1
|
Pagel PS, Hang D, Freed JK, Crystal GJ. Advances in Cardiovascular Pharmacotherapy. I. Cardiac Myosin Inhibitors. J Cardiothorac Vasc Anesth 2025; 39:1287-1305. [PMID: 40000285 DOI: 10.1053/j.jvca.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy. The disease is characterized by asymmetric left ventricular (LV) remodeling with myocyte disarray and interstitial fibrosis, a hypercontractile state, dynamic subaortic obstruction of the LV outflow tract, impaired LV diastolic function, atrial and ventricular arrhythmias, and sudden cardiac death. HCM occurs as a result of pathological alterations in the cardiac myocyte's chemomechanical cycle, in which an enhanced rate of myosin-actin crossbridge formation and destabilization of the energy-conserving "super-relaxed off-actin state" of myosin play essential roles. For decades, management of HCM has been limited almost exclusively to medications (eg, beta-blockers, calcium channel blockers, disopyramide) and interventions (eg, septal reduction therapy, implanted cardioverter-defibrillator devices) that palliate symptoms, but do not address the disease's underlying causative mechanisms. A new class of cardiovascular medications, cardiac myosin inhibitors, has surged to the forefront of HCM treatment in recent years. These drugs, including mavacamten and aficamten, show great promise to profoundly affect the disease's clinical course. In this article, the authors review the molecular mechanisms of action of cardiac myosin inhibitors, discuss in detail the most recent data from mavacamten and aficamten clinical trials, describe future planned studies designed to address unanswered questions about their clinical utility in HCM phenotypes, and comment on their potential application to patients with other forms of heart failure with preserved ejection fraction. The possible anesthetic implications of mavacamten and aficamten are also discussed because it is highly likely that patients who are treated with these medications will begin to present for perioperative care with increasing regularity.
Collapse
Affiliation(s)
- Paul S Pagel
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI.
| | - Dustin Hang
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI
| | - Julie K Freed
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI
| | - George J Crystal
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
2
|
Bartels S, Lee R, Kwak J. To Be, or Not to Be: Is It Better to Be HFrEF or HFpEF or Somewhere In Between (HFmrEF)? J Cardiothorac Vasc Anesth 2025; 39:1095-1097. [PMID: 40000286 DOI: 10.1053/j.jvca.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Affiliation(s)
- Steven Bartels
- Department of Anesthesiology and Perioperative Medicine, Loyola University Medical Center, Maywood, IL
| | - Rebecca Lee
- Department of Anesthesiology and Perioperative Medicine, Loyola University Medical Center, Maywood, IL
| | - Jenny Kwak
- Department of Anesthesiology and Perioperative Medicine, Loyola University Medical Center, Maywood, IL.
| |
Collapse
|
3
|
Tempe DK. The Conundrum of Perioperative Management of Patients with Diastolic Dysfunction Undergoing Cardiac Surgery. J Cardiothorac Vasc Anesth 2025; 39:1098-1102. [PMID: 40044477 DOI: 10.1053/j.jvca.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 04/14/2025]
Affiliation(s)
- Deepak K Tempe
- Officiating Vice Chancellor, Department of Anesthesiology and Critical Care, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
4
|
Qin C, Qin Y, Zhou S. Methylations in dilated cardiomyopathy and heart failure. Front Cardiovasc Med 2025; 12:1559550. [PMID: 40290189 PMCID: PMC12021892 DOI: 10.3389/fcvm.2025.1559550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by impaired expansion or contraction of the left or both ventricles in the absence of abnormal load conditions (such as primary valve disease) or severe coronary artery disease that can lead to ventricular remodeling. Genetic mutations, infections, inflammation, autoimmune diseases, exposure to toxins, and endocrine or neuromuscular factors have all been implicated in the causation of DCM. Cardiomyopathy, particularly DCM, often has genetic underpinnings, with established or suspected genetic origins. Up to 40% of DCM cases involve probable or confirmed genetic variations. The significance of RNA modification in the pathogenesis of hypertension, cardiac hypertrophy, and atherosclerosis is well-established. Of late, RNA methylation has garnered attention for its involvement in DCM. This review examines the biological mechanisms and effects of RNA methylation in DCM and heart failure.
Collapse
Affiliation(s)
- Cong Qin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yansong Qin
- Undergraduate School, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Shuai Z, Jie MS, Wen XK, Xu H, Yuan L. Effects of exercise intervention on exercise capacity and cardiopulmonary function in patients with atrial fibrillation: A randomized controlled trial systematic review and meta-analysis. Med Clin (Barc) 2025; 164:106908. [PMID: 40220475 DOI: 10.1016/j.medcli.2025.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 04/14/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common cardiac arrhythmia that significantly impacts the cardiopulmonary function and quality of life of patients. Despite various treatment strategies, non-pharmacological interventions, particularly exercise interventions, have gained attention in recent years. OBJECTIVE Through systematic review and meta-analysis, this study explores the impact of physical activity on the exercise capacity and quality of life of AF patients. It assesses the safety, clinical outcomes, and physiological mechanisms of exercise intervention in the treatment of AF. METHODS The systematic review and individual patient data (IPD) meta-analysis method were employed, following the PRISMA-IPD guidelines, for literature selection, data extraction, and quality assessment. The analysis focused on the impact of exercise on the cardiopulmonary function and quality of life of AF patients in randomized controlled trials. RESULTS A total of 12 randomized controlled trials involving 287 AF patients were included. Meta-analysis demonstrated a significant improvement in the 6-minute walk test capacity (SMD=87.87, 95% CI [42.23, 133.51]), static heart rate improvement (SMD=-7.63, 95% CI [-11.42, -3.85]), and cardiopulmonary function enhancement (SMD=2.37, 95% CI [0.96, 3.77]) due to exercise. There was also a significant improvement in the quality of life (SMD=0.720, 95% CI [0.038, 1.402]). CONCLUSION Exercise has a significant effect on improving exercise capacity and cardiopulmonary function in patients with atrial fibrillation. Particularly, high-intensity exercise training has a more significant impact on improving cardiopulmonary function and exercise capacity, emphasizing the importance of personalized exercise plans in enhancing the cardiopulmonary health of AF patients. Further research is needed to explore the effects of exercise on improving the quality of life in the future. PROSPERO ID CRD2023493917.
Collapse
Affiliation(s)
- Zhang Shuai
- Graduate Development, Harbin Sport University, Harbin, Heilongjiang, China
| | - Mao Su Jie
- Graduate Development, Harbin Sport University, Harbin, Heilongjiang, China
| | - Xiao Kai Wen
- Chinese Fencing Academy, Nanjing Sport Institute, Nanjing, Jiangsu, China
| | - Hong Xu
- Nanjing Polytechnic Institute Sports Work Department, Nanjing, Jiangsu, China.
| | - Lu Yuan
- Nanjing Polytechnic Institute Sports Work Department, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Filipiak-Strzecka D, Kasprzak JD, Lipiec P. Reliability of spectral Doppler in handheld ultrasonographic device. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025; 41:783-791. [PMID: 40063157 DOI: 10.1007/s10554-025-03372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
To verify and validate the reliability of diastolic function parameters and valvular flow velocities acquired during the handheld ultrasound device (HUD) echocardiographic examination. Study population consisted of the consecutive patients referred for consultation due to dyspnea or impaired exercise tolerance. All patients underwent brief bedside echocardiographic screening with HUD. Within the next 24 h all patients underwent full echocardiographic examination (treated as reference). 105 patients (58 men, mean age 65 ± 14 years) were enrolled in the study. All correlations of HUD and standard echo derived measurements were high or very high. Bland-Altman plot analysis revealed the underestimation bias for mitral inflow velocities- early (E) and late (A), ), mitral annular peak early diastolic velocity (e') was not burdened with bias. The agreement between the major HFA-PEFF score parameters showed either substantial or almost perfect agreement, minor parameter- moderate agreement. The correlation of the measurements of maximum mitral velocity was high with no clinically relevant bias. Kappa coefficient showed very good agreement between HUD and reference echocardiography for detecting accelerated blood flow through the mitral valve (Kappa coefficient 0.83). The assessment of the aortic valve showed a very good correlation, with a slight underestimation bias of -0.17 m/sec (P <.001). Kappa coefficient showed good agreement between HUD and reference echocardiography for detecting accelerated blood flow (Kappa coefficient 0.74). HUD equipped with pulse and continuous wave Doppler modality enables reliable measurements of the parameters used during the left ventricle diastolic function assessment. Similarly, aortic and mitral peak jet velocities can be accurately measured using the mentioned devices.
Collapse
Affiliation(s)
- Dominika Filipiak-Strzecka
- Department and Chair of Cardiology, Bieganski Specialty Hospital, Medical University of Lodz, Kniaziewicza 1/5, Lodz, 91-347, Poland.
| | - Jarosław D Kasprzak
- Department and Chair of Cardiology, Bieganski Specialty Hospital, Medical University of Lodz, Kniaziewicza 1/5, Lodz, 91-347, Poland
| | - Piotr Lipiec
- Department and Chair of Cardiology, Bieganski Specialty Hospital, Medical University of Lodz, Kniaziewicza 1/5, Lodz, 91-347, Poland
| |
Collapse
|
7
|
Silva-Cardoso J, Moreira E, Tavares de Melo R, Moraes-Sarmento P, Cardim N, Oliveira M, Gavina C, Moura B, Araújo I, Santos P, Peres M, Fonseca C, Ferreira JP, Marques I, Andrade A, Baptista R, Brito D, Cernadas R, Dos Santos J, Leite-Moreira A, Gonçalves L, Ferreira J, Aguiar C, Fonseca M, Fontes-Carvalho R, Franco F, Lourenço C, Martins E, Pereira H, Santos M, Pimenta J. A Portuguese expert panel position paper on the management of heart failure with preserved ejection fraction - Part I: Pathophysiology, diagnosis and treatment. Rev Port Cardiol 2025; 44:233-243. [PMID: 39978763 DOI: 10.1016/j.repc.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 02/22/2025] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) affects more than 50% of HF patients worldwide, and more than 70% of HF patients aged over 65. This is a complex syndrome with a clinically heterogeneous presentation and a multifactorial pathophysiology, both of which make its diagnosis and treatment challenging. A Portuguese HF expert panel convened to address HFpEF pathophysiology and therapy, as well as appropriate management within the Portuguese context. This initiative resulted in two position papers that examine the most recently published literature in the field. The present Part I includes a review of the HFpEF literature covering pathophysiology, clinical presentation, diagnosis and treatment, including pharmacological and non-pharmacological strategies. Part II, the second paper, addresses the development of a holistic and integrated HFPEF clinical care system within the Portuguese context that is capable of reducing morbidity and mortality and improving patients' functional capacity and quality of life.
Collapse
Affiliation(s)
- José Silva-Cardoso
- Medicine Department, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Cardiology Department, Unidade Local de Saúde São João, Porto, Portugal; RISE-Health, Porto, Portugal.
| | - Emília Moreira
- RISE-Health, Porto, Portugal; Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Hospital Lusíadas Porto, Porto, Portugal
| | | | - Pedro Moraes-Sarmento
- Heart Failure Day Hospital, Hospital da Luz Lisboa, Lisboa, Portugal; Católica Medical School, Universidade Católica Portuguesa, Lisboa, Portugal
| | - Nuno Cardim
- Cardiology Department, Hospital CUF Descobertas, Lisboa, Portugal; Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Nova Medical School, Lisboa, Portugal
| | - Mário Oliveira
- Autonomous Arrhythmology, Pacing and Electrophysiology Unit, Hospital de Santa Marta, Unidade Local de Saúde São José, Lisboa, Portugal; CCUL - Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Cristina Gavina
- UnIC@RISE, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; Department of Cardiology, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
| | - Brenda Moura
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Hospital das Forças Armadas - Polo do Porto, Porto, Portugal
| | - Inês Araújo
- Heart Failure Clinic, Medicine Department, Hospital São Francisco Xavier, Unidade Local de Saúde de Lisboa Ocidental, Lisboa, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Paulo Santos
- Community Medicine Department, Information and Health Decision Sciences (MEDCIDS), Porto, Portugal; Center for Health Technology and Services Research (CINTESIS@RISE), Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marisa Peres
- Cardiology Department, Hospital de Santarém, Santarém, Portugal
| | - Cândida Fonseca
- Heart Failure Clinic, Hospital de São Francisco Xavier, Medicine Department, Unidade Local de Saúde Lisboa Ocidental, Lisboa, Portugal; Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Pedro Ferreira
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, CIC 1439, Institut Lorrain du Coeur et des Vaisseaux, CHU 54500, Vandoeuvre-lès-Nancy & F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France; UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; Heart Failure Clinic, Internal Medicine Department, Unidade Local de Saúde de Gaia, Espinho, Portugal
| | - Irene Marques
- Department of Internal Medicine, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Porto, Portugal; Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar, Unidade Local de Saúde Santo António, Porto, Portugal
| | - Aurora Andrade
- Heart Failure Clinic, Cardiology Department, Hospital Padre Américo, Unidade Local de Saúde Tâmega e Sousa, Penafiel, Portugal
| | - Rui Baptista
- Department of Cardiology, Unidade Local de Saúde de Entre o Douro e Vouga, Santa Maria da Feira, Portugal; Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal; Universidade de Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Dulce Brito
- Cardiology Department, Unidade Local de Saúde Santa Maria, Lisboa, Portugal; CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Cernadas
- Serviços Clínicos Continental-Mabor, Lousado, Portugal
| | | | - Adelino Leite-Moreira
- Department of Surgery and Physiology, UnIC@RISE, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; Department of Cardiothoracic Surgery, Unidade Local de Saúde de São João, Porto, Portugal
| | - Lino Gonçalves
- Cardiology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal; iCBR, Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - Jorge Ferreira
- Cardiology Department, Hospital de Santa Cruz, Unidade Local de Saúde de Lisboa Ocidental, Carnaxide, Portugal
| | - Carlos Aguiar
- Advanced Heart Failure Unit, Hospital Santa Cruz, Unidade Local de Saúde de Lisboa Ocidental, Carnaxide, Portugal; Cardiac Transplantation Unit, Hospital Santa Cruz, Unidade Local de Saúde de Lisboa Ocidental, Carnaxide, Portugal
| | - Manuela Fonseca
- Unidade Local de Saúde São João, Porto, Portugal; CINTESIS-RISE-HEALTH, Faculdade de Medicina Universidade do Porto, Porto, Portugal
| | - Ricardo Fontes-Carvalho
- Cardiology Department, Unidade Local de Saúde de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal; UnIC@RISE, Department of Surgery and Physiology, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Fátima Franco
- Advanced Heart Failure Unit, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Carolina Lourenço
- Advanced Heart Failure Treatment Unit, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Elisabete Martins
- Cardiology Department, Unidade Local de Saúde São João, Porto, Portugal; Medicine Department, Faculdade de Medicina do Porto, Porto, Portugal; Cintesis@RISE, Faculdade de Medicina do Porto, Porto, Portugal
| | - Hélder Pereira
- Cardiology Department, Hospital Garcia de Orta, Almada, Portugal; Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Mário Santos
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; Cardiology Department, Pulmonary Vascular Disease Unit, Centro Hospitalar Universitário de Santo António, Porto, Portugal; CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar, Centro Hospitalar Universitário de Santo António, Porto, Portugal; Department of Immuno-Physiology and Pharmacology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Joana Pimenta
- Internal Medicine Department, Unidade Local de Saúde de Gaia e Espinho, Portugal; Medicine Department, UnIC@RISE, Cardiovascular Research and Development Center, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
8
|
Pagel PS, Hang D, Freed JK, Crystal GJ. Advances in Cardiovascular Pharmacotherapy. II. Ivabradine, an Inhibitor of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel. J Cardiothorac Vasc Anesth 2025:S1053-0770(25)00247-2. [PMID: 40199701 DOI: 10.1053/j.jvca.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Ivabradine selectively reduces heart rate by inhibiting the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel in the sinoatrial node. Unlike other medications that produce negative chronotropic effects [beta-blockers, calcium channel blockers], ivabradine does not affect systemic, pulmonary, and coronary hemodynamics. Despite several proof-of-concept clinical studies suggesting that ivabradine may exert anti-ischemic effects, two large randomized trials did not support its use in patients with chronic stable angina. Preliminary data also did not support the use of ivabradine in patients with acute ST-segment elevation myocardial infarction or acutely decompensated heart failure. However, ivabradine improved outcome in patients with heart failure with reduced ejection fraction (HFrEF), leading to its approval by the Food and Drug Administration, but the drug failed to do so in those with heart failure with preserved ejection fraction (HFpEF). Ivabradine may also be useful in cardiac electrophysiology disorders characterized by tachycardia (e.g., inappropriate sinus tachycardia, postural orthostatic tachycardia syndrome), but it has not yet gained wide acceptance for these indications. In this article, the authors briefly review the structure and function of the cardiac HCN channel; discuss the development and actions of drugs, including ivabradine, that modulate the channel's activity; describe in detail the potential clinical applications of ivabradine in patients with coronary artery disease, HFrEF and HFpEF, and cardiac electrophysiology; comment on the adverse effects of ivabradine therapy; and finally, consider the potential anesthetic implications of ivabradine in patients undergoing noncardiac and cardiac surgery.
Collapse
Affiliation(s)
- Paul S Pagel
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI.
| | - Dustin Hang
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI
| | - Julie K Freed
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI
| | - George J Crystal
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
9
|
Xie ZQ, Xie Q, Zheng XY, Wu XJ, Liu WH, Li R, Zhu HY, Zhou Q. Echocardiographic assessment of the relationship between cardiac function and plasma homocysteine levels in patients with heart failure and preserved ejection fraction. Front Cardiovasc Med 2025; 12:1525389. [PMID: 40129764 PMCID: PMC11931159 DOI: 10.3389/fcvm.2025.1525389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is characterized by normal ejection fraction and diastolic dysfunction. The role of plasma homocysteine (Hcy) levels in HFpEF has been understudied, though elevated levels are known to affect cardiovascular health. Methods This retrospective observational study analyzed 80 HFpEF patients and 80 matched controls without HFpEF. Fasting plasma Hcy levels were measured using a dual-antibody sandwich enzyme-linked immunosorbent assay (ELISA). Standard echocardiographic evaluations were performed to measure interventricular septal thickness (IVST), left ventricular posterior wall thickness (LVPWT), left atrial diameter (LAD), left ventricular end-diastolic diameter (LVEDD), left ventricular ejection fraction (LVEF), and the early-to-late diastolic mitral inflow velocity ratio (E/A). Statistical analyses included independent sample t-tests, chi-square tests, Pearson's correlation, and Spearman's rank correlation. Results HFpEF patients exhibited significantly higher plasma Hcy levels (45.17 µmol/L) compared with controls (33.85 µmol/L, p < 0.001). Although LVEDD and LVEF did not differ significantly between groups, HFpEF patients demonstrated increased IVST, LVPWT, LAD, and a higher E/A ratio (p < 0.01 for all). Plasma Hcy levels were inversely correlated with LVEF (r = -0.375, p = 0.012) and positively correlated with IVST (r = 0.53), LVPWT (r = 0.45), LAD (r = 0.43), and E/A ratio (r = 0.56; p < 0.01 for each). A strong positive correlation was also observed between Hcy levels and New York Heart Association (NYHA) classification (r = 0.824, p < 0.001). Conclusions The findings indicate that elevated plasma homocysteine is associated with myocardial remodeling and impaired diastolic function in HFpEF patients. These results support the potential role of homocysteine as a biomarker for HFpEF severity and progression, warranting further investigation into its utility for risk stratification and targeted therapy.
Collapse
Affiliation(s)
- Zi-Qi Xie
- Medical Ultrasound Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qing Xie
- Department of Ultrasound, Xi'an Third Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Xiao-Ye Zheng
- Department of Ultrasound, Xi'an Third Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Xiao-Juan Wu
- Department of Ultrasound, Xi'an Third Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Wei-Hua Liu
- Department of Ultrasound, Xi'an Third Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Ru Li
- Department of Ultrasound, Xi'an Third Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Hong-Yan Zhu
- Department of Laboratory Medicine, Xi'an Third Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Qi Zhou
- Medical Ultrasound Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Eleyan L, Gonnah AR, Farhad I, Labib A, Varia A, Eleyan A, Almehandi A, Al-Naseem AO, Roberts DH. Exercise Training in Heart Failure: Current Evidence and Future Directions. J Clin Med 2025; 14:359. [PMID: 39860365 PMCID: PMC11765747 DOI: 10.3390/jcm14020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Heart Failure (HF) is a prevalent condition which places a substantial burden on healthcare systems worldwide. Medical management implemented with exercise training (ET) plays a role in prognostic and functional capacity improvement. The aim of this review is to determine the effect of exercise training (ET) on HFpEF and HFrEF patients as well as exercise modality recommendations in frail and sarcopenic subpopulations. Pharmacological therapy structures the cornerstone of management in HF reduced ejection fraction (HFrEF) and aids improved survival rates. Mortality reduction with pharmacological treatments in HF preserved ejection fraction (HFpEF) are yet to be established. Cardiac rehabilitation (CR) and ET can play an important role in both HFrEF and HFpEF. Preliminary findings suggest that CR significantly improves functional capacity, exercise duration, and quality of life. ET has shown beneficial effects on peak oxygen consumption (pVO2) and 6 min walk test distance in HFrEF and HFpEF patients, as well as a reduction in hospitalisation and mortality rates; however, the limited scope of larger trials reporting on this underscores the need for further research. ET also has been shown to have beneficial effects on depression and anxiety levels. High-intensity training (HIT) and moderate continuous training (MCT) have both shown benefits, while resistance exercise training and ventilatory assistance may also be beneficial. ET adherence rates are higher when enrolled to a supervised programme, but prescription rates remain low worldwide. Larger robust trials are required to determine ET's effects on HF, as well as the most efficacious and personalised exercise prescriptions in HF subtypes.
Collapse
Affiliation(s)
- Loay Eleyan
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK;
| | | | - Imran Farhad
- School of Medicine, University of Liverpool, Liverpool L69 3GE, UK; (I.F.); (A.V.)
| | - Aser Labib
- Sheffield Teaching Hospitals NHS Trust, Sheffield S10 2JF, UK;
| | - Alisha Varia
- School of Medicine, University of Liverpool, Liverpool L69 3GE, UK; (I.F.); (A.V.)
| | - Alaa Eleyan
- School of Medicine, University of Manchester, Manchester M13 9PL, UK;
| | - Abdullah Almehandi
- Institute of Cardiovascular Sciences, University College London, London WC1E 6DD, UK;
| | | | - David H. Roberts
- School of Medicine, University of Liverpool, Liverpool L69 3GE, UK; (I.F.); (A.V.)
- Lancashire Cardiac Centre, Blackpool FY3 8NP, UK
| |
Collapse
|
11
|
Chen M, Li W, Ran Q. Incidence and risk factors of heart failure with preserved ejection fraction in elderly patients with hypertension. BMC Cardiovasc Disord 2024; 24:742. [PMID: 39716088 DOI: 10.1186/s12872-024-04419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) poses a significant clinical challenge, especially in older patients with HT. This study aimed to identify the factors influencing HFpEF occurrence in elderly patients with HT. METHODS Elderly patients with HT were categorized into two groups: no HFpEF group and HFpEF group based on HFpEF diagnosis. Demographic, clinical, laboratory and echocardiographic data was conducted. Logistic regression analysis and joint prediction modeling were used to identify predictive factors for HFpEF. RESULTS Several factors were associated with HFpEF, including age, body mass index, duration of HT, atrial fibrillation (AF), chronic kidney disease (CKD), stroke, systolic blood pressure (SBP), serum creatinine (SCr), N-terminal pro brain natriuretic peptide (NT-proBNP), heart rate, serum sodium, low density lipoprotein cholesterol (LDL-c), triglyceride, left ventricular ejection fraction (LVEF), E/e' ratio, left atrial diameter, tricuspid regurgitation velocity, mitral regurgitation and C-reactive protein (CRP) levels. The joint prediction model shown high accuracy, with an area under the curve (AUC) of 0.840. CONCLUSIONS This study provided insights into the incidence rate and risk factors of HFpEF in elderly patients with HT. Key determinants included age, blood pressure, biomarkers, and echocardiographic parameters.
Collapse
Affiliation(s)
- Min Chen
- Department of cardiovascular medicine, Chengdu Seventh People's Hospital, No.1188 Shuangxing Avenue, Chengdu city, 610200, Sichuan Province, China.
| | - Wentao Li
- Department of Internal Medicine, West China Second Hospital, Sichuan University, No. 1416 Chenglong Avenue, Chengdu city, 610041, Sichuan Province, China
| | - Qin Ran
- Department of cardiovascular medicine, Chengdu Seventh People's Hospital, No.1188 Shuangxing Avenue, Chengdu city, 610200, Sichuan Province, China
| |
Collapse
|
12
|
Han YL, Yan TT, Li HX, Chen SS, Zhang ZZ, Wang MY, Chen MJ, Chen YL, Yang XX, Wei LL, Duan YJ, Zhang S. Geniposide alleviates heart failure with preserved ejection fraction in mice by regulating cardiac oxidative stress via MMP2/SIRT1/GSK3β pathway. Acta Pharmacol Sin 2024; 45:2567-2578. [PMID: 39060523 PMCID: PMC11579491 DOI: 10.1038/s41401-024-01341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3β, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 μM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3β pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3β pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3β, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Yan-Lu Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Teng-Teng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Hua-Xin Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Sha-Sha Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Zhen-Zhen Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Meng-Yao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Mei-Jie Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Ling-Ling Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Ya-Jun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China.
| |
Collapse
|
13
|
Araiza-Garaygordobil D, Preciado-Gutierrez OU, Sierra-Lara Martinez JD, Gonzalez-Pacheco H, Gopar-Nieto R, Latapi-Ruiz Esparza X, Hernandez-Pastrana S, Diaz-Herrera BA, Alvarez-Sangabriel A, Jordan-Rios A, Arias-Mendoza A. Prospective registry of heart failure with preserved ejection fraction in México: EDIFICE-Mx. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 48:100486. [PMID: 39717709 PMCID: PMC11665289 DOI: 10.1016/j.ahjo.2024.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024]
Abstract
Background and aims Heart failure with preserved ejection fraction (HFpEF) is an increasingly common clinical syndrome, estimated to constitute approximately 50 % of all heart failure (HF) cases. Nonetheless, registries from specific geographic areas, as Latin America, are lacking. The present study aims to report the underlying causes, comorbidities, treatment patterns and outcomes of patients with HFpEF in a large cardiovascular center in Mexico City. Methods The present is a prospective, longitudinal, observational study, including female and male patients over 18 years of age, who presented to the emergency department, coronary care unit or outpatient department of the National Institute of Cardiology Ignacio Chavez in Mexico City with HFpEF. Patients were classified according to different phenotypes and current literature. The primary outcome was the composite total HFpEF hospitalization and all-cause mortality. Results Within a median follow-up of 472 (IQR 425-518) days, total mortality was 14.56 %, with 10.68 % attributed to cardiovascular causes. HF hospitalization was 7.77 %. Atrial fibrillation showed a notable association with outcomes (adjusted HR 2.87, P = 0.028). Beta-blocker showed a non-significant trend towards benefit, while mineralocorticoid receptor antagonists (MRA) significantly influenced outcomes (adjusted HR 3.30, P = 0.018). The primary composite endpoint occurred in 19.42 % of patients, with no significant difference among phenotypes (P = 0.536). Conclusions We observed a substantial comorbidity burden impacting quality of life, as indicated by KCCQ scores. There was a high incidence of hard endpoints, including cardiovascular death and hospitalizations, alongside significant variability in treatment utilization. Future research should focus on elucidating individual healthcare trajectories in HFpEF patients and promoting wider adoption of evidence-based therapies.
Collapse
Affiliation(s)
| | | | | | | | - Rodrigo Gopar-Nieto
- National Institute of Cardiology Ignacio Chavez, Coronary Care Unit, Mexico City, Mexico
| | | | | | | | | | - Antonio Jordan-Rios
- National Institute of Cardiology Ignacio Chavez, Heart Failure Clinic, Mexico City, Mexico
| | | |
Collapse
|
14
|
Li J, Xu D, Shi C, Cheng C, Xu Z, Gao X, Cheng Y. Alarin regulates RyR2 and SERCA2 to improve cardiac function in heart failure with preserved ejection fraction. Eur J Histochem 2024; 68. [PMID: 39494460 PMCID: PMC11583138 DOI: 10.4081/ejh.2024.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF), a complex disease that is increasingly prevalent due to population aging, pose significant challenges in its treatment. The present study utilized the HFpEF rat model and H9C2 cells as research subjects to thoroughly investigate the potential mechanisms of alarin in protecting cardiac function in HFpEF. The study shows that under HFpEF conditions, oxidative stress significantly increases, leading to myocardial structural damage and dysfunction of calcium ion channels, which ultimately impairs diastolic function. Alarin, through its interaction with NADPH oxidase 1 (NOX1), effectively alleviates oxidative stress and modulates the activities of type 2 ryanodine receptor (RyR2) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), thereby facilitating the restoration of Ca2+ homeostasis and significantly improving cardiac function in the HFpEF model. This research not only uncovers the cardioprotective effects of alarin and its underlying molecular mechanisms but also provides new insights and potential therapeutic targets for HFpEF treatment strategies, suggesting a promising future for alarin and related therapies in the management of this debilitating condition.
Collapse
Affiliation(s)
- Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Dawei Xu
- Department of Emergency Intensive Care Unit, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Ce Shi
- Department of Orthopedics, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Chunqi Cheng
- Department of Cardiology, Suqian Zhongwu Hospital, Suqian, Jiangsu
| | - Ziheng Xu
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Xingjuan Gao
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Yong Cheng
- Department of Cardiology, Suqian Zhongwu Hospital, Suqian, Jiangsu
| |
Collapse
|
15
|
Wu Z, Liu W, Si X, Liang J. Screening of key genes related to M6A methylation in patients with heart failure. BMC Cardiovasc Disord 2024; 24:565. [PMID: 39415091 PMCID: PMC11481427 DOI: 10.1186/s12872-024-04228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVE This study aims to identify m6A methylation-related and immune cell-related key genes with diagnostic potential for heart failure (HF) by leveraging various bioinformatics techniques. METHODS The GSE116250 and GSE141910 datasets were sourced from the Gene Expression Omnibus (GEO) database. Correlation analysis was conducted between differentially expressed genes (DEGs) in HF and control groups, alongside differential m6A regulatory factors, to identify m6A-related DEGs (m6A-DEGs). Subsequently, candidate genes were narrowed down by intersecting key module genes derived from weighted gene co-expression network analysis (WGCNA) with m6A-DEGs. Key genes were then identified through the Least Absolute Shrinkage and Selection Operator (LASSO) analysis. Correlation analyses between key genes and differentially expressed immune cells were performed, followed by the validation of key gene expression levels in public datasets. To ensure clinical applicability, five pairs of blood samples were collected for quantitative real-time fluorescence PCR (qRT-PCR) validation. RESULTS A total of 93 m6A-DEGs were identified (|COR| > 0.6, P < 0.05), and five key genes (LACTB2, NAMPT, SCAMP5, HBA1, and PRKAR2A) were selected for further analysis. Correlation analysis revealed that differential immune cells were negatively associated with the expression of LACTB2, NAMPT, and PRKAR2A (P < 0.05), while positively correlated with SCAMP5 and HBA1 (P < 0.05). Subsequent expression validation confirmed significant differences in key gene expression between the HF and control groups, with consistent expression trends observed across both training and validation sets. The expression trends of LACTB2, PRKAR2A, and HBA1 in blood samples from the qRT-PCR assay aligned with the results derived from public databases. CONCLUSION This study successfully identified five m6A methylation-related key genes with diagnostic significance, providing a theoretical foundation for further exploration of m6A methylation's molecular mechanisms in HF.
Collapse
Affiliation(s)
- Zelan Wu
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wupeng Liu
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Xiaoyun Si
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jinfeng Liang
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Silva MG, Martinez CG, Cavalcanti de Albuquerque JP, Gouvêa AL, Freire MM, Lauthartte LC, Mignaco J, Bastos WR, de Mattos EC, Galina A, Kurtenbach E. Mitochondrial Dysfunction Plays a Relevant Role in Heart Toxicity Caused by MeHg. TOXICS 2024; 12:712. [PMID: 39453132 PMCID: PMC11511492 DOI: 10.3390/toxics12100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024]
Abstract
The effects of methylmercury (MeHg) on exposed populations are a public health problem. In contrast to widely studied neurological damage, few cardiovascular changes have been described. Our group evaluated the cardiotoxicity of a cumulative dose of 70 mg.kg-1 fractioned over a 14-day exposure period in mice (MeHg70 group). The effects of MeHg on proteins relevant to cardiac mitochondrial function were also investigated. The results obtained showed a reduction in oxygen consumption in the two settings. In cardiac tissue samples in oxygraphy studies, this reduction was related to a lower efficiency of complexes II and V, which belong to the oxidative phosphorylation system. In vivo, mice in the MeHg70 group presented lower oxygen consumption and running tolerance, as shown by ergometric analyses. Cardiac stress was evident in the MeHg70 group, as indicated by a marked increase in the level of the mRNA encoding atrial natriuretic peptide. Electrocardiogram studies revealed a lower heart rate at rest in the animals from the MeHg70 group, as well as prolonged left ventricular depolarisation and repolarisation. Through echocardiographic analysis, reductions in the left ventricular ejection fraction and left ventricular wall thickness of approximately 10% and 20%, respectively, were detected. These results indicate that the oral intake of MeHg can decrease cardiac function and oxidative metabolism. This finding highlights the importance of monitoring MeHg levels in humans and animals in contaminated areas, as well as periodically carrying out cardiac function tests.
Collapse
Affiliation(s)
- Marcia Gracindo Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (A.L.G.); (E.K.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Camila Guerra Martinez
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (A.L.G.); (E.K.)
| | | | - André Luiz Gouvêa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (A.L.G.); (E.K.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Monica Maria Freire
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Leidiane Caroline Lauthartte
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer, Universidade Federal de Rondônia, Porto Velho 76801-974, RO, Brazil
| | - Julio Mignaco
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Wanderley Rodrigues Bastos
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer, Universidade Federal de Rondônia, Porto Velho 76801-974, RO, Brazil
| | | | - Antonio Galina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (A.L.G.); (E.K.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
17
|
Cao Y, Sun Y, Miao B, Zhang X, Zhao Q, Qi L, Chen Y, Zhu L. Vericiguat on C-reactive Protein Level and Prognosis in Patients with Hypertensive Heart Failure. High Blood Press Cardiovasc Prev 2024; 31:485-492. [PMID: 39168957 DOI: 10.1007/s40292-024-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Hypertensive heart failure (HHF) has a high incidence and poor prognosis. AIM This article evaluated the efficacy and safety of Vericiguat in HHF and analyzed the relationship between C-reactive protein (CRP) levels and patient prognosis. METHODS 110 HHF patients were divided into Placebo and Vericiguat groups. Cardiac function was assessed by echocardiography and 6-minute walk test (6MWT). Blood samples were collected to detect the levels of N-terminal pro-brain natriuretic peptide (NT-proBNP), cardiac troponin I (cTnI), endothelin (ET-1), nitric oxide (NO), and CRP. RESULTS Left ventricular end systolic diameter (LVESD) and left ventricular end diastolic dimension (LVEDD) were reduced, the left ventricular ejection fraction (LVEF) and 6MWT were increased, and the serum levels of NT-proBNP, cTnI, ET-1, NO, and CRP were decreased in Vericiguat group as against Placebo group; The total effective rate was 76.4% in Placebo group and 92.7% in Vericiguat group (P < 0.05). The adverse reaction rate was 10.9% and 9.1% (P > 0.05). The proportion of persons with poor prognosis and no improvement of cardiac function in patients with highly expressed CRP before treatment was higher as against patients with low expression of CRP (P < 0.05). Highly expressed CRP is an independent risk factor for poor prognosis. CONCLUSION Vericiguat is safe and effective in improving cardiac function in HHF patients.
Collapse
Affiliation(s)
- Yabing Cao
- Department 1 of Cardiology, Xingtai Third Hospital, Xingtai, Hebei Province, 054000, China
| | - Yunjing Sun
- Department 2 of Cardiology, Xingtai Third Hospital, Xingtai, Hebei Province, 054000, China
| | - Bo Miao
- Department of Cardiovascular Intensive Care Unit, Xingtai Third Hospital, Xingtai, Hebei Province, 054000, China
| | - Xiao Zhang
- Department 1 of Cardiology, Xingtai Third Hospital, Xingtai, Hebei Province, 054000, China
| | - Qingzhou Zhao
- Department 1 of Cardiology, Xingtai Third Hospital, Xingtai, Hebei Province, 054000, China
| | - Liping Qi
- Department of Cardiology, Xingtai Third Hospital, Xingtai, Hebei Province, 054000, China
| | - Yaoqi Chen
- Department 1 of Cardiology, Xingtai Third Hospital, Xingtai, Hebei Province, 054000, China
| | - Lingling Zhu
- Department 1 of Cardiology, Xingtai Third Hospital, Xingtai, Hebei Province, 054000, China.
| |
Collapse
|
18
|
Li P, Chang Y, Song J. Advances in preclinical surgical therapy of cardiovascular diseases. Int J Surg 2024; 110:4965-4975. [PMID: 38701509 PMCID: PMC11326035 DOI: 10.1097/js9.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Cardiovascular disease is the most common cause of death worldwide, resulting in millions of deaths annually. Currently, there are still some deficiencies in the treatment of cardiovascular diseases. Innovative surgical treatments are currently being developed and tested in response to this situation. Large animal models, which are similar to humans in terms of anatomy, physiology, and genetics, play a crucial role in connecting basic research and clinical applications. This article reviews recent preclinical studies and the latest clinical advancements in cardiovascular disease based on large animal models, with a focus on targeted delivery, neural regulation, cardiac remodeling, and hemodynamic regulation. It provides new perspectives and ideas for clinical translation and offers new methods for clinical treatment.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Cardiac Surgery, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | |
Collapse
|
19
|
Méndez-Fernández A, Fernández-Mora Á, Bernal-Ramírez J, Alves-Figueiredo H, Nieblas B, Salazar-Ramírez F, Maldonado-Ruiz R, Zazueta C, García N, Lozano O, Treviño V, Torre-Amione G, García-Rivas G. Distinguishing pathophysiological features of heart failure with reduced and preserved ejection fraction: A comparative analysis of two mouse models. J Physiol 2024. [PMID: 39018163 DOI: 10.1113/jp286410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024] Open
Abstract
Heart failure (HF) is a heterogeneous condition that can be categorized according to the left ventricular ejection fraction (EF) into HF with reduced (HFrEF) or preserved (HFpEF) EF. Although HFrEF and HFpEF share some common clinical manifestations, the mechanisms underlying each phenotype are often found to be distinct. Identifying shared and divergent pathophysiological features might expand our insights on HF pathophysiology and assist the search for therapies for each HF subtype. In this study, we evaluated and contrasted two new murine models of non-ischaemic HFrEF and cardiometabolic HFpEF in terms of myocardial structure, left ventricular function, gene expression, cardiomyocyte calcium handling, mitochondrial polarization and protein acetylation in a head-to-head fashion. We found that in conditions of similar haemodynamic stress, the HFrEF myocardium underwent a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation was greater in the HFpEF myocardium. We observed opposing features on calcium release, which was diminished in the HFrEF cardiomyocyte but enhanced in the HFpEF cardiomyocyte. Mitochondria were less polarized in both HFrEF and HFpEF cardiomyocytes, reflecting similarly impaired metabolic capacity. Hyperacetylation of cardiac proteins was observed in both models, but it was more accentuated in the HFpEF heart. Despite shared features, unique triggering mechanisms (neurohormonal overactivation in HFrEF vs. inflammation in HFpEF) appear to determine the distinct phenotypes of HF. The findings of the present research stress the need for further exploration of the differential mechanisms underlying each HF subtype, because they might require specific therapeutic interventions. KEY POINTS: The mechanisms underlying heart failure with either reduced (HFrEF) or preserved (HFpEF) ejection fraction are often found to be different. Previous studies comparing pathophysiological traits between HFrEF and HFpEF have been conducted on animals of different ages and strains. The present research contrasted two age-matched mouse models of non-ischaemic HFrEF and cardiometabolic HFpEF to uncover divergent and shared features. We found that upon similar haemodynamic stress, the HFrEF heart experienced a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation appeared to be greater in the HFpEF myocardium. Calcium release was diminished in the HFrEF cardiomyocyte and enhanced in the HFpEF cardiomyocyte. Mitochondria were comparably less polarized in both HFrEF and HFpEF myocytes. Hyperacetylation of proteins was common to both models, but stronger in the HFpEF heart. Casting light on common and distinguishing features might ease the quest for phenotype-specific therapies for heart failure patients.
Collapse
Affiliation(s)
- Abraham Méndez-Fernández
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Ángel Fernández-Mora
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Judith Bernal-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Hugo Alves-Figueiredo
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Bianca Nieblas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Felipe Salazar-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Roger Maldonado-Ruiz
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ciudad de Mexico, Mexico
| | - Noemí García
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Víctor Treviño
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Guillermo Torre-Amione
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| |
Collapse
|
20
|
Marijic J, Neelankavil JP. Semaglutide: A New Medical Swiss Army Knife? J Cardiothorac Vasc Anesth 2024; 38:871-873. [PMID: 38246820 DOI: 10.1053/j.jvca.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Affiliation(s)
- Jure Marijic
- Department of Anesthesiology, UCLA, Los Angeles, CA
| | | |
Collapse
|
21
|
Kestens L, Billet S, Hens L, Velghe A, Piers R. Prognostic value of geriatric and cardiac parameters for one-year mortality in older heart failure patients. A multicentre, observational, prospective study. Acta Clin Belg 2024; 79:113-120. [PMID: 38752847 DOI: 10.1080/17843286.2024.2352910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
PURPOSE Heart failure is prevalent among older people and has a poor prognosis. The aim of this study is to identify potential prognostic, geriatric, and cardiac parameters which could help clinicians identify older heart failure patients at high risk for one-year mortality. METHODS The multicentre, observational cohort study which included 147 heart failure patients aged ≥75 years, hospitalized in the cardiac or geriatric department in two hospitals. One-year survival was the outcome measure. For univariate analysis Chi-square test and independent sample T-test were used; for multivariate analysis Logistic regression and Cox regression for time-dependent analysis. RESULTS One-year mortality was 28% (41/147). One-year survivors and non-survivors did not differ in the following characteristics: age, gender, sodium level at hospital discharge, ejection fraction, NYHA Class, basic and instrumental activities of daily living, and the presence of a geriatric risk profile. There was a significant lower systolic blood pressure at discharge in non-survivors compared to one-year-survivors (mean 125.26 mmHg vs. 137.59 mmHg). Non-survivors had more severe underlying comorbidities according to the age adjusted Charlson Comorbidity index (CCI) (mean 8.80 vs. 7.40).Both logistic and Cox regression showed a higher risk and rate of mortality with decreasing systolic blood pressure at discharge (OR 0.963, p=0.001 and HR 0.970, p<0.001) and with increasing CCI (OR 1.344, p=0.002 and HR 1.269, p=0.001); the other variables were not significantly related. CONCLUSION Lower blood pressure and more severe comorbidities, but not functionality nor the presence of a geriatric risk profile, are related to one-year mortality in older, in-hospital heart failure patients.
Collapse
Affiliation(s)
- L Kestens
- Department of Geriatric Medicine, Ghent University Hospital, Ghent, Belgium
| | - S Billet
- Department of Geriatric Medicine, Ghent University Hospital, Ghent, Belgium
| | - L Hens
- Department of Cardiology, Ghent University Hospital, Ghent, and Department of Cardiology AZ Groeninge, Kortrijk, Belgium
| | - A Velghe
- Department of Geriatric Medicine, Ghent University Hospital, Ghent, Belgium
| | - R Piers
- Department of Geriatric Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
22
|
Fu M, Wang Y, Han X, Yuan S, Liu Y, Qian J, Zhou J, Ge J. Revascularization for Patients With Heart Failure With Preserved Ejection Fraction and Coronary Artery Disease. Am J Cardiol 2024; 213:86-92. [PMID: 38199145 DOI: 10.1016/j.amjcard.2023.07.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 01/12/2024]
Abstract
Coronary artery disease (CAD) is one of the main causes of heart failure (HF) with preserved ejection fraction (HFpEF). The efficacy of revascularization therapy in patients with HFpEF and CAD, however, remains unclear. Patients who underwent coronary angiography from January 2017 to December 2019 were included in this retrospective study if they further satisfied the diagnosis of HFpEF (left ventricular ejection fraction ≥50% plus plasma N-terminal pro-BNP ≥125 pg/ml) and CAD (patients had a history of confirmed myocardial infarction or ≥50% stenosis in at least 1 epicardial coronary vessel). Clinical data, way of revascularization, and outcome events (unplanned repeated revascularization, HF readmission, cardiovascular death, readmission of cerebral hemorrhage/stroke or gastrointestinal bleeding, and all-cause death) were recorded and analyzed. A total of 1,111 patients were enrolled for the present analysis. Based on whether the revascularization was complete or not, the patients were divided into the complete revascularization group (n = 780) and the incomplete/no revascularization group (n = 331). All patients were followed up with a median of 355 days. The overall rates of unplanned repeated revascularization, HF readmission, and cardiovascular death were 6.6%, 5.0%, and 0.4%, respectively. Compared with incompletely/not revascularized patients, completely revascularized patients had a lower rate of unplanned repeated revascularization (10.9% vs 4.7%, p <0.001) and cardiovascular death (0.9% vs 0.1%, p = 0.048). However, HF readmission, readmission of cerebral hemorrhage/stroke or gastrointestinal bleeding, and noncardiac death were comparable between the 2 groups. The regression analysis showed that hyperlipidemia, previous myocardial infarction, in-stent restenosis, and way of revascularization were associated with the composite events of unplanned repeated revascularization, HF readmission, and cardiovascular death during the follow-up. Complete revascularization may reduce unplanned repeated revascularization and cardiovascular death for patients with HFpEF and CAD.
Collapse
Affiliation(s)
- Mingqiang Fu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yanyan Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xueting Han
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shuai Yuan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yuan Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
23
|
Elendu C, Amaechi DC, Elendu TC, Fiemotonghan BE, Okoye OK, Agu-Ben CM, Onyekweli SO, Amapu DA, Ikpegbu R, Asekhauno M, Pius E, Bayo-Shodipo AT, Okezie-Okoye CA, Bello N, Oguine C, Edochie P, Dike N, Amos I, Asekhauno J, Wusu-Ejalonibu TM, Ozigi EE, Otobo GO, Olokodana AR, Ayabazu CP, Nwafor RT, Gonji NJ, Akpovona O, Awotoye TI, Ozigis MO, Afolabi O, Alabi OS, Adebayo M. A comprehensive review of heart failure: Unraveling the etiology, decoding pathophysiological mechanisms, navigating diagnostic modalities, exploring pharmacological interventions, advocating lifestyle modifications, and charting the horizon of emerging therapies in the complex landscape of chronic cardiac dysfunction. Medicine (Baltimore) 2024; 103:e36895. [PMID: 38241566 PMCID: PMC10798706 DOI: 10.1097/md.0000000000036895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
Heart failure (HF) poses a significant global health burden, necessitating a profound understanding of its multifaceted dimensions. This comprehensive review aims to unravel the etiology, decode pathophysiological mechanisms, navigate diagnostic modalities, explore pharmacological interventions, advocate lifestyle modifications, and chart the horizon of emerging therapies in the complex landscape of chronic cardiac dysfunction. The exploration of HF begins with an insightful journey into its diverse etiological factors, encompassing genetic predispositions, hypertension, and coronary artery disease. Delving into pathophysiological mechanisms, this review elucidates the intricate processes of cardiac remodeling, neurohormonal activation, and cellular dysfunction that underlie the progression of HF. Diagnostic modalities play a pivotal role in unraveling the mysteries of HF by examining advanced imaging techniques, biomarkers, and comprehensive clinical assessments. The pharmacological interventions section provides an in-depth analysis of traditional medications, such as diuretics and angiotensin-converting enzyme inhibitors, while highlighting the emergence of novel drug classes transforming HF management. Advocating lifestyle modifications emphasizes the crucial role of diet, exercise, smoking cessation, and alcohol moderation in enhancing patient outcomes. Lastly, the review delves into the promising horizon of emerging therapies, offering a glimpse into current research, innovative treatment approaches, and potential breakthroughs. As HF management faces challenges in patient compliance, healthcare access, and education, this comprehensive review aims to equip healthcare professionals and researchers with a holistic understanding of chronic cardiac dysfunction's intricacies. In conclusion, synthesizing key findings emphasizes the need for an integrated and multidimensional approach to effectively address the complex landscape of heart failure.
Collapse
Affiliation(s)
| | | | | | | | - Osinachi K. Okoye
- Chukwuemeka Odumegwu Ojukwu University Teaching Hospital, Awka, Nigeria
| | | | | | | | | | | | - Erica Pius
- Babcock University, Ilishan-Remo, Nigeria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Otite Akpovona
- King’s College Hospital NHS Foundation Trust, London, England
| | | | | | | | | | | |
Collapse
|
24
|
Agress S, Sheikh JS, Perez Ramos AA, Kashyap D, Razmjouei S, Kumar J, Singh M, Lak MA, Osman A, Haq MZU. The Interplay of Comorbidities in Chronic Heart Failure: Challenges and Solutions. Curr Cardiol Rev 2024; 20:13-29. [PMID: 38347774 PMCID: PMC11284697 DOI: 10.2174/011573403x289572240206112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Chronic heart failure (HF) is frequently associated with various comorbidities. These comorbid conditions, such as anemia, diabetes mellitus, renal insufficiency, and sleep apnea, can significantly impact the prognosis of patients with HF. OBJECTIVE This review aims to synthesize current evidence on the prevalence, impact, and management of comorbidities in patients with chronic HF. METHODS A comprehensive review was conducted, with a rigorous selection process. Out of an initial pool of 59,030 articles identified across various research modalities, 134 articles were chosen for inclusion. The selection spanned various research methods, from randomized controlled trials to observational studies. RESULTS Comorbidities are highly prevalent in patients with HF and contribute to increased hospitalization rates and mortality. Despite advances in therapies for HF with reduced ejection fraction, options for treating HF with preserved ejection fraction remain sparse. Existing treatment protocols often lack standardization, reflecting a limited understanding of the intricate relationships between HF and associated comorbidities. CONCLUSION There is a pressing need for a multidisciplinary, tailored approach to manage HF and its intricate comorbidities. This review underscores the importance of ongoing research efforts to devise targeted treatment strategies for HF patients with various comorbid conditions.
Collapse
Affiliation(s)
| | - Jannat S. Sheikh
- CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | | | - Durlav Kashyap
- West China Medical School, Sichuan University, Chengdu, China
| | - Soha Razmjouei
- Case Western Reserve University, Cleveland, OH, United States of America
| | - Joy Kumar
- Kasturba Medical College, Manipal, India
| | | | - Muhammad Ali Lak
- Department of Internal Medicine, CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | - Ali Osman
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muhammad Zia ul Haq
- Department of Epidemiology and Public Health, Emory University Rollins School of Public Health, Atlanta, USA
- Department of Noncommunicable Diseases and Mental Health, World Health Organization, Cairo, Egypt
| |
Collapse
|
25
|
Nandi SS, Katsurada K, Moulton MJ, Zheng H, Patel KP. Enhanced central sympathetic tone induces heart failure with preserved ejection fraction (HFpEF) in rats. Front Physiol 2023; 14:1277065. [PMID: 38169715 PMCID: PMC10758618 DOI: 10.3389/fphys.2023.1277065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogenous clinical syndrome characterized by diastolic dysfunction, concentric cardiac left ventricular (LV) hypertrophy, and myocardial fibrosis with preserved systolic function. However, the underlying mechanisms of HFpEF are not clear. We hypothesize that an enhanced central sympathetic drive is sufficient to induce LV dysfunction and HFpEF in rats. Male Sprague-Dawley rats were subjected to central infusion of either saline controls (saline) or angiotensin II (Ang II, 20 ng/min, i.c.v) via osmotic mini-pumps for 14 days to elicit enhanced sympathetic drive. Echocardiography and invasive cardiac catheterization were used to measure systolic and diastolic functions. Mean arterial pressure, heart rate, left ventricular end-diastolic pressure (LVEDP), and ± dP/dt changes in responses to isoproterenol (0.5 μg/kg, iv) were measured. Central infusion of Ang II resulted in increased sympatho-excitation with a consequent increase in blood pressure. Although the ejection fraction was comparable between the groups, there was a decrease in the E/A ratio (saline: 1.5 ± 0.2 vs Ang II: 1.2 ± 0.1). LVEDP was significantly increased in the Ang II-treated group (saline: 1.8 ± 0.2 vs Ang II: 4.6 ± 0.5). The increase in +dP/dt to isoproterenol was not significantly different between the groups, but the response in -dP/dt was significantly lower in Ang II-infused rats (saline: 11,765 ± 708 mmHg/s vs Ang II: 8,581 ± 661). Ang II-infused rats demonstrated an increased heart to body weight ratio, cardiomyocyte hypertrophy, and fibrosis. There were elevated levels of atrial natriuretic peptide and interleukin-6 in the Ang II-infused group. In conclusion, central infusion of Ang II in rats induces sympatho-excitation with concurrent diastolic dysfunction, pathological cardiac concentric hypertrophy, and cardiac fibrosis. This novel model of centrally mediated sympatho-excitation demonstrates characteristic diastolic dysfunction in rats, representing a potentially useful preclinical murine model of HFpEF to investigate various altered underlying mechanisms during HFpEF in future studies.
Collapse
Affiliation(s)
- Shyam S. Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kenichi Katsurada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Michael J. Moulton
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hong Zheng
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
26
|
Su Z, Tian S, Liang W, Wu L. Association between omentin-1 and heart failure with preserved ejection fraction in Chinese elderly patients. Clin Cardiol 2023; 47:e24181. [PMID: 37937708 PMCID: PMC10825884 DOI: 10.1002/clc.24181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/17/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Omentin-1 is a novel adipokine and is associated with chronic inflammation and cardiovascular diseases. However, it remains unclear whether omentin-1 levels are associated with diagnostic significance in elderly patients with heart failure with preserved ejection fraction (HFpEF). This study aimed to investigate the correlation between omentin-1 and HFpEF in Chinese elderly patients. HYPOTHESIS Omentin-1 may be invovled in HFpEF and there may be a difference of omentin-1 levels between HFpEF and control. METHODS 217 subjects were selected, including 115 patients with HFpEF and 102 control subjects. Enzyme-linked immuno sorbent assay (ELISA) was used to detect plasma levels of omentin-1, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The receiver operating characteristics (ROC) curve was used to examine the diagnostic performance of omentin-1 in HFpEF. RESULTS The levels of omentin-1 decreased significantly in the HFpEF group (14.02 ± 8.35 vs. 19.74 ± 8.45 ng/mL, p < .001), while NT-proBNP, IL-6, and TNF-α levels were significantly increased in the HFpEF group compared with the control group. Spearman correlation analysis showed that omentin-1 levels were negatively correlated with E/e' (r = -.340, p < .001). The multivariate logistic regression analysis indicated that omentin-1 was an independent protective factor for HFpEF (odd ratio = 0.948, 95% confidence interval [CI] 0.905-0.993, p = .025). Omentin-1 levels were negatively correlated with NT-proBNP (r = -.273, p < .001) and TNF-α (r = -.221, p = .001). Diagnostic efficiency by ROC curve analysis in the patients with HFpEF showed that the area under the curve (AUC) for omentin-1 was equivalent to NT-proBNP (AUC: 0.734, 95%CI 0.667-0.802; AUC: 0.800, 95%CI 0.738-0.861). Subgroup analysis showed that in the patients between the age of 70 and 80, the predictive capability of omentin-1 was stronger than NT-proBNP (AUC: 0.809, 95%CI 0.680-0.937; AUC: 0.674, 95%CI 0.514-0.833). CONCLUSIONS Omentin-1 levels which were associated with inflammation, were decreased in the HFpEF patients. It could be regarded as a valuable biomarker for the occurrence and development of HFpEF in elderly patients.
Collapse
Affiliation(s)
- Zhengjia Su
- Department of Geriatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuya Tian
- Department of Geriatrics, Shandong Provincial Third Hospital, Cheeloo College of MedicineShandong UniversityShandonChina
| | - Wei Liang
- Department of Geriatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
27
|
Tan Y, Deng W, Liu T, Huang L, Zhang R, Zhang Y, Fu Y, Fang L, Li Y, Zhang L, Xie M, Wang J. Left atrial strain brings new insights for evaluating early diastolic dysfunction in patients with well-functioning bicuspid aortic valve. Echocardiography 2023; 40:1243-1250. [PMID: 37846974 DOI: 10.1111/echo.15704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Left atrial reservoir strain (LARS) is an early sensor of left ventricular (LV) diastolic dysfunction. Still, the clinical implications of LARS in patients with well-functioning bicuspid aortic valve (BAV) remain unknown. MATERIALS The study recruited 103 patients with well-functioning BAV and 50 controls with tricuspid aortic valves. LARS, LV global longitudinal strain (LVGLS) and aortic elasticity indices (aortic strain, aortic distensibility and stiffness index) were acquired. This study aimed to analyze the changes of LARS and further explore the influential factors of LARS in patients with well-functioning BAV. RESULTS Patients with BAV had lower LARS (34.17 ± 4.85 vs. 44.72 ± 6.06 %, P < .001) and LVGLS (20.53 ± 1.28 vs. 22.30 ± .62 %, P < .001), and abnormal aortic elasticity indices (aortic strain:7.14 ± 1.57 vs. 10.99 ± 1.03 %, aortic distensibility: 5.82 ± 1.50 vs. 8.98 ± 2.42 (10-6 cm2 dyne-1 ), and stiffness index: 6.30 ± 2.30 vs. 3.92 ± .98, all P < .05) compared with controls. LARS was associated with LVGLS (r = .799), interventricular septum index (r = -.232), lateral e' (r = .290), septal e' (r = .308), E/e' ratio (r = -.392), aortic strain (r = .829), aortic distensibility (r = .361), and stiffness index (r = -.724) (all P < .05). LVGLS, aortic strain and E/e' ratio were independent influencers of LARS in the multifactorial analysis model (all P < .05). CONCLUSION In patients with well-functioning BAV, decreased LARS may provide evidence of subclinical LV diastolic function impairment. LARS may be helpful for clinical risk stratification in such a population.
Collapse
Affiliation(s)
- Yuting Tan
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenhui Deng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lei Huang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ruize Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yichan Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yanan Fu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lingyun Fang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuman Li
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
28
|
Yang X, Li X, Yu N, Yan R, Sun Y, Tang C, Ding W, Ling M, Song Y, Gao H, Gao W, Feng J, Wang S, Zhang Z, Xing Y. Proteomics and β-hydroxybutyrylation Modification Characterization in the Hearts of Naturally Senescent Mice. Mol Cell Proteomics 2023; 22:100659. [PMID: 37805038 PMCID: PMC10685312 DOI: 10.1016/j.mcpro.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Aging is widely accepted as an independent risk factor for cardiovascular disease (CVD), which contributes to increasing morbidity and mortality in the elderly population. Lysine β-hydroxybutyrylation (Kbhb) is a novel post-translational modification (PTM), wherein β-hydroxybutyrate is covalently attached to lysine ε-amino groups. Recent studies have revealed that histone Kbhb contributes to tumor progression, diabetic cardiomyopathy progression, and postnatal heart development. However, no studies have yet reported a global analysis of Kbhb proteins in aging hearts or elucidated the mechanisms underlying this modification in the process. Herein, we conducted quantitative proteomics and Kbhb PTM omics to comprehensively elucidate the alterations of global proteome and Kbhb modification in the hearts of aged mice. The results revealed a decline in grip strength and cardiac diastolic function in 22-month-old aged mice compared to 3-month-old young mice. High-throughput liquid chromatogram-mass spectrometry analysis identified 1710 β-hydroxybutyrylated lysine sites in 641 proteins in the cardiac tissue of young and aged mice. Additionally, 183 Kbhb sites identified in 134 proteins exhibited significant differential modification in aged hearts (fold change (FC) > 1.5 or <1/1.5, p < 0.05). Notably, the Kbhb-modified proteins were primarily detected in energy metabolism pathways, such as fatty acid elongation, glyoxylate and dicarboxylate metabolism, tricarboxylic acid cycle, and oxidative phosphorylation. Furthermore, these Kbhb-modified proteins were predominantly localized in the mitochondria. The present study, for the first time, provides a global proteomic profile and Kbhb modification landscape of cardiomyocytes in aged hearts. These findings put forth novel possibilities for treating cardiac aging and aging-related CVDs by reversing abnormal Kbhb modifications.
Collapse
Affiliation(s)
- Xuechun Yang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs of Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China; College of Clinical Medicine, Shandong University, Jinan, Shandong, China
| | - Rong Yan
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Sun
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Congmin Tang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjing Ding
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingying Ling
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yiping Song
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjuan Gao
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Junchao Feng
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs of Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Shaopeng Wang
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs of Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqiu Xing
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
29
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
30
|
Lin Y, Zhang L, Hu X, Gao L, Ji M, He Q, Xie M, Li Y. Clinical Usefulness of Speckle-Tracking Echocardiography in Patients with Heart Failure with Preserved Ejection Fraction. Diagnostics (Basel) 2023; 13:2923. [PMID: 37761290 PMCID: PMC10529773 DOI: 10.3390/diagnostics13182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is defined as HF with left ventricular ejection fraction (LVEF) not less than 50%. HFpEF accounts for more than 50% of all HF patients, and its prevalence is increasing year to year with the aging population, with its prognosis worsening. The clinical assessment of cardiac function and prognosis in patients with HFpEF remains challenging due to the normal range of LVEF and the nonspecific symptoms and signs. In recent years, new echocardiographic techniques have been continuously developed, particularly speckle-tracking echocardiography (STE), which provides a sensitive and accurate method for the comprehensive assessment of cardiac function and prognosis in patients with HFpEF. Therefore, this article reviewed the clinical utility of STE in patients with HFpEF.
Collapse
Affiliation(s)
- Yixia Lin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (L.Z.); (X.H.); (L.G.); (M.J.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (L.Z.); (X.H.); (L.G.); (M.J.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoqing Hu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (L.Z.); (X.H.); (L.G.); (M.J.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (L.Z.); (X.H.); (L.G.); (M.J.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mengmeng Ji
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (L.Z.); (X.H.); (L.G.); (M.J.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qing He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (L.Z.); (X.H.); (L.G.); (M.J.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (L.Z.); (X.H.); (L.G.); (M.J.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (L.Z.); (X.H.); (L.G.); (M.J.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
31
|
Matsiukevich D, Kovacs A, Li T, Kokkonen-Simon K, Matkovich SJ, Oladipupo SS, Ornitz DM. Characterization of a robust mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H203-H231. [PMID: 37204871 PMCID: PMC11932539 DOI: 10.1152/ajpheart.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Scot J Matkovich
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - Sunday S Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
32
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
33
|
Montero-Pérez-Barquero M, Escobar-Cervantes C, Llàcer P, Quirós-López R, Trullás JC, Cerqueiro JM, Epelde-Gonzálo F, Carrera-Izquierdo M, Formiga F, González-Franco A, Casado-Cerrada J. Projected clinical benefits of dapagliflozin in patients with heart failure with preserved ejection fraction. Future Cardiol 2023; 19:333-342. [PMID: 37382199 DOI: 10.2217/fca-2023-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Aims: To address the projected clinical benefits of dapagliflozin among patients with heart failure (HF) with mildly reduced ejection fraction (HFmrEF) and preserved ejection fraction (HFpEF). Methods: A multicenter, prospective, cohort study of patients ≥50 years admitted with HF to Spanish internal medicine departments. The projected clinical benefits of dapagliflozin were calculated from the DELIVER trial. Results: A total of 4049 patients were included; 3271 (80.8%) were eligible for dapagliflozin treatment, according to DELIVER criteria. Within 1 year after discharge, 22.2% were rehospitalized for HF and 21.6% died. Implementation of dapagliflozin would translate into an absolute risk reduction of 1.3% for mortality and 5.1% for HF readmission. Conclusion: HF patients with preserved or mildly reduced ejection fraction have a high risk of events. The use of dapagliflozin could substantially reduce the HF burden.
Collapse
Affiliation(s)
| | | | - Pau Llàcer
- Servicio de Medicina Interna, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Raúl Quirós-López
- Servicio de Medicina Interna, Hospital de la Costa del Sol, Marbella, 29603, Málaga, Spain
| | - Joan C Trullás
- Internal Medicine Department, Hospital d'Olot, Tissue Repair & Regeneration Laboratory (TR2Lab), Universitat Central de Catalunya, Vic, 17800, Barcelona, Spain
| | - Jose M Cerqueiro
- Servicio de Medicina Interna, Hospital Universitario Lucus Augusti, 27003, Lugo, Spain
| | | | | | - Francesc Formiga
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907, Barcelona, Spain
| | - Alvaro González-Franco
- Servicio de Medicina Interna, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | - Jesús Casado-Cerrada
- Internal Medicine Department, University Hospital of Getafe, 28905, Madrid, Spain
| |
Collapse
|
34
|
Kumar N, Iyer MH, Kumar J, Hussain N, Essandoh M. Prognosticating With Left Ventricular Global Longitudinal Strain: A New Opportunity for Cardiac Anesthesiologists. J Cardiothorac Vasc Anesth 2023:S1053-0770(23)00172-6. [PMID: 36990806 DOI: 10.1053/j.jvca.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Nicolas Kumar
- Department of Anesthesiology, Pain Medicine, and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| | - Manoj H Iyer
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Julia Kumar
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Michael Essandoh
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
35
|
Das B, Deshpande S, Akam-Venkata J, Shakti D, Moskowitz W, Lipshultz SE. Heart Failure with Preserved Ejection Fraction in Children. Pediatr Cardiol 2023; 44:513-529. [PMID: 35978175 DOI: 10.1007/s00246-022-02960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Diastolic dysfunction (DD) refers to abnormalities in the mechanical function of the left ventricle (LV) during diastole. Severe LVDD can cause symptoms and the signs of heart failure (HF) in the setting of normal or near normal LV systolic function and is referred to as diastolic HF or HF with preserved ejection fraction (HFpEF). Pediatric cardiologists have long speculated HFpEF in children with congenital heart disease and cardiomyopathy. However, understanding the risk factors, clinical course, and validated biomarkers predictive of the outcome of HFpEF in children is challenging due to heterogeneous etiologies and overlapping pathophysiological mechanisms. The natural history of HFpEF varies depending upon the patient's age, sex, race, geographic location, nutritional status, biochemical risk factors, underlying heart disease, and genetic-environmental interaction, among other factors. Pediatric onset HFpEF is often not the same disease as in adults. Advances in the noninvasive evaluation of the LV diastolic function by strain, and strain rate analysis with speckle-tracking echocardiography, tissue Doppler imaging, and cardiac magnetic resonance imaging have increased our understanding of the HFpEF in children. This review addresses HFpEF in children and identifies knowledge gaps in the underlying etiologies, pathogenesis, diagnosis, and management, especially compared to adults with HFpEF.
Collapse
Affiliation(s)
- Bibhuti Das
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Shriprasad Deshpande
- Department of Pediatrics, Children's National Hospital, The George Washington University, Washington, DC, USA
| | - Jyothsna Akam-Venkata
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Divya Shakti
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - William Moskowitz
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Steven E Lipshultz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Oishei Children's Hospital, Buffalo, NY, 14203, USA
| |
Collapse
|
36
|
Tempe DK. Teamwork in Acute Heart Failure: The Role of the Cardiac Anesthesiologist. J Cardiothorac Vasc Anesth 2023; 37:843-845. [PMID: 36842940 DOI: 10.1053/j.jvca.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Affiliation(s)
- Deepak K Tempe
- Department of Anaesthesiology and Critical Care, Institute of Liver and Biliary Sciences, New Delhi, India; Professor Emeritus, Cardiac Anaesthesia, National Academy of Medical Sciences, New Delhi, India.
| |
Collapse
|
37
|
Schulz ME, Hockenberry JC, Katunaric B, Pagel PS, Freed JK. Blockade of endothelial Mas receptor restores the vasomotor response to phenylephrine in human resistance arterioles pretreated with captopril and exposed to propofol. BMC Anesthesiol 2022; 22:240. [PMID: 35906533 PMCID: PMC9336100 DOI: 10.1186/s12871-022-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypotension that is resistant to phenylephrine is a complication that occurs in anesthetized patients treated with angiotensin converting enzyme (ACE) inhibitors. We tested the hypothesis that Ang 1–7 and the endothelial Mas receptor contribute to vasodilation produced by propofol in the presence of captopril. Methods The internal diameters of human adipose resistance arterioles were measured before and after administration of phenylephrine (10–9 to 10–5 M) in the presence and absence of propofol (10–6 M; added 10 min before the phenylephrine) or the Mas receptor antagonist A779 (10–5 M; added 30 min before phenylephrine) in separate experimental groups. Additional groups of arterioles were incubated for 16 to 20 h with captopril (10–2 M) or Ang 1–7 (10–9 M) before experimentation with phenylephrine, propofol, and A779. Results Propofol blunted phenylephrine-induced vasoconstriction in normal vessels. Captopril pretreatment alone did not affect vasoconstriction, but the addition of propofol markedly attenuated the vasomotor response to phenylephrine. A779 alone did not affect vasoconstriction in normal vessels, but it restored vasoreactivity in arterioles pretreated with captopril and exposed to propofol. Ang 1–7 reduced the vasoconstriction in response to phenylephrine. Addition of propofol to Ang 1–7-pretreated vessels further depressed phenylephrine-induced vasoconstriction to an equivalent degree as the combination of captopril and propofol, but A779 partially reversed this effect. Conclusions Mas receptor activation by Ang 1–7 contributes to phenylephrine-resistant vasodilation in resistance arterioles pretreated with captopril and exposed to propofol. These data suggest an alternative mechanism by which refractory hypotension may occur in anesthetized patients treated with ACE inhibitors.
Collapse
Affiliation(s)
- Mary E Schulz
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph C Hockenberry
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Paul S Pagel
- Anesthesiology Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Julie K Freed
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
38
|
Predictive Value of Monocyte Chemoattractant Protein-1 in the Development of Diastolic Dysfunction in Patients with Psoriatic Arthritis. DISEASE MARKERS 2022; 2022:4433313. [PMID: 35692875 PMCID: PMC9187441 DOI: 10.1155/2022/4433313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/24/2022] [Indexed: 01/19/2023]
Abstract
We aimed to evaluate the diagnostic accuracy of the proinflammatory monocyte chemotactic protein-1 (MCP-1) in the diagnosis of asymptomatic diastolic dysfunction (DD) in patients with psoriatic arthritis (PsA). The disease activity in psoriatic arthritis (DAPSA) was determined using clinical and laboratory parameters, and echocardiography was performed to estimate DD. Serum MCP-1 concentrations were elevated in PsA patients with DD diagnosed with ultrasound (median (25th percentile, 75th percentile): 366.6 pg/mL (283, 407.1 pg/mL) vs. 277.5 pg/mL (223.5, 319.1 pg/mL) in controls;
). PsA patients with serum MCP-1 concentration higher than the cut-off value of 347.6 pg/mL had a 7.74-fold higher chance of developing DD than PsA patients with lower serum MCP-1 concentrations (controls), with a specificity of 86.36% and sensitivity of 55%, as verified using ultrasound. The group with MCP-1 concentrations above the cut-off value also showed a higher late peak diastolic mitral inflow velocity, A-wave value (
), E/E
ratio (
), and a lower E/A ratio (
), peak systolic left atrial reservoir strain, SA value (
), early peak diastolic displacement of the mitral septal annulus, E
wave value (
), than controls. Systolic blood pressure (
), LDL cholesterol concentration (
), glucose concentration (
), and DAPSA (
) increased in the PsA group with higher MCP-1 concentrations, although there were no differences in comorbidities and therapy between the groups compared. Thus, the serum MCP-1 concentration was a significant and independent prognostic indicator for asymptomatic DD in PsA patients (
,
). The DAPSA score in PsA patients might indicate the need for echocardiography and adjustment of anti-inflammatory treatment in terms of DD prevention.
Collapse
|
39
|
Zhang H, Hu W, Wang Y, Liu J, You L, Dong Q, Chang G, Cheng X, Liu Z, Zhang D. The relationship between ambulatory arterial stiffness index and left ventricular diastolic dysfunction in HFpEF: a prospective observational study. BMC Cardiovasc Disord 2022; 22:246. [PMID: 35655132 PMCID: PMC9161538 DOI: 10.1186/s12872-022-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background The relationship between ambulatory arterial stiffness index (AASI) and left ventricular diastolic dysfunction (LVDD) in patients with heart failure with preserved ejection fraction (HFpEF) is unknown. We aimed to investigate the association between the AASI and LVDD in HFpEF. Methods We prospective enrolled consecutive patients with HFpEF in Chongqing, China. Twenty-four-hour ambulatory blood pressure monitoring (24 h-ABPM) and echocardiography were performed in each patient. AASI was obtained through individual 24 h-ABPM. The relationship between AASI and LVDD was analyzed. Results A total of 107 patients with HFpEF were included. The mean age was 68.45 ± 14.02 years and 63 (59%) were women. The patients were divided into two groups according to the upper normal border of AASI (0.55). AASI > 0.55 group were more likely to be older, to have higher mean systolic blood pressure and worsen left ventricular diastolic function than AASI group ≤ 0.55. AASI was closely positive related to the diastolic function parameters, including mean E/e′ (r = 0.307, P = 0.001), septal E/e′ (r = 0.290, P = 0.002), lateral E/e′ (r = 0.276, P = 0.004) and E (r = 0.274, P = 0.004). After adjusting for conventional risk factors, AASI was still an independent risk factors of mean E/e′ > 10 in patients with HFpEF (OR: 2.929, 95%CI: 1.214–7.064, P = 0.017), and the association between AASI and mean E/e′ > 14 was reduced (OR: 2.457, 95%CI: 1.030–5.860, P = 0.043). AASI had a partial predictive value for mean E/e′ > 10 (AUC = 0.691, P = 0.002), while the predictive value for mean E/e′ > 14 was attenuated (AUC = 0.624, P = 0.034). Conclusion AASI was positive related to E/e′ in HFpEF and might be an independent risk factor for the increase of mean E/e′. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02679-6.
Collapse
|
40
|
Pandey AK, Dhingra NK, Hibino M, Gupta V, Verma S. Sodium-glucose cotransporter 2 inhibitors in heart failure with reduced or preserved ejection fraction: a meta-analysis. ESC Heart Fail 2022; 9:942-946. [PMID: 35112512 PMCID: PMC8934917 DOI: 10.1002/ehf2.13805] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2023] Open
Abstract
AIMS Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to be an effective therapy in improving heart failure outcomes. We conducted a meta-analysis of randomized controlled trials to evaluate the efficacy of SGLT2 inhibitors in heart failure patients with either a reduced or preserved ejection fraction. METHODS AND RESULTS We searched MEDLINE and EMBASE for large (≥1000 patients) randomized controlled trials evaluating the effects of SGLT2 inhibitors compared with placebo in the setting of heart failure until September 2021. Our primary outcome was the composite of heart failure hospitalization and cardiovascular death, and secondary outcomes included all-cause mortality and total heart failure hospitalizations. We pooled hazard ratios and risk ratios and evaluated risk of bias with the Cochrane Collaboration tool. Four randomized controlled trials (DAPA HF, EMPEROR-Preserved, EMPEROR-Reduced, and SOLOIST-WHF) were included (n = 15 684); two of which evaluated patients with a reduced LVEF, one of which evaluated patients with a preserved LVEF, and one of which included both. Treatment with SGLT2 inhibitors resulted in a significant reduction in the composite of CV death and heart failure hospitalization (HR: 0.76, 95% CI: 0.70, 0.82, I2 : 0%, P < 0.00001). This was consistent in sub-groups of patients with LVEF ≤40% (n = 9199, HR: 0.74, 95% CI: 0.68, 0.81, I2 : 0%) and LVEF >40% (n = 6482, HR: 0.78, 95% CI: 0.68, 0.89, I2 : 0%, P-for-interaction: 0.57), as well as in sub-groups of patients with and without diabetes mellitus at baseline (P-for-interaction: 0.81). SGLT2 inhibitors were associated with a significant reduction in cardiovascular death (HR: 0.87, 95% CI: 0.79, 0.97, I2 : 0%, P < 0.00001) and total heart failure hospitalization (RR: 0.71, 95% CI: 0.67, 0.76, I2 : 0%, P < 0.00001); although a potential trend towards reduced all-cause mortality was noted with SGLT2 inhibitors, no statistically significant difference was observed (HR: 0.91, 95% CI: 0.83, 1.00, I2 : 14%, P = 0.05). CONCLUSIONS Sodium-glucose cotransporter 2 inhibitors reduce cardiovascular death and heart failure hospitalization among patients with heart failure, regardless of LVEF status.
Collapse
Affiliation(s)
- Arjun K. Pandey
- Michael G. DeGroote School of MedicineMcMaster UniversityHamiltonOntarioCanada
| | - Nitish K. Dhingra
- Division of Cardiac Surgery, St. Michael's HospitalUniversity of TorontoTorontoOntarioCanada
| | - Makoto Hibino
- Division of Cardiac Surgery, St. Michael's HospitalUniversity of TorontoTorontoOntarioCanada
- Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Vijay Gupta
- Division of Cardiac Surgery, St. Michael's HospitalUniversity of TorontoTorontoOntarioCanada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's HospitalUniversity of TorontoTorontoOntarioCanada
- Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
- Keenan Research Center in the Li Ka Shing Knowledge Institute of St. Michael's HospitalUniversity of TorontoTorontoOntarioCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
41
|
Mascolo A, di Mauro G, Cappetta D, De Angelis A, Torella D, Urbanek K, Berrino L, Nicoletti GF, Capuano A, Rossi F. Current and future therapeutic perspective in chronic heart failure. Pharmacol Res 2021; 175:106035. [PMID: 34915125 DOI: 10.1016/j.phrs.2021.106035] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
The incidence of heart failure is primarily flat or declining for a presumably reflecting better management of cardiovascular diseases, but that of heart failure with preserved ejection fraction (HFpEF) is probably increasing for the lack of an established effective treatment. Moreover, there is no specific pharmacological treatment for patients with heart failure with mildly reduced ejection fraction (HFmrEF) since no substantial prospective randomized clinical trial has been performed exclusively in such population. According to the recent 2021 European Society of Cardiology (ESC) guidelines, the triad composed of an Angiotensin Converting Enzyme inhibitor or Angiotensin Receptor-Neprilysin Inhibitor (ARNI), a beta-blocker, and a Mineralcorticoid Receptor Antagonist is the cornerstone therapy for all patients with heart failure with reduced ejection fraction (HFrEF) but a substantial gap exists for patients with HFpEF/HFmrEF. Despite the important role of the Renin-Angiotensin-Aldosterone System (RAAS) in heart failure pathophysiology, RAAS blockers were found ineffective for HFpEF patients. Indeed, even the new drug class of ARNI was found effective only in HFrEF patients. In this regard, a therapeutic alternative may be represented by drug stimulating the non-classic RAAS (ACE2 and A1-7) as well as other emerging drug classes (such as SGLT2 inhibitors). Reflecting on this global health burden and the gap in treatments among heart failure phenotypes, we summarize the leading players of heart failure pathophysiology, the available pharmacological treatments for each heart failure phenotype, and that in future development.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Konrad Urbanek
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Liberato Berrino
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, University of Campania "Luigi Vanvitelli, Multidisciplinary Department of Medical Surgical and Dental Sciences, Napoli, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
42
|
Sun Y, Si J, Li J, Dai M, King E, Zhang X, Zhang Y, Xia Y, Tse G, Liu Y. Predictive Value of HFA-PEFF Score in Patients With Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2021; 8:656536. [PMID: 34778384 PMCID: PMC8585787 DOI: 10.3389/fcvm.2021.656536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Aims: HFA-PEFF score has been proposed for diagnosing heart failure with preserved ejection fraction (HFpEF). Currently, there are only a limited number of tools for predicting the prognosis. In this study, we evaluated whether the HFA-PEFF score can predict mortality in patients with HFpEF. Methods: This single-center, retrospective observational study enrolled patients diagnosed with HFpEF at the First Affiliated Hospital of Dalian Medical University between January 1, 2015, and April 30, 2018. The subjects were divided according to their HFA-PEFF score into low (0–2 points), intermediate (3–4 points), and high (5–6 points) score groups. The primary outcome was all-cause mortality. Results: A total of 358 patients (mean age: 70.21 ± 8.64 years, 58.1% female) were included. Of these, 63 (17.6%), 156 (43.6%), and 139 (38.8%) were classified into the low, intermediate, and high score groups, respectively. Over a mean follow-up of 26.9 months, 46 patients (12.8%) died. The percentage of patients who died in the low, intermediate, and high score groups were 1 (1.6%), 18 (11.5%), and 27 (19.4%), respectively. A multivariate Cox regression identified HFA-PEFF score as an independent predictor of all-cause mortality [hazard ratio (HR):1.314, 95% CI: 1.013–1.705, P = 0.039]. A Cox analysis demonstrated a significantly higher rate of mortality in the intermediate (HR: 4.912, 95% CI 1.154–20.907, P = 0.031) and high score groups (HR: 5.291, 95% CI: 1.239–22.593, P = 0.024) than the low score group. A receiver operating characteristic (ROC) analysis indicated that the HFA-PEFF score can effectively predict all-cause mortality after adjusting for age and New York Heart Association (NYHA) class [area under the curve (AUC) 0.726, 95% CI 0.651–0.800, P = 0.000]. With an HFA-PEFF score cut-off value of 3.5, the sensitivity and specificity were 78.3 and 54.8%, respectively. The AUC on ROC analysis for the biomarker component of the score was similar to that of the total score. Conclusions: The HFA-PEFF score can be used both to diagnose HFpEF and predict the prognosis. The higher scores are associated with higher all-cause mortality.
Collapse
Affiliation(s)
- Yuxi Sun
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinping Si
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaxin Li
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mengyuan Dai
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Emma King
- Cardiovascular Analytics Group, Hong Kong SAR, China
| | - Xinxin Zhang
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanli Zhang
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Gary Tse
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Cardiovascular Analytics Group, Hong Kong SAR, China.,Kent and Medway Medical School, Canterbury, United Kingdom
| | - Ying Liu
- Heart Failure and Structural Cardiology Ward, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Chi C, Liu Y, Xu Y, Xu D. Association Between Arterial Stiffness and Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2021; 8:707162. [PMID: 34458336 PMCID: PMC8385653 DOI: 10.3389/fcvm.2021.707162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/14/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality in the world. Heart failure with preserved ejection fraction (HFpEF) accounts for about half of all heart failure. Unfortunately, the mechanisms of HFpEF are still unclear, leading to little progress of effective treatment of HFpEF. Arterial stiffness is the decrement of arterial compliance. The media of large arteries degenerate in both physiological and pathological conditions. Many studies have proven that arterial stiffness is an independent risk factor for cardiovascular disorders including diastolic dysfunction. In this perspective, we discussed if arterial stiffness is related to HFpEF, and how does arterial stiffness contribute to HFpEF. Finally, we briefly summarized current treatment strategies on arterial stiffness and HFpEF. Though some new drugs were developed, the safety and effectiveness were not adequately assessed. New pharmacologic treatment for arterial stiffness and HFpEF are urgently needed.
Collapse
Affiliation(s)
- Chen Chi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Dunkley JC, Irion CI, Yousefi K, Shehadeh SA, Lambert G, John-Williams K, Webster KA, Goldberger JJ, Shehadeh LA. Carvedilol and exercise combination therapy improves systolic but not diastolic function and reduces plasma osteopontin in Col4a3-/- Alport mice. Am J Physiol Heart Circ Physiol 2021; 320:H1862-H1872. [PMID: 33769915 PMCID: PMC8163658 DOI: 10.1152/ajpheart.00535.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
There are currently no Food and Drug Administration-approved treatments for heart failure with preserved ejection fraction (HFpEF). Here we compared the effects of exercise with and without α/β-adrenergic blockade with carvedilol in Col4a3-/- Alport mice, a model of the phenogroup 3 subclass of HFpEF with underlying renal dysfunction. Alport mice were assigned to the following groups: no treatment control (n = 29), carvedilol (n = 11), voluntary exercise (n = 9), and combination carvedilol and exercise (n = 8). Cardiac function was assessed by echocardiography after 4-wk treatments. Running activity of Alport mice was similar to wild types at 1 mo of age but markedly reduced at 2 mo (1.3 ± 0.40 vs. 4.5 ± 1.02 km/day, P < 0.05). There was a nonsignificant trend for increased running activity at 2 mo by carvedilol in the combination treatment group. Combination treatments conferred increased body weight of Col4a3-/- mice (22.0 ± 1.18 vs. 17.8 ± 0.29 g in untreated mice, P < 0.01), suggesting improved physiology, and heart rates declined by similar increments in all carvedilol-treatment groups. The combination treatment improved systolic parameters; stroke volume (30.5 ± 1.99 vs. 17.8 ± 0.77 μL, P < 0.0001) as well as ejection fraction and global longitudinal strain compared with controls. Myocardial performance index was normalized by all interventions (P < 0.0001). Elevated osteopontin plasma levels in control Alport mice were significantly lowered only by combination treatment, and renal function of the Alport group assessed by urine albumin creatinine ratio was significantly improved by all treatments. The results support synergistic roles for exercise and carvedilol to augment cardiac systolic function of Alport mice with moderately improved renal functions but no change in diastole.NEW & NOTEWORTHY In an Alport mouse model of heart failure with preserved ejection fraction (HFpEF), exercise and carvedilol synergistically improved systolic function without affecting diastole. Carvedilol alone or in combination with exercise also improved kidney function. Molecular analyses indicate that the observed improvements in cardiorenal functions were mediated at least in part by effects on serum osteopontin and related inflammatory cytokine cascades. The work presents new potential therapeutic targets and approaches for HFpEF.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Autoantigens/genetics
- Biomarkers/blood
- Carvedilol/pharmacology
- Collagen Type IV/deficiency
- Collagen Type IV/genetics
- Combined Modality Therapy
- Diastole
- Disease Models, Animal
- Down-Regulation
- Exercise Therapy
- Heart Failure/blood
- Heart Failure/genetics
- Heart Failure/physiopathology
- Heart Failure/therapy
- Mice, 129 Strain
- Mice, Knockout
- Nephritis, Hereditary/blood
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/physiopathology
- Nephritis, Hereditary/therapy
- Osteopontin/blood
- Recovery of Function
- Systole
- Ventricular Dysfunction, Left/blood
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left/drug effects
- Mice
Collapse
Affiliation(s)
- Julian C Dunkley
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Camila I Irion
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Keyvan Yousefi
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Serene A Shehadeh
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Guerline Lambert
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Krista John-Williams
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Keith A Webster
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Jeffrey J Goldberger
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| |
Collapse
|
45
|
Gold AK, Kiefer JJ, Feinman JW, Augoustides JG. Left Atrial Strain-A Valuable Window on Left Ventricular Diastolic Function. J Cardiothorac Vasc Anesth 2021; 35:1626-1627. [PMID: 33750662 DOI: 10.1053/j.jvca.2021.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Andrew K Gold
- Critical Care Division, Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jesse J Kiefer
- Critical Care Division, Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jared W Feinman
- Cardiovascular and Thoracic Division, Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John G Augoustides
- Cardiovascular and Thoracic Division, Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|