1
|
Yariv O, Newman NB, Yarchoan M, Rabiee A, Wood BJ, Salem R, Hernandez JM, Bang CK, Yanagihara TK, Escorcia FE. Advances in radiation therapy for HCC: Integration with liver-directed treatments. Hepatol Commun 2025; 9:e0653. [PMID: 40163776 PMCID: PMC11927661 DOI: 10.1097/hc9.0000000000000653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 04/02/2025] Open
Abstract
HCC is the fourth leading cause of cancer-related mortality with increasing incidence worldwide. Historically, treatment for early disease includes liver transplantation, surgical resection, and/or other local therapies, such as thermal ablation. As a result of technical advances and high-quality prospective data, the use of definitive external beam radiotherapy with ablative doses has emerged. Intermediate-stage disease has been generally addressed with arterially directed therapies (eg, chemoembolization or radioembolization) and external beam radiotherapy, while advanced stages have been addressed by systemic therapy or best supportive care. The role of each local/locoregional therapy has rapidly evolved in the context of novel pharmacotherapies, including immunotherapies and antiangiogenic agents. The combinations, indications, and timing of treatments vary widely among specialties and geographies. Here, we aim to synthesize the best quality evidence available regarding the efficacy and safety of different liver-directed modalities, with a focus on recent prospective clinical data of external beam radiotherapy within the context of other available liver-directed therapies across Barcelona Liver Classification (BCLC) stages.
Collapse
Affiliation(s)
- Orly Yariv
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Neil B. Newman
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mark Yarchoan
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Atoosa Rabiee
- Division of Gastroenterology and Hepatology, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| | - Bradford J. Wood
- Interventional Radiology, Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan M. Hernandez
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Christine K. Bang
- Radiation Oncology Clinical Care Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Ted K. Yanagihara
- Department of Radiation Oncology, University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Zeng X, Jin X, Leng J, Zhang S, Wang Y, Chen J, Zhang S, Teng L, Hu Z, Zhou S, Zeng Z, Long J. High-dose radiation induces dendritic cells maturation by promoting immunogenic cell death in nasopharyngeal carcinoma. Front Immunol 2025; 16:1554018. [PMID: 40040692 PMCID: PMC11876370 DOI: 10.3389/fimmu.2025.1554018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Aim and background Due to the radiosensitivity and deep anatomical location of nasopharyngeal carcinoma (NPC), radiotherapy serves as the cornerstone of standardized treatment for this malignancy. Beyond its cytotoxic effects, radiotherapy can serve as an immunological adjuvant by inducing immunogenic cell death (ICD). Dendritic cells (DCs), as potent antigen-presenting cells, play a critical role in tumor immunotherapy, but their exact role in the ICD process of NPC remains unclear. The effects of high-dose radiation (≥2 Gy) on DCs and the type of immune response it elicits in NPC have not been fully elucidated. Methods An in vitro study was conducted to assess whether ICD of NPC 5-8F cells induced by high-dose radiation could regulate the immune response of DCs. Specifically, the maturation and antigen-presenting capacity of DCs were evaluated following co-culture with NPC cells exposed to high-dose radiation. Results High-dose radiation was found to induce ICD in NPC 5-8F cells, as evidenced by increased pro-inflammatory factor levels and reduced anti-inflammatory factor levels in the cell culture supernatant. Co-culture with NPC cells exposed to high-dose radiation for 15 minutes significantly enhanced the expression of surface molecules on DCs, promoting their immune sensitization. Conclusion High-dose radiation-induced apoptosis of NPC 5-8F cells is a form of ICD, which plays an important role in regulating DC immune function. These findings provide insight into the immunomodulatory effects of radiotherapy in NPC and its potential to enhance tumor immunotherapy through DC activation.
Collapse
Affiliation(s)
- Xianlin Zeng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Xianhuai Jin
- Department of Oncology, Guiyang Public Health Clinical Center, Guiyang, Guizhou, China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ji Leng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shuai Zhang
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yun Wang
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Jin Chen
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shichao Zhang
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Lijing Teng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Zuquan Hu
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shi Zhou
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jinhua Long
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Fernandes Dias S, Oertel MF, Guerreiro Stücklin A, Gerber NU, Colombo E, van Doormaal TPC, Krayenbühl N. Case Report: Clinical awareness about the effect of laser interstitial thermal therapy on pediatric high-grade brain tumors after radiotherapy. Front Surg 2025; 11:1462074. [PMID: 39897706 PMCID: PMC11782241 DOI: 10.3389/fsurg.2024.1462074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
The use of magnetic resonance-guided laser interstitial thermal therapy (LITT) for the treatment of brain tumors and epileptic lesions has increased in the field of pediatric neurosurgery. However, very little is known about the effect of LITT on pediatric high-grade tumors that have been previously treated with radiotherapy. We report on two cases of children with an unexpected rapid brain tumor progression after LITT. The first case was an 11-year-old boy with a periventricular metastasis of a recurrent anaplastic ependymoma treated with proton-therapy and radiosurgery. The second case was a 6-year-old girl with a Lynch-syndrome and a recurrence of a mesio-temporo-occipital high-grade glioma admitted to gross total resection, proton-therapy, chemotherapy, bevacizumab and immune checkpoint inhibitor. Due to evidence of tumor progression in both cases, a decision was made to perform LITT. Shortly after the laser ablation, we observed a significant tumor growth along the trajectory of the LITT catheters, accompanied by clinical deterioration. The effect of LITT on pediatric ependymoma and high-grade glioma recurrence after radiotherapy is still unclear. The tumor expansion following LITT in these two patients should drive a deeper awareness of the effect of radiation and LITT on the tumor-environment. The breakage of the morphogenetic boundaries of the neuromeres, to which each tumor was initially confined, through the placement of the LITT catheters should be considered while trying to understand the disease spread mechanisms. Based on the experience of our center, we advise a careful implementation of this technique on pediatric high-grade central nervous system tumors, particularly in recurrent tumors that were previously treated with radiotherapy, until the underlying pathophysiologic mechanism has been better understood.
Collapse
Affiliation(s)
- Sandra Fernandes Dias
- Division of Pediatric Neurosurgery, University Children’s Hospital Zurich – Eleonoren Foundation, Zurich, Switzerland
| | - Markus F. Oertel
- Department of Neurosurgery and Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ana Guerreiro Stücklin
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich – Eleonoren Foundation, Zurich, Switzerland
| | - Nicolas U. Gerber
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich – Eleonoren Foundation, Zurich, Switzerland
| | - Elisa Colombo
- Department of Neurosurgery and Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tristan P. C. van Doormaal
- Department of Neurosurgery and Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Pediatric Neurosurgery, University Children’s Hospital Zurich – Eleonoren Foundation, Zurich, Switzerland
| |
Collapse
|
4
|
Dong H, Jing H, Wang XY, Kong XY, Wang YP, Zhai YR, Che SN, Fang Y, Wang SL, Wang J. Exploring the feasibility of preoperative tumor-bed boost, oncoplastic surgery, and adjuvant radiotherapy schedule in early-stage breast cancer: a phase II clinical trial. Int J Surg 2025; 111:382-393. [PMID: 39264581 PMCID: PMC11745658 DOI: 10.1097/js9.0000000000002073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Oncoplastic breast-conserving surgery (OBCS) improves satisfaction in patients who would fare otherwise sub-optimal cosmetic outcomes while bringing challenges in tumor-bed identification during adjuvant radiotherapy. The ultra-hypofractionated breast radiotherapy further shortens treatment sessions from moderately hypofractionated regimens. To circumscribe the difficulty in tumor-bed contouring and the additional toxicity from larger boost volumes, the authors, propose to move forward with the boost session preoperatively from the adjuvant radiation part. Thus, the present study aims to evaluate the feasibility of a new treatment paradigm of preoperative primary-tumor boost before breast-conserving surgery (BCS) or OBCS followed by adjuvant ultra-hypofractionated whole-breast irradiation (u-WBRT) for patients with early-stage breast cancer. METHODS There was a phase II study. Patients younger than 55 years old, with a biopsy confirmed mono-centric breast cancer, without lymph node involvement were enrolled. A preoperative primary-tumor boost was given by a single 10 Gy in 1 fraction, and BCS or OBCS was conducted within 2 weeks afterwards. Adjuvant u-WBRT (26 Gy/5.2 Gy/5 f) was given in 6 weeks postoperatively without any boost, after the full recovery from surgery. Surgical complications and patient-reported outcomes, as assessed via Breast-Q questionnaires, were documented. A propensity score matching approach was employed to identify a control group at a 1:1 ratio for BREAST-Q outcomes comparison. RESULTS From May 2022 to September 2023, 36 patients were prospectively enrolled. Surgical complications were observed in seven cases (19.4%), including three cases with Clavien-Dindo (CD) grade 1-2 and four cases with CD grade 3 complications. All but four patients (11.1%) started the planned u-WBRT within 1 week after the predefined due dates postoperatively (≤49 days). Four patients (11.1%) developed grade 2 radiodermatitis after chemotherapy initiation. Compared to the study group, the control patients reported higher scores in chest physical well-being ( P =0.045) and in their attitudes towards arm swelling ( P =0.01). No significant difference was detected in the other of domains (Satisfaction with Breasts, Sexual and Psychosocial Well-Being, and Adverse Effects of Radiation). With a median follow-up period of 9.8 months (2.4-18.9 months), none had any sign of relapse. CONCLUSION This Phase II clinical trial confirmed the technical and safety feasibility of a novel radiation schedule in patients undergoing BCS or OBCS. According to the BREAST-Q questionnaire, patients who underwent novel radiation schedules reported lower satisfaction in chest physical well-being. A randomized controlled trial is necessary to further investigate these findings. Additionally, long-term follow-up is required to assess oncological outcomes.
Collapse
Affiliation(s)
- Hao Dong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Hao Jing
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiang-Yu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiang-Yi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yi-Peng Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yi-Rui Zhai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shu-Nan Che
- Imaging Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shu-Lian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
5
|
Yang F. The integration of radiotherapy with systemic therapy in advanced triple-negative breast cancer. Crit Rev Oncol Hematol 2024; 204:104546. [PMID: 39476993 DOI: 10.1016/j.critrevonc.2024.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with high aggressiveness and poor prognosis. For patients who have undergone multiple treatments, systemic drug therapy often presents challenges with limited efficacy and significant side effects. Radiotherapy, a pivotal local treatment, has shown substantial local control benefits in patients with inoperable locally advanced or metastatic disease. Clinical evidence suggests that integrating systemic therapy with locoregional radiotherapy can confer survival advantages in advanced malignancies. Within multidisciplinary treatment, the synergy between radiotherapy and systemic therapies shows promise for enhancing outcomes and extending survival. This review synthesizes recent advances in combining radiotherapy and systemic therapy in managing advanced TNBC, focusing on preclinical and clinical evidence regarding efficacy and safety. By reviewing these advancements, we aim to identify novel therapeutic strategies and integrate clinical evidence to inform best practices in TNBC management, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Fang Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
6
|
Li S, Chen K, Sun Z, Chen M, Pi W, Zhou S, Yang H. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Expert Rev Mol Med 2024; 26:e30. [PMID: 39438247 PMCID: PMC11505612 DOI: 10.1017/erm.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the immune response via cellular and humoral immunity. RT can induce local immunity to modify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure (TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells and other immune cells. The maturation of TLS is determined by the presence of mature dendritic cells, the density of TLS is determined by the number of immune cells. TLS maturation and density both affect the antitumour immune response in the TME. This review summarized the recent research on the impact and the role of RT on TLS, including the changes of TLS components and formation conditions and the mechanism of how RT affects TLS and transforms the TME. RT may promote TLS maturation and density to modify the TME regarding enhanced antitumour immunity.
Collapse
Affiliation(s)
- Shuling Li
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kuifei Chen
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhenwei Sun
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Meng Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haihua Yang
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Daley JD, Mukherjee E, Tufino AC, Bailey N, Bhaskar S, Periyapatna N, MacFawn I, Kunning S, Hinck C, Bruno T, Olson AC, McAllister-Lucas LM, Hinck AP, Cooper K, Bao R, Cillo AR, Bailey KM. Immunocompetent murine model of Ewing sarcoma reveals role for TGFβ inhibition to enhance immune infiltrates in Ewing tumors during radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592974. [PMID: 38766091 PMCID: PMC11100684 DOI: 10.1101/2024.05.07.592974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ewing sarcoma (ES) is an aggressive cancer diagnosed in adolescents and young adults. The fusion oncoprotein (EWSR1::FLI1) that drives Ewing sarcoma is known to downregulate TGFBR2 expression (part of the TGFβ receptor). Because TGFBR2 is downregulated, it was thought that TGFβ likely plays an inconsequential role in Ewing biology. However, the expression of TGFβ in the Ewing tumor immune microenvironment (TIME) and functional impact of TGFβ in the TIME remains largely unknown given the historical lack of immunocompetent preclinical models. Here, we use single-cell RNAseq analysis of human Ewing tumors to show that immune cells, such as NK cells, are the largest source of TGFβ production in human Ewing tumors. We develop a humanized (immunocompetent) mouse model of ES and demonstrate distinct TME signatures and metastatic potential in these models as compared to tumors developed in immunodeficient mice. Using this humanized model, we study the effect of TGFβ inhibition on the Ewing TME during radiation therapy, a treatment that both enhances TGFβ activation and is used to treat aggressive ES. Utilizing a trivalent ligand TGFβ TRAP to inhibit TGFβ, we demonstrate that in combination with radiation, TGFβ inhibition both increases ES immune cell infiltration and decreases lung metastatic burden in vivo . The culmination of these data demonstrates the value of humanized models to address immunobiologic preclinical questions in Ewing sarcoma and suggests TGFβ inhibition as a promising intervention during radiation therapy to promote metastatic tumor control.
Collapse
|
8
|
Liu J, Huang S, Bi Z, Zhang X, He Z, Lan X, Tan Y, Lin X, Zhou W, Huang X. De-escalated radiotherapy for HER2-overexpressing breast cancer patients with 1-3 positive lymph nodes undergoing anti-HER2 targeted therapy. Front Oncol 2023; 13:1280900. [PMID: 38023183 PMCID: PMC10646411 DOI: 10.3389/fonc.2023.1280900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background In the era of anti-HER2 targeted therapy, the potential clinical feasibility of considering HER2-overexpressing breast cancer cases presenting with 1-3 positive axillary lymph nodes as low-risk, and thereby contemplating postoperative radiotherapy reduction, remains an important subject for in-depth examination. The aim of this retrospective study was to evaluate the effectiveness of de-escalated radiotherapy in T1-2N1M0 HER2-overexpressing breast cancer patients receiving anti-HER2 targeted therapy. Specifically, omitting regional lymph node irradiation (RNI) after breast-conserving surgery and only performing whole-breast irradiation or omitting postmastectomy radiation therapy. Methods A retrospective analysis was conducted on 429 patients with stage T1-2N1M0 primary invasive HER2-overexpressing breast cancer from our center between 2004 and 2018. Patients who received anti-HER2 targeted therapy were divided into an RNI group and a no RNI group to assess the role of RNI. The prognostic role of RNI was investigated via the Kaplan-Meier method and Cox proportional hazards modeling. Results The median follow-up time was 46.8 months (range 7.1-225.8 months). In the anti-HER2 targeted therapy group RNI yielded no significant improvements in invasive disease-free survival (IDFS) (p = 0.940), local-regional recurrence-free survival (p = 0.380), distant metastases-free survival (p = 0.698), or overall survival (p = 0.403). Estrogen receptor (ER) status (hazard ratio [HR] 0.105, 95% confidence interval [CI] 0.023-0.749, p = 0.004) and lymph vascular invasion status (LVI) (HR 5.721, 95% CI 1.586-20.633, p = 0.008) were identified as independent prognostic factors for IDFS, and ER-positive and LVI-negative patients exhibited better prognoses. Conclusion Omitting RNI may be a safe option in T1-2N1 HER2-overexpressing breast cancer patients receiving standardized anti-HER2 targeted therapy; particularly in ER-positive or LVI-negative subgroups.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Yat-Sen Breast Tumor Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Suning Huang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhuofei Bi
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxue Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Yat-Sen Breast Tumor Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziqing He
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Yat-Sen Breast Tumor Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaowen Lan
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Yat-Sen Breast Tumor Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuting Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Yat-Sen Breast Tumor Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Yat-Sen Breast Tumor Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenyi Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Yat-Sen Breast Tumor Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaobo Huang
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Yat-Sen Breast Tumor Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Pereira F, Petroianu A, Geraldo JM, Pereira C. Megavoltage radiotherapy effects on organs of the reticuloendothelial system. Acta Cir Bras 2023; 38:e384123. [PMID: 37878983 PMCID: PMC10592569 DOI: 10.1590/acb384123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/30/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE To study the uptake capacity of cells from the reticuloendothelial system after irradiation with high-energy X-rays. METHODS Eighteen male Wistar rats were distributed in three groups: group A (n = 6): control, unirradiated animals studied alongside animals from group B; group B (n = 6) and group C (n = 6): animals irradiated and studied after 24 and 48 hours, respectively. The rats were anesthetized and placed on a 10 MV linear accelerator. Next, they were irradiated in the abdominal region, with 8 Gy. Twenty-four (groups A and B) and 48 hours later (group C), a colloidal carbon solution (1 mL/kg) was intravenously injected in the tail vein. Fifty minutes later, the spleens and livers were withdrawn and prepared to be studied. Kupffer cells and splenic macrophages containing carbon pigments were counted in an optical microscope. Arithmetic means were calculated for each group and compared among them. RESULTS X-rays were associated with a reduced number of Kupffer cells containing colloidal carbon, proliferation and enlargement of biliary ducts, hypoplasia, and hepatocyte necrosis. In the irradiated spleen, the colloidal carbon uptake was concentrated in the marginal zone around the white pulp, with an inexpressive uptake of pigments by macrophages from white and red pulps. CONCLUSIONS The X-rays in the rat abdomen are associated with a reduction in the Kupffer cells uptake of colloidal carbon, hepatocyte disorders, bile duct proliferation, and splenic uptake of colloidal carbon concentrated in the marginal zone.
Collapse
Affiliation(s)
- Fernando Pereira
- Universidade Federal de Minas Gerais - Departamento de Engenharia Nuclear - Belo Horizonte (MG) - Brazil
| | - Andy Petroianu
- Universidade Federal de Minas Gerais - Departamento de Cirurgia - Belo Horizonte (MG) - Brazil
| | | | - Claubia Pereira
- Universidade Federal de Minas Gerais - Departamento de Engenharia Nuclear - Belo Horizonte (MG) - Brazil
| |
Collapse
|
10
|
Liu X, Zhao Z, Dai W, Liao K, Sun Q, Chen D, Pan X, Feng L, Ding Y, Wei S. The Development of Immunotherapy for the Treatment of Recurrent Glioblastoma. Cancers (Basel) 2023; 15:4308. [PMID: 37686584 PMCID: PMC10486426 DOI: 10.3390/cancers15174308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023] Open
Abstract
Recurrent glioblastoma (rGBM) is a highly aggressive form of brain cancer that poses a significant challenge for treatment in neuro-oncology, and the survival status of patients after relapse usually means rapid deterioration, thus becoming the leading cause of death among patients. In recent years, immunotherapy has emerged as a promising strategy for the treatment of recurrent glioblastoma by stimulating the body's immune system to recognize and attack cancer cells, which could be used in combination with other treatments such as surgery, radiation, and chemotherapy to improve outcomes for patients with recurrent glioblastoma. This therapy combines several key methods such as the use of monoclonal antibodies, chimeric antigen receptor T cell (CAR-T) therapy, checkpoint inhibitors, oncolytic viral therapy cancer vaccines, and combination strategies. In this review, we mainly document the latest immunotherapies for the treatment of glioblastoma and especially focus on rGBM.
Collapse
Affiliation(s)
- Xudong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (X.L.); (Y.D.)
| | - Zihui Zhao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Qi Sun
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (Q.S.); (L.F.)
| | - Dongjiang Chen
- Division of Neuro-Oncology, USC Keck Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Lishuang Feng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (Q.S.); (L.F.)
| | - Ying Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (X.L.); (Y.D.)
| | - Shiyou Wei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Deck J, Hartley M, Akhter M, Wang D, Bogart JA, Mix MD. Effect of Lymphopenia on Tumor Response and Clinical Outcomes Following Chemoradiotherapy in Stage III Non-Small Cell Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2023; 14:47-55. [PMID: 37228390 PMCID: PMC10204762 DOI: 10.2147/lctt.s386344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Background Prior studies suggest lymphopenia, systemic immune-inflammatory index, and tumor response all impact clinical outcomes in Stage III NSCLC. We hypothesized that tumor response after CRT would be associated with hematologic metrics and might predict clinical outcomes. Materials and Methods Patients with stage III NSCLC treated at a single institution between 2011 and 2018 were retrospectively reviewed. Pre-treatment gross tumor volume (GTV) was recorded then reassessed at 1-4 months post-CRT. Complete blood counts before, during and after treatment were recorded. Systemic immune-inflammation index (SII) was defined as neutrophil × platelet/lymphocyte. Overall survival (OS) and progression free survival (PFS) were calculated using Kaplan-Meier estimates, and compared with Wilcoxon tests. A multivariate analysis of hematologic factors impacting restricted mean survival was then performed using pseudovalue regression, accounting for other baseline factors. Results 106 patients were included. After median follow-up of 24 months, median PFS and OS were 16 and 40 months, respectively. Within the multivariate model, baseline SII was associated with OS (p = 0.046) but not PFS (p = 0.09), and baseline ALC correlated with both PFS and OS (p = 0.03 and p = 0.02, respectively). Nadir ALC, nadir SII, and recovery SII were not associated with PFS or OS. Conclusion In this cohort of patients with stage III NSCLC, baseline hematologic factors were associated with clinical outcomes including baseline ALC, baseline SII and recovery ALC. Disease response was not well correlated with hematologic factors or clinical outcomes.
Collapse
Affiliation(s)
- Jared Deck
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marissa Hartley
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mohammad Akhter
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey A Bogart
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael D Mix
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
12
|
Yang J, Huang A, Yang K, Jiang K. Neoadjuvant chemoradiotherapy plus tislelizumab followed by surgery for esophageal carcinoma (CRISEC study): the protocol of a prospective, single-arm, phase II trial. BMC Cancer 2023; 23:249. [PMID: 36922805 PMCID: PMC10015937 DOI: 10.1186/s12885-023-10687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The failure rate after neoadjuvant chemoradiotherapy followed by surgery is approximately 34.6%-48% for resectable esophageal carcinoma. Pathologic complete response after neoadjuvant chemoradiotherapy is an important factor in predicting lower recurrence and better survival. Whether the sequential addition of immunotherapy to neoadjuvant chemoradiotherapy will be beneficial to improving the pathologic complete response rate is unknown. METHODS Patients with pathologically confirmed thoracic esophageal squamous cell carcinoma and at clinical T1-2N1-3M0 or T3-4aN0-3M0 (stage II-IVA) according to the eighth edition of American Joint Committee on Cancer staging will be allocated to receive neoadjuvant radiotherapy (41.4 Gy with 23 fractions to planning target volume) with concurrent chemotherapy (albumin-bound paclitaxel, 100 mg/m2, once weekly for five weeks; carboplatin, area under the curve of 2 mg/mL/min, once weekly for five weeks) plus tislelizumab monotherapy sequentially (200 mg every three weeks for three cycles, beginning from the first to the 14th day after the end of radiotherapy). Then, subtotal esophagectomy with two-field lymphadenectomy, including the whole mediastinum and abdomen, will be performed. The primary endpoint for this study is the pathologic complete response rate after neoadjuvant chemoradiotherapy plus tislelizumab. DISCUSSION The optimal timing of the combination of immunotherapy and neoadjuvant chemoradiotherapy in esophageal carcinoma is not determined. The results of this phase II trial will be helpful to clarify the safety and efficacy of the sequential addition of tislelizumab after neoadjuvant chemoradiotherapy for locally advanced resectable esophageal carcinoma. TRIAL REGISTRATION This study was approved on January 26, 2021 and retrospectively registered with ClinicalTrials.gov ( NCT04776590 ) on March 1, 2021.
Collapse
Affiliation(s)
- Jinsong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China.
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, Liu A, He L, Wang T, Zvyagin AV, Yang B, Lin Q. Novel strategies for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci 2023; 11:1116-1136. [PMID: 36601661 DOI: 10.1039/d2bm01496c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is one of the most effective and commonly used cancer treatments for malignant tumors. However, the existing radiosensitizers have a lot of side effects and poor efficacy, which limits the curative effect and further application of radiotherapy. In recent years, emerging nanomaterials have shown unique advantages in enhancing radiosensitization. In particular, gold-based nanomaterials, with high X-ray attenuation capacity, good biocompatibility, and promising chemical, electronic and optical properties, have become a new type of radiotherapy sensitizer. In addition, gold-based nanomaterials can be used as a carrier to load a variety of drugs and immunosuppressants; in particular, its photothermal therapy, photodynamic therapy and multi-mode imaging functions aid in providing excellent therapeutic effect in coordination with RT. Recently, many novel strategies of radiosensitization mediated by multifunctional gold-based nanomaterials have been reported, which provides a new idea for improving the efficacy and reducing the side effects of RT. In this review, we systematically summarize the recent progress of various new gold-based nanomaterials that mediate radiosensitization and describe the mechanism. We further discuss the challenges and prospects in the field. It is hoped that this review will help researchers understand the latest progress of gold-based nanomaterials for radiosensitization, and encourage people to optimize the existing methods or explore novel approaches for radiotherapy.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Liang He
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
14
|
Zheng Y, Liu Y, Zhang F, Su C, Chen X, Zhang M, Sun M, Sun Y, Xing L. Radiation combined with KRAS-MEK inhibitors enhances anticancer immunity in KRAS-mutated tumor models. Transl Res 2023; 252:79-90. [PMID: 35948200 DOI: 10.1016/j.trsl.2022.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023]
Abstract
KRAS mutation is a common driver in solid tumors, and KRAS-mutated tumors are relatively resistant to radiotherapy. Therefore, we investigated the combined effect of radiation and KRAS-MEK inhibitors (AMG510 and trametinib) in KRAS-mutated tumors. The expression of programmed death-ligand 1 (PD-L1), major histocompatibility complex (MHC) class I molecules, and cytokines in KRAS-mutated cell lines was assessed using flow cytometry, western blot analysis, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. In vivo, tumor growth, T cell infiltration, and gene sequencing analyses were conducted in 2 murine KRAS-mutated models. Both AMG510 and trametinib decreased the radiation-induced increase in PD-L1 expression. Radiation and trametinib additively induced the expression of CXCL10 and CXCL11 cytokines and MHC class I in murine CT26 and LLC cell lines. The combination of trametinib and radiation controlled tumor growth and induced more infiltration of CD4+ and CD8+ T cells in vivo, wherein tumor inhibition function and the survival period of mice could be reduced by CD8+ and/or CD4+ T cell depletion. The expression levels of immune-related genes also increased in the combination therapy group. Our results indicate that KRAS-MEK inhibitors in combination with radiotherapy can enhance antitumor immunity, providing new therapeutic strategies for KRAS-mutated tumors.
Collapse
Affiliation(s)
- Yawen Zheng
- Department of Oncology, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China; Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China; Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Yanan Liu
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Fang Zhang
- Department of Oncology, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Chen Su
- Department of Oncology, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Xiaozheng Chen
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Mingyan Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Meili Sun
- Department of Oncology, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Yuping Sun
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China; Department of Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, Shandong, P. R. China.
| |
Collapse
|
15
|
Palm RF, Liveringhouse CL, Gonzalez RJ, Bui MM, Binitie O, Yang GQ, Naghavi AO. Effect of Favorable Pathologic Response After Neoadjuvant Radiation Therapy Alone in Soft-tissue Sarcoma. Adv Radiat Oncol 2023; 8:101086. [PMID: 36483058 PMCID: PMC9723307 DOI: 10.1016/j.adro.2022.101086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Whether the therapeutic response of soft-tissue sarcoma to neoadjuvant treatment is predictive for clinical outcomes is unclear. Given the rarity of this disease and the confounding effects of chemotherapy, this study analyzes whether a favorable pathologic response (fPR) after neoadjuvant radiation therapy (RT) alone is associated with clinical benefits. Methods and Materials An institutional review board-approved retrospective review was conducted on a database of patients with primary soft-tissue sarcoma treated at our institution between 1987 and 2015 with neoadjuvant RT alone followed by surgical resection. Time-to-event outcomes estimated with a Kaplan-Meier analysis included overall survival, progression-free survival (PFS), locoregional control, and distant control (DC). Cox regression analyses were performed to determine prognostic variables associated with clinical outcomes. Results Of the overall cohort of 315 patients, 181 patients (57%) were included in the primary analysis with documented pathologic necrosis (PN) rates (mean: 59%) and a median follow up from diagnosis of 48 months (range, 4-170 months). The median neoadjuvant RT dose was 50 Gy (range, 40-60 Gy), and the majority of patients had negative surgical margins (79%). Only 35 patients (19%) achieved a fPR (PN ≥95%), which was associated with a higher R0 resection rate (94% vs. 75%; P = .013), a significant 5-year PFS benefit (74% vs. 43%; P = .014), and a nonsignificant 5-year DC benefit (76% vs. 62%; P = .12) compared with PN <95%. On multivariable analysis, fPR was an independent predictor for PFS (hazard ratio: 0.47; 95% confidence interval, 0.25-0.90; P = .022). Conclusions Achieving fPR with neoadjuvant RT alone is associated with a higher R0 resection rate and possible DC benefit, translating into a significant improvement in PFS. Further studies to improve pathologic response rates and prospectively validate this endpoint are warranted.
Collapse
Affiliation(s)
- Russell F. Palm
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | | | | | - Marilyn M. Bui
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | - Odion Binitie
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | | | | |
Collapse
|
16
|
Fu W, Hou X, Dong L, Hou W. Roles of STAT3 in the pathogenesis and treatment of glioblastoma. Front Cell Dev Biol 2023; 11:1098482. [PMID: 36923251 PMCID: PMC10009693 DOI: 10.3389/fcell.2023.1098482] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant of astrocytomas mainly involving the cerebral hemispheres and the cerebral cortex. It is one of the fatal and refractory solid tumors, with a 5-year survival rate of merely 5% among the adults. IL6/JAK/STAT3 is an important signaling pathway involved in the pathogenesis and progression of GBM. The expression of STAT3 in GBM tissues is substantially higher than that of normal brain cells. The abnormal activation of STAT3 renders the tumor microenvironment of GBM immunosuppression. Besides, blocking the STAT3 pathway can effectively inhibit the growth and metastasis of GBM. On this basis, inhibition of STAT3 may be a new therapeutic approach for GBM, and the combination of STAT3 targeted therapy and conventional therapies may improve the current status of GBM treatment. This review summarized the roles of STAT3 in the pathogenesis of GBM and the feasibility of STAT3 for GBM target therapy.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xue Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wei Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
17
|
Zhao R, Wei W, Zhen L. WGCNA-based identification of potential targets and pathways in response to treatment in locally advanced breast cancer patients. Open Med (Wars) 2023; 18:20230651. [PMID: 36896338 PMCID: PMC9990777 DOI: 10.1515/med-2023-0651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 03/08/2023] Open
Abstract
Locally advanced breast cancer patients have a poor prognosis; however, the relationship between potential targets and the response to treatment is still unclear. The gene expression profiles of breast cancer patients with stages from IIB to IIIC were downloaded from The Cancer Genome Atlas. We applied weighted gene co-expression network analysis and differentially expressed gene analysis to identify the primary genes involved in treatment response. The disease-free survival between low- and high-expression groups was analyzed using Kaplan-Meier analysis. Gene set enrichment analysis was applied to identify hub genes-related pathways. Additionally, the CIBERSORT algorithm was employed to evaluate the correlation between the hub gene expression and immune cell types. A total of 16 genes were identified to be related to radiotherapy response, and low expression of SVOPL, EDAR, GSTA1, and ABCA13 was associated with poor overall survival and progression-free survival in breast cancer cases. Correlation analysis revealed that the four genes negatively related to some specific immune cell types. The four genes were downregulated in H group compared with the L group. Four hub genes associated with the immune cell infiltration of breast cancer were identified; these genes might be used as a promising biomarker to test the treatment in breast cancer patients.
Collapse
Affiliation(s)
- Ruipeng Zhao
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Wan Wei
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Linlin Zhen
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
18
|
Zhu S, Wang Y, Tang J, Cao M. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Front Immunol 2022; 13:1074477. [PMID: 36532071 PMCID: PMC9753984 DOI: 10.3389/fimmu.2022.1074477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging evidence indicates that the induction of radiotherapy(RT) on the immunogenic cell death (ICD) is not only dependent on its direct cytotoxic effect, changes in the tumor immune microenvironment also play an important role in it. Tumor immune microenvironment (TIME) refers to the immune microenvironment that tumor cells exist, including tumor cells, inflammatory cells, immune cells, various signaling molecules and extracellular matrix. TIME has a barrier effect on the anti-tumor function of immune cells, which can inhibit all stages of anti-tumor immune response. The remodeling of TIME caused by RT may affect the degree of immunogenicity, and make it change from immunosuppressive phenotype to immunostimulatory phenotype. It is of great significance to reveal the causes of immune escape of tumor cells, especially for the treatment of drug-resistant tumor. In this review, we focus on the effect of RT on the TIME, the mechanism of RT in reversing the TIME to suppress intrinsic immunity, and the sensitization effect of the remodeling of TIME caused by RT on the effectiveness of immunotherapy.
Collapse
|
19
|
Baik JS, Seo YN, Lee YC, Yi JM, Rhee MH, Park MT, Kim SD. Involvement of the p38 MAPK-NLRC4-Caspase-1 Pathway in Ionizing Radiation-Enhanced Macrophage IL-1β Production. Int J Mol Sci 2022; 23:ijms232213757. [PMID: 36430236 PMCID: PMC9698243 DOI: 10.3390/ijms232213757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1β in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1β to mature IL-1β in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1β production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1β production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1β production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1β production in response to LPS.
Collapse
Affiliation(s)
- Ji Sue Baik
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - You Na Seo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Microbiology and Immunology, College of Medicine, Inge University, Busan 47392, Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inge University, Busan 47392, Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyoung Pook National University, Daegu 41566, Korea
| | - Moon-Taek Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Correspondence: (M.-T.P.); (S.D.K.); Tel.: +82-51-720-5141 (M.-T.P.); +82-53-950-5958 (S.D.K.)
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyoung Pook National University, Daegu 41566, Korea
- Correspondence: (M.-T.P.); (S.D.K.); Tel.: +82-51-720-5141 (M.-T.P.); +82-53-950-5958 (S.D.K.)
| |
Collapse
|
20
|
Han X, Chen Y, Zhang N, Huang C, He G, Li T, Wei M, Song Q, Mo S, Lv Y. Single-cell mechanistic studies of radiation-mediated bystander effects. Front Immunol 2022; 13:849341. [PMID: 36389749 PMCID: PMC9640915 DOI: 10.3389/fimmu.2022.849341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Ionizing radiation (IR) has been widely used in the diagnosis and treatment of clinical diseases, with radiation therapy (RT) being particularly rapid, but it can induce “bystander effects” that lead to biological responses in non-target cells after their neighboring cells have been irradiated. To help clarify how radiotherapy induces these effects, To help clarify how radiotherapy induces these effects, we analyzed single-cell RNA sequencing data from irradiated intestinal tissues on day 1 (T1 state), day 3 (T3 state), day 7 (T7 state), and day 14 (T14 state) after irradiation, as well as from healthy intestinal tissues (T0 state), to reveal the cellular level, molecular level, and involvement of different time irradiated mouse intestinal tissues in biological signaling pathways. In addition, changes in immune cell subpopulations and myeloid cell subpopulations after different radiation times were further explored, and gene regulatory networks (GRNs) of these cell subpopulations were constructed. Cellular communication between radiation-specific immune cells was explored by cell-to-cell communication events. The results suggest that radiotherapy trigger changes in immune cell subsets, which then reprogram the immune ecosystem and mediate systemic bystander effects. These radiation-specific immune cells participate in a wide range of cell-to-cell communication events. In particular, radiation-specific CD8+T cells appear to be at the core of communication and appear to persist in the body after recovery from radiotherapy, with enrichment analysis showing that radiation-specific CD8+ T cells are associated with ferroptosis. Thus, radiation-specific CD8+ T cells may be involved in cellular ferroptosis-mediated adverse effects caused by RT.
Collapse
Affiliation(s)
- Xueqiong Han
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yixuan Chen
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Nan Zhang
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Chengyu Huang
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Guangyao He
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Guangxi Medical University, Nanning, China
| | - Ting Li
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Mengxin Wei
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Qiong Song
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Shaowen Mo
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
- *Correspondence: Shaowen Mo, ; Yufeng Lv,
| | - Yufeng Lv
- Department of Oncology, Foresea Life Insurance Guangxi Hospital, Nanning, China
- *Correspondence: Shaowen Mo, ; Yufeng Lv,
| |
Collapse
|
21
|
Chatterjee A, Asija S, Yadav S, Purwar R, Goda JS. Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. Int Rev Immunol 2022; 41:606-624. [PMID: 36191126 DOI: 10.1080/08830185.2022.2125963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Sandhya Yadav
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
22
|
Zhang Y, Feng Z, Liu J, Li H, Su Q, Zhang J, Huang P, Wang W, Liu J. Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioact Mater 2022; 16:359-371. [PMID: 35386314 PMCID: PMC8965723 DOI: 10.1016/j.bioactmat.2021.12.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Radioresistance reduces the antitumor efficiency of radiotherapy and further restricts its clinical application, which is mainly caused by the aggravation of immunosuppressive tumor microenvironment (ITM). Especially tumor-associated macrophages (TAMs) usually display the tumor-promoting M2 phenotype during high-dose fractional radiotherapy mediating radiotherapy resistance. Herein, the toll like receptor agonist TLR7/8a was conjugated with radiosensitive peptide hydrogel (Smac-TLR7/8 hydrogel) to regulate TAMs repolarization from M2 type into M1 type, thus modulating the ITM and overcoming the radioresistance. The Smac-TLR7/8 hydrogel was fabricated through self-assembly with nanofibrous morphology, porous structure and excellent biocompatibility. Upon γ-ray radiation, Smac-TLR7/8 hydrogel effectively polarized the macrophages into M1 type. Notably, combined with radiotherapy, TAMs repolarization regulated by Smac-TLR7/8 hydrogel could increase tumor necrosis factor secretion, activate antitumor immune response and effectively inhibit tumor growth. Moreover, TAMs repolarization rebuilt the ITM and elicited the immunogenic phenotypes in solid tumors, thus enhanced the PD1-blockade efficacy through increasing tumor infiltrating lymphocytes (TILs) and decreasing Treg cells in two different immune activity tumor mice models. Overall, this study substantiated that recruiting and repolarization of TAMs were critical in eliciting antitumor immune response and overcoming radioresistance, thus improving the efficacy of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Hui Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Qi Su
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Jiamin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
- Corresponding author.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
- Corresponding author.
| |
Collapse
|
23
|
Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D, Chen D, Wasley M, Silva JDA, Mitchell JA, Voss TA, Masrorpour F, Leyton CK, Yang L, Leuschner C, Puebla-Osorio N, Gandhi S, Nguyen QN, Cortez MA, Welsh JW. Combining a nanoparticle-mediated immunoradiotherapy with dual blockade of LAG3 and TIGIT improves the treatment efficacy in anti-PD1 resistant lung cancer. J Nanobiotechnology 2022; 20:417. [PMID: 36123677 PMCID: PMC9484155 DOI: 10.1186/s12951-022-01621-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While improvements in immunoradiotherapy have significantly improved outcomes for cancer patients, this treatment approach has nevertheless proven ineffective at controlling the majority of malignancies. One of the mechanisms of resistance to immunoradiotherapy is that immune cells may be suppressed via the myriad of different immune checkpoint receptors. Therefore, simultaneous blockade of multiple immune checkpoint receptors may enhance the treatment efficacy of immunoradiotherapy. METHODS We combined NBTXR3-enhanced localized radiation with the simultaneous blockade of three different checkpoint receptors: PD1, LAG3, and TIGIT, and tested the treatment efficacy in an anti-PD1-resistant lung cancer model in mice. 129 Sv/Ev mice were inoculated with fifty thousand αPD1-resistant 344SQR cells in the right leg on day 0 to establish primary tumors and with the same number of cells in the left leg on day 4 to establish the secondary tumors. NBTXR3 was intratumorally injected into the primary tumors on day 7, which were irradiated with 12 Gy on days 8, 9, and 10. Anti-PD1 (200 µg), αLAG3 (200 µg), and αTIGIT (200 µg) were given to mice by intraperitoneal injections on days 5, 8, 11, 14, 21, 28, 35, and 42. RESULTS This nanoparticle-mediated combination therapy is effective at controlling the growth of irradiated and distant unirradiated tumors, enhancing animal survival, and is the only one that led to the destruction of both tumors in approximately 30% of the treated mice. Corresponding with this improved response is robust activation of the immune response, as manifested by increased numbers of immune cells along with a transcriptional signature of both innate and adaptive immunity within the tumor. Furthermore, mice treated with this combinatorial therapy display immunological memory response when rechallenged by the same cancer cells, preventing tumor engraftment. CONCLUSION Our results strongly attest to the efficacy and validity of combining nanoparticle-enhanced radiotherapy and simultaneous blockade of multiple immune checkpoint receptors and provide a pre-clinical rationale for investigating its translation into human patients.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | - Genevieve Bertolet
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kewen He
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Duygu Sezen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Dawei Chen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Mark Wasley
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jordan DA Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Joylise A Mitchell
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Claudia Kettlun Leyton
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Liangpeng Yang
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Xiang W, Wu C, Wu H, Fang S, Liu N, Yu H. Survival Comparisons between Breast Conservation Surgery and Mastectomy Followed by Postoperative Radiotherapy in Stage I-III Breast Cancer Patients: Analysis of the Surveillance, Epidemiology, and End Results (Seer) Program Database. Curr Oncol 2022; 29:5731-5747. [PMID: 36005190 PMCID: PMC9406949 DOI: 10.3390/curroncol29080452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: This study aims to evaluate the overall and breast cancer-specific survival (BCSS) after breast-conserving surgery (BCS) plus radiotherapy (RT) compared with mastectomy plus RT in resectable breast cancer. Moreover, the aim is to also identify the subgroups who benefit from BCS plus RT and establish a predictive nomogram for stage II patients. Methods: Stage I−III breast cancer patients were identified from the Surveillance, Epidemiology, and End Results (SEER) database between 1990 and 2016. Patients with available clinical information were split into two groups: BCS plus RT and mastectomy plus RT. Kaplan−Meier survival analysis, univariate and multivariate regression analysis, and propensity score matching were used in the study. Hazard ratio (HR) was calculated based on stratified Cox univariate regression analyses. A prognostic nomogram by multivariable Cox regression model was developed for stage II patients, and consistency index (C-index) and calibration curve were used to evaluate the accuracy of the nomogram in the training and validation set. Results: A total of 24,590 eligible patients were enrolled. The difference in overall survival (OS) and BCSS remained significant in stage II patients both before and after PSM (after PSM: OS: HR = 0.8536, p = 0.0115; BCSS: HR = 0.7803, p = 0.0013). In stage II patients, the survival advantage effect of BCS plus RT on OS and BCSS was observed in the following subgroups: any age, smaller tumor size (<1 cm), stage IIA (T2N0, T0−1N1), ER (+), and any PR status. Secondly, the C-indexes for BCSS prediction was 0.714 (95% CI 0.694−0.734). The calibration curves showed perfect agreement in both the training and validation sets. Conclusions: BCS plus RT significantly improved the survival rates for patients of stage IIA (T2N0, T0−1N1), ER (+). For stage II patients, the nomogram was a good predictor of 5-, 10-, and 15-year BCSS. Our study may help guide treatment decisions and prolong the survival of stage II breast cancer patients.
Collapse
Affiliation(s)
- Wenbin Xiang
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huachao Wu
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Sha Fang
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Nuomin Liu
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Haijun Yu
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| |
Collapse
|
25
|
Impressive Results after "Metabolism-Guided" Lattice Irradiation in Patients Submitted to Palliative Radiation Therapy: Preliminary Results of LATTICE_01 Multicenter Study. Cancers (Basel) 2022; 14:cancers14163909. [PMID: 36010902 PMCID: PMC9406022 DOI: 10.3390/cancers14163909] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: To evaluate feasibility, toxicities, and clinical response in Stage IV patients treated with palliative “metabolism-guided” lattice technique. Patients and Methods: From June 2020 to December 2021, 30 consecutive clinical stage IV patients with 31 bulky lesions were included in this study. All patients received palliative irradiation consisting of a spatially fractionated high radiation dose delivered in spherical deposits (vertices, Vs) within the bulky disease. The Vs were placed at the edges of tumor areas with different metabolisms at the PET exam following a non-geometric arrangement. Precisely, the Vs overlapped the interfaces between the tumor areas of higher 18F-FDG uptake (>75% SUV max) and areas with lower 18F-FDG uptake. A median dose of 15 Gy/1 fraction (range 10−27 Gy in 1/3 fractions) was delivered to the Vs. Within 7 days after the Vs boost, all the gross tumor volume (GTV) was homogeneously treated with hypo-fractionated radiation therapy (RT). Results: The rate of symptomatic response was 100%, and it was observed immediately after lattice RT delivery in 3/30 patients, while 27/30 patients had a symptomatic response within 8 days from the end of GTV irradiation. Radiation-related acute grade ≥1 toxicities were observed in 6/30 (20%) patients. The rate of overall clinical response was 89%, including 23% of complete remission. The 1-year overall survival rate was 86.4%. Conclusions: “Metabolism-guided” lattice radiotherapy is feasible and well-tolerated, being able to yield very impressive results both in terms of symptom relief and overall clinical response rate in stage IV bulky disease patients. These preliminary results seem to indicate that this kind of therapy could emerge as the best therapeutic option for this patient setting.
Collapse
|
26
|
Song H, Sun H, He N, Xu C, Wang Y, Du L, Liu Y, Wang Q, Ji K, Wang J, Zhang M, Gu Y, Zhang Y, Feng L, Tillement O, Wang W, Liu Q. Gadolinium-based ultra-small nanoparticles augment radiotherapy-induced T-cell response to synergize with checkpoint blockade immunotherapy. NANOSCALE 2022; 14:11429-11442. [PMID: 35904053 DOI: 10.1039/d2nr02620a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Radiotherapy suffers from its high-dose radiation-induced systemic toxicity and radioresistance caused by the immunosuppressive tumor microenvironment. Immunotherapy using checkpoint blocking in solid tumors shows limited anticancer efficacy due to insufficient T-cell infiltration and inadequate systemic immune responses. Activation and guiding of irradiation by X-ray (AGuIX) nanoparticles with sizes below 5 nm have entered a phase III clinical trial as efficient radiosensitizers. This study aimed to develop a unique synergistic strategy based on AGuIX-mediated radiotherapy and immune checkpoint blockade to further improve the efficiency for B16 tumor therapy. AGuIX exacerbated radiation-induced DNA damage, cell cycle arrest, and apoptosis on B16 cells. More importantly, it could efficiently induce the immunogenic cell death of irradiated B16 tumor cells, and consequently trigger the maturation of dendritic cells and activation of systemic T-cell responses. Combining AGuIX-mediated radiotherapy with programmed cell death protein 1 blockade demonstrated excellent synergistic therapeutic effects in both bilateral and metastatic B16 tumor models, as indicated by a significant increase in the infiltration of effector CD8+ T cells and effective alleviation of the immunosuppressive tumor microenvironment. Our findings indicate that the synergy between radiosensitization and immunomodulation provides a new and powerful therapy regimen to achieve durable antitumor T-cell responses, which is promising for cancer treatment.
Collapse
Affiliation(s)
- Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Qin Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yumin Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Li Feng
- Department of Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | | | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
27
|
Chen S, Qin A, Yan D. Dynamic Characteristics and Predictive Capability of Tumor Voxel Dose-Response Assessed Using 18F-FDG PET/CT Imaging Feedback. Front Oncol 2022; 12:876861. [PMID: 35875108 PMCID: PMC9299377 DOI: 10.3389/fonc.2022.876861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Tumor voxel dose–response matrix (DRM) can be quantified using feedback from serial FDG-PET/CT imaging acquired during radiotherapy. This study investigated the dynamic characteristics and the predictive capability of DRM. Methods FDG-PET/CT images were acquired before and weekly during standard chemoradiotherapy with the treatment dose 2 Gy × 35 from 31 head and neck cancer patients. For each patient, deformable image registration was performed between the pretreatment/baseline PET/CT image and each weekly PET/CT image. Tumor voxel DRM was derived using linear regression on the logarithm of the weekly standard uptake value (SUV) ratios for each tumor voxel, such as SUV measured at a dose level normalized to the baseline SUV0. The dynamic characteristics were evaluated by comparing the DRMi estimated using a single feedback image acquired at the ith treatment week (i = 1, 2, 3, or 4) to the DRM estimated using the last feedback image for each patient. The predictive capability of the DRM estimated using 1 or 2 feedback images was evaluated using the receiver operating characteristic test with respect to the treatment outcome of tumor local–regional control or failure. Results The mean ± SD of tumor voxel SUV measured at the pretreatment and the 1st, 2nd, 3rd, 4th, and last treatment weeks was 6.76 ± 3.69, 5.72 ± 3.43, 3.85 ± 2.22, 3.27 ± 2.25, 2.5 ± 1.79, and 2.23 ± 1.27, respectively. The deviations between the DRMi estimated using the single feedback image obtained at the ith week and the last feedback image were 0.86 ± 4.87, −0.06 ± 0.3, −0.09 ± 0.17, and −0.09 ± 0.12 for DRM1, DRM2, DRM3, and DRM4, respectively. The predictive capability of DRM3 and DRM4 was significant (p < 0.001). The area under the curve (AUC) was increased with the increase in treatment dose level. The DRMs constructed using the single feedback image achieved an AUC of 0.86~1. The AUC was slightly improved to 0.94~1 for the DRMs estimated using 2 feedback images. Conclusion Tumor voxel metabolic activity measured using FDG-PET/CT fluctuated noticeably during the first 2 treatment weeks and obtained a stabilized reduction rate thereafter. Tumor voxel DRM constructed using a single FDG-PET/CT feedback image after the 2nd treatment week (>20 Gy) has a good predictive capability. The predictive capability improved continuously using a later feedback image and marginally improved when two feedback images were applied.
Collapse
Affiliation(s)
- Shupeng Chen
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - An Qin
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Di Yan
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States.,Radiation Oncology, Huaxi Hospital/School of Medicine, Chengdu, China
| |
Collapse
|
28
|
Ghaffari-Nazari H, Alimohammadi M, Alimohammadi R, Rostami E, Bakhshandeh M, Webster TJ, Mahmoodi Chalbatani G, Tavakkol-Afshari J, Amir Jalali S. Radiation dose and schedule influence the abscopal effect in a bilateral murine CT26 tumor model. Int Immunopharmacol 2022; 108:108737. [DOI: 10.1016/j.intimp.2022.108737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/05/2022]
|
29
|
Ye J, Mills BN, Qin SS, Garrett-Larsen J, Murphy JD, Uccello TP, Han BJ, Vrooman TG, Johnston CJ, Lord EM, Belt BA, Linehan DC, Gerber SA. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer. J Immunother Cancer 2022; 10:e004784. [PMID: 35851308 PMCID: PMC9295644 DOI: 10.1136/jitc-2022-004784] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) has been increasingly used as adjuvant therapy in pancreatic ductal adenocarcinoma (PDAC), and induces immunogenic cell death, which leads to the release of tumor antigen and damage-associated molecular patterns. However, this induction often fails to generate sufficient response to overcome pre-existing tumor microenvironment (TME) immunosuppression. Toll-like receptor (TLR) 7/8 ligands, such as R848, can amplify the effect of tumor vaccines, with recent evidence showing its antitumor effect in pancreatic cancer by modulating the immunosuppressive TME. Therefore, we hypothesized that the combination of R848 and SBRT would improve local and systemic antitumor immune responses by potentiating the antitumor effects of SBRT and reversing the immunosuppressive nature of the PDAC TME. METHODS Using murine models of orthotopic PDAC, we assessed the combination of intravenous TLR7/8 agonist R848 and local SBRT on tumor growth and immune response in primary pancreatic tumors. Additionally, we employed a hepatic metastatic model to investigate if the combination of SBRT targeting only the primary pancreatic tumor and systemic R848 is effective in controlling established liver metastases. RESULTS We demonstrated that intravenous administration of the TLR7/8 agonist R848, in combination with local SBRT, leads to superior tumor control compared with either treatment alone. The combination of R848 and SBRT results in significant immune activation of the pancreatic TME, including increased tumor antigen-specific CD8+ T cells, decreased regulatory T cells, and enhanced antigen-presenting cells maturation, as well as increased interferon gamma, granzyme B, and CCL5 along with decreased levels of interleukin 4 (IL-4), IL-6, and IL-10. Importantly, the combination of SBRT and systemic R848 also resulted in similar immunostimulatory changes in liver metastases, leading to improved metastatic control. CD8+ T cell depletion studies highlighted the necessity of these effector cells at both the local and hepatic metastatic sites. T cell receptor (TCR) clonotype analysis indicated that systemic R848 not only diversified the TCR repertoire but also conditioned the metastatic foci to facilitate entry of CD8+ T cells generated by SBRT therapy. CONCLUSIONS These findings suggest that systemic administration of TLR7/8 agonists in combination with SBRT may be a promising avenue for metastatic PDAC treatment.
Collapse
Affiliation(s)
- Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Bradley N Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Shuyang S Qin
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jesse Garrett-Larsen
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Joseph D Murphy
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Taylor P Uccello
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Booyeon J Han
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tara G Vrooman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian A Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Scott A Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
30
|
Wang L, Jiang J, Chen Y, Jia Q, Chu Q. The roles of CC chemokines in response to radiation. Radiat Oncol 2022; 17:63. [PMID: 35365161 PMCID: PMC8974090 DOI: 10.1186/s13014-022-02038-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy is an effective regimen for cancer treatment alone or combined with chemotherapy or immunotherapy. The direct effect of radiotherapy involves radiation-induced DNA damage, and most studies have focused on this area to improve the efficacy of radiotherapy. Recently, the immunomodulatory effect of radiation on the tumour microenvironment has attracted much interest. Dying tumour cells can release multiple immune-related molecules, including tumour-associated antigens, chemokines, and inflammatory mediators. Then, immune cells are attracted to the irradiated site, exerting immunostimulatory or immunosuppressive effects. CC chemokines play pivotal roles in the trafficking process. The CC chemokine family includes 28 members that attract different immune subsets. Upon irradiation, tumour cells or immune cells can release different CC chemokines. Here, we mainly discuss the importance of CCL2, CCL3, CCL5, CCL8, CCL11, CCL20 and CCL22 in radiotherapy. In irradiated normal tissues, released chemokines induce epithelial to mesenchymal transition, thus promoting tissue injury. In the tumour microenvironment, released chemokines recruit cancer-associated cells, such as tumour-infiltrating lymphocytes, myeloid-derived suppressor cells and tumour-associated macrophages, to the tumour niche. Thus, CC chemokines have protumour and antitumour properties. Based on the complex roles of CC chemokines in the response to radiation, it would be promising to target specific chemokines to alleviate radiation-induced injury or promote tumour control.
Collapse
|
31
|
Yu S, Wang Y, He P, Shao B, Liu F, Xiang Z, Yang T, Zeng Y, He T, Ma J, Wang X, Liu L. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front Oncol 2022; 12:809304. [PMID: 35198442 PMCID: PMC8858950 DOI: 10.3389/fonc.2022.809304] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Though single tumor immunotherapy and radiotherapy have significantly improved the survival rate of tumor patients, there are certain limitations in overcoming tumor metastasis, recurrence, and reducing side effects. Therefore, it is urgent to explore new tumor treatment methods. The new combination of radiotherapy and immunotherapy shows promise in improving therapeutic efficacy and reducing recurrence by enhancing the ability of the immune system to recognize and eradicate tumor cells, to overcome tumor immune tolerance mechanisms. Nanomaterials, as new drug-delivery-system materials of the 21st century, can maintain the activity of drugs, improve drug targeting, and reduce side effects in tumor immunotherapy. Additionally, nanomaterials, as radiosensitizers, have shown great potential in tumor radiotherapy due to their unique properties, such as light, heat, electromagnetic effects. Here, we review the mechanisms of tumor immunotherapy and radiotherapy and the synergy of radiotherapy with multiple types of immunotherapies, including immune checkpoint inhibitors (ICIs), tumor vaccines, adoptive cell therapy, and cytokine therapy. Finally, we propose the potential for nanomaterials in tumor radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Siting Yu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Bianfei Shao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongzheng Xiang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Yang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zeng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiachun Ma
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiran Wang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lei Liu,
| |
Collapse
|
32
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:life11121437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
- Correspondence: ; Tel.: +39-08713554567
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
33
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
34
|
Werner J, Strobel K, Lehnick D, Rajan GP. Overall Neutrophil-to-Lymphocyte Ratio and SUV max of Nodal Metastases Predict Outcome in Head and Neck Cancer Before Chemoradiation. Front Oncol 2021; 11:679287. [PMID: 34692472 PMCID: PMC8534919 DOI: 10.3389/fonc.2021.679287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction This study investigates the pretherapeutic neutrophil-to-lymphocyte ratio (NLR) with markers of tumor metabolism in 18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and their potential prognostic value in head and neck cancer patients prior to primary chemoradiation. Materials and Methods NLR and metabolic markers of primary tumor and nodal metastases including maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were retrospectively assessed in a consecutive cohort of head and neck squamous cell cancer patients undergoing primary chemoradiation. The main outcome measure was survival. Results The study included 90 patients of which 74 had lymph node metastases at diagnosis. Median follow-up time of nodal positive patients (n=74) was 26.5 months (IQR 18-44). The NLR correlated significantly with metabolic markers of the primary tumor (TLG: rs=0.47, P<0.001; MTV: rs=0.40, P<0.001; SUVmax: rs=0.34, P=0.003), but much less with FDG-PET/CT surrogate markers of metabolic activity in nodal metastases (TLG: rs=0.15, P=0.19; MTV: rs=0.25, P=0.034; SUVmax: rs=0.06, P=0.63). For nodal positive cancer patients, multivariate analysis showed that an increased NLR (HR=1.19, 95% CI=1.04-1.37, P=0.012) and SUVmax of lymph node metastasis (HR=1.09; 95% CI=0.99-1.19; P=0.081) are independently predictive of disease-specific survival. High NLR had a negative prognostic value for overall survival (HR=1.16, 95% CI=1.02-1.33, P=0.021). Conclusion NLR correlates positively with metabolic markers of the primary tumor, suggestive of an unspecific inflammatory response in the host as a possible reflection of increased metabolism of the primary tumor. SUVmax of lymph node metastases and the NLR, however, show no correlation and are independently predictive of disease-specific survival. Therefore, their addition could be used to improve survival prediction in nodal positive head and neck cancer patients undergoing primary chemoradiation.
Collapse
Affiliation(s)
- Jonas Werner
- Department of Otorhinolaryngology - Head and Neck Surgery, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Klaus Strobel
- Department of Radiology and Nuclear Medicine, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Dirk Lehnick
- Department of Health Sciences and Medicine, Biostatistics & Methodology, University of Lucerne, Lucerne, Switzerland
| | - Gunesh P Rajan
- Department of Otorhinolaryngology - Head and Neck Surgery, Cantonal Hospital Lucerne, Lucerne, Switzerland.,Otolaryngology, Head & Neck Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
35
|
Makowska A, Lelabi N, Nothbaum C, Shen L, Busson P, Tran TTB, Eble M, Kontny U. Radiotherapy Combined with PD-1 Inhibition Increases NK Cell Cytotoxicity towards Nasopharyngeal Carcinoma Cells. Cells 2021; 10:2458. [PMID: 34572108 PMCID: PMC8470143 DOI: 10.3390/cells10092458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) in endemic regions and younger patients is characterized by a prominent lymphomononuclear infiltration. Radiation is the principal therapeutic modality for patients with NPC. Recent data suggest that the efficacy of radiotherapy in various cancers can be augmented when combined with immune checkpoint blockade. Here, we investigate the effect of radiotherapy on the killing of NPC cells by Natural Killer (NK) cells. METHODS NPC cell lines and a patient-derived xenograft were exposed to NK cells in the context of radiotherapy. Cytotoxicity was measured using the calcein-release assay. The contribution of the PD-L1/PD-1 checkpoint and signaling pathways to killing were analyzed using specific inhibitors. RESULTS Radiotherapy sensitized NPC cells to NK cell killing and upregulated expression of PD-1 ligand (PD-L1) in NPC cells and PD-1 receptor (PD-1) in NK cells. Blocking of the PD-L1/PD-1 checkpoint further increased the killing of NPC cells by NK cells in the context of radiotherapy. CONCLUSION Radiation boosts the killing of NPC cells by NK cells. Killing can be further augmented by blockade of the PD-L1/PD-1 checkpoint. The combination of radiotherapy with PD-L1/PD-1 checkpoint blockade could therefore increase the efficacy of radiotherapy in NPC tumors.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Nora Lelabi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Christina Nothbaum
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Lian Shen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Pierre Busson
- CNRS UMR 8126, Gustave Roussy, Université Paris Sud, Université Paris-Saclay, 94805 Villejuif, France; (P.B.); (T.T.B.T.)
| | - Tram Thi Bao Tran
- CNRS UMR 8126, Gustave Roussy, Université Paris Sud, Université Paris-Saclay, 94805 Villejuif, France; (P.B.); (T.T.B.T.)
| | - Michael Eble
- Department of Radiation Oncology, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany;
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| |
Collapse
|
36
|
Lai JZ, Zhu YY, Liu Y, Zhou LL, Hu L, Chen L, Zhang QY. Abscopal Effects of Local Radiotherapy Are Dependent on Tumor Immunogenicity. Front Oncol 2021; 11:690188. [PMID: 34249740 PMCID: PMC8264447 DOI: 10.3389/fonc.2021.690188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023] Open
Abstract
Although abscopal tumor regression remains a rare phenomenon, interest in exploiting how radiation stimulates the immune system to induce systemic abscopal response is increasing. Here, we tested the hypothesis that tumor immunogenicity determined the ability of radiotherapy to induce abscopal effects. We established highly (MC-38 and E.G7-OVA) or poorly (LL/2 and B16-F10) immunogenic tumor models in this study and treated them with sham radiation, a single dose of 15 Gy, or three fractions of 5 Gy on three consecutive days. Alterations in the tumor microenvironment after radiation were examined by flow cytometry and RNA sequencing. Our results demonstrated the positive correlation between tumor immunogenicity and the abscopal effect of radiotherapy. The single dose of 15 Gy radiation was an effective regimen for inducing abscopal effects in highly immunogenic tumors. Local radiation reshaped the tumor microenvironment of irradiated and non-irradiated distant tumors by increasing CD8 T-cell infiltration and reducing suppressive immune cell accumulation. However, radiation alone was insufficient to elicit abscopal effects in poorly immunogenic tumors. No significant alterations were detected in the non-irradiated distant tumor microenvironment after radiation of poorly immunogenic tumors. In addition, tumor immunogenic subtypes were associated with the radiological response and clinical outcome of patients receiving radiotherapy. These findings indicated that tumor immunogenicity was the dominant characteristic that could predict the abscopal effect of radiotherapy. Our study provides an in-depth understanding of the immunological mechanisms involved in abscopal effects and highlights the impact of tumor heterogeneity on the therapeutic efficacy of radiotherapy and their combination with immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Jin-Zhi Lai
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.,Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Yang Zhu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Ying Liu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Lin-Lin Zhou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Li Hu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Qiu-Yu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Ionna F, Bossi P, Guida A, Alberti A, Muto P, Salzano G, Ottaiano A, Maglitto F, Leopardo D, De Felice M, Longo F, Tafuto S, Della Vittoria Scarpati G, Perri F. Recurrent/Metastatic Squamous Cell Carcinoma of the Head and Neck: A Big and Intriguing Challenge Which May Be Resolved by Integrated Treatments Combining Locoregional and Systemic Therapies. Cancers (Basel) 2021; 13:2371. [PMID: 34069092 PMCID: PMC8155962 DOI: 10.3390/cancers13102371] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is a complex group of malignancies, posing several challenges to treating physicians. Most patients are diagnosed with a locally advanced disease and treated with strategies integrating surgery, chemotherapy, and radiotherapy. About 50% of these patients will experience a recurrence of disease. Recurrent/metastatic SCCHN have poor prognosis with a median survival of about 12 months despite treatments. In the last years, the strategy to manage recurrent/metastatic SCCHN has profoundly evolved. Salvage treatments (surgery or re-irradiation) are commonly employed in patients suffering from locoregional recurrences and their role has gained more and more importance in the last years. Re-irradiation, using some particularly fractionating schedules, has the dual task of reducing the tumor mass and eliciting an immune response against cancer (abscopal effect). In this review, we will analyze the main systemic and/or locoregional strategies aimed at facing the recurrent/metastatic disease, underlining the enormous importance of the multidisciplinary approach in these types of patients.
Collapse
Affiliation(s)
- Franco Ionna
- Otolaryngology Unit, INT IRCCS Foundation G. Pascale, Naples. Via M. Semmola, 80131 Naples, Italy; (F.I.); (G.S.); (F.M.)
| | - Paolo Bossi
- Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, ASST-Spedali Civili, 25123 Brescia, Italy; (P.B.); (A.A.)
| | - Agostino Guida
- U.O.C. Odontostomatologia, A.O.R.N. Cardarelli, 80131 Naples, Italy;
| | - Andrea Alberti
- Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, ASST-Spedali Civili, 25123 Brescia, Italy; (P.B.); (A.A.)
| | - Paolo Muto
- Radiation Therapy Unit, INT IRCCS Foundation G Pascale, Via M. Semmola, 80131 Naples, Italy;
| | - Giovanni Salzano
- Otolaryngology Unit, INT IRCCS Foundation G. Pascale, Naples. Via M. Semmola, 80131 Naples, Italy; (F.I.); (G.S.); (F.M.)
| | - Alessandro Ottaiano
- Department of Abdominal Oncology, SSD-Innovative Therapies for Abdominal Cancers, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale” Via M. Semmola, 80131 Naples, Italy;
| | - Fabio Maglitto
- Otolaryngology Unit, INT IRCCS Foundation G. Pascale, Naples. Via M. Semmola, 80131 Naples, Italy; (F.I.); (G.S.); (F.M.)
| | - Davide Leopardo
- Medical Oncology Unit, Azienda Ospedaliera S. Anna e S. Sebastiano, 81100 Caserta, Italy; (D.L.); (M.D.F.)
| | - Marco De Felice
- Medical Oncology Unit, Azienda Ospedaliera S. Anna e S. Sebastiano, 81100 Caserta, Italy; (D.L.); (M.D.F.)
| | - Francesco Longo
- Otolaryngology and Maxillo-Facial Surgery Unit, Ospedale Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Salvatore Tafuto
- Sarcoma and Rare Tumors Medical Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale” Via M. Semmola, 80131 Naples, Italy;
| | | | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G Pascale, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
39
|
Chen Z, Cao K, Hou Y, Lu F, Li L, Wang L, Xia Y, Zhang L, Chen H, Li R, Chang L, Li W. PTTG1 knockdown enhances radiation-induced antitumour immunity in lung adenocarcinoma. Life Sci 2021; 277:119594. [PMID: 33984357 DOI: 10.1016/j.lfs.2021.119594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 12/25/2022]
Abstract
AIM Ionizing radiation (IR) can induce local and systemic antitumour immune responses to some degree and augment immunotherapeutic efficacy. IR may also increase residual tumour cell invasion and elicit immunosuppression in the tumour microenvironment (TME). It remains poorly understand, whether IR leads to immune negative response or invasive capacity increases in lung adenocarcinoma (LAC). MATERIALS AND METHODS RNA interference (RNAi) was used to silence pituitary tumour-transforming gene-1 (PTTG1) and SMAD3 expression in LAC cells. A coculture system of tumour cells and PBMCs was constructed. Cells were exposed to different doses (0, 4 and 8 Gy) of X-ray irradiation. Flow cytometric analysis and Transwell assays were applied. An orthotopic Lewis lung cancer (LLC) mouse tumour model was established. Bioluminescence imaging (BLI) was used. LLC tumours were exposed to a single 15 Gy dose of X-ray irradiation. KEY FINDINGS PTTG1 knockdown reinforced the inhibitory effect of IR on the invasive ability of A549 cells and enhanced the antitumour T cell immunity induced by IR via the transforming growth factor-β1 (TGF-β1)/SMAD3 pathway. Positive antitumour immune response and immunosuppression were simultaneously triggered by a single 15 Gy dose of local tumour irradiation. PTTG1 knockdown weakened invasive capacity and promoted the immune response balance induced by IR to tilt towards active immunity, which contributed to reduce metastasis and prolonged overall survival (OS) in orthotopic LLC tumour-bearing mouse. SIGNIFICANCE Targeted blockade of PTTG1 and the TGF-β1/SMAD3 pathway may ameliorate the immunosuppressive TME and enhance the systemic antitumour immune response induced by a single high-dose IR treatment.
Collapse
Affiliation(s)
- Zhengting Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China; Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan 650118, PR China
| | - Ke Cao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China; Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan 650118, PR China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Fei Lu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Li Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Lan Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Haixia Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China; Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan 650118, PR China
| | - Rong Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China; Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan 650118, PR China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China.
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China.
| |
Collapse
|
40
|
Xu X, Chen D, Feng X, Hu J, Ge J, Yan C, Zhang D, Ling Z, Chen J, Wu J. Apolipoprotein B Is Associated With the Microenvironment of Cholangiocarcinoma. Front Oncol 2021; 11:654689. [PMID: 33954113 PMCID: PMC8092120 DOI: 10.3389/fonc.2021.654689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/09/2021] [Indexed: 02/05/2023] Open
Abstract
Background Cholangiocarcinoma (CCA) is a kind of devastating malignancy, which is correlated with the extremely high mortality. Due to the occult pathogenesis of CCA, most patients are diagnosed in the advanced stage. However, the efficacy of chemotherapy and immunotherapy is limited for these patients. The cause for this phenomenon is unclear, the recent researches indicate that it could be related to predisposing genetic factors and tumor microenvironment (TME) changes. The TME is created by the tumor and dominated by tumor-induced interactions. And the tumor prognosis could be influenced by the extent of infiltrating immune cells and stromal cells in TME. Materials and methods The abundance ratio of immune cells for each sample was obtained via the CIBERSORT algorithm, and we used ESTIMATE score system to calculate the immune and stromal scores in CCA. The CCA cases in TCGA database were categorized into high and low score groups according to their immune/stromal scores. And then, we identified the differential expressed genes (DEGs) in two groups. Functional enrichment analysis and protein‐protein interaction networks were carried out for DEGs. Interestingly, we found out that apolipoprotein B (APOB) is the most down-regulated among these genes. Then we performed the immunohistochemistry staining of APOB in a CCA tumor microarray which contained 100 CCA cases, APOB was down-regulated in CCA samples. Thus, we evaluated the APOB function in the TME of CCA through TIMER. Results and Conclusion The results demonstrate that the infiltration degree of immune cells in CCA could be influenced by the expression of APOB, and the APOB expression could be mediated by DNA methylation. Our study not only indicates APOB is a potential target for CCA immunotherapy but also provides new ideas for researchers to explore the immunotherapy of various tumors.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Xiaode Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Jiating Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Jiangzhen Ge
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Chaobiao Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Deguo Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Zhenan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Jianzhong Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| |
Collapse
|
41
|
Wang Y. Advances in Hypofractionated Irradiation-Induced Immunosuppression of Tumor Microenvironment. Front Immunol 2021; 11:612072. [PMID: 33569059 PMCID: PMC7868375 DOI: 10.3389/fimmu.2020.612072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Hypofractionated radiotherapy is external beam irradiation delivered at higher doses in fewer fractions than conventional standard radiotherapy, which can stimulate innate and adaptive immunity to enhance the body’s immune response against cancer. The enhancement effect of hypofractionated irradiation to immune response has been widely investigated, which is considered an approach to expand the benefit of immunotherapy. Meanwhile, increasing evidence suggests that hypofractionated irradiation may induce or enhance the suppression of immune microenvironments. However, the suppressive effects of hypofractionated irradiation on immunomicroenvironment and the molecular mechanisms involved in these conditions are largely unknown. In this context, we summarized the immune mechanisms associated with hypofractionated irradiation, highlighted the advances in its immunosuppressive effect, and further discussed the potential mechanism behind this effect. In our opinion, besides its immunogenic activity, hypofractionated irradiation also triggers homeostatic immunosuppressive mechanisms that may counterbalance antitumor effects. And this may suggest that a combination with immunotherapy could possibly improve the curative potential of hypofractionated radiotherapy.
Collapse
Affiliation(s)
- Yuxia Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
42
|
Abstract
Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.
Collapse
|
43
|
Jarzebska N, Karetnikova ES, Markov AG, Kasper M, Rodionov RN, Spieth PM. Scarred Lung. An Update on Radiation-Induced Pulmonary Fibrosis. Front Med (Lausanne) 2021; 7:585756. [PMID: 33521012 PMCID: PMC7843914 DOI: 10.3389/fmed.2020.585756] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced pulmonary fibrosis is a common severe long-time complication of radiation therapy for tumors of the thorax. Current therapeutic options used in the clinic include only supportive managements strategies, such as anti-inflammatory treatment using steroids, their efficacy, however, is far from being satisfactory. Recent studies have demonstrated that the development of lung fibrosis is a dynamic and complex process, involving the release of reactive oxygen species, activation of Toll-like receptors, recruitment of inflammatory cells, excessive production of nitric oxide and production of collagen by activated myofibroblasts. In this review we summarized the current state of knowledge on the pathophysiological processes leading to the development of lung fibrosis and we also discussed the possible treatment options.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Alexander G. Markov
- Department of General Physiology, Saint-Petersburg State University, Saint Petersburg, Russia
| | - Michael Kasper
- Institute of Anatomy, Technische Universität Dresden, Dresden, Germany
| | - Roman N. Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Peter M. Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
44
|
Olivo Pimentel V, Yaromina A, Marcus D, Dubois LJ, Lambin P. A novel co-culture assay to assess anti-tumor CD8 + T cell cytotoxicity via luminescence and multicolor flow cytometry. J Immunol Methods 2020; 487:112899. [PMID: 33068606 DOI: 10.1016/j.jim.2020.112899] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/16/2020] [Accepted: 10/11/2020] [Indexed: 12/31/2022]
Abstract
T cell immunotherapies have shown great promise in patients with advanced cancer disease, revolutionizing treatment. T cell cytotoxicity is crucial in its efficacy, therefore developing ex vivo methods testing tumor and T cell interactions is pivotal. Increasing efforts have been made in developing co-culture assays with sophisticated materials and platforms aiming to mimic the tumor microenvironment (TME), but its complexity makes it difficult to develop the ideal model. In this study, we developed a simple co-culture assay, reproducible in any lab, but respecting the multicellular nature of the TME. Our goal is to combine in a single assay well-established techniques such as a luciferase assay for target cell viability analysis, a CD107a degranulation assay, and multicolor flow cytometry for the detection of cytokines and cytotoxicity markers. Cell suspensions of whole spleens and tumors containing splenic or tumor-infiltrating effector T cells of mice bearing Lewis lung carcinoma (LLC) or CT26 colon carcinoma tumors treated with radiation alone or in combination with immunotherapies were used for co-culture. LLC and CT26 cell lines transduced with the firefly luciferase gene were used as target cells. We demonstrated that splenocytes and tumor-infiltrating T cells derived from mice treated with combination therapy were able to kill approximately 50% of target cells after 48 h of co-culture. This effect was tumor cell-specific and dependent on CD8+ T cells evidenced by in vitro CD8+ T cell depletion. Flow cytometry demonstrated increased expression of CD107a and production of granzyme B, IFNγ, and TNFα by CD8+ T cells. Our co-culture assay is therefore suitable as proof of principle for in vivo therapeutic studies testing immunotherapies, and specifically to assess the involvement of cytotoxic CD8+ T cells in treatment response in LLC and CT26 tumor models. We also propose this assay as an ex vivo platform for high-throughput screening of immunomodulating agents to be tested in these two murine tumor models. This assay can be adapted to other tumor models after optimizations.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/therapy
- Cell Line, Tumor
- Coculture Techniques
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Cytotoxicity, Immunologic
- Flow Cytometry
- Granzymes/metabolism
- Immunotherapy
- Interferon-gamma/metabolism
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lysosomal Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Proof of Concept Study
- Radiotherapy
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Microenvironment
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Verónica Olivo Pimentel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
45
|
Affiliation(s)
- Dale L Bailey
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.,Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Wendy Philips
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Clive Baldock
- Research and Innovation Division, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
46
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
47
|
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Rezaeyan A, Najafi M. Abscopal effect in radioimmunotherapy. Int Immunopharmacol 2020; 85:106663. [PMID: 32521494 DOI: 10.1016/j.intimp.2020.106663] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
Abscopal effect is an interesting phenomenon in radiobiology that causes activation of immune system against cancer cells. Traditionally, this phenomenon was known as a suppressor of non-irradiated tumors or metastasis. However, it can be used as a stimulator of the immune system against primary tumor during radiotherapy. Immunotherapy, a novel tumor therapy modality, also triggers immune system against cancer. To date, some immunotherapy types have been developed. However, immune checkpoint blockade is a more common modality and some drugs have been approved by the FDA. Studies have shown that radiotherapy or immunotherapy administered alone have low efficiency for tumor control. However, their combination has a more potent anti-tumor immunity. For this aim, it is important to induce abscopal effect in primary tumors, and also use appropriate drugs to target the mechanisms involved in the exhaustion of cytotoxic CD8+T lymphocytes (CTLs) and natural killer (NK) cells. Among the different radiotherapy techniques, stereotactic body radiation therapy (SBRT) with some few fractionations is the best choice for inducing abscopal effect. On the other hand, programmed cell death 1 (PD-1) is known as one of the best targets for triggering anti-tumor immunity. This combination is known as the best choice among various strategies for radioimmunotherapy. However, there is the need for other strategies to improve the duration of immune system's activity within tumor microenvironment (TME). In this review, we explain the cellular and molecular mechanisms behind abscopal effect by radiotherapy and evaluate the molecular targets which induce potent anti-tumor immunity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolhassan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
48
|
Rouanet J, Benboubker V, Akil H, Hennino A, Auzeloux P, Besse S, Pereira B, Delorme S, Mansard S, D'Incan M, Degoul F, Rouzaire PO. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy. Cancer Immunol Immunother 2020; 69:2075-2088. [PMID: 32447411 DOI: 10.1007/s00262-020-02606-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
In line with the ongoing phase I trial (NCT03784625) dedicated to melanoma targeted radionuclide therapy (TRT), we explore the interplay between immune system and the melanin ligand [131I]ICF01012 alone or combined with immunotherapy (immune checkpoint inhibitors, ICI) in preclinical models. Here we demonstrate that [131I]ICF01012 induces immunogenic cell death, characterized by a significant increase in cell surface-exposed annexin A1 and calreticulin. Additionally, [131I]ICF01012 increases survival in immunocompetent mice, compared to immunocompromised (29 vs. 24 days, p = 0.0374). Flow cytometry and RT-qPCR analyses highlight that [131I]ICF01012 induces adaptive and innate immune cell recruitment in the tumor microenvironment. [131I]ICF01012 combination with ICIs (anti-CTLA-4, anti-PD-1, anti-PD-L1) has shown that tolerance is a main immune escape mechanism, whereas exhaustion is not present after TRT. Furthermore, [131I]ICF01012 and ICI combination has systematically resulted in a prolonged survival (p < 0.0001) compared to TRT alone. Specifically, [131I]ICF01012 + anti-CTLA-4 combination significantly increases survival compared to anti-CTLA-4 alone (41 vs. 26 days; p = 0.0011), without toxicity. This work represents the first global characterization of TRT-induced modifications of the antitumor immune response, demonstrating that tolerance is a main immune escape mechanism and that combining TRT and ICI is promising.
Collapse
Affiliation(s)
- Jacques Rouanet
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France. .,Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000, Clermont-Ferrand, France. .,Centre Jean Perrin, 58, rue Montalembert, 63011, Clermont-Ferrand, France.
| | - Valentin Benboubker
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France.,Department of Histocompatibility and Immunogenetics, CHU Gabriel Montpied, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Hussein Akil
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Ana Hennino
- UMR INSERM 1052 CNRS 5286 CRCL, 28 rue Laennec, 69008, Lyon, France
| | - Philippe Auzeloux
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Sophie Besse
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, DRCI, CHU Gabriel Montpied, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Solène Delorme
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Sandrine Mansard
- Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Michel D'Incan
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France.,Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Françoise Degoul
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Paul-Olivier Rouzaire
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France.,Department of Histocompatibility and Immunogenetics, CHU Gabriel Montpied, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| |
Collapse
|
49
|
Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020; 12:cancers12051121. [PMID: 32365838 PMCID: PMC7281593 DOI: 10.3390/cancers12051121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccination). In addition, we will outline other forms of treatment (e.g., radiotherapy, chemotherapy, oncolytic viruses) that also cause the release of antigens through immunogenic tumor cell death and can thus be considered unconventional vaccination methods (i.e., in situ vaccination). Finally, we focus on the potential additive value that vaccination strategies may have for improving the effect immunotherapy. Overall, a picture will emerge that although the field has made substantial progress, successful immunotherapy through the combination with cancer antigen vaccination, including that for gastrointestinal cancers, is still in its infancy, prompting further intensification of the research effort in this respect.
Collapse
|
50
|
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer 2020; 2:zcaa002. [PMID: 34316682 PMCID: PMC8209987 DOI: 10.1093/narcan/zcaa002] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibodies targeting programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) immune checkpoints have improved the treatments of cancers. However, not all patients equally benefit from immunotherapy. The use of cytotoxic drugs is practically inevitable to treat advanced cancers and metastases. The repertoire of cytotoxics includes 80 products that principally target nucleic acids or the microtubule network in rapidly proliferating tumor cells. Paradoxically, many of these compounds tend to become essential to promote the activity of immunotherapy and to offer a sustained therapeutic effect. We have analyzed each cytotoxic drug with respect to effect on expression and function of PD-(L)1. The major cytotoxic drugs—carboplatin, cisplatin, cytarabine, dacarbazine, docetaxel, doxorubicin, ecteinascidin, etoposide, fluorouracil, gemcitabine, irinotecan, oxaliplatin, paclitaxel and pemetrexed—all have the capacity to upregulate PD-L1 expression on cancer cells (via the generation of danger signals) and to promote antitumor immunogenicity, via activation of cytotoxic T lymphocytes, maturation of antigen-presenting cells, depletion of immunosuppressive regulatory T cells and/or expansion of myeloid-derived suppressor cells. The use of ‘immunocompatible’ cytotoxic drugs combined with anti-PD-(L)1 antibodies is a modern approach, not only for increasing the direct killing of cancer cells, but also as a strategy to minimize the activation of immunosuppressive and cancer cell prosurvival program responses.
Collapse
Affiliation(s)
| | - Xavier Thuru
- Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, UMR-S 1172, CHU Lille, 59045 Lille, France
| | - Bruno Quesnel
- Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, UMR-S 1172, CHU Lille, 59045 Lille, France
| |
Collapse
|