (P < 0.001) after match. Furthermore, multivariate analysis identified GAR ≥ 4.75 as an independent prognostic factor (P < 0.001). The receiver operating characteristic curves for the nomogram showed area under receiver operating characteristic curves of 0.741, 0.747, and 0.708 for predicting 1-, 2-, and 3-year survival, respectively. Consistent findings were reiterated in the two cohorts involving TACE in combination with targeted therapy and TACE in combination with targeted therapy and immunotherapy. Calibration curve and decision curve analyses substantiated the model's relatively robust predictive capabilities. CONCLUSION Our study validates the effective prognostic capacity of the GAR-based nomogram for HCC patients undergoing TACE or TACE in combination with systemic therapy.
Collapse
Affiliation(s)
- Zhen-Ying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Oncology, Pangang Group General Hospital, Panzhihua 617000, Sichuan Province, China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jia-Li Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ke Su
- Department of Oncology, National Cancer Center, Beijing 100000, China
- Department of Oncology, National Clinical Research Center for Cancer, Beijing 100000, China
- Department of Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100000, China
| | - Mei-Ling Weng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yun-Wei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
11
|
Shin JW, Shin YJ, Lee DY, Kim DH. Alleviation of Helicobacter pylori- or aspirin-induced gastritis and neuroinflammation in mice by Lactococcus lactis and Bifidobacterium longum. Lett Appl Microbiol 2024; 77:ovae128. [PMID: 39668634 DOI: 10.1093/lambio/ovae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Helicobacter pylori (HP) causes gastritis and peptic ulcer. Therefore, we examined whether probiotics Lactococcus lactis P135 and Bifidobacterium longum P142, which inhibited HP growth by 37.9% and 35.3%, respectively, and HP-induced IL-8 expression in KATO III cells by 68.6% and 63.1%, respectively, compared to those of normal controls, could mitigate HP-induced gastritis and psychiatric disorder in mice. Oral administration of P135 and/or P142 alleviated HP- or aspirin-induced gastritis, colitis, neuroinflammation, and depression/cognitive impairment-like behavior. They also suppressed HP infection, neutrophil infiltration, and NF-κB activation in the stomach and TNF-α expression and NF-κB activation in the colon and hippocampus. of P135 and/or P142 alleviated HP- or aspirin-induced gut dysbiosis: they decreased Lachnospiracease, Helicobacteriaceae, and Akkermansiaceae populations and increased Bacteroidaceae and Muribaculaceae populations. These findings suggest that HP growth/inflammation-inhibitory P135 and/or P142 may alleviate gut inflammation (gastritis and colitis) and neuroinflammation through the suppression of neutrophil infiltration, NF-κB activation, and HP growth, thereby leading to the attenuation of systemic inflammation and psychiatric disorder.
Collapse
Affiliation(s)
- Jung-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Wei J, Wang X, Yu D, Tu Y, Yu Y. MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies. Discov Oncol 2024; 15:662. [PMID: 39549162 PMCID: PMC11569378 DOI: 10.1007/s12672-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This paper provides an exhaustive overview of the intricate interplay between microRNAs (miRNAs) and autophagy in the context of human cancers, underscoring the pivotal role these non-coding RNAs play in modulating autophagic pathways and their implications for cancer development, progression, and resistance to therapy. MiRNAs, as critical regulators of gene expression post-transcription, influence various biological processes, including autophagy, a catabolic mechanism essential for cellular homeostasis, stress response, and survival. The review meticulously delineates the mechanisms through which miRNAs impact autophagy by targeting specific genes and signaling pathways, thereby affecting cancer cell proliferation, metastasis, and response to chemotherapy. It highlights several miRNAs with dual roles, acting either as oncogenes or tumor suppressors based on the cellular context and the specific autophagic pathways they regulate. The paper further explores the therapeutic potential of targeting miRNA-autophagy axis, offering insights into novel strategies for cancer treatment through modulation of this axis. Emphasizing the complexity of the miRNA-autophagy relationship, the review calls for more in-depth studies to unravel the nuanced regulatory networks between miRNAs and autophagy in cancer, which could pave the way for the development of innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Jinxing Wei
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Xianghui Wang
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Duo Yu
- Department of Biopharmaceutics School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Yaoyu Yu
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China.
| |
Collapse
|
13
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
14
|
Li G, Wang S, Ma J, Liu S. Genetic susceptibility association between viral infection and colorectal cancer risk: a two-sample Mendelian randomization analysis. Infect Agent Cancer 2024; 19:37. [PMID: 39123209 PMCID: PMC11316422 DOI: 10.1186/s13027-024-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The genetic susceptibility association between viral infection and the risk of colorectal cancer (CRC) has not been established. METHODS We conducted two-sample Mendelian randomization (MR) analysis using genome-wide association study (GWAS) data. In addition to traditional MR methods, we employed several other approaches, including cML, ConMix, MR-RAPS, and dIVW, to comprehensively assess causal effects. Sensitivity analyses were also performed to ensure the robustness of the results. RESULTS After sensitivity analysis, presence of SNPs linked to increased susceptibility to cold sores infection was found to decrease the risk of CRC (OR: 0.73, 95% CI: 0.57-0.93, P = 0.01). In subgroup analysis, presence of SNPs linked to increased susceptibility to viral hepatitis (OR: 0.89, 95% CI: 0.81-0.98, P = 0.02) and infectious mononucleosis (OR: 0.91, 95% CI: 0.84-0.98, P = 0.02) were associated with a decreased risk of colon cancer, while measles virus (OR: 1.41, 95% CI: 1.07-1.85, P = 0.01) was associated with an increased risk of colon cancer. Presence of SNPs linked to increased susceptibility to herpes zoster (OR: 1.26, 95% CI: 1.05-1.52, P = 0.01) was associated with an increased risk of rectal cancer, while infectious mononucleosis (OR: 0.809, 95% CI: 0.80-0.98, P = 0.02) was associated with a decreased risk. CONCLUSION The study provides the first evidence of the genetic susceptibility associations between different viral infections and CRC, enhancing our understanding of the etiology of CRC.
Collapse
Affiliation(s)
- Gen Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Siyu Wang
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Jianli Ma
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Shanshan Liu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.
| |
Collapse
|
15
|
Oshi M, Chida K, Roy AM, Mann GK, An N, Yan L, Endo I, Takabe K. Higher inflammatory response in hepatocellular carcinoma is associated with immune cell infiltration and a better outcome. Hepatol Int 2024; 18:1299-1309. [PMID: 38898190 DOI: 10.1007/s12072-024-10678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) often develops from chronic liver inflammation. Inflammation within a tumor can either promote cancer progression or activate an immune response against it. This study aims to determine the clinical significance of enhanced inflammation in HCC. METHODS Data from 655 HCC patients across four cohorts (TCGA, GSE6764, GSE76427, GSE89377) were examined. Inflammatory response was quantified using a scoring system derived from the gene set variation analysis of the "INFLAMMATORY_RESPONSE" gene set. RESULTS A stepwise increase in inflammatory response was noted from normal liver to cirrhosis, with consistently lower levels in HCC across both GSE6764 and GSE89377 cohorts (both p < 0.001). Similar trends were observed in interferon response, pathways such as IL6/JAK/STAT3 and complement signaling, coagulation cascade, and allograft rejection (all p < 0.02). HCCs with high inflammatory response were associated with increased immune cell infiltrations (p < 0.01) and cytolytic activity (p < 0.001). Interestingly, these HCCs had reduced mutation rates, no relationship with cell proliferation, and displayed both immune responses and pro-cancerous signals including epithelial-mesenchymal transition, KRAS, and hypoxia. Further, a high inflammatory score correlated with improved disease-free survival in TCGA (p = 0.034) and overall survival in GSE76427 (p = 0.008). CONCLUSION HCC with higher levels of inflammatory response demonstrated increased immune cell infiltration, enhanced immune-related and other pro-cancerous-related signaling, and showed a trend toward a better patient prognosis.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Gabriella Kim Mann
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nan An
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan.
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan.
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8520, Japan.
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, 14263, USA.
| |
Collapse
|
16
|
Ghobashi AH, Lanzloth R, Ladaika CA, Masood A, O’Hagan HM. Single-Cell Profiling Reveals the Impact of Genetic Alterations on the Differentiation of Inflammation-Induced Murine Colon Tumors. Cancers (Basel) 2024; 16:2040. [PMID: 38893159 PMCID: PMC11171101 DOI: 10.3390/cancers16112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (MinApcΔ716/+) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAFV600E mutation (BRAFF-V600ELgr5tm1(Cre/ERT2)CleMinApcΔ716/+, BLM) or knocking out Msh2 (Msh2LoxP/LoxPVil1-creMinApcΔ716/+, MSH2KO) in the Min model altered colon tumor differentiation. Using single-cell RNA sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single-cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the tumor stem cell population. Interestingly, the tumor stem cell population of BLM tumors had revival colon stem cell characteristics with low WNT signaling and an increase in RevCSC marker gene expression. In contrast, MSH2KO tumors were characterized by an increased tumor stem cell population that had higher WNT signaling activity compared to Min tumors. Furthermore, overall BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we identified additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
Affiliation(s)
- Ahmed H. Ghobashi
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Rosie Lanzloth
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Christopher A. Ladaika
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Ashiq Masood
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Dong J, Jiang W, Zhang W, Hu R, Huang Z, Guo T, Du T, Jiang X. Genetic association of circulating interleukins and risk of colorectal cancer: A bidirectional Mendelian randomization study. ENVIRONMENTAL TOXICOLOGY 2024; 39:2706-2716. [PMID: 38240193 DOI: 10.1002/tox.24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Previous studies have reported that inflammation, especially interleukin family members, plays an important role in the development of colorectal cancer (CRC). However, because of various confounders and the lack of clinical randomized controlled trial, the causal relationship between genetically predicted level of interleukin family and CRC risk has not been fully explained. OBJECTIVE Bi-directional Mendelian randomization (MR) was conducted to investigate the causal association between interleukin family members and CRC. METHODS Several genetic variables were extracted as instrumental variables (IVs) from summary data of genome-wide association studies (GWAS) for interleukin and CRC. IVs of interleukin family were obtained from recently published GWAS studies and the summary data of CRC was from FinnGen Biobank. After a series of quality control measures and strict screening, six models were used to evaluate the causal relationship. Pleiotropy, heterogeneity test, and a variety of sensitivity analysis were also used to estimate the robustness of the model results. RESULTS Genetically predicted higher circulating levels of IL-2 (odds ratio [OR]: 0.76; 95% confidence interval [CI]: 0.63-0.92; p = .0043), IL-17F(OR: 0.78; 95% CI: 0.62-1.00; p = .015), and IL-31 (OR: 0.88; 95% CI: 0.79-0.98; p = .023) were suggestively associated with decreased CRC risk. However, higher level of IL-10 (OR: 1.40; 95% CI: 1.18-1.65; p = .000094) was causally associated with increased risk of CRC. Reverse MR results indicated that the exposure of CRC was suggestively associated with higher levels of IL-36α (OR: 1.23; 95% CI: 1.01-1.49; p = .040) and IL-17RD (OR: 1.22; 95% CI, 1.00-1.48; p = .048) and lower level of IL-13 (OR: 0.78; 95% CI: 0.65-0.95; p = .013). The overall MR results did not provide evidence for causal relationships between other interleukins and CRC (p > .05). CONCLUSION We offer suggestive evidence supporting a potential causal relationship between circulating interleukins and CRC, underscoring the significance of targeting circulating interleukins as a strategy to mitigate the incidence of CRC.
Collapse
Affiliation(s)
- Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanju Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renhao Hu
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiye Huang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Taohua Guo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Takikawa T, Kikuta K, Sano T, Ikeura T, Fujimori N, Umemura T, Naitoh I, Nakase H, Isayama H, Kanno A, Kamata K, Kodama Y, Inoue D, Ido A, Ueki T, Seno H, Yasuda H, Iwasaki E, Nishino T, Kubota K, Arizumi T, Tanaka A, Uchida K, Matsumoto R, Hamada S, Nakamura S, Okazaki K, Takeyama Y, Masamune A. Maintenance steroid therapy is associated with decreased risk of malignancy and better prognosis of patients with autoimmune pancreatitis: A multicenter cohort study in Japan. Pancreatology 2024; 24:335-342. [PMID: 38336506 DOI: 10.1016/j.pan.2024.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND/OBJECTIVES The association between autoimmune pancreatitis (AIP) and pancreatic cancer (PC) remains controversial. This study aimed to clarify the long-term prognosis and risk of malignancies in AIP patients in Japan. METHODS We conducted a multicenter retrospective cohort study on 1364 patients with type 1 AIP from 20 institutions in Japan. We calculated the standardized incidence ratio (SIR) for malignancies compared to that in the general population. We analyzed factors associated with overall survival, pancreatic exocrine insufficiency, diabetes mellitus, and osteoporosis. RESULTS The SIR for all malignancies was increased (1.21 [95 % confidence interval: 1.05-1.41]) in patients with AIP. Among all malignancies, the SIR was highest for PC (3.22 [1.99-5.13]) and increased within 2 years and after 5 years of AIP diagnosis. Steroid use for ≥6 months and ≥50 months increased the risk of subsequent development of diabetes mellitus and osteoporosis, respectively. Age ≥65 years at AIP diagnosis (hazard ratio [HR] = 3.73) and the development of malignancies (HR = 2.63), including PC (HR = 7.81), were associated with a poor prognosis, whereas maintenance steroid therapy was associated with a better prognosis (HR = 0.35) in the multivariate analysis. Maintenance steroid therapy was associated with a better prognosis even after propensity score matching for age and sex. CONCLUSIONS Patients with AIP are at increased risk of developing malignancy, especially PC. PC is a critical prognostic factor for patients with AIP. Although maintenance steroid therapy negatively impacts diabetes mellitus and osteoporosis, it is associated with decreased cancer risk and improved overall survival.
Collapse
Affiliation(s)
- Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Takanori Sano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Tsukasa Ikeura
- Third Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Kanno
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Dai Inoue
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiharu Ueki
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroaki Yasuda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eisuke Iwasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takayoshi Nishino
- Department of Gastroenterology Tokyo Womens' Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Kensuke Kubota
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshihiko Arizumi
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazushige Uchida
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ryotaro Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Seiji Nakamura
- Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kazuichi Okazaki
- Department of Internal Medicine, Kansai Medical University, Kori Hospital, Neyagawa, Japan
| | - Yoshifumi Takeyama
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
19
|
Sun JR, Chen DM, Huang R, Wang RT, Jia LQ. Transcriptome sequencing reveals novel biomarkers and immune cell infiltration in esophageal tumorigenesis. World J Gastrointest Oncol 2024; 16:1500-1513. [PMID: 38660641 PMCID: PMC11037066 DOI: 10.4251/wjgo.v16.i4.1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 02/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide, and its development comprises a multistep process from intraepithelial neoplasia (IN) to carcinoma (CA). However, the critical regulators and underlying molecular mechanisms remain largely unknown. AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention. METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide (4NQO) to C57BL/6 mice. Moreover, we established a control group without 4NQO treatment of mice. Then, transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses, including low-grade IN (LGIN), high-grade IN (HGIN), and CA, and controlled normal tissue (NOR) samples. Differentially expressed genes (DEGs) were identified in the LGIN, HGIN, and CA groups, and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The CIBERSORT algorithm was used to detect the pattern of immune cell infiltration. Immunohistochemistry (IHC) was also conducted to validate our results. Finally, the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice. RESULTS Compared with those in the NOR group, a total of 681541, and 840 DEGs were obtained in the LGIN, HGIN, and CA groups, respectively. Using the intersection of the three sets of DEGs, we identified 86 genes as key genes involved in the development of ESCC. Enrichment analysis revealed that these genes were enriched mainly in the keratinization, epidermal cell differentiation, and interleukin (IL)-17 signaling pathways. CIBERSORT analysis revealed that, compared with those in the NOR group, M0 and M1 macrophages in the 4NQO group showed stronger infiltration, which was validated by IHC. Serum cytokine analysis revealed that, compared with those in the NOR group, IL-1β and IL-6 were upregulated, while IL-10 was downregulated in the LGIN, HGIN, and CA groups. Moreover, the expression of the representative key genes, such as S100a8 and Krt6b, was verified in external human samples, and the results of immunohistochemical staining were consistent with the findings in mice. CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions. In addition, we found that macrophage infiltration and abnormal alterations in the levels of inflammation-associated cytokines, such as IL-1β, IL-6, and IL-10, in the peripheral blood may be closely associated with the development of ESCC.
Collapse
Affiliation(s)
- Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Mei Chen
- Integrated Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rong Huang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui-Tao Wang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li-Qun Jia
- Integrated Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
20
|
Couvineau A, Haumaitre C. Special Issue: "Digestive Inflammation and New Therapeutical Targets". Int J Mol Sci 2024; 25:4361. [PMID: 38673946 PMCID: PMC11050353 DOI: 10.3390/ijms25084361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory diseases commonly associated with humans are chronic inflammatory gastrointestinal diseases (CIGDs) [...].
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Faculty of Medicine X. Bichat, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149/Inflammation Research Center (CRI), Faculty of Medicine X. Bichat, Université Paris Cité, 75018 Paris, France
| |
Collapse
|
21
|
Christodoulidis G, Koumarelas KE, Kouliou MN, Thodou E, Samara M. Gastric Cancer in the Era of Epigenetics. Int J Mol Sci 2024; 25:3381. [PMID: 38542354 PMCID: PMC10970362 DOI: 10.3390/ijms25063381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant DNA methylation either through its pathogenic CagA protein or by inducing chronic inflammation. The hypomethylation of specific repetitive elements generates an epigenetic field effect early in tumorigenesis. Epstein-Barr virus (EBV) infection triggers DNA methylation by dysregulating DNA methyltransferases (DNMT) enzyme activity, while persistent Hp-EBV co-infection leads to aggressive tumor behavior. Distinct histone modifications are also responsible for oncogene upregulation and tumor-suppressor gene silencing in gastric carcinomas. While histone methylation and acetylation processes have been extensively studied, other less prevalent alterations contribute to the development and migration of gastric cancer via a complex network of interactions. Enzymes, such as Nicotinamide N-methyltransferase (NNMT), which is involved in tumor's metabolic reprogramming, interact with methyltransferases and modify gene expression. Non-coding RNA molecules, including long non-coding RNAs, circular RNAs, and miRNAs serve as epigenetic regulators contributing to GC development, metastasis, poor outcomes and therapy resistance. Serum RNA molecules hold the potential to serve as non-invasive biomarkers for diagnostic, prognostic or therapeutic applications. Gastric fluids represent a valuable source to identify potential biomarkers with diagnostic use in terms of liquid biopsy. Ongoing clinical trials are currently evaluating the efficacy of next-generation epigenetic drugs, displaying promising outcomes. Various approaches including multiple miRNA inhibitors or targeted nanoparticles carrying epigenetic drugs are being designed to enhance existing treatment efficacy and overcome treatment resistance.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Konstantinos-Eleftherios Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Marina-Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| |
Collapse
|
22
|
Kurita Y, Kubota K, Fujita Y, Tsujino S, Sekino Y, Kasuga N, Iwasaki A, Iwase M, Izuka T, Kagawa K, Tanida E, Yagi S, Hasegawa S, Sato T, Hosono K, Kobayashi N, Ichikawa Y, Nakajima A, Endo I. IgG4-related pancreatobiliary diseases could be associated with onset of pancreatobiliary cancer: A multicenter cohort study. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:173-182. [PMID: 38124014 DOI: 10.1002/jhbp.1404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The risk and prognosis of pancreatobiliary cancer and in patients with autoimmune pancreatitis (AIP) and IgG4-related sclerosing cholangitis (IgG4-SC) remain unclear. Therefore, we retrospectively investigated the risk of pancreatobiliary cancer and prognosis in patients with AIP and IgG4-SC. METHODS Patients with AIP and IgG4-SC at seven centers between 1998 and 2022 were investigated. The following data were evaluated: (1) the number of cancers diagnosed and standardized incidence ratio (SIR) for pancreatobiliary and other cancers during the observational period and (2) prognosis after diagnosis of AIP and IgG4-SC using standardized mortality ratio (SMR). RESULTS This study included 201 patients with AIP and IgG4-SC. The mean follow-up period was 5.7 years. Seven cases of pancreatic cancer were diagnosed, and the SIR was 8.11 (95% confidence interval [CI]: 7.29-9.13). Three cases of bile duct cancer were diagnosed, and the SIR was 6.89 (95% CI: 6.20-7.75). The SMR after the diagnosis of AIP and IgG4-SC in cases that developed pancreatobiliary cancer were 4.03 (95% CI: 2.83-6.99). CONCLUSIONS Patients with autoimmune pancreatitis and IgG4-SC were associated with a high risk of pancreatic and bile duct cancer. Patients with AIP and IgG4-SC have a worse prognosis when they develop pancreatobiliary cancer.
Collapse
Affiliation(s)
- Yusuke Kurita
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Kensuke Kubota
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Yuji Fujita
- Department of Hepato-Biliary-Pancreatic Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Seitaro Tsujino
- Department of Hepato-Biliary-Pancreatic Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Yusuke Sekino
- Department of Gastroenterology, Yokohama Rosai Hospital, Yokohama, Japan
| | - Noriki Kasuga
- Department of Gastroenterology, Yokohama Rosai Hospital, Yokohama, Japan
| | - Akito Iwasaki
- Department of Gastroenterology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Mai Iwase
- Department of Gastroenterology, Hiratsuka City Hospital, Hiratsuka, Japan
| | - Takeshi Izuka
- Department of Gastroenterology, Hiratsuka City Hospital, Hiratsuka, Japan
| | - Koichi Kagawa
- Department of Gastroenterology, Keiyu Hospital, Yokohama, Japan
| | - Emiko Tanida
- Department of Gastroenterology, Machida Municipal Hospital, Tokyo, Japan
| | - Shin Yagi
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Sho Hasegawa
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Takamitsu Sato
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | | | - Yasushi Ichikawa
- Department of Oncology, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| |
Collapse
|
23
|
Lee DY, Shin JW, Shin YJ, Han SW, Kim DH. Lactobacillus plantarum and Bifidobacterium longum Alleviate Liver Injury and Fibrosis in Mice by Regulating NF-κB and AMPK Signaling. J Microbiol Biotechnol 2024; 34:149-156. [PMID: 38105432 PMCID: PMC10840473 DOI: 10.4014/jmb.2310.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
In a preliminary study, live biotherapeutic products (LBPs) Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 inhibited the secretion of alanine transaminase (ALT) and aspartate transaminase (AST) in LPS-stimulated HepG2 cells, while Escherichia coli K1 (Ec) increased ALT and ALT secretion. Therefore, we examined the effects of LC27 and LC67 on LPS-induced liver injury and fibrosis in mice and the correlation between their biomarkers in cell and animal experiments. Orally administered LC27 or LC67 significantly decreased blood ALT, AST, γ-glutamyl transferase (γGTP), TNF-α, triglyceride (TG), total cholesterol (TCh), total bile acid, and LPS levels, liver TNF-α, toll-like receptor-4 gene (Tlr4), α-smooth muscle actin (αSMA), and collagen-1 expression and αSMA+GFAP+ and NF-κB+F4/80+ cell populations, and colonic Tlr4, TNF-α, and IL-6 expression and NF-κB-positive cell population in LPS-treated mice. Furthermore, they increased AMPKa phosphorylation in the liver and colon. However, Ec increased the expression of TNF-α and IL-6 in blood, liver, and colon. The suppression of LPS-stimulated ALT and AST secretion in HepG2 cells by LBPs was positively correlated with their ameliorating effects on LPS-induced blood γGTP, ALT, and AST levels and liver αSMA and collagen-1 expression in mice. Based on these findings, LC27 and LC67 may improve liver injury and fibrosis by regulating NF-κB and AMPK signaling pathway and a protocol that can assay the inhibitory activity of LBPs on LPS-induced ALT and AST secretion in HepG2 may be useful for guessing their antihepatitic effects in the in vivo experiments.
Collapse
Affiliation(s)
- Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
Oshi M, Chida K, Roy AM, Mann GK, An N, Yan L, Endo I, Takabe K. Higher Inflammatory Response in Hepatocellular Carcinoma is Associated with Immune Cell Infiltration and a Better Outcome. RESEARCH SQUARE 2024:rs.3.rs-3768964. [PMID: 38260290 PMCID: PMC10802714 DOI: 10.21203/rs.3.rs-3768964/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background & Aims Hepatocellular carcinoma (HCC) often develops from chronic liver inflammation. Inflammation within a tumor can either promote cancer progression or activate an immune response against it. This study aims to determine the clinical significance of enhanced inflammation in HCC. Methods Data from 655 HCC patients across four cohorts (TCGA, GSE6764, GSE76427, GSE89377) were examined. Inflammatory response was quantified using a scoring system derived from the gene set variation analysis of the "INFLAMMATORY_RESPONSE" gene set. Results A stepwise increase in inflammatory response was noted from normal liver to cirrhosis, with consistently lower levels in HCC across both GSE6764 and GSE89377 cohorts (both p<0.001). Similar trends were observed in interferon response, pathways such as IL6/JAK/STAT3 and complement signaling, coagulation cascade, and allograft rejection (all p<0.02). HCCs with high inflammatory response were associated with increased immune cell infiltrations (p<0.01) and cytolytic activity (p<0.001). Interestingly, these HCCs had reduced mutation rates, no relationship with cell proliferation, and displayed both immune responses and pro-cancerous signals including epithelial-mesenchymal transition, KRAS, and hypoxia. Further, a high inflammatory score correlated with improved disease-free survival in TCGA (p=0.034) and overall survival in GSE76427 (p=0.008). Conclusion HCC with higher levels of inflammatory response demonstrated increased immune cell infiltration, enhanced immune-related and other pro-cancerous-related signaling, and better patient prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Nan An
- Roswell Park Comprehensive Cancer Center
| | - Li Yan
- Roswell Park Comprehensive Cancer Center
| | - Itaru Endo
- Yokohama City University: Yokohama Shiritsu Daigaku
| | | |
Collapse
|
25
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
26
|
Tang C, Xu J, Zheng M, Qian D, Gao Z, Li X, Zhang W. Potential clinical significance of ALDH3B1 in auxiliary diagnosis of gastric cancer. Biomark Med 2024; 18:15-23. [PMID: 38334412 DOI: 10.2217/bmm-2023-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Objective: This research aimed to explore a diagnostic method based on serum ALDH3B1 and to evaluate the clinical diagnostic efficacy in gastric cancer (GC) by comparing it with the traditional GC diagnostic method, the carcinoembryonic protein (CEA) assay. Methods: Serum samples were collected from 70 healthy volunteers and various patients (GC: 76, benign gastric lesions: 20, postoperative: 37, recurrence: 56). The diagnostic efficacy of serum ALDH3B1, CEA and the co-diagnosis were evaluated by receiver operating characteristic curve. ALDH3B1 protein levels were evaluated by western blot. Results: The co-diagnosis of ALDH3B1 and CEA had the highest diagnostic efficacy (area under the curve = 0.841). Conclusion: Serum ALDH3B1 may be used as an auxiliary diagnostic biomarker for GC, and its co-diagnosis with CEA can improve diagnostic efficacy.
Collapse
Affiliation(s)
- Chenxue Tang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jing Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Ming Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dongchen Qian
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhihua Gao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xian Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Weiwei Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
27
|
Aasarey R, Yadav K, Kashyap BK, Prabha S, Kumar P, Kumar A, Ruokolainen J, Kesari KK. Role of Immunological Cells in Hepatocellular Carcinoma Disease and Associated Pathways. ACS Pharmacol Transl Sci 2023; 6:1801-1816. [PMID: 38093838 PMCID: PMC10714437 DOI: 10.1021/acsptsci.3c00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 03/28/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the predominant causes of cancer-related mortality across the globe. It is attributed to obesity, excessive alcohol consumption, smoking, and infection by the hepatitis virus. Early diagnosis of HCC is essential, and local treatments such as surgical excision and percutaneous ablation are effective. Palliative systemic therapy, primarily with the tyrosine kinase inhibitor Sorafenib, is used in advanced cases. However, the prognosis for advanced HCC remains poor. This Review additionally describes the pathophysiological mechanisms of HCC, which include aberrant molecular signaling, genomic instability, persistent inflammation, and the paradoxical position of the immune system in promoting and suppressing HCC. The paper concludes by discussing the growing body of research on the relationship between mitochondria and HCC, suggesting that mitochondrial dysfunction may contribute to the progression of HCC. This Review focuses on immunological interactions between different mechanisms of HCC progression, including obesity, viral infection, and alcohol consumption.
Collapse
Affiliation(s)
- Ram Aasarey
- Department
of Laboratory Medicine, All India Institute
of Medical Science, New Delhi-11029, India
| | - Kajal Yadav
- Department
of Biotechnology, All India Institute of
Medical Science, New Delhi-11029, India
| | - Brijendra Kumar Kashyap
- Department
of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi-284128, Uttar Pradesh, India
| | - Sarit Prabha
- Department
of Biological Science and Engineering, Maulana
Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh,India
| | - Pramod Kumar
- Indian
Council of Medical Research, National Institute
of Cancer Prevention and Research (NICPR), l-7, Sector-39, Noida-201301, National Capital Region, India
| | - Anil Kumar
- Department
of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke-835222, Ranchi, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara-144411, Punjab, India
| |
Collapse
|
28
|
Sun D, Gong L, Wang X, Chen S, Yi J, Liu X. Pro-inflammatory Cytokines Promote the Occurrence and Development of Colitis-associated Colorectal Cancer by Inhibiting miR-615-5p. Inflamm Bowel Dis 2023; 29:1854-1864. [PMID: 37300504 DOI: 10.1093/ibd/izad105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) may be prone to colitis-associated colorectal cancer (CAC), but there is still a poor understanding of the underlying mechanism so far. This study intended to clarify the role of pro-inflammatory cytokines and miR-615-5p in this process. METHODS This experiment first detected miR-615-5p expressions in paraffin-embedded sections of colonic tissues from patients with UC and CAC. Then, we investigated the mechanism through which pro-inflammatory cytokines affected miR-615-5p. Furthermore, in vivo and in vitro tests were performed to identify how miR-615-5p affected colorectal cancer (CRC). Dual-luciferase reporter assay was then employed to identify the targeting relationship between miR-615-5p and stanniocalcin-1 (STC1). RESULTS The miR-615-5p was lowly expressed in both cancerous and noncancerous colonic tissues of patients with CAC. Pro-inflammatory cytokines downregulated miR-615-5p expression. Overexpression of miR-615-5p reduced the proliferation and migration of CRC cells and had a certain therapeutic effect on in human CRC xenograft mice. Stanniocalcin-1 was identified to be a target gene of miR-615-5p and was involved in the effect of miR-615-5p on CRC. CONCLUSIONS During the progression from UC to CAC, pro-inflammatory cytokines downregulate miR-615-5p, which may induce the upregulation of STC1, and promote the occurrence and development of tumors. These findings offer new insights into the mechanism of CAC and may indicate novel tumor markers or therapeutic targets.
Collapse
Affiliation(s)
- Danping Sun
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingqi Gong
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xiaotong Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
29
|
Ghobashi AH, Lanzloth R, Ladaika CA, O'Hagan HM. Single-cell profiling reveals the impact of genetic alterations on the differentiation of inflammation-induced colon tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569463. [PMID: 38077052 PMCID: PMC10705473 DOI: 10.1101/2023.11.30.569463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (Min ApcΔ716/+ ) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAF V600E mutation ( BRAF FV600E Lgr5 tm1(Cre/ERT2)Cle Min ApcΔ716/+ , BLM) or knocking out Msh2 ( Msh2 LoxP/LoxP Vil1-cre Min ApcΔ716/+ , MSH2KO) in the Min model altered colon tumor differentiation. Using single cell RNA-sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the stem cell population. In contrast, MSH2KO tumors were characterized by an increased stem cell population that had higher WNT signaling activity compared to Min tumors. Additionally, comparative analysis of single-cell transcriptomics revealed that BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we were able to identify additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
|
30
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
31
|
Sun A, Park P, Cole L, Vaidya H, Maegawa S, Keith K, Calendo G, Madzo J, Jelinek J, Jobin C, Issa JPJ. Non-pathogenic microbiota accelerate age-related CpG Island methylation in colonic mucosa. Epigenetics 2023; 18:2160568. [PMID: 36572998 PMCID: PMC9980687 DOI: 10.1080/15592294.2022.2160568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic process altered in cancer and ageing. Age-related methylation drift can be used to estimate lifespan and can be influenced by extrinsic factors such as diet. Here, we report that non-pathogenic microbiota accelerate age-related methylation drift in the colon when compared with germ-free mice. DNA methylation analyses showed that microbiota and IL10KO were associated with changes in 5% and 4.1% of CpG sites, while mice with both factors had 18% alterations. Microbiota, IL10KO, and their combination altered 0.4%, 0.4%, and 4% of CpG island methylation, respectively. These are comparable to what is seen in colon cancer. Ageing changes were accelerated in the IL10KO mice with microbiota, and the affected genes were more likely to be altered in colon cancer. Thus, the microbiota affect DNA methylation of the colon in patterns reminiscent of what is observed in ageing and colorectal cancer.
Collapse
Affiliation(s)
- Ang Sun
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Pyounghwa Park
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Lauren Cole
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Himani Vaidya
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Shinji Maegawa
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Research Department of Pediatrics, University of Texas, MD Anderson Cancer Center Department of Pediatrics, University of Texas, MD Anderson Cancer CenterHouston, TX, USA
| | - Kelsey Keith
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Gennaro Calendo
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jozef Madzo
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jaroslav Jelinek
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jean-Pierre J. Issa
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| |
Collapse
|
32
|
Jiang Y, Zhang Y, Ju C, Zhang R, Li H, Chen F, Zhu Y, Shen S, Wei Y. A cross-disorder study to identify causal relationships, shared genetic variants, and genes across 21 digestive disorders. iScience 2023; 26:108238. [PMID: 37965154 PMCID: PMC10641500 DOI: 10.1016/j.isci.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Digestive disorders are a significant contributor to the global burden of disease and seriously affect human quality of life. Research has already confirmed the presence of pleiotropic genetic loci among digestive disorders, and studies have explored shared genetic factors among pan-cancers, including various malignant digestive disorders. However, most cross-phenotype studies within the digestive tract system have been limited to a few traits, with no systematic coverage of common benign and malignant digestive disorders. Here, we analyzed data from the UK Biobank to investigate 21 digestive disorders, exploring the genetic correlations and causal relationships between diseases, as well as the common genetic factors and potential biological pathways driving these relationships. Our findings confirmed the extensive genetic correlation and causal relationship between digestive disorders, providing important insights into the genetic etiology, causality, disease prevention, and clinical treatment of diseases.
Collapse
Affiliation(s)
- Yue Jiang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yihong Zhang
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Can Ju
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Hui Li
- Department of Gastroenterology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yefei Zhu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Sipeng Shen
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongyue Wei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| |
Collapse
|
33
|
Hara Y, Mizukami H, Yamazaki K, Yamada T, Igawa A, Takeuchi Y, Sasaki T, Kushibiki H, Murakami K, Kudoh K, Ishido K, Hakamada K. Dual epigenetic changes in diabetes mellitus-associated pancreatic ductal adenocarcinoma correlate with downregulation of E-cadherin and worsened prognosis. J Pathol Clin Res 2023; 9:354-366. [PMID: 37246239 PMCID: PMC10397378 DOI: 10.1002/cjp2.326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/02/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Diabetes mellitus (DM) is a risk factor for pancreatic ductal adenocarcinoma (PDAC) that promotes the promoter methylation of CDH1. It is still unclear whether DM can exert other epigenetic effects, such as altering microRNA (miR) expression, in PDAC. The expression of miR-100-5p is known to be changed in DM patients and can suppress the expression of E-cadherin. In this study, the correlation between DM status and dual epigenetic changes was evaluated in PDAC specimens from patients who underwent radical surgical resection. A total of 132 consecutive patients with PDAC were clinicopathologically evaluated. E-cadherin and nuclear β-catenin expression was measured using immunohistochemistry. DNA and miRs were extracted from the main tumor site on formalin-fixed paraffin-embedded tissue sections. TaqMan miR assays were applied to assess miR-100-5p expression. Bisulfite modification was conducted on the extracted DNA, which was then subjected to methylation-specific polymerase chain reaction. Immunohistochemistry revealed that decreased E-cadherin expression and increased nuclear β-catenin expression were significantly associated with DM and poor tumor cell differentiation. The presence of long-duration DM (≥3 years) was a significant factor contributing to CDH1 promoter methylation (p < 0.01), while miR-100-5p expression was proportionally correlated with the preoperative HbA1c level (R = 0.34, p < 0.01), but not the duration of DM. The subjects with high miR-100-5p expression and CDH1 promoter methylation showed the highest level of vessel invasion and prevalence of tumor size ≥30 mm. PDAC subjects with dual epigenetic changes showed poorer overall survival (OS) than those with a single epigenetic change. miR-100-5p expression ≥4.13 and CDH1 promoter methylation independently predicted poor OS and disease-free survival (DFS) in the multivariate analysis. OS and DFS worsened in DM subjects with both HbA1c ≥ 6.5% and DM duration ≥3 years. Thus, DM is associated with two modes of epigenetic change by independent mechanisms and worsens prognosis.
Collapse
Affiliation(s)
- Yutaro Hara
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takahiro Yamada
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Akiko Igawa
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Yuki Takeuchi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hanae Kushibiki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kotaro Murakami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keinosuke Ishido
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kenichi Hakamada
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
34
|
Mou Y, Bai X, Ma H, Li T, Zhao Y, Wu T, Zhang Y, Qu H, Kong H, Wang X, Zhao Y. Protective effect of carbon dots derived from scrambled Coptidis Rhizoma against ulcerative colitis in mice. Front Mol Biosci 2023; 10:1253195. [PMID: 37711388 PMCID: PMC10498776 DOI: 10.3389/fmolb.2023.1253195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction: Ulcerative colitis (UC) is a chronic and progressive inflammatory disease of the intestines. The primary symptoms, such as bloody diarrhea, can result in weight loss and significantly diminish the patient's quality of life. Despite considerable research endeavors, this disease remains incurable. The scrambled Coptidis Rhizoma (SCR) has a rich historical background in traditional Chinese medicine as a remedy for UC. Drawing from a wealth of substantial clinical practices, this study is focused on investigating the protective effects and underlying mechanisms of the active component of SCR, namely SCR-based carbon dots (SCR-CDs), in the treatment of UC. Methods: SCR-CDs were extracted and isolated from the decoction of SCR, followed by a comprehensive characterization of their morphological structure and functional groups. Subsequently, we investigated the effects of SCR-CDs on parameters such as colonic length, disease activity index, and histopathological architecture using the dextran sulfate sodium (DSS)-induced colitis mice model. Furthermore, we delved into the assessment of key aspects, including the expression of intestinal tight junction (TJ) proteins, inflammatory cytokines, oxidative stress markers, and gut microbial composition, to unravel the intricate mechanisms underpinning their therapeutic effects. Results: SCR-CDs displayed a consistent spherical morphology, featuring uniform dispersion and diameters ranging from 1.2 to 2.8 nm. These SCR-CDs also exhibited a diverse array of surface chemical functional groups. Importantly, the administration of SCR-CDs, particularly at higher dosage levels, exerted a noteworthy preventive influence on colonic shortening, elevation of the disease activity index and colonic tissue impairment caused by DSS. These observed effects may be closely associated with the hygroscopic capability and hemostatic bioactivity inherent to SCR-CDs. Concurrently, the application of SCR-CDs manifested an augmenting impact on the expression of intestinal TJ proteins, concomitantly leading to a significant reduction in inflammatory cell infiltration and amelioration of oxidative stress. Additionally, SCR-CDs treatment facilitated the restoration of perturbed gut microbial composition, potentially serving as a fundamental mechanism underlying their observed protective effects. Conclusion: This study demonstrates the significant therapeutic potential of SCR-CDs in UC and provides elucidation on some of their mechanisms. Furthermore, these findings hold paramount importance in guiding innovative drug discovery for anti-UC agents.
Collapse
Affiliation(s)
- Yanfang Mou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingjie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Kitajima H, Maruyama R, Niinuma T, Yamamoto E, Takasawa A, Takasawa K, Ishiguro K, Tsuyada A, Suzuki R, Sudo G, Kubo T, Mitsuhashi K, Idogawa M, Tange S, Toyota M, Yoshido A, Kumegawa K, Kai M, Yanagihara K, Tokino T, Osanai M, Nakase H, Suzuki H. TM4SF1-AS1 inhibits apoptosis by promoting stress granule formation in cancer cells. Cell Death Dis 2023; 14:424. [PMID: 37443145 PMCID: PMC10345132 DOI: 10.1038/s41419-023-05953-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) play pivotal roles in tumor development. To identify dysregulated lncRNAs in gastric cancer (GC), we analyzed genome-wide trimethylation of histone H3 lysine 4 (H3K4me3) to screen for transcriptionally active lncRNA genes in the non-tumorous gastric mucosa of patients with GC and healthy individuals. We found that H3K4me3 at TM4SF1-AS1 was specifically upregulated in GC patients and that the expression of TM4SF1-AS1 was significantly elevated in primary and cultured GC cells. TM4SF1-AS1 contributes to GC cell growth in vitro and in vivo, and its oncogenic function is mediated, at least in part, through interactions with purine-rich element-binding protein α (Pur-α) and Y-box binding protein 1 (YB-1). TM4SF1-AS1 also activates interferon signaling in GC cells, which is dependent on Pur-α and RIG-I. Chromatin isolation by RNA purification (ChIRP)-mass spectrometry demonstrated that TM4SF1-AS1 was associated with several stress granule (SG)-related proteins, including G3BP2, RACK1, and DDX3. Notably, TM4SF1-AS1 promoted SG formation and inhibited apoptosis in GC cells by sequestering RACK1, an activator of the stress-responsive MAPK pathway, within SGs. TM4SF1-AS1-induced SG formation and apoptosis inhibition are dependent on Pur-α and YB-1. These findings suggested that TM4SF1-AS1 contributes to tumorigenesis by enhancing SG-mediated stress adaptation.
Collapse
Affiliation(s)
- Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Tsuyada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Suzuki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kei Mitsuhashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayano Yoshido
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyoshi Yanagihara
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
37
|
Ju G, Lei J, Cai S, Liu S, Yin X, Peng C. The Emerging, Multifaceted Role of WTAP in Cancer and Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15113053. [PMID: 37297015 DOI: 10.3390/cancers15113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a grave and persistent illness, with the rates of both its occurrence and death toll increasing at an alarming pace. N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic organisms, is catalyzed by methyltransferases and has a significant impact on various aspects of cancer progression. WT1-associated protein (WTAP) is a crucial component of the m6A methyltransferase complex, catalyzing m6A methylation on RNA. It has been demonstrated to participate in numerous cellular pathophysiological processes, including X chromosome inactivation, cell proliferation, cell cycle regulation, and alternative splicing. A better understanding of the role of WTAP in cancer may render it a reliable factor for early diagnosis and prognosis, as well as a key therapeutic target for cancer treatment. It has been found that WTAP is closely related to tumor cell cycle regulation, metabolic regulation, autophagy, tumor immunity, ferroptosis, epithelial mesenchymal transformation (EMT), and drug resistance. In this review, we will focus on the latest advances in the biological functions of WTAP in cancer, and explore the prospects of its application in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Guomin Ju
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Jiangchu Lei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Shuqi Cai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Siyuan Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Xinjia Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| |
Collapse
|
38
|
Simões R, Ferreira AC, Silva LM, Sabino ADP, Carvalho MDG, Gomes KB. Evaluation of the RDW Index (Red Cell Distribution Width) in Women with Breast Cancer Treated with Doxorubicin in a One-Year Follow-Up Study. Diagnostics (Basel) 2023; 13:diagnostics13091552. [PMID: 37174944 PMCID: PMC10177911 DOI: 10.3390/diagnostics13091552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is the most common cancer and the most frequent cause of death in women. Doxorubicin, an anthracycline, is an important drug due to its efficacy in treating solid cancers, especially breast cancer. However, this drug is often responsible for cardiotoxicity that may affect more than 25% of patients. This study aimed to evaluate the red cell distribution width (RDW) in women with breast cancer to monitor adverse events associated with the use of doxorubicin. A prospective study of 80 women with breast malignancy undergoing neoadjuvant doxorubicin-based chemotherapy was conducted. The patients were evaluated at baseline (T0), just after the last cycle of chemotherapy with doxorubicin (T1), and 1 year after the treatment (T2). There was a significant increase over the time points for the RDW (p < 0.001). There was a negative correlation between the RDW and C-reactive protein (CRP) levels at T1. The RDW did not show a significant difference between the groups classified according to cardiotoxicity. Based on these results, the RDW is a cost-effective test that shows a relationship with the doxorubicin response, but not with cardiotoxicity. It is a potential biomarker to evaluate patients with breast cancer after they receive chemotherapy with doxorubicin.
Collapse
Affiliation(s)
- Ricardo Simões
- Department of Internal Medicine, Faculty of Medical Sciences of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Amanda Cambraia Ferreira
- Department of Internal Medicine, Faculty of Medical Sciences of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Luciana Maria Silva
- Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte 30130-110, MG, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Maria das Graças Carvalho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
39
|
Kubota K, Kamisawa T, Nakazawa T, Tanaka A, Naitoh I, Kurita Y, Takikawa H, Unno M, Kawa S, Masamune A, Nakamura S, Okazaki K. Reducing relapse through maintenance steroid treatment can decrease the cancer risk in patients with IgG4-sclerosing cholangitis: Based on a Japanese nationwide study. J Gastroenterol Hepatol 2023; 38:556-564. [PMID: 36403136 DOI: 10.1111/jgh.16066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/08/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE IgG4-related sclerosing cholangitis (IgG4-SC) is recognized as a benign steroid-responsive disease; however, little is known about the risk of development of cancer in patients with IgG4-SC and about how to counter this risk. DESIGN We conducted a retrospective review of the data of 924 patients with IgG4-SC selected from a Japanese nationwide survey. The incidence, type of malignancy, and risk of malignancy in these patients were examined. Then, the standardized incidence ratio (SIR) of cancer in patients with IgG4-SC was calculated. RESULTS Relapse was recognized in 19.7% (182/924) of patients, and cancer development was noted in 15% (139/924) of patients. Multivariate analysis identified only relapse as an independent risk factor for the development of cancer. In most of these patients with pancreato-biliary cancer, the cancer developed within 8 years after the diagnosis of IgG4-SC. The SIR for cancer after the diagnosis of IgG4-SC was 12.68 (95% confidence interval [CI] 6.89-8.79). The SIRs of cancers involving the biliary system and pancreas were 27.35 and 18.43, respectively. The cumulative survival rate was significantly better in the group that received maintenance steroid treatment (MST) than in the group that did not; thus, MST influenced the prognosis of these patients. CONCLUSION Among the cancers, the risk of pancreatic and biliary cancers is the highest in these patients. Because of the elevated cancer risk, surveillance after the diagnosis and management to prevent relapse are important in patients with IgG4-SC to reduce the risk of development of cancer.
Collapse
Affiliation(s)
- Kensuke Kubota
- Endoscopic Unit, Yokohama City University Hospital, Yokohama, Japan
| | - Terumi Kamisawa
- Department of Internal Medicine, Tokyo Metropolitan, Komagome Hospital, Tokyo, Japan
| | - Takahiro Nakazawa
- Department of Gastroenterology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Itaru Naitoh
- Department of Gastroenterology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Kurita
- Endoscopic Unit, Yokohama City University Hospital, Yokohama, Japan
| | - Hajime Takikawa
- Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeyuki Kawa
- Department of Internal Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kazuichi Okazaki
- Department of Internal Medicine, Kansai Medical University, Kori Hospital, Neyagawa, Japan
| |
Collapse
|
40
|
Wu S, Xie S, Yuan C, Yang Z, Liu S, Zhang Q, Sun F, Wu J, Zhan S, Zhu S, Zhang S. Inflammatory Bowel Disease and Long-term Risk of Cancer: A Prospective Cohort Study Among Half a Million Adults in UK Biobank. Inflamm Bowel Dis 2023; 29:384-395. [PMID: 35639937 DOI: 10.1093/ibd/izac096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND This study aims to examine the prospective association of inflammatory bowel disease (IBD) with long-term risk of overall, site-specific cancer and cancer-specific mortality in middle-aged and older people. METHODS The study included participants free of any cancer at baseline from the UK Biobank, with IBD patients as an exposure group and non-IBD patients as a reference group. Primary outcome was the incidence of overall cancer and cancer-specific mortality. Secondary outcomes included site-specific cancers and types of digestive cancers. Cox proportional hazard model was used to investigate the associated risk of incident malignancies and related mortality. RESULTS Among 455 927 participants, 5142 were diagnosed with IBD (3258 ulcerative colitis [UC]; 1449 Crohn's disease [CD]; others unspecified). During a median of 12.2-year follow-up, 890 cases of incident cancer were identified in IBD patients (15.74 per 1000 person years) compared with 63 675 cases in reference individuals (12.46 per 1000 person years). Of these cases, 220 and 12 838 cancer-specific deaths occurred in IBD and non-IBD groups. Compared with non-IBD participants, the adjusted hazard ratio (AHR) for overall cancer and cancer-specific mortality was 1.17 (95% CI, 1.09-1.25) and 1.26 (95% CI, 1.18-1.35) among IBD patients, with an AHR of 1.15 (95% CI, 1.02-1.31) and 1.38 (95% CI, 1.08-1.75) in UC and 1.15 (95% CI, 1.06-1.25) and 1.25 (95% CI, 1.06-1.49) in CD, respectively. Specifically, increased risk of digestive (1.33; 95% CI, 1.12-1.57), nonmelanoma (1.25; 95% CI, 1.11-1.41), and male genital (1.29; 95% CI, 1.09-1.52) cancers was observed in IBD patients. CONCLUSIONS Compared with non-IBD, IBD may be associated with an increased risk of overall cancer and cancer-specific mortality, particularly digestive cancers, nonmelanoma and male genital cancers.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Sian Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhirong Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Primary Care Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, CB18RN, UK
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| |
Collapse
|
41
|
Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat Rev Gastroenterol Hepatol 2023; 20:37-49. [PMID: 36258033 PMCID: PMC9579565 DOI: 10.1038/s41575-022-00688-6] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 02/07/2023]
Abstract
Heavy alcohol consumption is a major cause of morbidity and mortality. Globally, alcohol per-capita consumption rose from 5.5 litres in 2005 to 6.4 litres in 2016 and is projected to increase further to 7.6 litres in 2030. In 2019, an estimated 25% of global cirrhosis deaths were associated with alcohol. The global estimated age-standardized death rate (ASDR) of alcohol-associated cirrhosis was 4.5 per 100,000 population, with the highest and lowest ASDR in Africa and the Western Pacific, respectively. The annual incidence of hepatocellular carcinoma (HCC) among patients with alcohol-associated cirrhosis ranged from 0.9% to 5.6%. Alcohol was associated with approximately one-fifth of global HCC-related deaths in 2019. Between 2012 and 2017, the global estimated ASDR for alcohol-associated cirrhosis declined, but the ASDR for alcohol-associated liver cancer increased. Measures are required to curb heavy alcohol consumption to reduce the burden of alcohol-associated cirrhosis and HCC. Degree of alcohol intake, sex, older age, obesity, type 2 diabetes mellitus, gut microbial dysbiosis and genetic variants are key factors in the development of alcohol-associated cirrhosis and HCC. In this Review, we discuss the global epidemiology, projections and risk factors for alcohol-associated cirrhosis and HCC.
Collapse
Affiliation(s)
- Daniel Q Huang
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, CA, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Philippe Mathurin
- Service des Maladies de l'appareil digestif, Hôpital Huriez, Lille, France
- Unité INSERM 995, Faculté de médecine, Lille, France
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Departamento de Gastrenterologia, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
42
|
Hou J, Yang Y, Gao H, Ouyang T, Liu Q, Ding R, Kan H. Systematic investigation of the clinical significance and prognostic value of the CBXs in esophageal cancer. Medicine (Baltimore) 2022; 101:e30888. [PMID: 36221371 PMCID: PMC9542684 DOI: 10.1097/md.0000000000030888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Esophageal cancer (ESCA), one of the most aggressive malignant tumors, has been announced to be the ninth most common cancer and the sixth leading cause of cancer-related death in the world. Chromobox family members (CBXs) are important epigenetic regulators which are related with the transcription of target genes. The role of CBXs in carcinomas has been reported in many studies. However, the function and prognostic value of different CBXs in ESCA are still largely unknown. In this article, we first performed differential expression analysis through several methods including Oncomine and Gene Expression Profiling Interactive Analysis. The results led us to determine the differential expression of CBXs in pan-cancer, especially ESCA. Then we evaluated the prognostic value of different CBX messenger RNA (mRNA) expression in patients with ESCA through the Kaplan-Meier plotter and the Human Protein Atlas database. In addition, we used cBioPortal to explore all genetic alterations and mutations in the CBXs in ESCA. Simultaneously, the correlation between its expression and the level of immune infiltration of ESCA was visualized by TIMER. Finally, the biological function of CBXs in ESCA is obtained through Biological Enrichment Analysis including gene ontology and Kyoto Encyclopedia of Genes and Genomes. The expression levels of CBX3/4/5 and CBX8 in ESCA tissues increased significantly and the expression level of CBX7 decreased through differential expression analysis. Additionally, CBX1 is significantly related to the clinical cancer stage and disease-free survival of ESCA patients. The high mRNA expression of CBX4 is related to the short overall survival of patients with esophageal squamous cell carcinoma, and the high mRNA expression of CBX3/7/8 is related to the short overall survival of patients with esophageal adenocarcinoma, indicating that CBX1/3/4/7/8 may be a potential prognostic biomarker for the survival of ESCA patients. Besides, the expression of CBXs is significantly related to the infiltration of a variety of immune cells, including six types of CD4-positive T-lymphocytes, macrophages, neutrophils, bursindependentlymphocyte, CD8-positive T-lymphocytes cells and dendritic cells in ESCA. Moreover, we found that CBXs are mainly associated with the inhibition of cell cycle and apoptosis pathway. Further, enrichment analysis indicated that CBXs and correlated genes were enriched in mismatch repair, DNA replication, cancer pathways, and spliceosomes. Our research may provide new insights into the choice of prognosis biomarkers of the CBXs in ESCA.
Collapse
Affiliation(s)
- Jun Hou
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Qiwei Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, China
| |
Collapse
|
43
|
Omaru N, Watanabe T, Kamata K, Minaga K, Kudo M. Activation of NOD1 and NOD2 in the development of liver injury and cancer. Front Immunol 2022; 13:1004439. [PMID: 36268029 PMCID: PMC9577175 DOI: 10.3389/fimmu.2022.1004439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocytes and liver-resident antigen-presenting cells are exposed to microbe-associated molecular patterns (MAMPs) and microbial metabolites, which reach the liver from the gut via the portal vein. MAMPs induce innate immune responses via the activation of pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), nucleotide-binding oligomerization domain 1 (NOD1), and NOD2. Such proinflammatory cytokine responses mediated by PRRs likely contribute to the development of chronic liver diseases and hepatocellular carcinoma (HCC), as shown by the fact that activation of TLRs and subsequent production of IL-6 and TNF-α is required for the generation of chronic fibroinflammatory responses and hepatocarcinogenesis. Similar to TLRs, NOD1 and NOD2 recognize MAMPs derived from the intestinal bacteria. The association between the activation of NOD1/NOD2 and chronic liver diseases is poorly understood. Given that NOD1 and NOD2 can regulate proinflammatory cytokine responses mediated by TLRs both positively and negatively, it is likely that sensing of MAMPs by NOD1 and NOD2 affects the development of chronic liver diseases, including HCC. Indeed, recent studies have highlighted the importance of NOD1 and NOD2 activation in chronic liver disorders. Here, we summarize the roles of NOD1 and NOD2 in hepatocarcinogenesis and liver injury.
Collapse
|
44
|
Luo X, Yang W, Joshi AD, Wu K, Simon TG, Yuan C, Jin L, Long L, Kim MN, Lo CH, Liu X, Abrams TA, Wolpin BM, Chan AT, Giovannucci EL, Zhang X. Gallstones and risk of cancers of the liver, biliary tract and pancreas: a prospective study within two U.S. cohorts. Br J Cancer 2022; 127:1069-1075. [PMID: 35715632 PMCID: PMC9470543 DOI: 10.1038/s41416-022-01877-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Gallstones may result in inflammation, altered bile flow, and changes in metabolic hormone levels, thereby increasing cancer risk. However, previous studies for gallstones and cancers of the liver, biliary tract and pancreas in the U.S. were relatively limited. METHODS We followed 115,036 women from the Nurses' Health Study (1982-2012) and 49,729 men from the Health Professionals Follow-up Study (1986-2012). History of gallstones, including with or without performed cholecystectomy, was reported at baseline and updated through biennial questionnaires. The Cox proportional hazard regression model was used to calculate multivariable hazard ratios (HRs) and 95% confidence intervals (95% CIs). RESULTS During up to 30-year follow-up, we identified 204 incidents of liver cancer, 225 biliary tract cancer and 1147 pancreatic cancer cases. Compared to those without gallstones diagnosis, the multivariable HRs for individuals with gallstones (untreated or with cholecystectomy) were 1.60 for liver cancer (95% CI: 1.14-2.26), 4.79 for biliary tract cancer (95% CI: 3.02-7.58), and 1.13 for pancreatic cancer (95% CI: 0.96-1.32). The multivariable HRs for individuals with cholecystectomy were 1.33 for liver cancer (95% CI: 0.90-1.95) and 1.15 for pancreatic cancer (95% CI: 0.98-1.36). CONCLUSIONS Gallstones were associated with a higher risk of cancers of the liver, biliary tract and possibly pancreas.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Wanshui Yang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- School of Public Health, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Amit D Joshi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tracey G Simon
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Lina Jin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Biostatistics, Jilin University School of Public Health, Changchun, Jilin, P. R. China
| | - Lu Long
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, P. R. China
| | - Mi Na Kim
- Division of Gastroenterology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
- Laboratory of Clinical Epidemiology in Hepatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Chun-Han Lo
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| | - Xing Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, P. R. China
| | | | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Han X, Liu T, Zhai J, Liu C, Wang W, Nie C, Wang Q, Zhu X, Zhou H, Tian W. Association between EPHA5 methylation status in peripheral blood leukocytes and the risk and prognosis of gastric cancer. PeerJ 2022; 10:e13774. [PMID: 36164608 PMCID: PMC9508887 DOI: 10.7717/peerj.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023] Open
Abstract
Purpose Altered DNA methylation, genetic alterations, and environmental factors are involved in tumorigenesis. As a tumor suppressor gene, abnormal EPHA5 methylation was found in gastric cancer (GC) tissues and was linked to the initiation, progression and prognosis of GC. In this study, the EPHA5 methylation level in peripheral blood leukocytes (PBLs) was detected to explore its relationship with GC risk and prognosis. Methods A total of 366 GC cases and 374 controls were selected as the subjects of this study to collect their environmental factors, and the EPHA5 methylation status was detected through the methylation-sensitive high-resolution melting method. Logistic regression analysis was utilized to evaluate the associations among EPHA5 methylation, environmental factors and GC risk. Meanwhile, the propensity score (PS) was used to adjust the imbalance of some independent variables. Results After PS adjustment, EPHA5 Pm (positive methylation) was more likely to increase the GC risk than EPHA5 Nm (negative methylation) (ORb = 1.827, 95% CI [1.202-2.777], P = 0.005). EPHA5 Pm had a more significant association with GC risk in the elderly (ORa = 2.785, 95% CI [1.563-4.961], P = 0.001) and H. pylori-negative groups (ORa = 2.758, 95% CI [1.369-5.555], P = 0.005). Moreover, the combined effects of EPHA5 Pm and H. pylori infection (ORc a = 3.543, 95% CI [2.233-5.621], P < 0.001), consumption of alcohol (ORc a = 2.893, 95% CI [1.844-4.539], P < 0.001), and salty food intake (ORc a = 4.018, 95% CI [2.538-6.362], P < 0.001) on increasing the GC risk were observed. In addition, no convincing association was found between EPHA5 Pm and the GC prognosis. Conclusions EPHA5 methylation in PBLs and its combined effects with environmental risk factors are related to the GC risk.
Collapse
|
46
|
Zhao P, Wu Z, Wang Z, Wu C, Huang X, Tian B. Prognostic role of the prognostic nutritional index in patients with pancreatic cancer who underwent curative resection without preoperative neoadjuvant treatment: A systematic review and meta-analysis. Front Surg 2022; 9:992641. [PMID: 36157419 PMCID: PMC9500291 DOI: 10.3389/fsurg.2022.992641] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe prognostic nutrition index (PNI), which has been evaluated in various kinds of cancers, offered a simple yet effective approach to predict the prognosis. The aim of this meta-analysis is to reveal the correlation between preoperative PNI and the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) who underwent curative resection.MethodsWe searched the PubMed, Embase, Web of Science and Cochrane Library databases, and extracted the hazard ratio (HR) with 95% confidential interval (CI) from eligible studies. The pooled HR with 95% CI was applied to evaluate the association between PNI and overall survival (OS), recurrence-free survival (RFS).ResultsA total of fourteen studies with 3,385 patients were included for meta-analysis. The results (the pooled HR: 1.664, 95% CI: 1.424–1.994, I² = 42.6%, p value = 0.046) indicated that low preoperative PNI was closely related to poor OS. In addition, the results suggested that PNI was negatively correlated with RFS (the pooled HR: 1.369, 95%CI: 1.080–1.734). The robustness of these pooled results was verified by our subgroup analysis and sensitivity analysis. Moreover, different cutoff values among studies are responsible for the heterogeneity of pooled HR of OS through meta-regression analysis (p value = 0.042). Funnel plots, Begg's test (p value = 0.228) and Egger’s test (p value = 0.702) indicated no significant publication bias in OS.ConclusionPreoperative PNI might be a promising marker to predict the prognosis of PDAC patients who underwent curative resection.
Collapse
|
47
|
Shi B, Liu WW, Yang K, Jiang GM, Wang H. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol Cancer 2022; 21:163. [PMID: 35974338 PMCID: PMC9380308 DOI: 10.1186/s12943-022-01634-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer is the most common human malignancy characterized by high lethality and poor prognosis. Emerging evidences indicate that N6-methyladenosine (m6A), the most abundant post-transcriptional modification in eukaryotes, exerts important roles in regulating mRNA metabolism including stability, decay, splicing, transport, and translation. As the key component of the m6A methyltransferase complex, methyltransferase-like 14 (METTL14) catalyzes m6A methylation on mRNA or non-coding RNA to regulate gene expression and cell phenotypes. Dysregulation of METTL14 was deemed to be involved in various aspects of gastrointestinal cancer, such as tumorigenesis, progression, chemoresistance, and metastasis. Plenty of findings have opened up new avenues for exploring the therapeutic potential of gastrointestinal cancer targeting METTL14. In this review, we systematically summarize the recent advances regarding the biological functions of METTL14 in gastrointestinal cancer, discuss its potential clinical applications and propose the research forecast.
Collapse
Affiliation(s)
- Bin Shi
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Wei-Wei Liu
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ke Yang
- School of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Core Unit of National Clinical Research Center for Laboratory Medicine, Heifei, China.
| |
Collapse
|
48
|
ÖZDEMİR DB, KARAYİĞİT A, DİZEN H, ÜNAL B. The role of red cell distribution width in predicting the prognosis of patients with breast cancer. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1092191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: In this study, we aimed to assess the relationship between preoperative red cell distribution width (RDW) and the clinicopathological stage and prognosis of disease in patients operated for invasive epithelial breast cancer (BC).
Material and Method: This retrospective cross-sectional study was conducted between January 2010 and January 2015 at a tertiary hospital in Turkey. A total of 280 patients who underwent surgery for histologically diagnosed invasive epithelial BC were included in the study.
Results: The mean age of the patients was 53.31±12.58 years. The median follow-up time was 83 (IQR: 56.5–102) months. According to the results we found, there was a statistically significant positive correlation between progesterone receptor (PR) negativity and RDW values (p=0.015). In addition, the RDW values of patients with perineural invasion (PNI) were found to be significantly higher than those without (p=0.036).
Conclusion: When the results of our study are evaluated together with prior reports, it can be said that higher preoperative RDW is associated with poor prognosis. When RDW is evaluated together with other possible prognostic factors, such as PNI and PR status, it has the potential to be a new, easily applicable and accurate marker to assess prognosis in patients with invasive epithelial BC.
Collapse
Affiliation(s)
| | | | | | - Bülent ÜNAL
- ISTANBUL AYDIN UNIVERSITY, SCHOOL OF MEDICINE
| |
Collapse
|
49
|
Li Y, Chen Y, Sun-Waterhouse D. The potential of dandelion in the fight against gastrointestinal diseases: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115272. [PMID: 35405251 DOI: 10.1016/j.jep.2022.115272] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dandelion (Taraxacum officinale Weber ex F. H. Wigg.), as a garden weed grown globally, has long been consumed as a therapeutic herb. Its folkloric uses include treatments of digestive disorders (dyspepsia, anorexia, stomach disorders, gastritis and enteritis) and associate complex ailments involving uterine, liver and lung disorders. AIM OF THE STUDY The present study aims to critically assess the current state of research and summarize the potential roles of dandelion and its constituents in gastrointestinal (GI) -protective actions. A focus is placed on the reported bioactive components, pharmacological activities and modes of action (including molecular mechanisms and interactions among bioactive substances) of dandelion products/preparations and derived active constituents related to GI protection. MATERIALS AND METHODS The available information published prior to August 2021 was reviewed via SciFinder, Web of Science, Google Scholar, PubMed, Elsevier, Wiley On-line Library, and The Plant List. The search was based on the ethnomedical remedies, pharmacological activities, bioactive compounds of dandelion for GI protection, as well as the interactions of the components in dandelion with the gut microbiota or biological regulators, and with other ingested bioactive compounds. The key search words were "Taraxacum" and "dandelion". RESULTS T. coreanum Nakai, T. mongolicum and T. officinale are the most commonly used species for folkloric uses, with the whole plant, leaves and root of dandelion being used more frequently. GI-protective substances of dandelion include taraxasterol, taraxerol, caffeic acid, chicoric acid, chlorogenic acid, luteolin and its glucosides, polysaccharides, inulin, and β-sitosterol. Dandelion products and derived constituents exhibit pharmacological effects against GI disorders, mainly including dyspepsia, gastroesophageal reflux disease, gastritis, small intestinal ulcer, ulcerative colitis, liver diseases, gallstones, acute pancreatitis, and GI malignancy. The underlying molecular mechanisms may include immuno-inflammatory mechanisms, apoptosis mechanism, autophagy mechanism, and cholinergic mechanism, although interactions of dandelion's constituents with GI health-related biological entities (e.g., GI microbiota and associated biological modulators) or other ingested bioactive compounds shouldn't be ignored. CONCLUSION The review reveals some in vivo and in vitro studies on the potential of dandelion derived products as complementary and alternative medicines/therapeutics against GI disorders. The whole herb may alleviate some symptoms related GI immuno-inflammatory basing on the abundant anti-inflammatory and anti-oxide active substances. Dandelion root could be a nontoxic and effective anticancer alternative, owing to its abundant terpenoids and polysaccharides. However, research related to GI protective dandelion-derived products remains limited. Besides the need of identifying bioactive compounds/complexes in various dandelion species, more clinical studies are also required on the metabolism, bioavailability and safety of these substances to support their applications in food, medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Yanni Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yilun Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| |
Collapse
|
50
|
Zhang R, Meng J, Yang S, Liu W, Shi L, Zeng J, Chang J, Liang B, Liu N, Xing D. Recent Advances on the Role of ATGL in Cancer. Front Oncol 2022; 12:944025. [PMID: 35912266 PMCID: PMC9326118 DOI: 10.3389/fonc.2022.944025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
The hypoxic state of the tumor microenvironment leads to reprogramming lipid metabolism in tumor cells. Adipose triglyceride lipase, also known as patatin-like phospholipase= domain-containing protein 2 and Adipose triglyceride lipase (ATGL), as an essential lipid metabolism-regulating enzyme in cells, is regulated accordingly under hypoxia induction. However, studies revealed that ATGL exhibits both tumor-promoting and tumor-suppressing effects, which depend on the cancer cell type and the site of tumorigenesis. For example, elevated ATGL expression in breast cancer is accompanied by enhanced fatty acid oxidation (FAO), enhancing cancer cells’ metastatic ability. In prostate cancer, on the other hand, tumor activity tends to be negatively correlated with ATGL expression. This review outlined the regulation of ATGL-mediated lipid metabolism pathways in tumor cells, emphasizing the Hypoxia-inducible factors 1 (HIF-1)/Hypoxia-inducible lipid droplet-associated (HIG-2)/ATGL axis, peroxisome proliferator-activated receptor (PPAR)/G0/G1 switch gene 2 (G0S2)/ATGL axis, and fat-specific protein 27 (FSP-27)/Early growth response protein 1 (EGR-1)/ATGL axis. In the light of recent research on different cancer types, the role of ATGL on tumorigenesis, tumor proliferation, and tumor metastasis was systemically reviewed.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|