1
|
Livingstone EJ, Cartwright JA, Campana L, Lewis PJS, Dwyer BJ, Aird R, Man TY, Vermeren M, Rossi AG, Boulter L, Forbes SJ. Semaphorin 7a is protective through immune modulation during acetaminophen-induced liver injury. J Inflamm (Lond) 2025; 22:13. [PMID: 40114253 PMCID: PMC11927371 DOI: 10.1186/s12950-025-00429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND AIM Acetaminophen (APAP) induced acute liver injury (ALI), the leading cause acute liver failure in the western world, has limited treatment options. APAP toxicity results in massive hepatic necrosis and secondary infiltrating monocytes and neutrophils, which contribute to pathogenesis. Semaphorin 7a (Sema7a), a chemoattractant and modulator of monocytes and neutrophils, is a potential therapeutic target in other conditions, but its role in APAP-ALI is unexplored. METHODS Wild-type (WT) and Sema7a knockout (KO) mice were examined during APAP-ALI. Serum liver function tests, histological analysis and cellular localisation of Sema7a and its receptors, Plexin C1 and Integrin β1, were examined. Serum cytokines were quantified, tissue macrophages and neutrophils were localised, and in vivo phenotype, including phagocytosis, was assessed by immunohistochemistry and flow cytometry. RESULTS Sema7a was expressed by HNF4α + peri-necrotic hepatocytes circumferentially during APAP-ALI injury phases, and serum concentrations were increased, and correlated with hepatic injury. Sema7a KO mice had increased circulating inflammatory cytokines and significantly less hepatic F4/80 + macrophages, a cell type required for hepatic repair. Sema7a KO mice had higher necrotic area neutrophils, and increased neutrophil chemoattractant CXCL1. Without Sema7a expression, mice displayed increased necrosis and liver injury markers compared to Sema7a WT mice. Without peri-necrotic hepatocyte Sema7a expression, we also identified increased cell death and hepatic cellular stress outside of necrosis. CONCLUSION We have identified a novel protective role of Sema7a during injury phases of APAP-ALI. Without peri-necrotic hepatocyte Sema7a expression and secretion, there is increased inflammation, time specific worsened hepatic necrosis and increased hepatic cell stress and death outside of the necrotic zone.
Collapse
Affiliation(s)
- Eilidh J Livingstone
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Cartwright
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
- The Royal (Dick) School of Veterinary Studiesand Theaq , Roslin Institute, University of Edinburgh, Edinburgh, UK.
| | - Lara Campana
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Philip J Starkey Lewis
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Benjamin J Dwyer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Rhona Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Matthieu Vermeren
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Adriano Giorgio Rossi
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart John Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Zhou X, Liu WM, Sun HY, Peng Y, Huang RJ, Chen CY, Zhang HD, Zhou SA, Wu HP, Tang D, Huang WJ, Wu H, Li QG, Zhai B, Xia Q, Yu WF, Yan HX. Hepatocyte-derived liver progenitor-like cells attenuate liver cirrhosis via induction of apoptosis in hepatic stellate cells. Hepatol Commun 2025; 9:e0614. [PMID: 39878682 PMCID: PMC11781762 DOI: 10.1097/hc9.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/12/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy. METHODS The effects of allogeneic or xenogeneic HepLPC transplantation were investigated in rat model of liver cirrhosis. Liver tissues were collected and subjected to immunostaining to assess changes in histology. In vitro experiments used HSCs to explore the antifibrotic properties of HepLPC-secretomes and their underlying molecular mechanisms. Additionally, proteomic analysis was conducted to characterize the protein composition of HepLPC-secretomes. RESULTS Transplantation of HepLPCs resulted in decreased active fibrogenesis and net fibrosis in cirrhosis models. Apoptosis of HSCs was observed in vivo after HepLPC treatment. HepLPC-secretomes exhibited potent inhibition of TGF-β1-induced HSC activation and promoted apoptosis through signal transducer and activator of transcription (STAT)1-mediated pathways in vitro. Furthermore, synergistic effects between amphiregulin and FGF19 within HepLPC-secretomes were identified, contributing to HSC apoptosis and exerting antifibrotic effects via activation of the janus kinase-STAT1 pathway. CONCLUSIONS HepLPCs have the potential to ameliorate liver cirrhosis by inducing STAT1-dependent apoptosis in HSCs. Amphiregulin and FGF19 are key factors responsible for STAT1 activation, representing promising novel therapeutic targets for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wen-Ming Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Han-Yong Sun
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Peng
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ren-Jie Huang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Shen-Ao Zhou
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Hong-Ping Wu
- Molecular Epidemiology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wei-Jian Huang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Han Wu
- Hubei Key Laboratory of Tumour Biological Behaviors, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qi-Gen Li
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - He-Xin Yan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Li JX, Dang YM, Liu MC, Gao LQ, Lin H. Fibroblasts in heterotopic ossification: mechanisms and therapeutic targets. Int J Biol Sci 2025; 21:544-564. [PMID: 39781450 PMCID: PMC11705629 DOI: 10.7150/ijbs.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Heterotopic ossification (HO) refers to the abnormal formation of bone in non-skeletal tissues. Fibroblasts have traditionally been viewed as stationary cells primarily responsible for producing extracellular matrix during tissue repair and fibrosis. However, recent discoveries regarding their plasticity-encompassing roles in inflammation, extracellular matrix remodeling, and osteogenesis-highlight their potential as key contributors to the development of HO. In this review, we systematically summarize the diverse phenotypic and functional plasticity of fibroblasts in HO. Furthermore, we evaluate the possible interaction between fibroblasts and macrophages in pathophysiological processes and signaling pathways. Finally, we highlight the potential strategies for preventing and treating HO by targeting fibroblast activities.
Collapse
Affiliation(s)
- Jia-xin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan-miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Meng-chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin-qing Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
4
|
Chen H, Wang S, Chen Q, Yu W, Nie H, Liu L, Zheng B, Gong Q. Aloperine Ameliorates Acetaminophen-Induced Acute Liver Injury through HMGB1/TLR4/NF- κB and NLRP3/Inflammasome Pathway. Mediators Inflamm 2024; 2024:3938136. [PMID: 39381066 PMCID: PMC11461077 DOI: 10.1155/2024/3938136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose Aloperine (ALO), an alkaloid isolated from Sophora alopecuroides L., possesses multiple pharmacological activities and holds a promise potential for the treatment of various clinical conditions, including skin hypersensitivity, cancer, and inflammatory disorders. The purpose of this study was to investigate the role of ALO in acetaminophen (N-acetyl-para-aminophenol (APAP))-induced acute liver injury and its underlying mechanisms. Materials and Methods An animal model of acute liver injury was induced by intraperitoneal injection of APAP (150 mg/kg). Prior to APAP injection, ALO (40 mg/kg) was administered daily for 7 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels were then measured using an automated chemical analyzer. Histopathological changes were evaluated using hematoxylin and eosin staining. Oxidative stress levels were measured by detecting superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). Pro-inflammatory cytokines were detected in serum and liver tissues using ELISA and quantitative real-time polymerase chain reaction (q-PCR). The expression of members of the HMGB1/TLR4/NF-κB signaling pathway and NLRP3 inflammasome were determined by Western blot and/or q-PCR. In addition, the expression and location of NLRP3, cleaved caspase-1, high-mobility group box 1 (HMGB1), and phosphorylated p65 (p-p65) were detected by immunofluorescence. Results Pretreatment with ALO significantly protected mice from APAP-induced acute liver injury, with decreased MDA content, and significantly increased GSH and SOD activities. Furthermore, ALO pretreatment reduced the release of pro-inflammatory cytokines (IL-1β and TNF-α) and decreased the expression of caspase-1, cleaved caspase-1, and NLRP3. In addition, ALO pretreatment also inhibited the activation of the HMGB1/TLR4/NF-κB signaling pathway. Conclusion Taken together, ALO can ameliorate APAP-induced acute liver injury by inhibiting oxidative stress, inflammation by inhibiting the HMGB1/TLR4/NF-κB, and NLRP3/inflammasome pathway.
Collapse
Affiliation(s)
- Hui Chen
- Department of Laboratory Medicine The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Shu Wang
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
| | - Qiuyue Chen
- Hubei College of Chinese Medicine, Jingzhou, China
| | - Wen Yu
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology School of Medicine Yangtze University, Jingzhou, China
| | - Bing Zheng
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| | - Quan Gong
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
6
|
Wu B, Shentu X, Nan H, Guo P, Hao S, Xu J, Shangguan S, Cui L, Cen J, Deng Q, Wu Y, Liu C, Song Y, Lin X, Wang Z, Yuan Y, Ma W, Li R, Li Y, Qian Q, Du W, Lai T, Yang T, Liu C, Ma X, Chen A, Xu X, Lai Y, Liu L, Esteban MA, Hui L. A spatiotemporal atlas of cholestatic injury and repair in mice. Nat Genet 2024; 56:938-952. [PMID: 38627596 DOI: 10.1038/s41588-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/09/2024] [Indexed: 05/09/2024]
Abstract
Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFβ in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.
Collapse
Affiliation(s)
- Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Shuncheng Shangguan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yan Wu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chang Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xiumei Lin
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Wen Ma
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tingting Lai
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ao Chen
- BGI Research, Shenzhen, China
| | - Xun Xu
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- China National GeneBank, BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
7
|
Mikulski D, Kościelny K, Dróżdż I, Mirocha G, Nowicki M, Misiewicz M, Perdas E, Strzałka P, Wierzbowska A, Fendler W. Serum Levels of miR-122-5p and miR-125a-5p Predict Hepatotoxicity Occurrence in Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2024; 25:4355. [PMID: 38673940 PMCID: PMC11050045 DOI: 10.3390/ijms25084355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic complications are an acknowledged cause of mortality and morbidity among patients undergoing hematopoietic stem cell transplantation. In this study, we aimed to evaluate the potential role in the prediction of liver injury of five selected microRNAs (miRNAs)-miR-122-5p, miR-122-3p, miR-15b-5p, miR-99b-5p, and miR-125a-5p-in the setting of autologous hematopoietic stem cell transplantation (ASCT). A total of 66 patients were included in the study: 50 patients (75.8%) with multiple myeloma (MM) and 16 (24.2%) with lymphoma. Blood samples were collected after the administration of the conditioning regimen, on the day of transplant (day 0). The expression levels of selected miRNAs were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the miRCURY LNA miRNA Custom PCR Panels (QIAGEN). In a multivariate logistic regression analysis adjusted for age, sex, and the administered conditioning regimen, two miRNAs, hsa-miR-122-5p (odds ratio, OR 2.10, 95% confidence interval, CI: 1.29-3.42, p = 0.0029) and hsa-miR-125a-5p (OR 0.27, 95% CI: 0.11-0.71, p = 0.0079), were independent for hepatic toxicity occurrence during the 14 days after transplant. Our model in 10-fold cross-validation preserved its diagnostic potential with a receiver operating characteristics area under the curve (ROC AUC) of 0.75, 95% CI: 0.63-0.88 and at optimal cut-off reached 72.0% sensitivity and 74.4% specificity. An elevated serum level of miR-122-5p and decreased level of miR-125a-5p on day 0 are independent risk factors for hepatotoxicity in ASCT recipients, showing promise in accurately predicting post-ASCT complications. Identifying patients susceptible to complications has the potential to reduce procedure costs and optimize the selection of inpatient or outpatient procedures.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
- Department of Hematooncology, Copernicus Memorial Hospital in Lodz, 93-513 Lodz, Poland
| | - Kacper Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Grzegorz Mirocha
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
| | - Mateusz Nowicki
- Department of Hematology, Medical University of Lodz, 92-215 Lodz, Poland; (M.N.); (M.M.); (P.S.); (A.W.)
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, 93-513 Lodz, Poland
| | - Małgorzata Misiewicz
- Department of Hematology, Medical University of Lodz, 92-215 Lodz, Poland; (M.N.); (M.M.); (P.S.); (A.W.)
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 92-215 Lodz, Poland; (M.N.); (M.M.); (P.S.); (A.W.)
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, 93-513 Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 92-215 Lodz, Poland; (M.N.); (M.M.); (P.S.); (A.W.)
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, 93-513 Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
| |
Collapse
|
8
|
Sauer J, Steixner-Kumar AA, Gabler S, Motyka M, Rippmann JF, Brosa S, Boettner D, Schönberger T, Lempp C, Frodermann V, Simon E, Krenkel O, Bahrami E. Diverse potential of secretome from natural killer cells and monocyte-derived macrophages in activating stellate cells. Front Immunol 2024; 15:1232070. [PMID: 38638443 PMCID: PMC11025356 DOI: 10.3389/fimmu.2024.1232070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-β1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.
Collapse
Affiliation(s)
- Julia Sauer
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Svenja Gabler
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | - Stefan Brosa
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dennis Boettner
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Charlotte Lempp
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Eric Simon
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Oliver Krenkel
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ehsan Bahrami
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
9
|
Qin D, Zhang Y, Liu F, Xu X, Jiang H, Su Z, Xia L. Spatiotemporal development and the regulatory mechanisms of cardiac resident macrophages: Contribution in cardiac development and steady state. Acta Physiol (Oxf) 2024; 240:e14088. [PMID: 38230805 DOI: 10.1111/apha.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Cardiac resident macrophages (CRMs) are integral components of the heart and play significant roles in cardiac development, steady-state, and injury. Advances in sequencing technology have revealed that CRMs are a highly heterogeneous population, with significant differences in phenotype and function at different developmental stages and locations within the heart. In addition to research focused on diseases, recent years have witnessed a heightened interest in elucidating the involvement of CRMs in heart development and the maintenance of cardiac function. In this review, we primarily concentrated on summarizing the developmental trajectories, both spatial and temporal, of CRMs and their impact on cardiac development and steady-state. Moreover, we discuss the possible factors by which the cardiac microenvironment regulates macrophages from the perspectives of migration, proliferation, and differentiation under physiological conditions. Gaining insight into the spatiotemporal heterogeneity and regulatory mechanisms of CRMs is of paramount importance in comprehending the involvement of macrophages in cardiac development, injury, and repair, and also provides new ideas and therapeutic methods for treating heart diseases.
Collapse
Affiliation(s)
- Demeng Qin
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Xiang Xu
- Department of Business, Yancheng Blood Center, Yancheng, China
| | - Haiqiang Jiang
- Department of Laboratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
- International Genome Center, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Rahmberg AR, Wu C, Shin T, Hong SG, Pei L, Markowitz TE, Hickman HD, Dunbar CE, Brenchley JM. Ongoing production of tissue-resident macrophages from hematopoietic stem cells in healthy adult macaques. Blood Adv 2024; 8:523-537. [PMID: 38048388 PMCID: PMC10835270 DOI: 10.1182/bloodadvances.2023011499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT Macrophages orchestrate tissue immunity from the initiation and resolution of antimicrobial immune responses to the repair of damaged tissue. Murine studies demonstrate that tissue-resident macrophages are a heterogenous mixture of yolk sac-derived cells that populate the tissue before birth, and bone marrow-derived replacements recruited in adult tissues at steady-state and in increased numbers in response to tissue damage or infection. How this translates to species that are constantly under immunologic challenge, such as humans, is unknown. To understand the ontogeny and longevity of tissue-resident macrophages in nonhuman primates (NHPs), we use a model of autologous hematopoietic stem progenitor cell (HSPC) transplantation with HSPCs genetically modified to be marked with clonal barcodes, allowing for subsequent analysis of clonal ontogeny. We study the contribution of HSPCs to tissue macrophages, their clonotypic profiles relative to leukocyte subsets in the peripheral blood, and their transcriptomic and epigenetic landscapes. We find that HSPCs contribute to tissue-resident macrophage populations in all anatomic sites studied. Macrophage clonotypic profiles are dynamic and overlap significantly with the clonal hierarchy of contemporaneous peripheral blood monocytes. Epigenetic and transcriptomic landscapes of HSPC-derived macrophages are similar to tissue macrophages isolated from NHPs that did not undergo transplantation. We also use in vivo bromodeoxyuridine infusions to monitor tissue macrophage turnover in NHPs that did not undergo transplantation and find evidence for macrophage turnover at steady state. These data demonstrate that the life span of most tissue-resident macrophages is limited and can be replenished continuously from HSPCs.
Collapse
Affiliation(s)
- Andrew R. Rahmberg
- Division of Intramural Research, Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Luxin Pei
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jason M. Brenchley
- Division of Intramural Research, Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
He J, Tang MY, Liu LX, Kong CX, Chen W, Wang L, Zhi SB, Sun HW, Huang YC, Chen GY, Xin HB, Deng KY. Myeloid Deletion of Cdc42 Protects Liver From Hepatic Ischemia-Reperfusion Injury via Inhibiting Macrophage-Mediated Inflammation in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:965-981. [PMID: 38342302 PMCID: PMC11047801 DOI: 10.1016/j.jcmgh.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND & AIMS Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.
Collapse
Affiliation(s)
- Jing He
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Meng-Yu Tang
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Li-Xin Liu
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Chen-Xian Kong
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Wen Chen
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Lu Wang
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Shao-Bin Zhi
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hong-Wei Sun
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yu-Chun Huang
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Guo-Yu Chen
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
13
|
Keshvari S, Masson JJR, Ferrari-Cestari M, Bodea LG, Nooru-Mohamed F, Tse BWC, Sokolowski KA, Batoon L, Patkar OL, Sullivan MA, Ebersbach H, Stutz C, Parton RG, Summers KM, Pettit AR, Hume DA, Irvine KM. Reversible expansion of tissue macrophages in response to macrophage colony-stimulating factor (CSF1) transforms systemic lipid and carbohydrate metabolism. Am J Physiol Endocrinol Metab 2024; 326:E149-E165. [PMID: 38117267 DOI: 10.1152/ajpendo.00347.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/21/2023]
Abstract
Macrophages regulate metabolic homeostasis in health and disease. Macrophage colony-stimulating factor (CSF1)-dependent macrophages contribute to homeostatic control of the size of the liver. This study aimed to determine the systemic metabolic consequences of elevating circulating CSF1. Acute administration of a CSF1-Fc fusion protein to mice led to monocytosis, increased resident tissue macrophages in the liver and all major organs, and liver growth. These effects were associated with increased hepatic glucose uptake and extensive mobilization of body fat. The impacts of CSF1 on macrophage abundance, liver size, and body composition were rapidly reversed to restore homeostasis. The effects of CSF1 on metabolism were independent of several known endocrine regulators and did not impact the physiological fasting response. Analysis using implantable telemetry in metabolic cages revealed progressively reduced body temperature and physical activity with no change in diurnal food intake. These results demonstrate the existence of a dynamic equilibrium between CSF1, the mononuclear phagocyte system, and control of liver-to-body weight ratio, which in turn controls systemic metabolic homeostasis. This novel macrophage regulatory axis has the potential to promote fat mobilization, without changes in appetence, which may have novel implications for managing metabolic syndrome.NEW & NOTEWORTHY CSF1 administration expands tissue macrophages, which transforms systemic metabolism. CSF1 drives fat mobilization and glucose uptake to support liver growth. The effects of CSF1 are independent of normal hormonal metabolic regulation. The effects of CSF1 are rapidly reversible, restoring homeostatic body composition. CSF1-dependent macrophages and liver size are coupled in a dynamic equilibrium.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jesse J R Masson
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Fathima Nooru-Mohamed
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mitchell A Sullivan
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Cian Stutz
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Kim M Summers
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Puengel T, Tacke F. Role of Kupffer cells and other immune cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:483-511. [DOI: 10.1016/b978-0-323-95262-0.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Kholodenko IV, Yarygin KN. Hepatic Macrophages as Targets for the MSC-Based Cell Therapy in Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:3056. [PMID: 38002056 PMCID: PMC10669188 DOI: 10.3390/biomedicines11113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a serious public health issue associated with the obesity pandemic. Obesity is the main risk factor for the non-alcoholic fatty liver disease (NAFLD), which progresses to NASH and then to end-stage liver disease. Currently, there are no specific pharmacotherapies of NAFLD/NASH approved by the FDA or other national regulatory bodies and the treatment includes lifestyle adjustment and medicines for improving lipid metabolism, enhancing sensitivity to insulin, balancing oxidation, and counteracting fibrosis. Accordingly, further basic research and development of new therapeutic approaches are greatly needed. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles prevent induced hepatocyte death in vitro and attenuate NASH symptoms in animal models of the disease. They interact with hepatocytes directly, but also target other liver cells, including Kupffer cells and macrophages recruited from the blood flow. This review provides an update on the pathogenesis of NAFLD/NASH and the key role of macrophages in the development of the disease. We examine in detail the mechanisms of the cross-talk between the MSCs and the macrophages, which are likely to be among the key targets of MSCs and their derivatives in the course of NAFLD/NASH cell therapy.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | | |
Collapse
|
16
|
El-Mokhtar SA, Afifi NA, Abdel-Malek MO, Hassan WA, Hetta H, El-Badawy O. Aberrant cytokine and VCAM-1 expression in patients with viral and non-viral related liver cirrhosis. Cytokine 2023; 171:156385. [PMID: 37788510 DOI: 10.1016/j.cyto.2023.156385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/26/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
The study aim was to compare the alterations in the expression levels of proinflammatory and chemotactic cytokines as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-17A and IL-8, the down regulatory cytokine IL-10, in addition to the vascular cell adhesion molecule-1 (VCAM-1) gene in different groups of patients with cirrhosis due to various etiologies. This case-control study included 84 patients suffering from cirrhosis of viral and non-viral etiologies and 20 sex and age-matched healthy controls. All patients were subjected to detailed history taking, clinical examination, and liver function assessment. The expression levels of TNF-α, IL-17A, IL-8, IL-10, and VCAM-1 were assessed in peripheral blood mononuclear cells by real-time PCR. Patients with cirrhosis showed marked changes in the tested gene expression levels relative to the control group. Higher expression levels of all genes except IL-10 were seen in patients of the viral than in the non-viral groups. Most of the significant correlations of liver function parameters were observed with TNF-α in both the viral and non-viral groups, followed by IL-17A. Increased TNF-α and IL-17A presented potential risk factors for disease progression to cirrhosis of Child class C.
Collapse
Affiliation(s)
- Sara A El-Mokhtar
- Microbiology & Immunology Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Noha A Afifi
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed O Abdel-Malek
- Tropical Medicine & Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Waleed A Hassan
- Tropical Medicine & Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal Hetta
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
17
|
Xie D, Ouyang S. The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure. Front Immunol 2023; 14:1279264. [PMID: 37954583 PMCID: PMC10639160 DOI: 10.3389/fimmu.2023.1279264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease caused by disruptions in the body's immune microenvironment. In the early stages of ALF, Kupffer cells (KCs) become depleted and recruit monocytes derived from the bone marrow or abdomen to replace the depleted macrophages entering the liver. These monocytes differentiate into mature macrophages, which are activated in the immune microenvironment of the liver and polarized to perform various functions. Macrophage polarization can occur in two directions: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. Controlling the ratio and direction of M1 and M2 in ALF can help reduce liver injury. However, the liver damage caused by pyroptosis should not be underestimated, as it is a caspase-dependent form of cell death. Inhibiting pyroptosis has been shown to effectively reduce liver damage induced by ALF. Furthermore, macrophage polarization and pyroptosis share common binding sites, signaling pathways, and outcomes. In the review, we describe the role of macrophage polarization and pyroptosis in the pathogenesis of ALF. Additionally, we preliminarily explore the relationship between macrophage polarization and pyroptosis, as well as their effects on ALF.
Collapse
Affiliation(s)
| | - Shi Ouyang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Cheng S, Zou Y, Zhang M, Bai S, Tao K, Wu J, Shi Y, Wu Y, Lu Y, He K, Sun P, Su X, Hou S, Han B. Single-cell RNA sequencing reveals the heterogeneity and intercellular communication of hepatic stellate cells and macrophages during liver fibrosis. MedComm (Beijing) 2023; 4:e378. [PMID: 37724132 PMCID: PMC10505372 DOI: 10.1002/mco2.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Abstract
Uncontrolled and excessive progression of liver fibrosis is thought to be the prevalent pathophysiological cause of liver cirrhosis and hepatocellular cancer, and there are currently no effective antifibrotic therapeutic options available. Intercellular communication and cellular heterogeneity in the liver are involved in the progression of liver fibrosis, but the exact nature of the cellular phenotypic changes and patterns of interregulatory remain unclear. Here, we performed single-cell RNA sequencing on nonparenchymal cells (NPCs) isolated from normal and fibrotic mouse livers. We identified eight main types of cells, including endothelial cells, hepatocytes, dendritic cells, B cells, natural killer/T (NK/T) cells, hepatic stellate cells (HSCs), cholangiocytes and macrophages, and revealed that macrophages and HSCs exhibit the most variance in transcriptional profile. Further analyses of HSCs and macrophage subpopulations and ligand-receptor interaction revealed a high heterogeneity characterization and tightly interregulated network of these two groups of cells in liver fibrosis. Finally, we uncovered a profibrotic Thbs1+ macrophage subcluster, which expands in mouse and human fibrotic livers, activating HSCs via PI3K/AKT/mTOR signaling pathway. Our findings decode unanticipated insights into the heterogeneity of HSCs and macrophages and their intercellular crosstalk at a single-cell level, and may provide potential therapeutic strategies in liver fibrosis.
Collapse
Affiliation(s)
- Sheng Cheng
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunhan Zou
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Man Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shihao Bai
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Tao
- Department of PathologyTongren HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Jiaoxiang Wu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersBio‐X InstitutesShanghai Jiao Tong UniversityShanghaiChina
- eHealth Program of Shanghai Anti‐Doping LaboratoryShanghai University of SportShanghaiChina
| | - Yuelan Wu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinzhong Lu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of AnesthesiologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Sun
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- eHealth Program of Shanghai Anti‐Doping LaboratoryShanghai University of SportShanghaiChina
| | - Shangwei Hou
- Department of AnesthesiologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Han
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
20
|
Humphries C, Dear JW. Novel biomarkers for drug-induced liver injury. Clin Toxicol (Phila) 2023; 61:567-572. [PMID: 37767912 DOI: 10.1080/15563650.2023.2259089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Liver toxicity due to medicines (drug-induced liver injury) is a challenge for clinicians and drug developers. There are well-established biomarkers of drug-induced liver injury, which are widely used and validated by decades of clinical experience. These include alanine aminotransferase and bilirubin. Limitations of the current biomarkers are well described, and this has resulted in global efforts to identify and develop new candidates. This process has been aided by regulatory pathways being established for biomarker qualification. This article aims to provide a broad overview of the mechanisms of liver toxicity and discuss emerging novel biomarkers. There is a focus on the recent advances in the identification and validation of novel biomarkers, their potential applications in drug development and clinical practice, and the challenges and opportunities in translating these biomarkers into routine clinical use. CURRENT GOLD-STANDARD BIOMARKERS Alanine and aspartate aminotransferase activities perform well in diagnosing established drug-induced liver injury but may lack specificity and are not prognostic. THE BURDEN OF PROOF FOR NOVEL BIOMARKERS The amount of evidence required for a new biomarker will depend on its context-of-use, specifically on the impact on patient outcome of a false negative or false positive result. LEADING POTENTIAL BIOMARKERS Cytokeratin-18, glutamate dehydrogenase, microRNA-122, high-mobility group box 1 proteins, osteopontin, and macrophage colony-stimulating factor receptor 1 are examples of lead candidates. POTENTIAL APPLICATIONS OF NOVEL BIOMARKERS The early detection of drug-induced liver injury, interpretation of an alanine aminotransferase activity increase, and decisions about dose escalation in clinical trials may all be informed by new biomarkers. CONCLUSIONS There have been numerous exploratory studies describing differences in biomarkers and their potential value in risk-stratifying populations or identifying specific patients who may be failed by current assessment protocols. Additionally, the use of exploratory biomarkers to guide clinical trial decision-making is becoming routine. The challenge is now clinically validating leading candidate biomarkers in the assessment of patients presenting with conditions such as paracetamol overdose, which place them at risk of acute liver injury. This will require robust clinical trials. If the use of these biomarkers is to be widely adopted, they will need to unequivocally demonstrate benefit in overall cost, morbidity or mortality.
Collapse
Affiliation(s)
- Christopher Humphries
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Sciences, University of Edinburgh, The Queens Medical Research Institute, Edinburgh, UK
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queens Medical Research Institute, Edinburgh, UK
| | - James W Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Sciences, University of Edinburgh, The Queens Medical Research Institute, Edinburgh, UK
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queens Medical Research Institute, Edinburgh, UK
| |
Collapse
|
21
|
Blake MJ, Steer CJ. Liver Regeneration in Acute on Chronic Liver Failure. Clin Liver Dis 2023; 27:595-616. [PMID: 37380285 DOI: 10.1016/j.cld.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Liver regeneration is a multifaceted process by which the organ regains its original size and histologic organization. In recent decades, substantial advances have been made in our understanding of the mechanisms underlying regeneration following loss of hepatic mass. Liver regeneration in acute liver failure possesses several classic pathways, while also exhibiting unique differences in key processes such as the roles of differentiated cells and stem cell analogs. Here we summarize these unique differences and new molecular mechanisms involving the gut-liver axis, immunomodulation, and microRNAs with an emphasis on applications to the patient population through stem cell therapies and prognostication.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Clain JA, Rabezanahary H, Racine G, Boutrais S, Soundaramourty C, Joly Beauparlant C, Jenabian MA, Droit A, Ancuta P, Zghidi-Abouzid O, Estaquier J. Early ART reduces viral seeding and innate immunity in liver and lungs of SIV-infected macaques. JCI Insight 2023; 8:e167856. [PMID: 37485876 PMCID: PMC10443800 DOI: 10.1172/jci.insight.167856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Identifying immune cells and anatomical tissues that contribute to the establishment of viral reservoirs is of central importance in HIV-1 cure research. Herein, we used rhesus macaques (RMs) infected with SIVmac251 to analyze viral seeding in the liver and lungs of either untreated or early antiretroviral therapy-treated (ART-treated) RMs. Consistent with viral replication and sensing, transcriptomic analyses showed higher levels of inflammation, pyroptosis, and chemokine genes as well as of interferon-stimulating gene (ISG) transcripts, in the absence of ART. Our results highlighted the infiltration of monocyte-derived macrophages (HLA-DR+CD11b+CD14+CD16+) in inflamed liver and lung tissues associated with the expression of CD183 and CX3CR1 but also with markers of tissue-resident macrophages (CD206+ and LYVE+). Sorting of myeloid cell subsets demonstrated that CD14+CD206-, CD14+CD206+, and CD14-CD206+ cell populations were infected, in the liver and lungs, in SIVmac251-infected RMs. Of importance, early ART drastically reduced viral seeding consistent with the absence of ISG detection but also of genes related to inflammation and tissue damage. Viral DNA was only detected in CD206+HLA-DR+CD11b+ cells in ART-treated RMs. The observation of pulmonary and hepatic viral rebound after ART interruption reinforces the importance of early ART implementation to limit viral seeding and inflammatory reactions.
Collapse
Affiliation(s)
- Julien A. Clain
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | - Gina Racine
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Steven Boutrais
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | | | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec in Montreal, Montreal, Quebec, Canada
| | - Arnaud Droit
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Petronela Ancuta
- Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
- INSERM U1124, University of Paris, Paris, France
| |
Collapse
|
23
|
Guo PC, Zuo J, Huang KK, Lai GY, Zhang X, An J, Li JX, Li L, Wu L, Lin YT, Wang DY, Xu JS, Hao SJ, Wang Y, Li RH, Ma W, Song YM, Liu C, Liu CY, Dai Z, Xu Y, Sharma AD, Ott M, Ou-Yang Q, Huo F, Fan R, Li YY, Hou JL, Volpe G, Liu LQ, Esteban MA, Lai YW. Cell atlas of CCl 4-induced progressive liver fibrosis reveals stage-specific responses. Zool Res 2023; 44:451-466. [PMID: 36994536 PMCID: PMC10236302 DOI: 10.24272/j.issn.2095-8137.2023.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/11/2023] [Indexed: 03/12/2023] Open
Abstract
Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis, a major cause of morbidity and mortality worldwide. However, there are currently no effective anti-fibrotic therapies available, especially for late-stage patients, which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cell-specific responses in different fibrosis stages. To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes, we generated a single-nucleus transcriptomic atlas encompassing 49 919 nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride (CCl 4)-induced progressive liver fibrosis. Integrative analysis distinguished the sequential responses to injury of hepatocytes, hepatic stellate cells and endothelial cells. Moreover, we reconstructed cell-cell interactions and gene regulatory networks implicated in these processes. These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions, dysfunction for clearance by apoptosis of activated hepatic stellate cells, accumulation of pro-fibrotic signals, and the switch from an anti-angiogenic to a pro-angiogenic program during CCl 4-induced progressive liver fibrosis. Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.
Collapse
Affiliation(s)
- Peng-Cheng Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Jing Zuo
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Ke-Ke Huang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Guang-Yao Lai
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong 510530, China
| | - Xiao Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Juan An
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xiu Li
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yi-Ting Lin
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dong-Ye Wang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jiang-Shan Xu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Shi-Jie Hao
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Rong-Hai Li
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Wen Ma
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Yu-Mo Song
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Chang Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Chuan-Yu Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Zhen Dai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yan Xu
- Biotherapy Centre, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Qing Ou-Yang
- Department of Hepatobiliary Surgery and Liver Transplant Center, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, China
| | - Feng Huo
- Department of Hepatobiliary Surgery and Liver Transplant Center, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, China
| | - Rong Fan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Yong-Yin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Jin-Lin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari 70124, Italy
| | - Long-Qi Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Miguel A Esteban
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany. E-mail:
| | - Yi-Wei Lai
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China. E-mail:
| |
Collapse
|
24
|
Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Front Cell Dev Biol 2023; 11:1171317. [PMID: 37082623 PMCID: PMC10112669 DOI: 10.3389/fcell.2023.1171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The liver displays a remarkable regenerative capacity in response to acute liver injury. In addition to the proliferation of hepatocytes during liver regeneration, non-parenchymal cells, including liver macrophages, liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) play critical roles in liver repair and regeneration. Liver ischemia–reperfusion injury (IRI) is a major cause of increased liver damage during liver resection, transplantation, and trauma. Impaired liver repair increases postoperative morbidity and mortality of patients who underwent liver surgery. Successful liver repair and regeneration after liver IRI requires coordinated interplay and synergic actions between hepatic resident cells and recruited cell components. However, the underlying mechanisms of liver repair after liver IRI are not well understood. Recent technological advances have revealed the heterogeneity of each liver cell component in the steady state and diseased livers. In this review, we describe the progress in the biology of liver non-parenchymal cells obtained from novel technological advances. We address the functional role of each cell component in response to liver IRI and the interactions between diverse immune repertoires and non-hematopoietic cell populations during the course of liver repair after liver IRI. We also discuss how these findings can help in the design of novel therapeutic approaches. Growing insights into the cellular interactions during liver IRI would enhance the pathology of liver IRI understanding comprehensively and further develop the strategies for improvement of liver repair.
Collapse
|
25
|
He WF, Yan LF. [The regulatory role and related mechanisms of macrophages in wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:106-113. [PMID: 36878519 DOI: 10.3760/cma.j.cn501225-20230110-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Wound healing is a complex process under precise regulation, including multiple stages such as inflammation, anti-inflammatory, and regeneration. Macrophages play an important regulatory role in the differentiated process of wound healing due to their obvious plasticity. If macrophages fail to express specific functions in a timely manner, it will affect the healing function of tissues and lead to pathological tissue healing. Therefore, it is of great significance to understand the different functions of different types of macrophages and to regulate them specifically in different stages of wound healing to promote the healing and regeneration of wound tissue. In this paper, we illustrate the different functions of macrophages in the wound and their basic mechanisms, according to the basic process of wound healing, and emphasize the strategies of macrophage regulation that may be applied to clinical treatment in the future.
Collapse
Affiliation(s)
- W F He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - L F Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
26
|
Song Q, Datta S, Liang X, Xu X, Pavicic P, Zhang X, Zhao Y, Liu S, Zhao J, Xu Y, Xu J, Wu L, Wu Z, Zhang M, Zhao Z, Lin C, Wang Y, Han P, Jiang P, Qin Y, Li W, Zhang Y, Luo Y, Sen G, Stark GR, Zhao C, Hamilton T, Yang J. Type I interferon signaling facilitates resolution of acute liver injury by priming macrophage polarization. Cell Mol Immunol 2023; 20:143-157. [PMID: 36596875 PMCID: PMC9886918 DOI: 10.1038/s41423-022-00966-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Due to their broad functional plasticity, myeloid cells contribute to both liver injury and recovery during acetaminophen overdose-induced acute liver injury (APAP-ALI). A comprehensive understanding of cellular diversity and intercellular crosstalk is essential to elucidate the mechanisms and to develop therapeutic strategies for APAP-ALI treatment. Here, we identified the function of IFN-I in the myeloid compartment during APAP-ALI. Utilizing single-cell RNA sequencing, we characterized the cellular atlas and dynamic progression of liver CD11b+ cells post APAP-ALI in WT and STAT2 T403A mice, which was further validated by immunofluorescence staining, bulk RNA-seq, and functional experiments in vitro and in vivo. We identified IFN-I-dependent transcriptional programs in a three-way communication pathway that involved IFN-I synthesis in intermediate restorative macrophages, leading to CSF-1 production in aging neutrophils that ultimately enabled Trem2+ restorative macrophage maturation, contributing to efficient liver repair. Overall, we uncovered the heterogeneity of hepatic myeloid cells in APAP-ALI at single-cell resolution and the therapeutic potential of IFN-I in the treatment of APAP-ALI.
Collapse
Affiliation(s)
- Qiaoling Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shyamasree Datta
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Xiaohan Xu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Paul Pavicic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiaonan Zhang
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuanyuan Zhao
- Department of Radiation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Zhao
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuting Xu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lihong Wu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihua Wu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Minghui Zhang
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhan Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chunhua Lin
- Department of Urology, Yantai Yuhuangding Hospital, Yantai, China
| | - Yuxin Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Peng Jiang
- Department of Radiation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yating Qin
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Wei Li
- Department of Radiation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Zhang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Ganes Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Chenyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Thomas Hamilton
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
27
|
Hume DA, Batoon L, Sehgal A, Keshvari S, Irvine KM. CSF1R as a Therapeutic Target in Bone Diseases: Obvious but Not so Simple. Curr Osteoporos Rep 2022; 20:516-531. [PMID: 36197652 PMCID: PMC9718875 DOI: 10.1007/s11914-022-00757-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize the expression and function of CSF1R and its ligands in bone homeostasis and constraints on therapeutic targeting of this axis. RECENT FINDINGS Bone development and homeostasis depends upon interactions between mesenchymal cells and cells of the mononuclear phagocyte lineage (MPS), macrophages, and osteoclasts (OCL). The homeostatic interaction is mediated in part by the systemic and local production of growth factors, macrophage colony-stimulating factor (CSF1), and interleukin 34 (IL34) that interact with a receptor (CSF1R) expressed exclusively by MPS cells and their progenitors. Loss-of-function mutations in CSF1 or CSF1R lead to loss of OCL and macrophages and dysregulation of postnatal bone development. MPS cells continuously degrade CSF1R ligands via receptor-mediated endocytosis. As a consequence, any local or systemic increase or decrease in macrophage or OCL abundance is rapidly reversible. In principle, both CSF1R agonists and antagonists have potential in bone regenerative medicine but their evaluation in disease models and therapeutic application needs to carefully consider the intrinsic feedback control of MPS biology.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lena Batoon
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
28
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
29
|
Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 2022; 381:104614. [PMID: 36182587 DOI: 10.1016/j.cellimm.2022.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
Intestinal macrophages are heterogenous cell populations with different developmental ontogeny and tissue anatomy. The concerted actions of intestinal macrophage subsets are critical to maintaining tissue homeostasis. However, the dysregulation of macrophages following tissue injury or chronic inflammation could also lead to intestinal fibrosis, with few treatment options in the clinic. In this review, we will characterize the features of intestinal macrophages in light of the latest advances in lineage tracing and single-cell sequencing technology. The roles of macrophages in distinct stages of intestinal fibrosis would be also elaborated. Finally, based on the reciprocal interaction between macrophages and intestinal fibrosis, we will propose the potential macrophage targeting anti-intestinal fibrosis therapies.
Collapse
Affiliation(s)
- Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
30
|
Qin T, Hasnat M, Zhou Y, Yuan Z, Zhang W. Macrophage malfunction in Triptolide-induced indirect hepatotoxicity. Front Pharmacol 2022; 13:981996. [PMID: 36225585 PMCID: PMC9548637 DOI: 10.3389/fphar.2022.981996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Objective: Indirect hepatotoxicity is a new type of drug-induced hepatotoxicity in which the character of a drug that may induce its occurrence and the underlying mechanism remains elusive. Previously, we proved that Triptolide (TP) induced indirect hepatotoxicity upon LPS stimulation resulting from the deficiency of cytoprotective protein of hepatocyte. However, whether immune cells participated in TP-induced indirect hepatotoxicity and the way immune cells change the liver hypersensitivity to LPS still need to be deeply investigated. In this study, we tried to explore whether and how macrophages are involved in TP-induced indirect hepatotoxicity. Method: Firstly, TP (500 μg/kg) and LPS (0.1 mg/kg) were administrated into female C57BL/6 mice as previously reported. Serum biochemical indicators, morphological changes, hepatic macrophage markers, as well as macrophage M1/M2 markers were detected. Secondly, macrophage scavenger clodronate liposomes were injected to prove whether macrophages participated in TP-induced indirect hepatotoxicity. Also, the ability of macrophages to secrete inflammatory factors and macrophage phagocytosis were detected. Lastly, reverse docking was used to find the target of TP on macrophage and the possible target was verified in vivo and in RAW264.7 cells. Results: TP pretreatment increased the liver hypersensitization to LPS accompanied by the recruitment of macrophages to the liver and promoted the transformation of macrophages to M1 type. Depletion of hepatic macrophages almost completely alleviated the liver injury induced by TP/LPS. TP pretreatment increased the secretion of pro-inflammatory factors and weakened the phagocytic function of macrophages upon LPS exposure. Reverse docking results revealed that MerTK might be the real target of TP. Conclusion: TP disrupts inflammatory cytokines profile and phagocytic function of hepatic macrophages, resulting in the production of massive inflammatory factors and the accumulation of endotoxin in the liver, ultimately leading to the indirect hepatotoxicity of TP. MerTK might be the target of TP on the macrophage, while the binding of TP to MerTK should be investigated in vivo and in vitro.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yang Zhou
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Ziqiao Yuan
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, , Ziqiao Yuan, ,
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, , Ziqiao Yuan, ,
| |
Collapse
|
31
|
Woolbright BL, Nguyen NT, McGill MR, Sharpe MR, Curry SC, Jaeschke H. Generation of pro-and anti-inflammatory mediators after acetaminophen overdose in surviving and non-surviving patients. Toxicol Lett 2022; 367:59-66. [PMID: 35905941 PMCID: PMC9849076 DOI: 10.1016/j.toxlet.2022.07.813] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Acetaminophen (APAP) overdose causes liver injury in animals and humans. Although well-studied in animals, limited longitudinal data exist on cytokine release after APAP overdose in patients. The purpose of this study was to quantify concentrations of cytokines in APAP overdose patients to determine if early cytokine or complement measurements can distinguish between surviving and non-surviving patients. Plasma was obtained from healthy controls, APAP overdose patients with no increase in liver transaminases, and surviving and non-surviving APAP overdose patients with severe liver injury. Interleukin-10 (IL-10), and CC chemokine ligand-2 (CCL2, MCP-1) were substantially elevated in surviving and non-surviving patients, whereas IL-6 and CXC chemokine ligand-8 (CXCL8, IL-8) had early elevations in a subset of patients only with liver injury. Day 1 IL-10 and IL-6 levels, and Day 2 CCL2, levels correlated positively with survival. There was no significant increase in IL-1α, IL-1β or TNF-α in any patient during the first week after APAP. Monitoring cytokines such as CCL2 may be a good indicator of patient prognosis; furthermore, these data indicate the inflammatory response after APAP overdose in patients is not mediated by a second phase of inflammation driven by the inflammasome.
Collapse
Affiliation(s)
| | - Nga T Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, USA
| | | | - Matthew R Sharpe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, AZ, USA; Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
32
|
Lu Y, Li M, Zhou Q, Fang D, Wu R, Li Q, Chen L, Su S. Dynamic network biomarker analysis and system pharmacology methods to explore the therapeutic effects and targets of Xiaoyaosan against liver cirrhosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115324. [PMID: 35489663 DOI: 10.1016/j.jep.2022.115324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan is a traditional Chinese herbal formula that has long been used to treat liver cirrhosis, liver failure, and hepatocarcinoma (HCC). However, little is known about its mechanism of action and targets in treating chronic liver disease. AIM OF THE STUDY This study aimed to detect the critical transition of HCC progression and to explore the regulatory mechanism and targets of Xiaoyaosan treating liver cirrhosis (cirrhosis) using integrative medicinal research involving system biology and pharmacology. MATERIALS AND METHODS We recruited chronic liver disease participants to obtain gene expression data and applied the dynamic network biomarker (DNB) method to identify molecular markers and the critical transition. We combined network pharmacology and DNB analysis to locate the potential DNBs (targets). Then we validated the DNBs in the liver cirrhosis rat models using Xiaoyaosan treatment. The expression of genes encoding the four DNBs, including Cebpa, Csf1, Egfr, and Il7r, were further validated in rat liver tissue using Western blot analysis. RESULTS We found EGFR, CEBPA, Csf1, Ccnb1, Rrmm2, C3, Il7r, Ccna2, and Peg10 overlap in the DNB list and Xiaoyaosan-Target-Disease (XTD) network constructed using network pharmacology databases. We investigated the diagnostic ability of each member in the DNB cluster and found EGFR, CEBPA, CSF1, and IL7R had high diagnostic abilities with AUC >0.7 and P-value < 0.05. We validated these findings in rats and found that liver function improved significantly and fibrotic changes were relieved in the Xiaoyaosan treatment group. The expression levels of CSF1 and IL7R in the Xiaoyaosan group were significantly lower than those in the cirrhosis model group. In contrast, CEBPA expression in the Xiaoyaosan group was significantly higher than that in the cirrhosis model group. The expression of EGFR in the Xiaoyaosan group was slightly decreased than in the model group but not significantly. CONCLUSION Using the DNB method and network pharmacology approach, this study revealed that CEBPA, IL7R, EGFR, and CSF1 expression was remarkably altered in chronic liver disease and thus, may play an important role in driving the progression of cirrhosis. Therefore, CEBPA, IL7R, EGFR, and CSF1 may be important targets of Xiaoyaosan in treating cirrhosis and can be considered for developing novel therapeutics.
Collapse
Affiliation(s)
- Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meiyi Li
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shenzhen Research Institute, Sha Tin, New Territories, Hong Kong, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongdong Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingya Li
- Henan University of Chinese Medicine, Henan, 450046, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shibing Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
33
|
Gao CC, Bai J, Han H, Qin HY. The versatility of macrophage heterogeneity in liver fibrosis. Front Immunol 2022; 13:968879. [PMID: 35990625 PMCID: PMC9389038 DOI: 10.3389/fimmu.2022.968879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a highly conserved wound healing response to liver injury, characterized by excessive deposition of extracellular matrix (ECM) in the liver which might lead to loss of normal functions. In most cases, many types of insult could damage hepatic parenchymal cells like hepatocytes and/or cholangiocytes, and persistent injury might lead to initiation of fibrosis. This process is accompanied by amplified inflammatory responses, with immune cells especially macrophages recruited to the site of injury and activated, in order to orchestrate the process of wound healing and tissue repair. In the liver, both resident macrophages and recruited macrophages could activate interstitial cells which are responsible for ECM synthesis by producing a variety of cytokines and chemokines, modulate local microenvironment, and participate in the regulation of fibrosis. In this review, we will focus on the main pathological characteristics of liver fibrosis, as well as the heterogeneity on origin, polarization and functions of hepatic macrophages in the setting of liver fibrosis and their underlying mechanisms, which opens new perspectives for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chun-Chen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Jian Bai
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hong-Yan Qin,
| |
Collapse
|
34
|
Yang T, Wang H, Wang X, Li J, Jiang L. The Dual Role of Innate Immune Response in Acetaminophen-Induced Liver Injury. BIOLOGY 2022; 11:biology11071057. [PMID: 36101435 PMCID: PMC9312699 DOI: 10.3390/biology11071057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
Acetyl-para-aminophenol (APAP), a commonly used antipyretic analgesic, is becoming increasingly toxic to the liver, resulting in a high rate of acute hepatic failure in Europe and the United States. Excessive APAP metabolism in the liver develops an APAP-protein adduct, which causes oxidative stress, MPTP opening, and hepatic necrosis. HMGB-1, HSP, nDNA, mtDNA, uric acid, and ATP are DMAPs released during hepatic necrosis. DMAPs attach to TLR4-expressing immune cells such KCs, macrophages, and NK cells, activating them and causing them to secrete cytokines. Immune cells and their secreted cytokines have been demonstrated to have a dual function in acetaminophen-induced liver injury (AILI), with a role in either proinflammation or pro-regeneration, resulting in contradicting findings and some research confusion. Neutrophils, KCs, MoMFs, NK/NKT cells, γδT cells, DCs, and inflammasomes have pivotal roles in AILI. In this review, we summarize the dual role of innate immune cells involved in AILI and illustrate how these cells initiate innate immune responses that lead to persistent inflammation and liver damage. We also discuss the contradictory findings in the literature and possible protocols for better understanding the molecular regulatory mechanisms of AILI.
Collapse
Affiliation(s)
- Tao Yang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Jiangsu University, The Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang 212001, China
| | - Han Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| |
Collapse
|
35
|
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
36
|
Protective Effects of Interleukin-37 Expression against Acetaminophen-Induced Hepatotoxicity in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6468299. [PMID: 35419070 PMCID: PMC9001104 DOI: 10.1155/2022/6468299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022]
Abstract
Aim Interleukin (IL)-37 is a new anti-inflammatory cytokine of the IL-1 family. This study aimed to determine the effects of IL-37 on acetaminophen (APAP)-induced liver injury. Materials and Methods IL-37 plasmids were injected into mice via a tail vein hydrodynamics-based gene delivery. Results Our results showed that IL-37 pretreatment significantly decreased serum alanine aminotransferase and aspartate aminotransferase levels, hepatic myeloperoxidase activity, and attenuated the histological liver damage. Compared to the APAP group, IL-37 administration decreased Kupffer cells numbers in the liver of APAP-induced hepatotoxicity in mice. Furthermore, IL-37 pretreatment reduced the expression of proinflammatory cytokines including tumor necrosis factor-α, IL-6, IL-17, and nuclear factor-κB (NF-κB) in APAP-induced mice. Conclusion These results demonstrate that delivery of IL-37 plasmid can ameliorate APAP-induced liver injury by reducing proinflammatory cytokines production and preventing the activation of the NF-κB signaling pathway. IL-37 may be a promising candidate against APAP-induced liver injury.
Collapse
|
37
|
Stables J, Green EK, Sehgal A, Patkar OL, Keshvari S, Taylor I, Ashcroft ME, Grabert K, Wollscheid-Lengeling E, Szymkowiak S, McColl BW, Adamson A, Humphreys NE, Mueller W, Starobova H, Vetter I, Shabestari SK, Blurton-Jones MM, Summers KM, Irvine KM, Pridans C, Hume DA. A kinase-dead Csf1r mutation associated with adult-onset leukoencephalopathy has a dominant inhibitory impact on CSF1R signalling. Development 2022; 149:274819. [PMID: 35333324 PMCID: PMC9002114 DOI: 10.1242/dev.200237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
Abstract
Amino acid substitutions in the kinase domain of the human CSF1R gene are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (pGlu631Lys; E631K) in the mouse Csf1r locus. Homozygous mutation (Csf1rE631K/E631K) phenocopied the Csf1r knockout, with prenatal mortality or severe postnatal growth retardation and hydrocephalus. Heterozygous mutation delayed the postnatal expansion of tissue macrophage populations in most organs. Bone marrow cells from Csf1rE631K/+mice were resistant to CSF1 stimulation in vitro, and Csf1rE631K/+ mice were unresponsive to administration of a CSF1-Fc fusion protein, which expanded tissue macrophage populations in controls. In the brain, microglial cell numbers and dendritic arborisation were reduced in Csf1rE631K/+ mice, as in patients with ALSP. The microglial phenotype is the opposite of microgliosis observed in Csf1r+/- mice. However, we found no evidence of brain pathology or impacts on motor function in aged Csf1rE631K/+ mice. We conclude that heterozygous disease-associated CSF1R mutations compromise CSF1R signalling. We speculate that leukoencephalopathy associated with dominant human CSF1R mutations requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles.
Collapse
Affiliation(s)
- Jennifer Stables
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Emma K Green
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Isis Taylor
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Maisie E Ashcroft
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kathleen Grabert
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Evi Wollscheid-Lengeling
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Belvaux, L-4401, Luxembourg
| | - Stefan Szymkowiak
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Neil E Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Werner Mueller
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hana Starobova
- Institute for Molecular Biosciences & School of Pharmacy, University of Queensland, Brisbane, Qld 4072, Australia
| | - Irina Vetter
- Institute for Molecular Biosciences & School of Pharmacy, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Clare Pridans
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| |
Collapse
|
38
|
Hwang D, Seyedsadr MS, Ishikawa LLW, Boehm A, Sahin Z, Casella G, Jang S, Gonzalez MV, Garifallou JP, Hakonarson H, Zhang W, Xiao D, Rostami A, Zhang GX, Ciric B. CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation. Proc Natl Acad Sci U S A 2022; 119:e2111804119. [PMID: 35353625 PMCID: PMC9168454 DOI: 10.1073/pnas.2111804119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
The receptor for colony stimulating factor 1 (CSF-1R) is important for the survival and function of myeloid cells that mediate pathology during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). CSF-1 and IL-34, the ligands of CSF-1R, have similar bioactivities but distinct tissue and context-dependent expression patterns, suggesting that they have different roles. This could be the case in EAE, given that CSF-1 expression is up-regulated in the CNS, while IL-34 remains constitutively expressed. We found that targeting CSF-1 with neutralizing antibody halted ongoing EAE, with efficacy superior to CSF-1R inhibitor BLZ945, whereas IL-34 neutralization had no effect, suggesting that pathogenic myeloid cells were maintained by CSF-1. Both anti–CSF-1 and BLZ945 treatment greatly reduced the number of monocyte-derived cells and microglia in the CNS. However, anti–CSF-1 selectively depleted inflammatory microglia and monocytes in inflamed CNS areas, whereas BLZ945 depleted virtually all myeloid cells, including quiescent microglia, throughout the CNS. Anti–CSF-1 treatment reduced the size of demyelinated lesions and microglial activation in the gray matter. Lastly, we found that bone marrow–derived immune cells were the major mediators of CSF-1R–dependent pathology, while microglia played a lesser role. Our findings suggest that targeting CSF-1 could be effective in ameliorating MS pathology, while preserving the homeostatic functions of myeloid cells, thereby minimizing risks associated with ablation of CSF-1R–dependent cells.
Collapse
Affiliation(s)
- Daniel Hwang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Maryam S. Seyedsadr
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Alexandra Boehm
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ziver Sahin
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Giacomo Casella
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Soohwa Jang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michael V. Gonzalez
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
| | - James P. Garifallou
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
| | - Hakon Hakonarson
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Weifeng Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dan Xiao
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Abdolmohamad Rostami
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Guang-Xian Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Bogoljub Ciric
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
39
|
Lee KJ, Kim MY, Han YH. Roles of heterogenous hepatic macrophages in the progression of liver diseases. BMB Rep 2022; 55:166-174. [PMID: 35321784 PMCID: PMC9058466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/21/2025] Open
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases. [BMB Reports 2022; 55(4): 166-174].
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
40
|
Keshvari S, Genz B, Teakle N, Caruso M, Cestari MF, Patkar OL, Tse BWC, Sokolowski KA, Ebersbach H, Jascur J, MacDonald KPA, Miller G, Ramm GA, Pettit AR, Clouston AD, Powell EE, Hume DA, Irvine KM. Therapeutic potential of macrophage colony-stimulating factor (CSF1) in chronic liver disease. Dis Model Mech 2022; 15:274391. [PMID: 35169835 PMCID: PMC9044210 DOI: 10.1242/dmm.049387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
Resident and recruited macrophages control the development and proliferation of the liver. We showed previously in multiple species that treatment with a macrophage colony stimulating factor (CSF1)-Fc fusion protein initiated hepatocyte proliferation and promoted repair in models of acute hepatic injury in mice. Here we investigated the impact of CSF1-Fc on resolution of advanced fibrosis and liver regeneration, utilizing a non-resolving toxin-induced model of chronic liver injury and fibrosis in C57BL/6J mice. Co-administration of CSF1-Fc with exposure to thioacetamide (TAA) exacerbated inflammation consistent with monocyte contributions to initiation of pathology. After removal of TAA, either acute or chronic CSF1-Fc treatment promoted liver growth, prevented progression and promoted resolution of fibrosis. Acute CSF1-Fc treatment was also anti-fibrotic and pro-regenerative in a model of partial hepatectomy in mice with established fibrosis. The beneficial impacts of CSF1-Fc treatment were associated with monocyte-macrophage recruitment and increased expression of remodeling enzymes and growth factors. These studies indicate that CSF1-dependent macrophages contribute to both initiation and resolution of fibrotic injury and that CSF1-Fc has therapeutic potential in human liver disease.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Berit Genz
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ngari Teakle
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Michelle F Cestari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Julia Jascur
- Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew D Clouston
- Envoi Specialist Pathologists, Brisbane, Qld, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Elizabeth E Powell
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Mesencephalic astrocyte-derived neurotrophic factor reprograms macrophages to ameliorate acetaminophen-induced acute liver injury via p38 MAPK pathway. Cell Death Dis 2022; 13:100. [PMID: 35110525 PMCID: PMC8810950 DOI: 10.1038/s41419-022-04555-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022]
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is the most frequent cause of acute liver failure; but the underlying mechanisms still remain obscure. Macrophages and endoplasmic reticulum (ER) stress play an important role in the pathogenesis of AILI. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly identified 18-kDa soluble protein, whose expression and secretion are stimulated by ER stress. To investigate the role of myeloid cell MANF in the pathogenesis of AILI, we assayed serum and liver samples from AILI model mice and patients with drug-induced liver injury (DILI). We demonstrated that the levels of MANF were elevated in patients with DILI and in mice with AILI. Moreover, myeloid-specific MANF knockout mice were generated and used. It was observed that a delayed liver recovery from myeloid-specific MANF gene knockout mice following APAP overdose compared to that from wild-type mice. MANF deficiency in myeloid cells resulted in increased infiltrating monocyte-derived macrophages (MoMFs) but reduced restorative Ly6Clow macrophages after APAP treatment. MANF supplementation increased restorative Ly6Clow macrophages and subsequently alleviated liver injury. Moreover, MANF could enhance IL-10 expression and phagocytosis in macrophages via p38 MAPK pathway. Altogether, MANF seems to be a critical immune modulator in promoting liver repair via reducing and reprogramming MoMFs. MANF perhaps promoted the phenotype conversion of pro-inflammatory MoMFs to pro-restorative Ly6Clow MoMFs via p38 MAPK pathway, particularly through enhancing IL-10 and phagocytosis.
Collapse
|
42
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
43
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
44
|
Association between immunologic markers and cirrhosis in individuals with chronic hepatitis B. Sci Rep 2021; 11:21194. [PMID: 34782638 PMCID: PMC8593047 DOI: 10.1038/s41598-021-00455-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Host immune response and chronic inflammation associated with chronic hepatitis B virus (HBV) infection play a key role in the pathogenesis of liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). We sampled 175 HCC, 117 cirrhotic and 165 non-cirrhotic controls from a prospective cohort study of chronically HBV-infected individuals. Multivariable polytomous logistic regression and canonical discriminant analysis (CDA) were used to compare baseline plasma levels for 102 markers in individuals who developed cirrhosis vs. controls and those who developed HCC vs. cirrhosis. Leave-one-out cross validation was used to generate receiver operating characteristic curves to compare the predictive ability of marker groups. After multivariable adjustment, HGF (Q4v1OR: 3.74; p-trend = 0.0001), SLAMF1 (Q4v1OR: 4.07; p-trend = 0.0001), CSF1 (Q4v1OR: 3.00; p-trend = 0.002), uPA (Q4v1OR: 3.36; p-trend = 0.002), IL-8 (Q4v1OR: 2.83; p-trend = 0.004), and OPG (Q4v1OR: 2.44; p-trend = 0.005) were all found to be associated with cirrhosis development compared to controls; these markers predicted cirrhosis with 69% accuracy. CDA analysis identified a nine marker model capable of predicting cirrhosis development with 79% accuracy. No markers were significantly different between HCC and cirrhotic participants. In this study, we assessed immunologic markers in relation to liver disease in chronically-HBV infected individuals. While validation in required, these findings highlight the importance of immunologic processes in HBV-related cirrhosis.
Collapse
|
45
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
46
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
47
|
Abstract
Antifibrotic therapies for the treatment of liver fibrosis represent an unconquered area of drug development. The significant involvement of the gut microbiota as a driving force in a multitude of liver disease, be it pathogenesis or fibrotic progression, suggest that targeting the gut–liver axis, relevant signaling pathways, and/or manipulation of the gut’s commensal microbial composition and its metabolites may offer opportunities for biomarker discovery, novel therapies and personalized medicine development. Here, we review potential links between bacterial translocation and deficits of host-microbiome compartmentalization and liver fibrosis that occur in settings of advanced chronic liver disease. We discuss established and emerging therapeutic strategies, translated from our current knowledge of the gut–liver axis, targeted at restoring intestinal eubiosis, ameliorating hepatic fibrosis and rising portal hypertension that characterize and define the course of decompensated cirrhosis.
Collapse
|
48
|
Cheng X, Zhu JL, Li Y, Luo WW, Xiang HR, Zhang QZ, Peng WX. Serum biomarkers of isoniazid-induced liver injury: Aminotransferases are insufficient, and OPN, L-FABP and HMGB1 can be promising novel biomarkers. J Appl Toxicol 2021; 42:516-528. [PMID: 34494278 DOI: 10.1002/jat.4236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
Isoniazid (INH)-induced liver injury is a great challenge for tuberculosis treatment. Existing biomarkers cannot accurately determine the occurrence of this injury in the early stage. Therefore, developing early specific sensitive biomarkers of INH-induced liver injury is urgent. A rat model of liver injury was established with gastric infusion of INH or INH plus rifampicin (RFP). We examined seven potential novel serum biomarkers, namely, glutamate dehydrogenase (GLDH), liver-fatty acid-binding protein (L-FABP), high-mobility group box-1 (HMGB1), macrophage colony-stimulating factor receptor (MCSF1R), osteopontin (OPN), total cytokeratin 18 (K18), and caspase-cleaved cytokeratin-18 (ccK18), to evaluate their sensitivity and specificity on INH-induced liver injury. With the increase of drug dosage, combining with RFP and prolonging duration of administration, the liver injury was aggravated, showing as decreased weight of the rats, upgraded liver index and oxidative stress level, and histopathological changes of liver becoming marked. But the activity of serum aminotransferases decreased significantly. The area under the curve (AUC) of receiver-operating characteristic (ROC) curve of OPN, L-FABP, HMGB1, MCSF1R, and GLDH was 0.88, 0.87, 0.85, 0.71, and 0.70 (≥0.7), respectively, and 95% confidence interval of them did not include 0.5, with statistical significance, indicating their potential abilities to become biomarkers of INH-induced liver injury. In conclusion, we found traditional biomarkers ALT and AST were insufficient to discover the INH-induced liver injury accurately and OPN, L-FABP, and HMGB1 can be promising novel biomarkers.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jia-Lian Zhu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yun Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen-Wen Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huai-Rong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen-Xing Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
49
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
50
|
He X, Tan S, Shao Z, Wang X. Latitudinal and longitudinal regulation of tissue macrophages in inflammatory diseases. Genes Dis 2021; 9:1194-1207. [PMID: 35873033 PMCID: PMC9293718 DOI: 10.1016/j.gendis.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophages are dominant innate immune cells. They demonstrate remarkable heterogeneity and plasticity that are essential for homeostasis and host defense. The heterogeneity of tissue macrophages is shaped by the ontogeny, tissue factors, and environmental signals, a pattern in a tissue-associated latitudinal manner. At the same time, macrophages have long been considered as mainly plastic cells. These cells respond to stimulation quickly and in a stimulus-specific way by utilizing a longitudinal cascaded activation, including coordination of signal transducer, epigenetic elements, and transcription factors, conclusively determine the macrophage phenotypes and functions. With the development of cutting-edge technologies, such as fate-mapping, single-cell transcriptomics, ipsc platform, nanotherapeutic materials, etc., our understanding of macrophage biology and the roles in the pathogenesis of diseases is much advanced. This review summarizes recent progress on the latitudinal and longitudinal regulation of tissue macrophages in inflammatory diseases. The latitudinal regulation covers the tissue macrophage origins, tissue factors, and environmental signals, reflecting the macrophage heterogeneity. The longitudinal regulation focuses on how multiple factors shape the phenotypes and functions of macrophage subsets to gain plasticity in inflammatory diseases (i.e., inflammatory bowel disease). In addition, how to target macrophages as a potential therapeutic approach and cutting edge-technologies for tissue macrophage study are also discussed in this review.
Collapse
Affiliation(s)
- XiaoYi He
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, PR China
| | - Stephanie Tan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhong Shao
- The Third Hospital of Fushun, Fushun, Liaoning 113004, PR China
| | - Xiao Wang
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Corresponding author. Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago 225 E. Chicago Avenue, Chicago, IL 60611, USA. Fax: +(312) 503 7177.
| |
Collapse
|