1
|
Mao W, Jiang Q, Feng Y, Peng C, Peng H, Li X, Jiao L, Zhang L, Ma L, Sun T. TRIM21-mediated METTL3 degradation promotes PDAC ferroptosis and enhances the efficacy of Anti-PD-1 immunotherapy. Cell Death Dis 2025; 16:240. [PMID: 40175350 PMCID: PMC11965403 DOI: 10.1038/s41419-025-07550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Pancreatic cancer remains the most lethal human malignancy with limited clinical benefits from currently available anticancer treatments. Ferroptosis has recently attracted great attention as a potential antineoplastic strategy. However, the study of ferroptosis in PDAC remains insufficient. This study revealed that Methyltransferase like 3 (METTL3), as a key oncogenic factor, is frequently upregulated and inhibits ferroptosis by stabilizing SLC7A11 mRNA in PDAC. In addition, we identified a novel post-translational modification of METTL3 and characterized specific regulatory mechanisms of METTL3 protein degradation. The E3 ligase TRIM21 mediated K48-linked polyubiquitination of METTL3 at the K459 site, leading to the proteasomal degradation of METTL3, which prevented tumor progression by promoting ferroptosis. Interestingly, the TRIM21-METTL3 axics mediated ferroptosis effectively increased the expression of immune checkpoint PD-L1 and strengthened antitumor immunity in pancreatic cancer. Together, our findings first elucidated the detailed molecular mechanism of METTL3 degradation and revealed the pivotal role of the TRIM21-METTL3 axis in regulating ferroptosis and antitumor immunity, which may serve as a potential target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Wenhao Mao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Yadan Feng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Chen Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Hui Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, China.
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, China.
| |
Collapse
|
2
|
Reichardt W, Gewalt T, Hafner P, Keller SJ, Chen X, Alrawashdeh A, Li Y, Besson S, Fichtner‐Feigl S, von Elverfeldt D, Jumaa H, Ruess DA. 19Fluorine-MRI Based Longitudinal Immuno-Microenvironment-Monitoring for Pancreatic Cancer. J Magn Reson Imaging 2025; 61:1996-2008. [PMID: 39189434 PMCID: PMC11896934 DOI: 10.1002/jmri.29589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Pancreatic cancer has a poor prognosis. Targeting Kirsten Rat Sarcoma (KRAS) mutation and its related pathways may enhance immunotherapy efficacy. While in vivo monitoring of therapeutic response and immune cell migration remains challenging, Fluorine-19 MRI (19F MRI) may allow noninvasive longitudinal imaging of immune cells. PURPOSE Evaluating the potential of 19F MRI for monitoring changes in the tumor immune microenvironment, in response to combined SHP2/MEK inhibition. STUDY TYPE Pre-clinical animal study. ANIMAL MODEL Murine genetically engineered pancreatic cancer model (N = 20, both sexes). FIELD STRENGTH/SEQUENCE 9.4-T, two-dimensional multi-slice Rapid Acquisition with Relaxation Enhancement sequence. Intravenous injection of 19F-perfluorocarbon (PFC) nanoparticles. ASSESSMENT Upon tumor detection by conventional 1H MRI screening, 19F MRI was performed in mice 24 hours after PFC nanoparticle administration. Animals were randomly assigned to four treatment groups: allosteric Src-homology-2-containing protein tyrosine phosphatase 2 (SHP2) inhibitor SHP099, the mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2) inhibitor Trametinib, the combination of both, or a vehicle control (4 to 6 mice each group), administered every other day per oral gavage. 1H and 19F MRI was repeated 7 days and 14 days later. Pancreatic immune cell infiltrates were analyzed by flow cytometry and multiplex immunohistofluorescence (mIHF) upon sacrifice. STATISTICAL TESTS Independent t-tests and one-way analysis of variance. RESULTS 19F MRI revealed continuous decrease of PFC-signals in tumors from vehicle controls (100%, 80%, and 74% on days 0, 7, and 14, respectively), contrasting with stable or increasing signals under KRAS-pathway-directed treatment. MEK inhibition showed 100%, 152%, and 84% and dual SHP2/MEK1/2 inhibition demonstrated signals of 100%, 134%, and 100% on days 0, 7, 14, respectively. mIHF analyses indicated CD11b+ macrophages/monocytes as primary contributors to the observed 19F MRI signal differences. DATA CONCLUSION 19F MRI might provide non-invasive longitudinal estimates for abundance and spatial distribution of CD11b+ macrophages/monocytes in pancreatic cancer. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Wilfried Reichardt
- Division of Medical Physics, Department of Diagnostic and Interventional RadiologyMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK), Partner Site FreiburgFreiburgGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tabea Gewalt
- Division of Medical Physics, Department of Diagnostic and Interventional RadiologyMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for SurgeryMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Steffen J. Keller
- Department of General and Visceral Surgery, Center for SurgeryMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Xun Chen
- Department of General and Visceral Surgery, Center for SurgeryMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Asma Alrawashdeh
- Department of General and Visceral Surgery, Center for SurgeryMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Yayu Li
- Division of Medical Physics, Department of Diagnostic and Interventional RadiologyMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Solène Besson
- Department of General and Visceral Surgery, Center for SurgeryMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Stefan Fichtner‐Feigl
- Department of General and Visceral Surgery, Center for SurgeryMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional RadiologyMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Huda Jumaa
- Department of General and Visceral Surgery, Center for SurgeryMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Dietrich A. Ruess
- German Cancer Consortium (DKTK), Partner Site FreiburgFreiburgGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of General and Visceral Surgery, Center for SurgeryMedical Center University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
3
|
Huang YE, Zhou S, Chen S, Chen J, Zhou X, Hou F, Liu H, Yuan M, Jiang W. Mutational signature-based biomarker to predict the response of immune checkpoint inhibitors therapy in cancers. Int J Biol Macromol 2025; 308:142585. [PMID: 40154701 DOI: 10.1016/j.ijbiomac.2025.142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Patients have a limited response rate to immune checkpoint inhibitors (ICIs) therapy. Although several biomarkers have been proposed, their ability to accurately predict the response to ICIs therapy remains unsatisfactory. In addition, mutational signatures were validated to be associated with ICIs therapy. Therefore, we developed a mutational signature-based biomarker (MS-bio) to predict the response to ICIs therapy. Based on differentially mutated genes, we extracted six mutational signatures (single-base substitution (SBS)-A, SBS-B, SBS-C, SBS-D, double-base substitution (DBS)-A, and DBS-B) as MS-bio, and constructed a random forest (RF) model to predict the response. Internal and external validations consistently demonstrated the excellent predictive capability of MS-bio, with an accuracy reaching up to 0.82. Moreover, MS-bio exhibited superior performance compared to existing biomarkers. To further validate the accuracy of MS-bio, we explored its performance in The Cancer Genome Atlas (TCGA) cohort and found that the predicted responders were immunologically "hot". Finally, we found that SBS-C had the highest importance in prediction and was related to T cell differentiation. Overall, here we introduced MS-bio as a novel biomarker for accurately predicting the response to ICIs therapy, thereby contributing to the advancement of precision medicine.
Collapse
Affiliation(s)
- Yu-E Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- School of Computer Sciences, University of South China, Hengyang 421001, China
| | - Sina Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiahao Chen
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
4
|
Ferrari DP, Çobanoglu Ö, Sayedipour S, Luna O, Ferkel SAM, Agorku D, Perez Y, Cruz LJ, Albericio F, Trottein F, Alves F, Markus MA, Ramos-Gomes F. Anti-Tumor Efficacy of a Mesothelin-Based Nanovaccine in a KPC Orthotopic Mouse Model of Pancreatic Cancer. Vaccines (Basel) 2025; 13:314. [PMID: 40266223 DOI: 10.3390/vaccines13030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: Immunotherapy has shown promising results in some cancers, but its efficacy remains limited in pancreatic ductal adenocarcinoma (PDAC). Vaccines in nanoparticle form (nanovaccines) can incorporate immunostimulating components to induce a potent immune response. As mesothelin (MSLN) is a tumor-associated antigen overexpressed in PDAC, we evaluated the effect of MSLN nanovaccine in a syngeneic orthotopic KPC-PDAC mouse model. Methods: An MSLN peptide combining three MSLN epitopes and two adjuvants, poly I:C and R848, was encapsulated in PLGA-chitosan nanoparticles to generate the nanovaccine. Results: The MSLN nanovaccine was successfully taken up by dendritic cells in vitro and was found in inguinal lymph nodes 24 h after subcutaneous injection into C57BL/6 mice. Nanovaccine re-stimulation of splenocytes from vaccinated mice led to increased levels of interferon-γ in vitro compared to unstimulated splenocytes. Higher levels of MSLN-specific IgM and IgG antibodies were detected in the serum of vaccinated mice compared to that of control mice. Three vaccination regimens were tested: a prophylactic scheme that included vaccination before tumor induction and two therapeutic schemes involving early and late vaccination after tumor cell inoculation. MSLN nanovaccination inhibited KPC tumor progression and metastasis and induced higher CD8+ T cell infiltration in the tumor that developed in response to prophylactic and early therapeutic schedules but not in response to a later vaccination approach. Although the nanovaccine treatment elicited higher humoral and cellular antigen-specific responses in tumor-bearing mice for both vaccination strategies, the therapeutic vaccination also increased the expression of exhaustion markers in CD8+ T cells. Conclusions: Our results support the relevance of an MSLN-based nanovaccine as a new immunotherapy treatment for PDAC and propose an innovative method of vaccine delivery using NPs.
Collapse
Affiliation(s)
- Daniele P Ferrari
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Özmen Çobanoglu
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sana Sayedipour
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Omar Luna
- Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Sonia A M Ferkel
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - David Agorku
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | - Luis J Cruz
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Fernando Albericio
- Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - François Trottein
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Department of Haematology and Medical Oncology, Translational Molecular Imaging, University Medical Center Göttingen, 37075 Göttingen, Germany
- Institute of Diagnostic and Interventional Radiology, Translational Molecular Imaging, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Marietta Andrea Markus
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Liu J, Zhao Z, Zanni R, Jiang X, Weichselbaum RR, Lin W. Nanoparticle-Mediated Toll-Like Receptor Activation and Dual Immune Checkpoint Downregulation for Potent Cancer Immunotherapy. ACS NANO 2025; 19:8852-8866. [PMID: 40009747 DOI: 10.1021/acsnano.4c16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Dual blockade of CD47 and PD-L1 immune checkpoints has shown potential in cancer treatment, but its clinical application is hindered by the on-target off-tumor immunotoxicities of monoclonal antibodies. Herein, we report a core-shell nanoparticle, PPA/HG, comprising polyinosinic: polycytidylic acid (PPA) in the core and a cholesterol-conjugated prodrug of 3-(hydroxyolinoyl)glycine (HG) on the shell, for potent cancer immunotherapy. PPA/HG shows a long half-life in the bloodstream to efficiently accumulate in tumors, where PPA/HG rapidly releases HG and PPA. HG inhibits the histone lysine demethylase 3A/c-Myc transduction for effective CD47 and PD-L1 downregulation in cancer cells while PPA activates toll-like receptor 3 in dendritic cells and tumor-associated macrophages to promote dendritic cell maturation and macrophage repolarization. PPA/HG promotes the infiltration and activation of effector T lymphocytes, meanwhile decreasing the population of immunosuppressive regulatory T cells. Systemic administration of PPA/HG significantly inhibits the progression of orthotopic triple-negative breast cancer and pancreatic ductal adenocarcinoma with minimal side effects.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Zhihao Zhao
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Richard Zanni
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Pretto S, Yu Q, Bourdely P, Trusso Cafarello S, Van Acker HH, Verelst J, Richiardone E, Vanheer L, Roshanzadeh A, Schneppenheim F, Cresens C, Sassano ML, Dehairs J, Carion M, Ismail S, Agostinis P, Rocha S, Bald T, Swinnen J, Corbet C, Lunt SY, Thienpont B, Di Matteo M, Mazzone M. A functional single-cell metabolic survey identifies Elovl1 as a target to enhance CD8 + T cell fitness in solid tumours. Nat Metab 2025; 7:508-530. [PMID: 40065102 PMCID: PMC11946891 DOI: 10.1038/s42255-025-01233-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/04/2025] [Indexed: 03/28/2025]
Abstract
Reprogramming T cell metabolism can improve intratumoural fitness. By performing a CRISPR/Cas9 metabolic survey in CD8+ T cells, we identified 83 targets and we applied single-cell RNA sequencing to disclose transcriptome changes associated with each metabolic perturbation in the context of pancreatic cancer. This revealed elongation of very long-chain fatty acids protein 1 (Elovl1) as a metabolic target to sustain effector functions and memory phenotypes in CD8+ T cells. Accordingly, Elovl1 inactivation in adoptively transferred T cells combined with anti-PD-1 showed therapeutic efficacy in resistant pancreatic and melanoma tumours. The accumulation of saturated long-chain fatty acids in Elovl1-deficient T cells destabilized INSIG1, leading to SREBP2 activation, increased plasma membrane cholesterol and stronger T cell receptor signalling. Elovl1-deficient T cells increased mitochondrial fitness and fatty acid oxidation, thus withstanding the metabolic stress imposed by the tumour microenvironment. Finally, ELOVL1 in CD8+ T cells correlated with anti-PD-1 response in patients with melanoma. Altogether, Elovl1 targeting synergizes with anti-PD-1 to promote effective T cell responses.
Collapse
Affiliation(s)
- Samantha Pretto
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Qian Yu
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Pierre Bourdely
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Heleen H Van Acker
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joren Verelst
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Lotte Vanheer
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Amir Roshanzadeh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Franziska Schneppenheim
- Institute of Experimental Oncology (IEO), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Charlotte Cresens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Heverlee, Belgium
- VIB BioImaging Core, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Martin Carion
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Shehab Ismail
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Heverlee, Belgium
| | - Tobias Bald
- Institute of Experimental Oncology (IEO), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Johan Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Xue Y, Wang Y, Ren Z, Yu K. Tissue factor promotes TREX1 protein stability to evade cGAS-STING innate immune response in pancreatic ductal adenocarcinoma. Oncogene 2025; 44:739-752. [PMID: 39658648 PMCID: PMC11888988 DOI: 10.1038/s41388-024-03248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains the most challenging human malignancy that urgently needs effective therapy. Tissue factor (TF) is expressed in ~80% of PDAC and represents a potential therapeutic target. While a novel TF-ADC (MRG004A) demonstrated efficacy for PDAC and TNBC in a Phase I/II trial [Ref. 18], the functional role of TF in PDAC remains incompletely understood. We investigated the relationship between TF and the innate STING pathway. We found that patients with TF-overexpression had poor survival, very low levels of P-STING/P-TBK1, reduced amounts of ISGs and chemokines as well as low numbers of cytotoxic immunocytes in their tumor. In experimental models of mouse and human PDAC, tumor cell-intrinsic TF expression played a major role in silencing the cytosolic micronuclei sensing and cGAS-STING activation. This process involved a TREX1 exonuclease-dependent clearance of micronucleus-DNA accumulated in tumor cells. Treatment of tumors with TF-KO/shRNA or anti-TF antibody HuSC1-39 (parent antibody of MRG004A) triggered a rapid and proteasome-dependent degradation of TREX1 thereby restoring the STING/TBK1 cascade phosphorylation. TF-inhibition therapy promoted a robust STING/IRF3-dependent IFN/CCL5/CXCL9-11 production, immune effector cell infiltration and antitumor efficacy. Moreover, in the PBMC and cancer cell co-culture, TF-inhibition synergized with a STING agonist compound. A covalently conjugated TF antibody-STING agonist ADC strongly increased the efficacy of tumor-targeted STING agonism on chemokine secretion and tumor inhibition in vitro and in vivo. Thus, TF-inhibition reshapes an "immune hot" tumor environment. TF-targeted therapy warrants clinical investigation as a single agent or in combination with immunotherapy for treating TF-positive PDAC and TNBC.
Collapse
Affiliation(s)
- Yinyin Xue
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yue Wang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Zhiqiang Ren
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China.
| |
Collapse
|
8
|
Shi J, Zhao L, Wang K, Lin J, Shen J. Disulfidptosis classification of pancreatic carcinoma reveals correlation with clinical prognosis and immune profile. Hereditas 2025; 162:26. [PMID: 39987145 PMCID: PMC11846472 DOI: 10.1186/s41065-025-00381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Disulfidptosis, a novel form of metabolism-related regulated cell death, is a promising intervention for cancer therapeutic intervention. Although aberrant expression of long-chain noncoding RNAs (lncRNAs) expression has been associated with pancreatic carcinoma (PC) development, the biological properties and prognostic potential of disulfidptosis-related lncRNAs (DRLs) remain unclear. METHODS We obtained RNA-seq data, clinical data, and genomic mutations of PC from the TCGA database, and then determined DRLs. We developed a risk score model and analyzed the role of risk score in the predictive ability, immune cell infiltration, immunotherapy response, and drug sensitivity. RESULTS We finally established a prognostic model including three DRLs (AP005233.2, FAM83A-AS1, and TRAF3IP2-AS1). According to Kaplan-Meier curve analysis, the survival time of patients in the low-risk group was significantly longer than that in the high-risk group. Based on enrichment analysis, significant associations between metabolic processes and differentially expressed genes were assessed in two risk groups. In addition, we observed significant differences in the tumor immune microenvironment landscape. Tumor Immune Dysfunction and Rejection (TIDE) analysis showed no statistically significant likelihood of immune evasion in both risk groups. Patients exhibiting both high risk and high tumor mutation burden (TMB) had the poorest survival times, while those falling into the low risk and low TMB categories showed the best prognosis. Moreover, the risk group identified by the 3-DRLs profile showed significant drug sensitivity. CONCLUSIONS Our proposed 3-DRLs-based feature could serve as a promising tool for predicting the prognosis, immune landscape, and treatment response of PC patients, thus facilitating optimal clinical decision-making.
Collapse
Affiliation(s)
- Jiangmin Shi
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China
| | - Liang Zhao
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China
| | - Kai Wang
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China
| | - Jieqiong Lin
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China
| | - Jianwei Shen
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China.
| |
Collapse
|
9
|
Kanai M. Challenges and Opportunities for the Clinical Application of the Combination of Immune-Checkpoint Inhibitors and Radiation Therapy in the Treatment of Advanced Pancreatic Cancer. Cancers (Basel) 2025; 17:606. [PMID: 40002201 PMCID: PMC11853451 DOI: 10.3390/cancers17040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The treatment landscape of pancreatic ductal adenocarcinoma (PDAC) has seen slow progress, with immune-checkpoint inhibitors (ICIs) failing to replicate the success observed in other malignancies. The immune-suppressive tumor microenvironment (TME) in PDAC represents a significant barrier, limiting the activation of an effective antitumor immune response following ICI administration. Radiation therapy (RT), with its immunomodulatory effects, has emerged as a promising partner for ICIs. This review discusses the recent efforts evaluating the combination of ICIs and RT in advanced PDAC. While the combination therapy has demonstrated an acceptable safety profile, the reported clinical efficacy remains modest, particularly for patients with refractory metastatic PDAC. The ongoing phase III trial (JCOG1908E) will clarify whether the combination of ICI and RT improves overall survival in chemo-naïve patients with locally advanced PDAC.
Collapse
Affiliation(s)
- Masashi Kanai
- Department of Clinical Oncology, Kansai Medical University Hospital, 3-1 Shinmachi 2 Chome, Hirakata City 573-1191, Osaka, Japan
| |
Collapse
|
10
|
Zhu Y, Yang Y, Yue L, Wan L, Ma X, Yang Q, Tian X, Li Y, Wang K, Wei S, Zuo D, Feng M. Efficacy of natural killer T and gammadelta T cells in mesothelin-targeted immunotherapy of pancreatic cancer. Front Immunol 2025; 16:1524899. [PMID: 39995672 PMCID: PMC11847856 DOI: 10.3389/fimmu.2025.1524899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Current pancreatic cancer immunotherapy focused on alphabeta (αβ) T cells, either through CD3-engaged bispecific antibodies or CAR-T. Despite their promise, dose-limited toxicity (DLT) remains a challenge in clinical practice. In light of these concerns, there is a growing interest in exploring alternative T cell types, natural killer T (NKT) cells and gammadelta (γδ) T cells, that possess the capacity to lyse tumors while potentially offering a safer therapeutic profile with fewer side effects. These cells present a compelling alternative that warrants a comprehensive evaluation of their therapeutic potential and safety profile. This study employed a MSLN/CD3 bispecific antibody to compare the anti-tumor activity of NKT and γδT cells with peripheral blood mononuclear cells (PBMCs) as controls, both in vitro and in vivo. This study demonstrated that MSLN/CD3 BsAb effectively activated and recruited PBMCs, NKT and γδT. Furthermore, under the influence of MSLN/CD3 BsAb, γδT and NKT cells exhibited notably superior anti-tumor activity compared to PBMCs, both in vitro and in vivo, while demonstrating low cytokine release. γδT cells showed almost negligible toxic side effects. In addition, the systemic administration of NKT and γδT cells activators, α-galactosylceramide (α-GalCer) and Zoledronate, could enhance the anti-tumor effect of MSLN/CD3 bsAb, with no apparent toxicity. NKT and γδT cells are promising synergistic therapeutic cell types that may overcome the limitations of CD3 bispecific antibodies in pancreatic tumor treatments, offering a new perspective for clinical applications in immunotherapy.
Collapse
MESH Headings
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/immunology
- Mesothelin
- Humans
- Natural Killer T-Cells/immunology
- Animals
- GPI-Linked Proteins/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Immunotherapy/methods
- Cell Line, Tumor
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Xenograft Model Antitumor Assays
- Zoledronic Acid/therapeutic use
- Zoledronic Acid/pharmacology
- CD3 Complex/immunology
- Intraepithelial Lymphocytes/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Galactosylceramides/immunology
Collapse
Affiliation(s)
- Yuankui Zhu
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yaxi Yang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linghe Yue
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Wan
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuqian Ma
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Yang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuan Tian
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuguan Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ke Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gastrointestinal Oncology Surgery, Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, Hubei, China
- Department of Gastrointestinal Oncology Surgery, Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, Hubei, China
| | - Dianbao Zuo
- Research Center for Translational Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson’s Disease at Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Wang R, Hu M, Lozzi I, Jin CZJ, Ma D, Splith K, Mengwasser J, Wolf V, Feldbrügge L, Tang P, Timmermann L, Hillebrandt KH, Kirchner M, Mertins P, Hilfenhaus G, Neumann CCM, Kammertoens T, Pratschke J, Malinka T, Sauer IM, Noessner E, Guo ZS, Felsenstein M. Cytokine-armed vaccinia virus promotes cytotoxicity toward pancreatic carcinoma cells via activation of human intermediary CD56 dimCD16 dim natural killer cells. Int J Cancer 2025; 156:638-651. [PMID: 39400317 PMCID: PMC11621990 DOI: 10.1002/ijc.35209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a particularly aggressive disease with few effective treatments. The PDAC tumor immune microenvironment (TIME) is known to be immune suppressive. Oncolytic viruses can increase tumor immunogenicity via immunogenic cell death (ICD). We focused on tumor-selective (vvDD) and cytokine-armed Western-reserve vaccinia viruses (vvDD-IL2 and vvDD-IL15) and infected carcinoma cell lines as well as patient-derived primary PDAC cells. In co-culture experiments, we investigated the cytotoxic response and the activation of human natural killer (NK). Infection and virus replication were assessed by measuring virus encoded YFP. We then analyzed intracellular signaling processes and oncolysis via in-depth proteomic analysis, immunoblotting and TUNEL assay. Following the co-culture of mock or virus infected carcinoma cell lines with allogenic PBMCs or NK cell lines, CD56+ NK cells were analyzed with respect to their activation, cytotoxicity and effector function. Both, dose- and time-dependent release of danger signals following infection were measured. Viruses effectively entered PDAC cells, emitted YFP signals and resulted in concomitant oncolysis. The proteome showed reprogramming of normally active core signaling pathways in PDAC (e.g., MAPK-ERK signaling). Danger-associated molecular patterns were released upon infection and stimulated co-cultured NK cells for enhanced effector cytotoxicity. NK cell subtyping revealed enhanced numbers and activation of a rare CD56dimCD16dim population. Tumor cell killing was primarily triggered via Fas ligands rather than granule release, resulting in marked apoptosis. Overall, the cytokine-armed vaccinia viruses induced NK cell activation and enhanced cytotoxicity toward human PDAC cells in vitro. We could show that cytokine-armed virus targets the carcinoma cells and thus has great potential to modulate the TIME in PDAC.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Mengwen Hu
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Isis Lozzi
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Cao Zhong Jing Jin
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dou Ma
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Katrin Splith
- Department of General, Visceral and Transplant SurgeryMedizinische Hochschule HannoverHannoverGermany
| | - Jörg Mengwasser
- Department of General, Visceral and Transplant SurgeryMedizinische Hochschule HannoverHannoverGermany
| | - Vincent Wolf
- Department of General, Visceral and Transplant SurgeryMedizinische Hochschule HannoverHannoverGermany
| | - Linda Feldbrügge
- Department of General, Visceral and Transplant SurgeryMedizinische Hochschule HannoverHannoverGermany
| | - Peter Tang
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Lea Timmermann
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Berlin Institute of Health at Charité—Universitätsmedizin BerlinBIH Biomedical Innovation Academy, BIH Charité Clinician Scientist ProgramBerlinGermany
| | - Karl Herbert Hillebrandt
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Berlin Institute of Health at Charité—Universitätsmedizin BerlinBIH Biomedical Innovation Academy, BIH Charité Clinician Scientist ProgramBerlinGermany
| | - Marieluise Kirchner
- Core Unit ProteomicsBerlin Institute of Health at Charité—Universitätsmedizin Berlin and Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Philipp Mertins
- Core Unit ProteomicsBerlin Institute of Health at Charité—Universitätsmedizin Berlin and Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Georg Hilfenhaus
- Berlin Institute of Health at Charité—Universitätsmedizin BerlinBIH Biomedical Innovation Academy, BIH Charité Clinician Scientist ProgramBerlinGermany
- Medical Department, Division of Hematology, Oncology and Tumor ImmunologyCCM, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Christopher Claudius Maximilian Neumann
- Berlin Institute of Health at Charité—Universitätsmedizin BerlinBIH Biomedical Innovation Academy, BIH Charité Clinician Scientist ProgramBerlinGermany
- Medical Department, Division of Hematology, Oncology and Tumor ImmunologyCCM, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Thomas Kammertoens
- Institute of Immunology, Charité Unversitätsmedizin, Campus BuchBerlinGermany
| | - Johann Pratschke
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Thomas Malinka
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Igor Maximillian Sauer
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Berlin Institute of Health at Charité—Universitätsmedizin BerlinBIH Biomedical Innovation Academy, BIH Charité Clinician Scientist ProgramBerlinGermany
| | | | - Zong Sheng Guo
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Matthäus Felsenstein
- Department of Surgery, CCMCVK, Experimental SurgeryCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Berlin Institute of Health at Charité—Universitätsmedizin BerlinBIH Biomedical Innovation Academy, BIH Charité Clinician Scientist ProgramBerlinGermany
| |
Collapse
|
12
|
Musiu C, Adamo A, Caligola S, Agostini A, Frusteri C, Lupo F, Boschi F, Busato A, Poffe O, Anselmi C, Vella A, Wang T, Dusi S, Piro G, Carbone C, Tortora G, Marzola P, D'Onofrio M, Crinò SF, Corbo V, Scarpa A, Salvia R, Malleo G, Lionetto G, Sartoris S, Ugel S, Bassi C, Bronte V, Paiella S, De Sanctis F. Local ablation disrupts immune evasion in pancreatic cancer. Cancer Lett 2025; 609:217327. [PMID: 39580047 DOI: 10.1016/j.canlet.2024.217327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is characterised by late diagnosis, tumour heterogeneity, and a peculiar immunosuppressive microenvironment, leading to poor clinical outcomes. Local ablative techniques have been proposed to treat unresectable PC patients, although their impact on activating the host immune system and overcoming resistance to immunotherapy remains elusive. METHODS We dissected the immune-modulatory abilities triggered by local ablation in mouse and human PC models and human specimens, integrating phenotypic and molecular technologies with functional assays. RESULTS Local ablation treatment performed in mice bearing orthotopic syngeneic PC tumours triggered tumour necrosis and a short-term inflammatory process characterised by the prompt increase of HMGB1 plasma levels, coupled with an enhanced amount of circulating and tumour infiltrating myeloid cells and increased MHCII expression in splenic myeloid antigen-presenting cells. Local ablation synergised with immunotherapy to restrict tumour progression and improved the survival of PC-bearing mice by evoking a T lymphocyte-dependent anti-tumour immune response. By integrating spatial transcriptomics with histological techniques, we pinpointed how combination therapy could reshape TME towards an anti-tumour milieu characterised by the preferential entrance and colocalization of activated T lymphocytes and myeloid cells endowed with antigen presentation features instead of T regulatory lymphocytes and CD206-expressing tumour-associated macrophages. In addition, treatment-dependent TME repolarization extended to neoplastic cells, promoting a shift from squamous to a more differentiated classical phenotype. Finally, we validated the immune regulatory properties induced by local ablation in PC patients and identified an association of the short-term treatment-dependent increase of neutrophils, NLR and HMGB1 with a longer time to progression. CONCLUSION Therefore, local ablation might overcome the current limitations of immunotherapy in PC.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | | | - Antonio Agostini
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristina Frusteri
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Alice Busato
- Assessment Department Aptuit S.r.l., an Evotec Company, Verona, Italy
| | - Ornella Poffe
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Cristina Anselmi
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Antonio Vella
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Tian Wang
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Dusi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Geny Piro
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, Radiology Section, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Francesco Crinò
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Gastroenterology and Digestive Endoscopy Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Pathological Anatomy Section, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Giuseppe Malleo
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Gabriella Lionetto
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy.
| | - Claudio Bassi
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | | | - Salvatore Paiella
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy.
| |
Collapse
|
13
|
Fan Y, Wu L, Qiu X, Shi H, Wu L, Lin J, Lin J, Teng T. Single-cell RNA-seq analysis reveals microenvironmental infiltration of myeloid cells and pancreatic prognostic markers in PDAC. Discov Oncol 2025; 16:81. [PMID: 39847195 PMCID: PMC11757659 DOI: 10.1007/s12672-025-01830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous make-up of myeloid cells that influences the therapeutic response and prognosis. However, understanding the myeloid cell at both a genetic and cellular level remains a significant challenge. METHODS Single-cell RNA sequencing (scRNA-seq) data were downloaded from t the Tumor Immune Single-cell Hub and gene expression data were retrieved from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Gene set variation analysis (GSVA) was used to estimate the relative proportions of each cell type based on the signatures identified by scRNA-seq or previous literature. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was performed to evaluate the abundance of immune infiltrating cells. For further analysis, LASSO and Cox analyses were used to construct a risk model using univariate Cox regression. RESULTS Using the scRNA-seq dataset, we identified 7 clusters of myeloid cells, and these clusters were assigned a cell type based on their marker genes. In addition, the results of the CellChat analysis and SCENIC analysis indicate that TAM-spp1 cells may promote the migration of pancreatic tumor cells on different levels. Moreover, the TAM-spp1 cell is most closely related to poor prognoses. An 8-gene risk model was constructed by using univariate Cox and LASSO analyses. In the GEO cohorts, this risk model demonstrated excellent predictive abilities for prognosis. Further, patients with high-risk scores had a lower likelihood of benefiting from immunotherapy. CONCLUSION Using bulk RNA-seq and single-cell RNA-seq, we analyzed myeloid heterogeneity at the single-cell level, and we developed an 8-gene model that predicts survival outcomes and immunotherapy response in PADC.
Collapse
Affiliation(s)
- Yanying Fan
- Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China
| | - Lili Wu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
- Department of Surgical Nursing, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xinyu Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Han Shi
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Longhang Wu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Juan Lin
- Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China
| | - Jie Lin
- Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China.
| | - Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
14
|
Montagne JM, Mitchell JT, Tandurella JA, Christenson ES, Danilova LV, Deshpande A, Loth M, Sidiropoulos DN, Davis-Marcisak E, Bergman DR, Zhu Q, Wang H, Kagohara LT, Engle LL, Green BF, Favorov AV, Ho WJ, Lim SJ, Zhang R, Li P, Gai J, Mo G, Mitchell S, Wang R, Vaghasia A, Hou W, Xu Y, Zimmerman JW, Elisseeff JH, Yegnasubramanian S, Anders RA, Jaffee EM, Zheng L, Fertig EJ. CD137 agonism enhances anti-PD1 induced activation of expanded CD8 + T cell clones in a neoadjuvant pancreatic cancer clinical trial. iScience 2025; 28:111569. [PMID: 39811671 PMCID: PMC11730579 DOI: 10.1016/j.isci.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist. Treatment with GVAX and anti-PD-1 led to increased CD8+ T cell activation and expression of cytoskeletal and extracellular matrix (ECM)-interacting components. Addition of CD137 agonist increased abundance of clonally expanded CD8+ T cells and increased immunosuppressive TREM2 signaling in tumor associated macrophages (TAMs), identified by comparison of ligand-receptor networks, corresponding to changes in metabolism and ECM interactions. These findings associate therapy with GVAX, anti-PD1, and CD137 agonist with enhanced CD8+ T cell function while inducing alternative immunosuppressive pathways in patients with PDAC.
Collapse
Affiliation(s)
- Janelle M. Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore MD, USA
| | - Joseph A. Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric S. Christenson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ludmila V. Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie Loth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios N. Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Davis-Marcisak
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore MD, USA
| | - Daniel R. Bergman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qingfeng Zhu
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Logan L. Engle
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin F. Green
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander V. Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Moscow, RF, Russia
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Jin Lim
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rui Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pan Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Gai
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanglan Mo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rulin Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yao Xu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- InHealth Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
15
|
Ge X, Zhang K, Zhu J, Chen Y, Wang Z, Wang P, Xu P, Yao J. Targeting protein modification: a new direction for immunotherapy of pancreatic cancer. Int J Biol Sci 2025; 21:63-74. [PMID: 39744438 PMCID: PMC11667816 DOI: 10.7150/ijbs.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional groups to substrates, influencing their biological activity, mechanisms of action, and functional performance. PTMs and their interactions are essential to many critical signal transduction processes, including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, transport, and energy metabolism. This study aimed to investigate the effects of different PTMs on immunotherapy for pancreatic cancer, providing new perspectives and suggesting directions for future research.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Ke Zhang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Jiangsu 225000, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| |
Collapse
|
16
|
Jin H, Zhao YR, Huang F, Hong Z, Jia XY, Wang H, Wang YG. Vaccinia virus-mediated oncolytic immunotherapy: Emerging strategies for gastrointestinal cancer treatment at dawn. Virology 2025; 602:110303. [PMID: 39577274 DOI: 10.1016/j.virol.2024.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Oncolytic vaccinia virus (VVs) based immunotherapy is a rapidly developing treatment for gastrointestinal (GI) cancers. Conventional treatments, such as chemotherapy, radiotherapy and surgery achieve good effects in early-stage GI cancers, but effects are limited in advanced disease. Immunotherapy has limited efficacy in GI cancers due to tumor heterogeneity and complex immunosuppressive mechanisms. Oncolytic VV immunotherapy is a novel treatment approach showing promising results in preclinical and clinical trials. Oncolytic VV's intracytoplasmic replication and assembly mechanism, diverse mature forms, and use methods make it extremely safe and versatile for drug delivery. Combining oncolytic VV with conventional therapies and immunotherapy (e.g., ICIs, CAR-T) enhances tumor regression and survival compared to monotherapies. Researchers are establishing response protocols and improvement strategies, rapidly developing VV tumor oncolytic immunotherapy. This article focuses on oncolytic vaccinia development and outlook in gastrointestinal cancer therapy, advantages when combined with other drugs to improve clinical survival, safety, and risk reduction for patients.
Collapse
Affiliation(s)
- Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Ya-Ru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Zhang Hong
- Department of Respiratory and Critical Care Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Xiao-Yuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan Hospital, 311201, Hangzhou, China.
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China.
| |
Collapse
|
17
|
Mimori K, Fujii T, Sho M, Endo I, Shirabe K, Kitagawa Y. Interview with Prof. Dr. Jeffrey Drebin, President of the 2024 President Elect of the American Surgical Association. Ann Gastroenterol Surg 2025; 9:24-31. [PMID: 39759979 PMCID: PMC11693547 DOI: 10.1002/ags3.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025] Open
Affiliation(s)
- Koshi Mimori
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic AssemblyUniversity of ToyamaToyamaJapan
| | - Masayuki Sho
- Department of SurgeryNara Medical UniversityKashiharaJapan
| | - Itaru Endo
- Department of Gastroenterological SurgeryGraduate School of Medicine, Yokohama City UniversityYokohamaJapan
| | - Ken Shirabe
- Department of General Surgical ScienceGraduate School of Medicine, Gunma UniversityMaebashiJapan
| | - Yuko Kitagawa
- Department of SurgeryKeio University School of MedicineShinjukuJapan
| |
Collapse
|
18
|
Zeng H, Wu Y, Long X. Harnessing dendritic cells for pancreatic cancer immunotherapy: a novel promising approach. MedComm (Beijing) 2025; 6:e70066. [PMID: 39811800 PMCID: PMC11731091 DOI: 10.1002/mco2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Hui Zeng
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Center of Clinical LaboratoryHangzhou Ninth People's HospitalHangzhouChina
| | - Yidong Wu
- Center of Clinical LaboratoryHangzhou Ninth People's HospitalHangzhouChina
| | - Xinghua Long
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
19
|
Shahzadi M, Rafique H, Waheed A, Naz H, Waheed A, Zokirova FR, Khan H. Artificial intelligence for chimeric antigen receptor-based therapies: a comprehensive review of current applications and future perspectives. Ther Adv Vaccines Immunother 2024; 12:25151355241305856. [PMID: 39691280 PMCID: PMC11650588 DOI: 10.1177/25151355241305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Using artificial intelligence (AI) to enhance chimeric antigen receptor (CAR)-based therapies' design, production, and delivery is a novel and promising approach. This review provides an overview of the current applications and challenges of AI for CAR-based therapies and suggests some directions for future research and development. This paper examines some of the recent advances of AI for CAR-based therapies, for example, using deep learning (DL) to design CARs that target multiple antigens and avoid antigen escape; using natural language processing to extract relevant information from clinical reports and literature; using computer vision to analyze the morphology and phenotype of CAR cells; using reinforcement learning to optimize the dose and schedule of CAR infusion; and using AI to predict the efficacy and toxicity of CAR-based therapies. These applications demonstrate the potential of AI to improve the quality and efficiency of CAR-based therapies and to provide personalized and precise treatments for cancer patients. However, there are also some challenges and limitations of using AI for CAR-based therapies, for example, the lack of high-quality and standardized data; the need for validation and verification of AI models; the risk of bias and error in AI outputs; the ethical, legal, and social issues of using AI for health care; and the possible impact of AI on the human role and responsibility in cancer immunotherapy. It is important to establish a multidisciplinary collaboration among researchers, clinicians, regulators, and patients to address these challenges and to ensure the safe and responsible use of AI for CAR-based therapies.
Collapse
Affiliation(s)
- Muqadas Shahzadi
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Ahmad Waheed
- Department of Zoology, Faculty of Life Sciences, University of Okara, 2 KM Lahore Road, Renala Khurd, Okara 56130, Punjab, Pakistan
| | - Hina Naz
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Atifa Waheed
- Department of Biology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | | | - Humera Khan
- Department of Biochemistry, Sahiwal Medical College, Sahiwal, Pakistan
| |
Collapse
|
20
|
Li KY, Lowy AM, Fanta P. Quantification of PD-L1 expression and tumor mutational burden in biologically distinct advanced pancreatic cancers responding to pembrolizumab: case reports. Front Immunol 2024; 15:1452543. [PMID: 39687619 PMCID: PMC11646977 DOI: 10.3389/fimmu.2024.1452543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Background The advent of checkpoint therapy is one of the most important recent advancements in cancer therapy. Though checkpoint therapy is a mainstay in some cancers, it has been largely ineffective in treating cancers of the pancreas. Pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors are seldom responsive to checkpoint inhibition. Case presentations Here we present two cases of advanced pancreatic cancers that either failed to respond or recurred following conventional treatments. Tissue from each tumor was sequenced and analyzed for PD-L1 expression. Each patient was started on checkpoint blockade after assessing for a predictive biomarker, either the combined positive score or the tumor mutational burden. In each case, checkpoint blockade led to durable radiographic responses. Conclusions We therefore propose that it is reasonable to assess combined positive score and tumor mutational burden in refractory or recurrent pancreatic cancers when initiation of ICB is being considered.
Collapse
Affiliation(s)
- Kevin Y. Li
- Department of Surgery, Division of Surgical Oncology, University of California, San
Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, University of California, San
Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Paul Fanta
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
21
|
Khalid A, Faiz Z, Shah M, Newman E, King DA, DePeralta D, Gholami S, Weiss MJ, Melis M. Factors Influencing Immunotherapy Utilization in Stage IV Pancreatic Cancer: Impact of Race and Socioeconomics in the U.S. J Gastrointest Cancer 2024; 56:25. [PMID: 39592489 DOI: 10.1007/s12029-024-01119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a highly lethal cancer with a poor prognosis, is expected to become the second deadliest cancer in the United States by 2030. Despite advancements in treatment modalities, the survival rates of patients with PDAC have remained low. Immunotherapy has emerged as a promising treatment for various cancers; however, its utilization in PDAC has been limited due to various challenges, including resistance mechanisms and the advanced stage at which most patients are diagnosed. METHODS We analyzed data from the National Cancer Database (NCDB) from 2010 to 2017, focusing on the impact of race, insurance status, and socioeconomic factors among patients with stage IV PDAC using logistic regression analyses. RESULTS Among 109,663 patients with stage IV PDAC, 421 (0.38%) received immunotherapy. The recipients were younger (median age 63 vs. 68 years, p < 0.001) and more likely to be white (87.4% vs. 82.1%). Patients with private insurance or Medicare (p < 0.001), and those earning more than $60 k annually (51.0% vs. 36.4%, p < 0.001) were more likely to receive immunotherapy. Treatment was more likely in academic/research programs than in community cancer programs (53.0% vs. 33.4%, p < 0.001). On multivariate analysis, Black patients had lower odds of receiving immunotherapy than Caucasian patients (OR: 0.74 [95% CI: 0.601-0.882], p = 0.019). Higher income was also a significant predictor of immunotherapy utilization (highest vs. lowest income quartile: OR, 2.228 [95% CI: 1.422-3.491], p < 0.001). CONCLUSIONS This study revealed significant disparities in immunotherapy access for stage IV PDAC based on race, socioeconomic status, and geographic location in the United States, highlighting the need for intervention to promote equitable access to this promising treatment modality.
Collapse
Affiliation(s)
- Abdullah Khalid
- Northwell Health, North Shore/Long Island Jewish General Surgery, 300 Community Dr., Manhasset, NY, USA.
| | - Zohaa Faiz
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Manav Shah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Elliot Newman
- Northwell Health Lenox Hill Hospital, 100 E 77Th St, New York, NY, USA
| | - Daniel A King
- Northwell Health Cancer Institute, 1111 Marcus Ave, New Hyde Park, NY, USA
| | - Danielle DePeralta
- Northwell Health Cancer Institute, 1111 Marcus Ave, New Hyde Park, NY, USA
| | - Sepideh Gholami
- Northwell Health Cancer Institute, 1111 Marcus Ave, New Hyde Park, NY, USA
| | - Matthew J Weiss
- Northwell Health Cancer Institute, 1111 Marcus Ave, New Hyde Park, NY, USA
| | | |
Collapse
|
22
|
Beatty GL, Jaffee EM. Exogenous or in situ vaccination to trigger clinical responses in pancreatic cancer. Carcinogenesis 2024; 45:826-835. [PMID: 39514560 PMCID: PMC11584293 DOI: 10.1093/carcin/bgae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease for which remarkable therapeutic resistance is the norm. Conventional immunotherapies, like immune checkpoint inhibitors, show limited efficacy in PDA due to a remarkably immunosuppressive tumor microenvironment (TME) and systemic inflammation. This review discusses the potential of both exogenous and in situ vaccination strategies to overcome these barriers and enhance anti-tumor immunity in PDA. Exogenous vaccines, including whole-cell, dendritic cell, peptide, and nucleic acid-based vaccines, have shown varying degrees of promise but face challenges related to antigen selection, production complexities, and patient-specific factors. In contrast, in situ vaccination strategies leverage conventional cytotoxic therapies, such as chemotherapy and radiation therapy, to induce immunogenic cell death and modulate the TME with the aim to stimulate anti-tumor immunity. While preclinical studies support the use of in situ vaccination, balancing the stimulatory and inhibitory effects is likely fundamental to eliciting productive anti-tumor responses in patients. Ongoing research seeks to identify new innovative strategies that can harness the endogenous immune response and trigger in situ vaccination. Overall, while both vaccination approaches offer significant potential, further research and clinical trials will be needed to optimize these strategies for improving patient outcomes in PDA.
Collapse
Affiliation(s)
- Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, South Pavilion, Rm 8-107, Philadelphia, PA 19104, United States
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, The Bloomberg Kimmel Institute for Immunotherapy, The Cancer Convergence Institute, Johns Hopkins University School of Medicine, 4M07 Bunting Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD 21287, United States
| |
Collapse
|
23
|
Wang T, Ye L, Zhou Y, Zhang X, Li R, Zhou Y, Weng J, Mo Q, Yu Y. Pancreatic cancer-derived exosomal miR-510 promotes macrophage M2 polarization and facilitates cancer cell aggressive phenotypes. Hum Cell 2024; 38:17. [PMID: 39528705 DOI: 10.1007/s13577-024-01144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Extensive tumor microenvironment (TME) and tumor-associated macrophages (TAMs) contribute to the initiation and progression of pancreatic cancer (PC). Cancer cell-derived exosomal miRNAs that stimulate macrophage M2 polarization might play an important role in the process. In the current study, we observed significant upregulation of miR-510 in PC cell lines in comparison to normal HPDE cell line, with PANC-1 exhibiting the highest and MIA PaCa-2 the lowest miR-510 levels. Functional assays demonstrated that miR-510 overexpression enhanced, while its inhibition reduced, PC cell viability, migration, invasion, and EMT. In vivo, miR-510 mimics promoted tumor growth and macrophage M2 polarization, whereas miR-510 inhibition had the opposite effect. Exosomes from PANC-1 and MIA PaCa-2 cells, characterized by nanoparticle tracking analysis and TEM, contained significantly higher miR-510 levels than those from HPDE cells. Macrophages incubated with conditioned media from these PC cells showed increased M2 polarization markers, a process inhibited by the exosome inhibitor GW4869. The delivery of miR-510 via PC cell-derived exosomes facilitated macrophage M2 polarization and regulated the STAT signaling pathway, suggesting that exosomal miR-510 plays a crucial role in the tumor microenvironment of PC by modulating macrophage M2 polarization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Lin Ye
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yingjie Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Xionghan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Renjian Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yi Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Jun Weng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Qingrong Mo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China.
| |
Collapse
|
24
|
Zhang H, Liu A, Bo W, Zhang M, Wang H, Feng X, Wu Y. Upregulation of HSD11B1 promotes cortisol production and inhibits NK cell activation in pancreatic adenocarcinoma. Mol Immunol 2024; 175:10-19. [PMID: 39276709 DOI: 10.1016/j.molimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyi Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Medical Oncology, Daytime Medical Treatment Area, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
25
|
Lencioni G, Gregori A, Toledo B, Rebelo R, Immordino B, Amrutkar M, Xavier CPR, Kocijančič A, Pandey DP, Perán M, Castaño JP, Walsh N, Giovannetti E. Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems. Semin Cancer Biol 2024; 106-107:217-233. [PMID: 39299411 DOI: 10.1016/j.semcancer.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis and rising global deaths. Late diagnosis, due to absent early symptoms and biomarkers, limits treatment mainly to chemotherapy, which soon encounters resistance. PDAC treatment innovation is hampered by its complex and heterogeneous resistant nature, including mutations in key genes and a stromal-rich, immunosuppressive tumour microenvironment. Recent studies on PDAC resistance stress the need for suitable in vitro and ex vivo models to replicate its complex molecular and microenvironmental landscape. This review summarises advances in these models, which can aid in combating chemoresistance and serve as platforms for discovering new therapeutics. Immortalised cell lines offer homogeneity, unlimited proliferation, and reproducibility, but while many gemcitabine-resistant PDAC cell lines exist, fewer models are available for resistance to other drugs. Organoids from PDAC patients show promise in mimicking tumour heterogeneity and chemosensitivity. Bioreactors, co-culture systems and organotypic slices, incorporating stromal and immune cells, are being developed to understand tumour-stroma interactions and the tumour microenvironment's role in drug resistance. Lastly, another innovative approach is three-dimensional bioprinting, which creates tissue-like structures resembling PDAC architecture, allowing for drug screening. These advanced models can guide researchers in selecting optimal in vitro tests, potentially improving therapeutic strategies and patient outcomes.
Collapse
Affiliation(s)
- Giulia Lencioni
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Belén Toledo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain
| | - Rita Rebelo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Benoît Immordino
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
| | - Anja Kocijančič
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Naomi Walsh
- Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Elisa Giovannetti
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Gupta A, De Jesus-Acosta A, Le D, Pishvaian M, Zaidi N, Zheng L, Laheru D. Clinical outcomes of liposomal irinotecan in patients with advanced pancreatic cancer previously treated with conventional irinotecan: A meta-analysis of real-world evidence. Cancer 2024; 130:3734-3744. [PMID: 38985839 DOI: 10.1002/cncr.35479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Pivotal clinical trials supported survival benefits of liposomal irinotecan (nal-IRI) plus fluorouracil/leucovorin in patients with pancreatic ductal adenocarcinoma (PDAC) who previously received gemcitabine-based therapy. There are concerns about the benefits of nal-IRI in patients who received FOLFIRINOX (combined fluorouracil, leucovorin, IRI, and oxaliplatin) because of potential cross-resistance to IRI. The objective of this meta-analysis was to characterize the impact of the previous receipt of IRI on the outcomes of nal-IRI regimens in patients with advanced PDAC. METHODS Real-world studies evaluating the outcomes of nal-IRI in patients who had prior IRI exposure published up to April 2023 were searched using electronic databases. The meta-analysis was conducted using a random effects model to estimate pooled hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS Eight studies (n = 1368 patients) were included. The pooled median progression-free survival (PFS) was 2.02 months (95% CI, 1.43-2.57 months), and the median overall survival (OS) was 4.26 months (95% CI, 3.03-5.39 months). Patients with prior IRI exposure had PFS (HR, 1.17; 95% CI, 0.94-1.47; p = .17) and OS (HR, 1.16; 95% CI, 0.95-1.42; p = .16) comparable to patients without prior IRI exposure. Likewise, patients who had progressive disease on conventional IRI had PFS (HR, 1.50; 95% CI, 0.73-3.08; p = .24) and OS (HR, 1.70; 95% CI, 0.68-4.27; p = .26) with nal-IRI comparable to patients who had no progressive disease. CONCLUSIONS Prior IRI exposure does not affect the survival outcomes of nal-IRI regimens in patients who have advanced PDAC. The selection of later lines of chemotherapy regimens should be based on the differential safety profile, patient status, the cost of treatment, and health-related quality of life.
Collapse
Affiliation(s)
- Amol Gupta
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ana De Jesus-Acosta
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Dung Le
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Michael Pishvaian
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Neeha Zaidi
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Daniel Laheru
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
28
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
29
|
Tapescu I, Madsen PJ, Lowenstein PR, Castro MG, Bagley SJ, Fan Y, Brem S. The transformative potential of mRNA vaccines for glioblastoma and human cancer: technological advances and translation to clinical trials. Front Oncol 2024; 14:1454370. [PMID: 39399167 PMCID: PMC11466887 DOI: 10.3389/fonc.2024.1454370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Originally devised for cancer control, mRNA vaccines have risen to the forefront of medicine as effective instruments for control of infectious disease, notably their pivotal role in combating the COVID-19 pandemic. This review focuses on fundamental aspects of the development of mRNA vaccines, e.g., tumor antigens, vector design, and precise delivery methodologies, - highlighting key technological advances. The recent, promising success of personalized mRNA vaccines against pancreatic cancer and melanoma illustrates the potential value for other intractable, immunologically resistant, solid tumors, such as glioblastoma, as well as the potential for synergies with a combinatorial, immunotherapeutic approach. The impact and progress in human cancer, including pancreatic cancer, head and neck cancer, bladder cancer are reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is provided for the transformative potential of mRNA vaccines to advance cancer immunotherapy, with a particular focus on the opportunities and challenges of glioblastoma. The current landscape of glioblastoma immunotherapy and gene therapy is reviewed with an eye to combinatorial approaches harnessing RNA science. Preliminary preclinical and clinical data supports the concept that mRNA vaccines could be a viable, novel approach to prolong survival in patients with glioblastoma.
Collapse
Affiliation(s)
- Iulia Tapescu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter J. Madsen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Stephen J. Bagley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Fan
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Karamitopoulou E, Wenning AS, Acharjee A, Aeschbacher P, Marinoni I, Zlobec I, Gloor B, Perren A. Spatial Heterogeneity of Immune Regulators Drives Dynamic Changes in Local Immune Responses, Affecting Disease Outcomes in Pancreatic Cancer. Clin Cancer Res 2024; 30:4215-4226. [PMID: 39007872 DOI: 10.1158/1078-0432.ccr-24-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is considered a low-immunogenic (LI) tumor with a "cold" tumor microenvironment and is mostly unresponsive to immune checkpoint blockade therapies. In this study, we decipher the impact of intratumoral heterogeneity of immune determinants on antitumor responses. EXPERIMENTAL DESIGN We performed spatial proteomic and transcriptomic analyses and multiplex immunofluorescence on multiple tumor regions, including tumor center (TC) and invasive front (IF), from 220 patients with PDAC, classified according to their transcriptomic immune signaling into high-immunogenic PDAC (HI-PDAC, n = 54) and LI PDAC (LI-PDAC, n = 166). Spatial compartments (tumor: pancytokeratin+/CD45- and leukocytes: pancytokeratin-/CD45+) were defined by fluorescence imaging. RESULTS HI-PDAC exhibited higher densities of cytotoxic T lymphocytes with upregulation of T-cell priming-associated immune determinants, including CD40, ITGAM, glucocorticoid-induced TNF-related receptor, CXCL10, granzyme B, IFNG, and HLA-DR, which were significantly more prominent at the IF than at the TC. In contrast, LI-PDAC exhibited immune-evasive tumor microenvironments with downregulation of immune determinants and a negative gradient from TC to IF. Patients with HI-PDAC had significantly better outcomes but showed more frequently exhausted immune phenotypes. CONCLUSIONS Our results indicate strategic differences in the regulation of immune determinants, leading to different levels of effectiveness of antitumor responses between HI and LI tumors and dynamic spatial changes, which affect the evolution of immune evasion and patient outcomes. This finding supports the coevolution of tumor and immune cells and may help define therapeutic vulnerabilities to improve antitumor immunity and harness the responsiveness to immune checkpoint inhibitors in patients with PDAC.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Anna S Wenning
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Animesh Acharjee
- University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Pauline Aeschbacher
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Han ZY, Fu ZJ, Wang YZ, Zhang C, Chen QW, An JX, Zhang XZ. Probiotics functionalized with a gallium-polyphenol network modulate the intratumor microbiota and promote anti-tumor immune responses in pancreatic cancer. Nat Commun 2024; 15:7096. [PMID: 39154092 PMCID: PMC11330462 DOI: 10.1038/s41467-024-51534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
The intratumor microbiome imbalance in pancreatic cancer promotes a tolerogenic immune response and triggers immunotherapy resistance. Here we show that Lactobacillus rhamnosus GG probiotics, outfitted with a gallium-polyphenol network (LGG@Ga-poly), bolster immunotherapy in pancreatic cancer by modulating microbiota-immune interactions. Upon oral administration, LGG@Ga-poly targets pancreatic tumors specifically, and selectively eradicates tumor-promoting Proteobacteria and microbiota-derived lipopolysaccharides through a gallium-facilitated disruption of bacterial iron respiration. This elimination of intratumor microbiota impedes the activation of tumoral Toll-like receptors, thus reducing immunosuppressive PD-L1 and interleukin-1β expression by tumor cells, diminishing immunotolerant myeloid populations, and improving the infiltration of cytotoxic T lymphocytes in tumors. Moreover, LGG@Ga-poly hampers pancreatic tumor growth in both preventive and therapeutic contexts, and amplifies the antitumor efficacy of immune checkpoint blockade in preclinical cancer models in female mice. Overall, we offer evidence that thoughtfully designed biomaterials targeting intratumor microbiota can efficaciously augment immunotherapy for the challenging pancreatic cancer.
Collapse
Affiliation(s)
- Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhuang-Jiong Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jia-Xin An
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
34
|
Freeman P, Bellomo G, Ireland L, Abudula M, Luckett T, Oberst M, Stafferton R, Ghaneh P, Halloran C, Schmid MC, Mielgo A. Inhibition of insulin-like growth factors increases production of CXCL9/10 by macrophages and fibroblasts and facilitates CD8 + cytotoxic T cell recruitment to pancreatic tumours. Front Immunol 2024; 15:1382538. [PMID: 39165364 PMCID: PMC11334161 DOI: 10.3389/fimmu.2024.1382538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an urgent unmet clinical need for new therapies. Using a combination of in vitro assays and in vivo preclinical models we demonstrate that therapeutic inhibition of the IGF signalling axis promotes the accumulation of CD8+ cytotoxic T cells within the tumour microenvironment of PDAC tumours. Mechanistically, we show that IGF blockade promotes macrophage and fibroblast production of the chemokines CXCL9 and CXCL10 to facilitate CD8+ T cell recruitment and trafficking towards the PDAC tumour. Exploring this pathway further, we show that IGF inhibition leads to increased STAT1 transcriptional activity, correlating with a downregulation of the AKT/STAT3 signalling axis, in turn promoting Cxcl9 and Cxcl10 gene transcription. Using patient derived tumour explants, we also demonstrate that our findings translate into the human setting. PDAC tumours are frequently described as "immunologically cold", therefore bolstering CD8+ T cell recruitment to PDAC tumours through IGF inhibition may serve to improve the efficacy of immune checkpoint inhibitors which rely on the presence of CD8+ T cells in tumours.
Collapse
Affiliation(s)
- Patrick Freeman
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael Oberst
- Department of Oncology Research, AstraZeneca, One Medimmune Way, Gaithersburg, MD, United States
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael C. Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
35
|
Zhou P, Ding X, Du X, Wang L, Zhang Y. Targeting Reprogrammed Cancer-Associated Fibroblasts with Engineered Mesenchymal Stem Cell Extracellular Vesicles for Pancreatic Cancer Treatment. Biomater Res 2024; 28:0050. [PMID: 39099892 PMCID: PMC11293949 DOI: 10.34133/bmr.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 08/06/2024] Open
Abstract
Background: As one of the most aggressive and lethal cancers, pancreatic cancer is highly associated with cancer-associated fibroblasts (CAFs) that influence the development and progression of cancer. Targeted reprogramming of CAFs may be a promising strategy for pancreatic cancer. This study aims to construct engineered extracellular vesicles (EVs) with surface modification of integrin α5 (ITGA5)-targeting peptide and high internal expression of miR-148a-3p by endogenous modification for targeted reprogramming of pancreatic CAFs. Methods: Bone marrow mesenchymal stem cells (BMSCs) and pancreatic CAFs were cocultured to examine the effect of BMSC-derived EVs on the expression levels of CAF markers. miR-148a-3p was identified as a functional molecule. The mechanism of miR-148a-3p was elucidated using the dual-luciferase reporter assay. BMSCs were infected with TERT-encoding and miR-148a-3p-encoding lentiviruses. Subsequently, BMSCs were modified with ITGA5-specific targeting peptide. The supernatant was ultracentrifuged to obtain the engineered EVs (ITGA5-EVs-148a), which were used to reprogram CAFs. Results: BMSCs modulated CAF marker expressions through EVs. miR-148a-3p was up-regulated in BMSCs. The expression of miR-148a-3p in pancreatic CAFs was down-regulated when compared with that in normal fibroblasts (NFs). Mechanistically, ITGA5-EVs-148a effectively suppressed the proliferation and migration of pancreatic CAFs by targeting ITGA5 through the TGF-β/SMAD pathway. ITGA5-EVs-148a was associated with enhanced cellular uptake and exhibited enhanced in vitro and in vivo targeting ability. Moreover, ITGA5-EVs-148a exerted strong reconfiguration effects in inactivating CAFs and reversing tumor-promoting effects in 3D heterospheroid and xenograft pancreatic cancer models. Conclusions: This targeted CAF reprogramming strategy with genetically engineered ITGA5-EVs-148a holds great promise as a precision therapeutics in clinical settings.
Collapse
Affiliation(s)
- Pengcheng Zhou
- School of Medicine,
Southeast University, Nanjing 210000, China
- Department of General Surgery,
Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xian’guang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xuanlong Du
- School of Medicine,
Southeast University, Nanjing 210000, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yewei Zhang
- Hepatobiliary and Pancreatic Center,
The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
36
|
Owaki T, Iida T, Miyai Y, Kato K, Hase T, Ishii M, Ando R, Hinohara K, Akashi T, Mizutani Y, Ishikawa T, Mii S, Shiraki Y, Esaki N, Yamamoto M, Tsukamoto T, Nomura S, Murakami T, Takahashi M, Yuguchi Y, Maeda M, Sano T, Sassa N, Matsukawa Y, Kawashima H, Akamatsu S, Enomoto A. Synthetic retinoid-mediated preconditioning of cancer-associated fibroblasts and macrophages improves cancer response to immune checkpoint blockade. Br J Cancer 2024; 131:372-386. [PMID: 38849479 PMCID: PMC11263587 DOI: 10.1038/s41416-024-02734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The proliferation of cancer-associated fibroblasts (CAFs) hampers drug delivery and anti-tumor immunity, inducing tumor resistance to immune checkpoint blockade (ICB) therapy. However, it has remained a challenge to develop therapeutics that specifically target or modulate CAFs. METHODS We investigated the involvement of Meflin+ cancer-restraining CAFs (rCAFs) in ICB efficacy in patients with clear cell renal cell carcinoma (ccRCC) and urothelial carcinoma (UC). We examined the effects of Am80 (a synthetic retinoid) administration on CAF phenotype, the tumor immune microenvironment, and ICB efficacy in cancer mouse models. RESULTS High infiltration of Meflin+ CAFs correlated with ICB efficacy in patients with ccRCC and UC. Meflin+ CAF induction by Am80 administration improved ICB efficacy in the mouse models of cancer. Am80 exerted this effect when administered prior to, but not concomitant with, ICB therapy in wild-type but not Meflin-deficient mice. Am80-mediated induction of Meflin+ CAFs was associated with increases in antibody delivery and M1-like tumor-associated macrophage (TAM) infiltration. Finally, we showed the role of Chemerin produced from CAFs after Am80 administration in the induction of M1-like TAMs. CONCLUSION Our data suggested that Am80 administration prior to ICB therapy increases the number of Meflin+ rCAFs and ICB efficacy by inducing changes in TAM phenotype.
Collapse
Affiliation(s)
- Takayuki Owaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Tomohiro Akashi
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Division of Analytical Pathology, Oncology Innovation Center, Fujita Health University, Toyoake, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Masahide Takahashi
- Department of Pathology, Fujita Health University, Toyoake, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Yuri Yuguchi
- Department of Urology, Chukyo Hospital, Nagoya, Japan
| | | | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoto Sassa
- Department of Urology, Aichi Medical University, Nagakute, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| |
Collapse
|
37
|
De Sanctis F, Dusi S, Caligola S, Anselmi C, Petrova V, Rossi B, Angelini G, Erdeljan M, Wöll S, Schlitter AM, Metzler T, Steiger K, Borok Z, Bailey P, Bauer A, Halin C, Boschi F, Giugno R, Canè S, Lawlor R, Corbo V, Scarpa A, Constantin G, Ugel S, Vascotto F, Sahin U, Türeci Ö, Bronte V. Expression of the membrane tetraspanin claudin 18 on cancer cells promotes T lymphocyte infiltration and antitumor immunity in pancreatic cancer. Immunity 2024; 57:1378-1393.e14. [PMID: 38749447 DOI: 10.1016/j.immuni.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Cell Line, Tumor
- Claudins/metabolism
- Claudins/genetics
- Gene Expression Regulation, Neoplastic/immunology
- Immunological Synapses/metabolism
- Immunological Synapses/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Membrane Microdomains/metabolism
- Membrane Microdomains/immunology
- Mice, Inbred C57BL
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy.
| | - Silvia Dusi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Cristina Anselmi
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Varvara Petrova
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriele Angelini
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Michael Erdeljan
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Stefan Wöll
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Anna Melissa Schlitter
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; Institute of Pathology, School of Medicine, TUM, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Zea Borok
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland
| | - Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Stefania Canè
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rita Lawlor
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy; ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy; ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | |
Collapse
|
38
|
Fang T, Chen G. Non-viral vector-based genome editing for cancer immunotherapy. Biomater Sci 2024; 12:3068-3085. [PMID: 38716572 DOI: 10.1039/d4bm00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Despite the exciting promise of cancer immunotherapy in the clinic, immune checkpoint blockade therapy and T cell-based therapies are often associated with low response rates, intrinsic and adaptive immune resistance, and systemic side effects. CRISPR-Cas-based genome editing appears to be an effective strategy to overcome these unmet clinical needs. As a safer delivery platform for the CRISPR-Cas system, non-viral nanoformulations have been recently explored to target tumor cells and immune cells, aiming to improve cancer immunotherapy on a gene level. In this review, we summarized the efforts of non-viral vector-based CRISPR-Cas-mediated genome editing in tumor cells and immune cells for cancer immunotherapy. Their design rationale and specific applications were highlighted.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
39
|
Cai H, Zhao J, Zhang Q, Wu H, Sun Y, Guo F, Zhou Y, Qin G, Xia W, Zhao Y, Liang X, Yin S, Qin Y, Li D, Wu H, Ren D. Ubiquitin ligase TRIM15 promotes the progression of pancreatic cancer via the upregulation of the IGF2BP2-TLR4 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167183. [PMID: 38657551 DOI: 10.1016/j.bbadis.2024.167183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The tripartite motif family, predominantly characterized by its E3 ubiquitin ligase activities, is involved in various cellular processes including signal transduction, apoptosis and autophagy, protein quality control, immune regulation, and carcinogenesis. Tripartite Motif Containing 15 (TRIM15) plays an important role in melanoma progression through extracellular signal-regulated kinase activation; however, data on its role in pancreatic tumors remain lacking. We previously demonstrated that TRIM15 targeted lipid synthesis and metabolism in pancreatic cancer; however, other specific regulatory mechanisms remain elusive. METHODS We used transcriptomics and proteomics, conducted a series of phenotypic experiments, and used a mouse orthotopic transplantation model to study the specific mechanism of TRIM15 in pancreatic cancer in vitro and in vivo. RESULTS TRIM15 overexpression promoted the progression of pancreatic cancer by upregulating the toll-like receptor 4. The TRIM15 binding protein, IGF2BP2, could combine with TLR4 to inhibit its mRNA degradation. Furthermore, the ubiquitin level of IGF2BP2 was positively correlated with TRIM15. CONCLUSIONS TRIM15 could ubiquitinate IGF2BP2 to enhance the function of phase separation and the maintenance of mRNA stability of TLR4. TRIM15 is a potential therapeutic target against pancreatic cancer.
Collapse
Affiliation(s)
- Hongkun Cai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heyu Wu
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gengdu Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
40
|
Wang Z, Wu D, Zhang Y, Chen W, Yang Y, Yang Y, Zu G, An Y, Yu X, Qin Y, Xu X, Chen X. PITX2 functions as a transcription factor for GPX4 and protects pancreatic cancer cells from ferroptosis. Exp Cell Res 2024; 439:114074. [PMID: 38710403 DOI: 10.1016/j.yexcr.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ferroptosis inhibits tumor progression in pancreatic cancer cells, while PITX2 is known to function as a pro-oncogenic factor in various tumor types, protecting them from ferroptosis and thereby promoting tumor progression. In this study, we sought to investigate the regulatory role of PITX2 in tumor cell ferroptosis within the context of pancreatic cancer. We conducted PITX2 knockdown experiments using lentiviral infection in two pancreatic cancer cell lines, namely PANC-1 and BxPC-3. We assessed protein expression through immunoblotting and mRNA expression through RT-PCR. To confirm PITX2 as a transcription factor for GPX4, we employed Chromatin Immunoprecipitation (ChIP) and Dual-luciferase assays. Furthermore, we used flow cytometry to measure reactive oxygen species (ROS), lipid peroxidation, and apoptosis and employed confocal microscopy to assess mitochondrial membrane potential. Additionally, electron microscopy was used to observe mitochondrial structural changes and evaluate PITX2's regulation of ferroptosis in pancreatic cancer cells. Our findings demonstrated that PITX2, functioning as a transcription factor for GPX4, promoted GPX4 expression, thereby exerting an inhibitory effect on ferroptosis in pancreatic cancer cells and consequently promoting tumor progression. Moreover, PITX2 enhanced the invasive and migratory capabilities of pancreatic cancer cells by activating the WNT signaling pathway. Knockdown of PITX2 increased ferroptosis and inhibited the proliferation of PANC-1 and BxPC-3 cells. Notably, the inhibitory effect on ferroptosis resulting from PITX2 overexpression in these cells could be countered using RSL3, an inhibitor of GPX4. Overall, our study established PITX2 as a transcriptional regulator of GPX4 that could promote tumor progression in pancreatic cancer by reducing ferroptosis. These findings suggest that PITX2 may serve as a potential therapeutic target for combating ferroptosis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhiliang Wang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Di Wu
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yue Zhang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weibo Chen
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yang Yang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yue Yang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Guangchen Zu
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yong An
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
41
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
42
|
Curcio C, Mucciolo G, Roux C, Brugiapaglia S, Scagliotti A, Guadagnin G, Conti L, Longo D, Grosso D, Papotti MG, Hirsch E, Cappello P, Varner JA, Novelli F. PI3Kγ inhibition combined with DNA vaccination unleashes a B-cell-dependent antitumor immunity that hampers pancreatic cancer. J Exp Clin Cancer Res 2024; 43:157. [PMID: 38824552 PMCID: PMC11143614 DOI: 10.1186/s13046-024-03080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Gianluca Mucciolo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Cecilia Roux
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Giorgia Guadagnin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Dario Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Demis Grosso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Mauro Giulio Papotti
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Judith A Varner
- Moores Cancer Center, Department of Pathology, University of California, San Diego, CA, USA
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy.
- Molecular Biotechnology Center, University of Torino, Turin, Italy.
| |
Collapse
|
43
|
Fu Y, Tao J, Gu Y, Liu Y, Qiu J, Su D, Wang R, Luo W, Liu T, Zhang F, Zhang T, Zhao Y. Multiomics integration reveals NETosis heterogeneity and TLR2 as a prognostic biomarker in pancreatic cancer. NPJ Precis Oncol 2024; 8:109. [PMID: 38769374 PMCID: PMC11106236 DOI: 10.1038/s41698-024-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant neoplasm characterized by a poor prognosis and limited therapeutic strategy. The PDAC tumor microenvironment presents a complex heterogeneity, where neutrophils emerge as the predominant constituents of the innate immune cell population. Leveraging the power of single-cell RNA-seq, spatial RNA-seq, and multi-omics approaches, we included both published datasets and our in-house patient cohorts, elucidating the inherent heterogeneity in the formation of neutrophil extracellular traps (NETs) and revealed the correlation between NETs and immune suppression. Meanwhile, we constructed a multi-omics prognostic model that suggested the patients exhibiting downregulated expression of NETs may have an unfavorable outcome. We also confirmed TLR2 as a potent prognosis factor and patients with low TLR2 expression had more effective T cells and an overall survival extension for 6 months. Targeting TLR2 might be a promising strategy to reverse immunosuppression and control tumor progression for an improved prognosis.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4 + 4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yani Gu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feifan Zhang
- Department of Computer Science, University College London, London, UK
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
44
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
45
|
Sun X, Song H, Sun X, Liao C, Wang G, Xu Y, Li L, Han Y, Xu C, Wang W, Cai S, Liang H, Yu H. A 15-Inflammation-Related Gene Signature Predicts the Prognosis of Patients With Pancreatic Ductal Adenocarcinoma. Cancer Invest 2024:1-17. [PMID: 38616304 DOI: 10.1080/07357907.2024.2340577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Chronic inflammation promotes the development of pancreatic ductal adenocarcinoma (PDAC) and PDAC-related inflammatory tumor microenvironment facilitates tumor growth and metastasis. Thus, we aimed to study the association between inflammatory response and prognosis in patients with PDAC. We conducted the whole transcriptomic sequencing using tissue samples collected from patients diagnosed with PDAC (n = 106) recruited from Shandong Cancer Hospital. We first constructed a prognostic signature using 15 inflammation-related genes in The Cancer Genome Atlas (TCGA) cohort (n = 177) and further validated it in an independent International Cancer Genome Consortium (ICGC) cohort (n = 90) and our in-house cohort. PDAC patients with a higher risk score had poorer overall survival (OS) (P < 0.001; HR, 3.02; 95% CI, 1.94-4.70). The association between the prognostic signature and OS remained significant in the multivariable Cox regression adjusting for age, sex, alcohol exposure, diabetes, and stage (P < 0.001; HR, 2.91; 95% CI, 1.73-4.89). This gene signature also robustly predicted prognosis in the ICGC cohort (P = 0.01; HR, 1.94; 95% CI, 1.14-3.30) and our cohort (P < 0.001; HR, 2.40; 95% CI, 1.45-3.97). Immune subtype C3 (inflammatory) was enriched and CD8+ T cells were higher in patients with a lower risk score (P < 0.05). Furthermore, PDAC patients with higher risk scores were more sensitive to chemotherapy, immunotherapy, and PARP inhibitors (P < 0.05). In sum, we identified a novel gene signature that was associated with inflammatory response for risk stratification, prognosis prediction, and therapy guidance in PDAC patients. Future studies are warranted to validate the clinical utility of the signature.
Collapse
Affiliation(s)
| | - Hao Song
- The Third Affiliated Hospital of Naval Military Medical University, Shanghai, P. R. China
| | - Xiaoran Sun
- Burning Rock Biotech, Guangzhou, P. R. China
| | | | | | - Yu Xu
- Burning Rock Biotech, Guangzhou, P. R. China
| | - Leo Li
- Burning Rock Biotech, Guangzhou, P. R. China
| | - Yusheng Han
- Burning Rock Biotech, Guangzhou, P. R. China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Wenxian Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, P. R. China
| | - Hua Liang
- Qingdao Central Hospital, Qingdao, P. R. China
| | - Hao Yu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| |
Collapse
|
46
|
Yan Q, Liu J, Liu Y, Wen Z, Jin D, Wang F, Gao L. Tumor-associated macrophage-derived exosomal miR21-5p promotes tumor angiogenesis by regulating YAP1/HIF-1α axis in head and neck squamous cell carcinoma. Cell Mol Life Sci 2024; 81:179. [PMID: 38602536 PMCID: PMC11009780 DOI: 10.1007/s00018-024-05210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Extracellular vesicles (EVs) have recently received increasing attention as essential mediators of communication between tumor cells and their microenvironments. Tumor-associated macrophages (TAMs) play a proangiogenic role in various tumors, especially head and neck squamous cell carcinoma (HNSCC), and angiogenesis is closely related to tumor growth and metastasis. This research focused on exploring the mechanisms by which EVs derived from TAMs modulate tumor angiogenesis in HNSCC. Our results indicated that TAMs infiltration correlated positively with microvascular density in HNSCC. Then we collected and identified EVs from TAMs. In the microfluidic chip, TAMs derived EVs significantly enhanced the angiogenic potential of pHUVECs and successfully induced the formation of perfusable blood vessels. qPCR and immunofluorescence analyses revealed that EVs from TAMs transferred miR-21-5p to endothelial cells (ECs). And targeting miR-21-5p of TAMs could effectively inhibit TAM-EVs induced angiogenesis. Western blot and tube formation assays showed that miR-21-5p from TAM-EVs downregulated LATS1 and VHL levels but upregulated YAP1 and HIF-1α levels, and the inhibitors of YAP1 and HIF-1α could both reduce the miR-21-5p enhanced angiogenesis in HUVECs. The in vivo experiments further proved that miR-21-5p carried by TAM-EVs promoted the process of tumor angiogenesis via YAP1/HIF-1α axis in HNSCC. Conclusively, TAM-derived EVs transferred miR-21-5p to ECs to target the mRNA of LATS1 and VHL, which inhibited YAP1 phosphorylation and subsequently enhanced YAP1-mediated HIF-1α transcription and reduced VHL-mediated HIF-1α ubiquitination, contributing to angiogenesis in HNSCC. These findings present a novel regulatory mechanism of tumor angiogenesis, and miR-21-5p/YAP1/HIF-1α might be a potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Quan Yan
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Jing Liu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Yiding Liu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Dong Jin
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China.
- The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Lu Gao
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China.
- The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
47
|
Bhandari K, Ding WQ. Protein Arginine Methyltransferases in Pancreatic Ductal Adenocarcinoma: New Molecular Targets for Therapy. Int J Mol Sci 2024; 25:3958. [PMID: 38612768 PMCID: PMC11011826 DOI: 10.3390/ijms25073958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.
Collapse
Affiliation(s)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, BMSB401A, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA;
| |
Collapse
|
48
|
Hashimoto M, Kuroda S, Kanaya N, Kadowaki D, Yoshida Y, Sakamoto M, Hamada Y, Sugimoto R, Yagi C, Ohtani T, Kumon K, Kakiuchi Y, Yasui K, Kikuchi S, Yoshida R, Tazawa H, Kagawa S, Yagi T, Urata Y, Fujiwara T. Long-term activation of anti-tumor immunity in pancreatic cancer by a p53-expressing telomerase-specific oncolytic adenovirus. Br J Cancer 2024; 130:1187-1195. [PMID: 38316993 PMCID: PMC10991504 DOI: 10.1038/s41416-024-02583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Pancreatic cancer is an aggressive, immunologically "cold" tumor. Oncolytic virotherapy is a promising treatment to overcome this problem. We developed a telomerase-specific oncolytic adenovirus armed with p53 gene (OBP-702). METHODS We investigated the efficacy of OBP-702 for pancreatic cancer, focusing on its long-term effects via long-lived memory CD8 + T cells including tissue-resident memory T cells (TRMs) and effector memory T cells (TEMs) differentiated from effector memory precursor cells (TEMps). RESULTS First, in vitro, OBP-702 significantly induced adenosine triphosphate (ATP), which is important for memory T cell establishment. Next, in vivo, OBP-702 local treatment to murine pancreatic PAN02 tumors increased TEMps via ATP induction from tumors and IL-15Rα induction from macrophages, leading to TRM and TEM induction. Activation of these memory T cells by OBP-702 was also maintained in combination with gemcitabine+nab-paclitaxel (GN) in a PAN02 bilateral tumor model, and GN + OBP-702 showed significant anti-tumor effects and increased TRMs in OBP-702-uninjected tumors. Finally, in a neoadjuvant model, in which PAN02 cells were re-inoculated after resection of treated-PAN02 tumors, GN + OBP-702 provided long-term anti-tumor effects even after tumor resection. CONCLUSION OBP-702 can be a long-term immunostimulant with sustained anti-tumor effects on immunologically cold pancreatic cancer.
Collapse
Affiliation(s)
- Masashi Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan.
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Kadowaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaki Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Hamada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoma Sugimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Ohtani
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kento Kumon
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Clinical Cancer Center, Okayama University Hospital, Okayama, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
49
|
Chen HD, Ye Z, Hu HF, Fan GX, Hu YH, Li Z, Li BR, Ji SR, Zhou CJ, Xu XW, Yu XJ, Qin Y. SMAD4 endows TGF-β1-induced highly invasive tumor cells with ferroptosis vulnerability in pancreatic cancer. Acta Pharmacol Sin 2024; 45:844-856. [PMID: 38057506 PMCID: PMC10943101 DOI: 10.1038/s41401-023-01199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy prone to recurrence and metastasis. Studies show that tumor cells with increased invasive and metastatic potential are more likely to undergo ferroptosis. SMAD4 is a critical molecule in the transforming growth factor β (TGF-β) pathway, which affects the TGF-β-induced epithelial-mesenchymal transition (EMT) status. SMAD4 loss is observed in more than half of patients with PDAC. In this study, we investigated whether SMAD4-positive PDAC cells were prone to ferroptosis because of their high invasiveness. We showed that SMAD4 status almost determined the orientation of transforming growth factor β1 (TGF-β1)-induced EMT via the SMAD4-dependent canonical pathway in PDAC, which altered ferroptosis vulnerability. We identified glutathione peroxidase 4 (GPX4), which inhibited ferroptosis, as a SMAD4 down-regulated gene by RNA sequencing. We found that SMAD4 bound to the promoter of GPX4 and decreased GPX4 transcription in PDAC. Furthermore, TGF-β1-induced high invasiveness enhanced sensitivity of SMAD4-positive organoids and pancreas xenograft models to the ferroptosis inducer RAS-selective lethal 3 (RSL3). Moreover, SMAD4 enhanced the cytotoxic effect of gemcitabine combined with RSL3 in highly invasive PDAC cells. This study provides new ideas for the treatment of PDAC, especially SMAD4-positive PDAC.
Collapse
Affiliation(s)
- Hai-di Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hai-Feng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Gui-Xiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yu-Heng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo-Rui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shun-Rong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen-Jie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiao-Wu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
50
|
Fiuza-Luces C, Valenzuela PL, Gálvez BG, Ramírez M, López-Soto A, Simpson RJ, Lucia A. The effect of physical exercise on anticancer immunity. Nat Rev Immunol 2024; 24:282-293. [PMID: 37794239 DOI: 10.1038/s41577-023-00943-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, 'acute' exercise) and those of 'regular' exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Systems Biology Department, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Beatriz G Gálvez
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Heah, Madrid, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.
| | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA
- Department of Paediatrics, The University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
- Faculty of Sport Sciences, Universidad Europea, Madrid, Spain.
| |
Collapse
|