1
|
Wang L, Zhang C, Ma J, Li J, Wu Y, Ren Y, Li J, Li Y, Yang Y. Mammalian Ste20-like kinase 1 regulates AMPK to mitigate the progression of non-alcoholic fatty liver disease. Eur J Med Res 2025; 30:296. [PMID: 40247356 PMCID: PMC12004885 DOI: 10.1186/s40001-025-02557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) progression is strongly associated with deteriorating hepatic function, primarily driven by free cholesterol (FC) accumulation-induced lipotoxicity. Emerging evidence highlights the regulatory role of mammalian Ste20-like kinase 1 (MST1) in modulating intrahepatic lipid homeostasis, suggesting its therapeutic potential for non-alcoholic fatty liver disease (NAFLD) management. This investigation seeks to elucidate the pathophysiological mechanisms through which MST1 modulates NASH progression. METHODS The experimental design employed two murine genetic models-wild-type (WT) controls and MST1-knockout (MST1-KO) specimens-subjected to a nutritionally modified Western diet (WD) enriched with saturated fats, simple carbohydrates, and dietary cholesterol to induce non-alcoholic steatohepatitis (NASH) pathogenesis. Lentiviral transduction techniques facilitated targeted MST1 overexpression in WT animals maintained on this dietary regimen. Parallel in vitro investigations utilized HepG2 hepatocyte cultures exposed to free fatty acid (FFA) cocktails comprising palmitic and oleic acids, coupled with CRISPR-mediated MST1 suppression and complementary gain-of-function manipulations to delineate molecular mechanisms. RESULTS NASH triggers hepatic sterol biosynthesis activation, resulting in pathological FC overload concurrent with MST1 transcriptional suppression. Genetic ablation of MST1 amplifies intrahepatic FC retention and potentiates histopathological inflammation, while MST1 reconstitution mitigates steatotic FC deposition and attenuates inflammatory cascades. Mechanistic profiling revealed MST1-mediated AMPKα phosphorylation at Thr172, which suppresses cholesterogenic enzyme expression via sterol regulatory element-binding transcription factor 2 (SREBP2) axis modulation. This phosphorylation cascade demonstrates dose-dependent inhibition of HMGCR activity, resolving FC-induced hepatotoxicity. Crucially, MST1 orchestrates AMPK/SREBP2 crosstalk to maintain sterol homeostasis, with knockout models exhibiting 67% elevated SREBP2 nuclear translocation compared to controls. CONCLUSIONS The regulatory axis involving MST1-mediated AMPK phosphorylation emerges as a promising therapeutic modality for modulating hepatic sterol metabolism. It demonstrates significant potential in arresting the progression of inflammatory cascades and extracellular matrix remodeling characteristic of NASH pathogenesis. Mechanistic studies confirm that this phosphorylation cascade effectively suppresses de novo lipogenesis while enhancing cholesterol efflux capacity, thereby establishing a dual-target strategy against both metabolic dysfunction and fibrotic transformation in preclinical models.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Chenglei Zhang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Jie Ma
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Jiarui Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yuanyuan Wu
- Department of Oncology, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Yanru Ren
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Jianning Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yan Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China.
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
2
|
Ahmed A, Iaconisi GN, Di Molfetta D, Coppola V, Caponio A, Singh A, Bibi A, Capobianco L, Palmieri L, Dolce V, Fiermonte G. The Role of Mitochondrial Solute Carriers SLC25 in Cancer Metabolic Reprogramming: Current Insights and Future Perspectives. Int J Mol Sci 2024; 26:92. [PMID: 39795950 PMCID: PMC11719790 DOI: 10.3390/ijms26010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis. In this context, mitochondria, which are primarily used to maintain energy homeostasis and support balanced biosynthesis in normal cells, become central organelles for fulfilling the heightened biosynthetic and energetic demands of proliferating cancer cells. Mitochondrial coordination and metabolite exchange with other cellular compartments are crucial. The human SLC25 mitochondrial carrier family, comprising 53 members, plays a pivotal role in transporting TCA intermediates, amino acids, vitamins, nucleotides, and cofactors across the inner mitochondrial membrane, thereby facilitating this cross-talk. Numerous studies have demonstrated that mitochondrial carriers are altered in cancer cells, actively contributing to tumorigenesis. This review comprehensively discusses the role of SLC25 carriers in cancer pathogenesis and metabolic reprogramming based on current experimental evidence. It also highlights the research gaps that need to be addressed in future studies. Understanding the involvement of these carriers in tumorigenesis may provide valuable novel targets for drug development.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.N.I.); (L.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Antonello Caponio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Ansu Singh
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Aasia Bibi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70125 Bari, Italy;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.N.I.); (L.C.)
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| |
Collapse
|
3
|
Torres S, Hardesty J, Barrios M, Garcia-Ruiz C, Fernandez-Checa JC, Singal AK. Mitochondria and Alcohol-Associated Liver Disease: Pathogenic Role and Target for Therapy. Semin Liver Dis 2024. [PMID: 39317216 DOI: 10.1055/a-2421-5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Alcohol-associated liver disease (ALD) is one of the leading causes of chronic liver disease and a major cause of liver-related death. ALD is a multifactorial disease triggered by the oxidative metabolism of alcohol which leads to the activation of multiple factors that promote the progression from steatosis to more advanced stages like alcohol-associated steatohepatitis (AH) that culminate in alcohol-associated cirrhosis and hepatocellular carcinoma. Poor understanding of the complex heterogeneous pathology of ALD has limited drug development for this disease. Alterations in mitochondrial performance are considered a crucial event in paving the progression of ALD due to the crucial role of mitochondria in energy production, intermediate metabolism, calcium homeostasis, and cell fate decisions. Therefore, understanding the role of mitochondria in eliciting steatosis and progression toward AH may open the door to new opportunities for treatment. In this review, we will cover the physiological function of mitochondria, its contribution to ALD in experimental models and human disease, and explore whether targeting mitochondria may represent a game changer in the treatment of ALD.
Collapse
Affiliation(s)
- Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Josiah Hardesty
- Division of Gastroenterology and Hepatology, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Monica Barrios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashwani K Singal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Division of Gastroenterology and Hepatology, University of Louisville, Louisville, Kentucky
- Transplant Hepatology, Trager Transplant Center and Jewish Hospital, University of Health, Louisville, Kentucky
- Department of Clinical Research, Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
4
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 PMCID: PMC11722958 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Goicoechea L, Torres S, Fàbrega L, Barrios M, Núñez S, Casas J, Fabrias G, García-Ruiz C, Fernández-Checa JC. S-Adenosyl-l-methionine restores brain mitochondrial membrane fluidity and GSH content improving Niemann-Pick type C disease. Redox Biol 2024; 72:103150. [PMID: 38599016 PMCID: PMC11022094 DOI: 10.1016/j.redox.2024.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by impaired motor coordination due to neurological defects and cerebellar dysfunction caused by the accumulation of cholesterol in endolysosomes. Besides the increase in lysosomal cholesterol, mitochondria are also enriched in cholesterol, which leads to decreased membrane fluidity, impaired mitochondrial function and loss of GSH, and has been shown to contribute to the progression of NPC disease. S-Adenosyl-l-methionine (SAM) regulates membrane physical properties through the generation of phosphatidylcholine (PC) from phosphatidylethanolamine (PE) methylation and functions as a GSH precursor by providing cysteine in the transsulfuration pathway. However, the role of SAM in NPC disease has not been investigated. Here we report that Npc1-/- mice exhibit decreased brain SAM levels but unchanged S-adenosyl-l-homocysteine content and lower expression of Mat2a. Brain mitochondria from Npc1-/- mice display decreased mitochondrial GSH levels and liquid chromatography-high resolution mass spectrometry analysis reveal a lower PC/PE ratio in mitochondria, contributing to increased mitochondrial membrane order. In vivo treatment of Npc1-/- mice with SAM restores SAM levels in mitochondria, resulting in increased PC/PE ratio, mitochondrial membrane fluidity and subsequent replenishment of mitochondrial GSH levels. In vivo SAM treatment improves the decline of locomotor activity, increases Purkinje cell survival in the cerebellum and extends the average and maximal life spam of Npc1-/- mice. These findings identify SAM as a potential therapeutic approach for the treatment of NPC disease.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Fàbrega
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Mónica Barrios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Susana Núñez
- Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut D'Investigacions Químiques I Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut D'Investigacions Químiques I Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
Sharma G, Banerjee R, Srivastava S. Molecular Mechanisms and the Interplay of Important Chronic Obstructive Pulmonary Disease Biomarkers Reveals Novel Therapeutic Targets. ACS OMEGA 2023; 8:46376-46389. [PMID: 38107961 PMCID: PMC10719921 DOI: 10.1021/acsomega.3c07480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive, age-dependent, and unmet chronic inflammatory disease of the peripheral airways, leading to difficulty in exhalation. Several biomarkers have been tested in general towards the resolution for a long time, but no apparent success was achieved. Ongoing therapies of COPD have only symptomatic relief but no cure. Reactive oxygen species (ROS) are highly reactive species which include oxygen radicals and nonradical derivatives, and are the prominent players in COPD. They are produced as natural byproducts of cellular metabolism, but their levels can vary due to exposure to indoor air pollution, occupational pollution, and environmental pollutants such as cigarette smoke. In COPD, the lungs are continuously exposed to high levels of ROS thus leading to oxidative stress. ROS can cause damage to cells, proteins, lipids, and DNA which further contributes to the chronic inflammation in COPD and exacerbates the disease condition. Excessive ROS production can overwhelm cellular antioxidant systems and act as signaling molecules that regulate cellular processes, including antioxidant defense mechanisms involving glutathione and sirtuins which further leads to cellular apoptosis, cellular senescence, inflammation, and sarcopenia. In this review paper, we focused on COPD from different perspectives including potential markers and different cellular processes such as apoptosis, cellular senescence, inflammation, sirtuins, and sarcopenia, and tried to connect the dots between them so that novel therapeutic strategies to evaluate and target the possible underlying mechanisms in COPD could be explored.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
7
|
Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised "Two-Hit" Hypothesis. Cells 2023; 12:1434. [PMID: 37408268 PMCID: PMC10217489 DOI: 10.3390/cells12101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3β-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
8
|
Goicoechea L, Conde de la Rosa L, Torres S, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Redox Biol 2023; 61:102643. [PMID: 36857930 PMCID: PMC9989693 DOI: 10.1016/j.redox.2023.102643] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Cholesterol is a crucial component of membrane bilayers by regulating their structural and functional properties. Cholesterol traffics to different cellular compartments including mitochondria, whose cholesterol content is low compared to other cell membranes. Despite the limited availability of cholesterol in the inner mitochondrial membrane (IMM), the metabolism of cholesterol in the IMM plays important physiological roles, acting as the precursor for the synthesis of steroid hormones and neurosteroids in steroidogenic tissues and specific neurons, respectively, or the synthesis of bile acids through an alternative pathway in the liver. Accumulation of cholesterol in mitochondria above physiological levels has a negative impact on mitochondrial function through several mechanisms, including the limitation of crucial antioxidant defenses, such as the glutathione redox cycle, increased generation of reactive oxygen species and consequent oxidative modification of cardiolipin, and defective assembly of respiratory supercomplexes. These adverse consequences of increased mitochondrial cholesterol trafficking trigger the onset of oxidative stress and cell death, and, ultimately, contribute to the development of diverse diseases, including metabolic liver diseases (i.e. fatty liver disease and liver cancer), as well as lysosomal disorders (i.e. Niemann-Pick type C disease) and neurodegenerative diseases (i.e. Alzheimer's disease). In this review, we summarize the metabolism and regulation of mitochondrial cholesterol and its potential impact on liver and neurodegenerative diseases.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Vašková J, Kočan L, Vaško L, Perjési P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023; 28:molecules28031447. [PMID: 36771108 PMCID: PMC9919958 DOI: 10.3390/molecules28031447] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The tripeptide glutathione is found in all eukaryotic cells, and due to the compartmentalization of biochemical processes, its synthesis takes place exclusively in the cytosol. At the same time, its functions depend on its transport to/from organelles and interorgan transport, in which the liver plays a central role. Glutathione is determined as a marker of the redox state in many diseases, aging processes, and cell death resulting from its properties and reactivity. It also uses other enzymes and proteins, which enables it to engage and regulate various cell functions. This paper approximates the role of these systems in redox and detoxification reactions such as conjugation reactions of glutathione-S-transferases, glyoxylases, reduction of peroxides through thiol peroxidases (glutathione peroxidases, peroxiredoxins) and thiol-disulfide exchange reactions catalyzed by glutaredoxins.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| | - Ladislav Kočan
- Clinic of Anaesthesiology and Intensive Care Medicine, East Slovak Institute of Cardiovascular Disease, 040 11 Košice, Slovakia
| | - Ladislav Vaško
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, 7600 Pécs, Hungary
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| |
Collapse
|
10
|
Mohareer K, Banerjee S. Mycobacterial infection alters host mitochondrial activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Yue X, Kong Y, Zhang Y, Sun M, Liu S, Wu Z, Gao L, Liang X, Ma C. SREBF2-STARD4 axis confers sorafenib resistance in hepatocellular carcinoma by regulating mitochondrial cholesterol homeostasis. Cancer Sci 2022; 114:477-489. [PMID: 35642354 PMCID: PMC9899602 DOI: 10.1111/cas.15449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023] Open
Abstract
Sorafenib resistance limits its survival benefit for treatment of hepatocellular carcinoma (HCC). Cholesterol metabolism is dysregulated in HCC, and its role in sorafenib resistance of HCC has not been fully elucidated. Aiming to elucidate this, in vitro and in vivo sorafenib resistant models were established. Sterol regulatory element binding transcription factor 2 (SREBF2), the key regulator of cholesterol metabolism, was activated in sorafenib resistant HepG2 and Huh7 cells. Knockdown of SREBF2 resensitized sorafenib resistant cells and xenografts tumors to sorafenib. Further study showed that SREBF2 positively correlated with StAR related lipid transfer domain containing 4 (STARD4) in our sorafenib resistant models and publicly available datasets. STARD4, mediating cholesterol trafficking, not only promoted proliferation and migration of HepG2 and Huh7 cells, but also increased sorafenib resistance in liver cancer. Mechanically, SREBF2 promoted expression of STARD4 by directly binding to its promoter region, leading to increased mitochondrial cholesterol levels and inhibition of mitochondrial cytochrome c release. Importantly, knockdown of SREBF2 or STARD4 decreased mitochondrial cholesterol levels and increased mitochondrial cytochrome c release, respectively. Moreover, overexpression of STARD4 reversed the effect of SREBF2 knockdown on mitochondrial cytochrome c release and sorafenib resistance. In conclusion, SREBF2 promotes STARD4 transcription, which in turn contributes to mitochondrial cholesterol transport and sorafenib resistance in HCC. Therefore, targeting the SREBF2-STARD4 axis would be beneficial to a subset of HCC patients with sorafenib resistance.
Collapse
Affiliation(s)
- Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Youzi Kong
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Min Sun
- Department of Hernia and Abdominal Wall Surgery, General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Shuyue Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| |
Collapse
|
12
|
Siemienowicz KJ, Filis P, Thomas J, Fowler PA, Duncan WC, Rae MT. Hepatic Mitochondrial Dysfunction and Risk of Liver Disease in an Ovine Model of “PCOS Males”. Biomedicines 2022; 10:biomedicines10061291. [PMID: 35740312 PMCID: PMC9220073 DOI: 10.3390/biomedicines10061291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
First-degree male relatives of polycystic ovary syndrome (PCOS) sufferers can develop metabolic abnormalities evidenced by elevated circulating cholesterol and triglycerides, suggestive of a male PCOS equivalent. Similarly, male sheep overexposed to excess androgens in fetal life develop dyslipidaemia in adolescence. Dyslipidaemia, altered lipid metabolism, and dysfunctional hepatic mitochondria are associated with the development of non-alcoholic liver disease (NAFLD). We therefore dissected hepatic mitochondrial function and lipid metabolism in adolescent prenatally androgenized (PA) males from an ovine model of PCOS. Testosterone was directly administered to male ovine fetuses to create prenatal androgenic overexposure. Liver RNA sequencing and proteomics occurred at 6 months of age. Hepatic lipids, glycogen, ATP, reactive oxygen species (ROS), DNA damage, and collagen were assessed. Adolescent PA males had an increased accumulation of hepatic cholesterol and glycogen, together with perturbed glucose and fatty acid metabolism, mitochondrial dysfunction, with altered mitochondrial transport, decreased oxidative phosphorylation and ATP synthesis, and impaired mitophagy. Mitochondrial dysfunction in PA males was associated with increased hepatic ROS level and signs of early liver fibrosis, with clinical relevance to NAFLD progression. We conclude that excess in utero androgen exposure in male fetuses leads to a PCOS-like metabolic phenotype with dysregulated mitochondrial function and likely lifelong health sequelae.
Collapse
Affiliation(s)
- Katarzyna J. Siemienowicz
- School of Applied Science, Edinburgh Napier University, Edinburgh EH11 4BN, UK; (J.T.); (M.T.R.)
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, UK;
- Correspondence:
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (P.F.); (P.A.F.)
| | - Jennifer Thomas
- School of Applied Science, Edinburgh Napier University, Edinburgh EH11 4BN, UK; (J.T.); (M.T.R.)
| | - Paul A. Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (P.F.); (P.A.F.)
| | - W. Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Mick T. Rae
- School of Applied Science, Edinburgh Napier University, Edinburgh EH11 4BN, UK; (J.T.); (M.T.R.)
| |
Collapse
|
13
|
Chiu YC, Chu PW, Lin HC, Chen SK. Accumulation of cholesterol suppresses oxidative phosphorylation and altered responses to inflammatory stimuli of macrophages. Biochem Biophys Rep 2021; 28:101166. [PMID: 34786493 PMCID: PMC8579117 DOI: 10.1016/j.bbrep.2021.101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Hypercholesterolemia induces intracellular accumulation of cholesterol in macrophages and other immune cells, causing immunological dysfunctions. On cellular levels, cholesterol enrichment might lead to mitochondrial metabolic reprogramming and change macrophage functions. Additionally, as cholesterol is permeable to the plasma membrane and might integrate into the membranous organelles, such as endoplasmic reticulum or mitochondria, cholesterol enrichment might change the functions or properties of these organelles, and ultimately alters the cellular functions. In this study, we investigate the mitochondrial alterations and intracellular oxidative stress induced by accumulation of cholesterol in the macrophages, and the possible immunological impacts caused by these alterations. Macrophage cells RAW264.7 were treated with cholesterol to induce intracellular accumulation of cholesterol, which further triggered the reduced production of reactive oxygen/nitrogen species, as well as decrease of oxidative phosphorylation. Basal respiration rate, ATP production and non-mitochondrial oxygen consumption are all suppressed. In contrast, glycolysis remained unaltered in this cholesterol-enriched condition. Previous studies demonstrated that metabolic profiles are associated with macrophage polarization. We further verified whether this metabolic reprogramming influences the macrophage responses to pro-inflammatory or anti-inflammatory stimuli. Our results showed the changes of transcriptional regulations in both pro-inflammatory and anti-inflammatory genes, but not specific toward M1 or M2 polarization. Collectively, the accumulation of cholesterol induced mitochondrial metabolic reprogramming and suppressed the production of oxidative stress, and induced the alterations of macrophage functions. Cholesterol loaded macrophages exhibited decreased oxidative phosphorylation and become more glycolytic. Accumulation of cholesterol in macrophages suppressed the generation of ROS/RNS. Accumulation of cholesterol altered macrophage responses to pro-inflammatory or anti-inflammatory stimuli.
Collapse
Affiliation(s)
- Yi-Chou Chiu
- Division of General Surgery, Surgical Department, Cheng-Hsin General Hospital, Taipei City, Taiwan
| | - Pei-Wen Chu
- Institute of Neuroscience, National ChengChi University, Taipei City, Taiwan
| | - Hua-Ching Lin
- Division of Colorectal Surgery, Surgical Department, Cheng-Hsin General Hospital, Taipei City, Taiwan
- Department of Healthcare Information and Management, Ming Chuan University, Taoyuan County, Taiwan
| | - Shau-Kwaun Chen
- Institute of Neuroscience, National ChengChi University, Taipei City, Taiwan
- Corresponding author. Institute of Neuroscience, National ChengChi University, No. 64, Sec. 2, Zhinan Rd., Wenshan Dist., Taipei City, 11605, Taiwan, ROC.
| |
Collapse
|
14
|
Mitochondrial Management of Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10111824. [PMID: 34829696 PMCID: PMC8614740 DOI: 10.3390/antiox10111824] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria in aerobic eukaryotic cells are both the site of energy production and the formation of harmful species, such as radicals and other reactive oxygen species, known as ROS. They contain an efficient antioxidant system, including low-molecular-mass molecules and enzymes that specialize in removing various types of ROS or repairing the oxidative damage of biological molecules. Under normal conditions, ROS production is low, and mitochondria, which are their primary target, are slightly damaged in a similar way to other cellular compartments, since the ROS released by the mitochondria into the cytosol are negligible. As the mitochondrial generation of ROS increases, they can deactivate components of the respiratory chain and enzymes of the Krebs cycle, and mitochondria release a high amount of ROS that damage cellular structures. More recently, the feature of the mitochondrial antioxidant system, which does not specifically deal with intramitochondrial ROS, was discovered. Indeed, the mitochondrial antioxidant system detoxifies exogenous ROS species at the expense of reducing the equivalents generated in mitochondria. Thus, mitochondria are also a sink of ROS. These observations highlight the importance of the mitochondrial antioxidant system, which should be considered in our understanding of ROS-regulated processes. These processes include cell signaling and the progression of metabolic and neurodegenerative disease.
Collapse
|
15
|
di Punzio G, Gilberti M, Baruffini E, Lodi T, Donnini C, Dallabona C. A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool. Int J Mol Sci 2021; 22:ijms222212223. [PMID: 34830106 PMCID: PMC8621932 DOI: 10.3390/ijms222212223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.
Collapse
|
16
|
Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN. Role of Cholesterol-Associated Steatohepatitis in the Development of NASH. Hepatol Commun 2021; 6:12-35. [PMID: 34558856 PMCID: PMC8710790 DOI: 10.1002/hep4.1801] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related cirrhosis in the United States and globally highlights the need to better understand the mechanisms causing progression of hepatic steatosis to fibrosing steatohepatitis and cirrhosis in a small proportion of patients with NAFLD. Accumulating evidence suggests that lipotoxicity mediated by hepatic free cholesterol (FC) overload is a mechanistic driver for necroinflammation and fibrosis, characteristic of nonalcoholic steatohepatitis (NASH), in many animal models and also in some patients with NASH. Diet, lifestyle, obesity, key genetic polymorphisms, and hyperinsulinemia secondary to insulin resistance are pivotal drivers leading to aberrant cholesterol signaling, which leads to accumulation of FC within hepatocytes. FC overload in hepatocytes can lead to ER stress, mitochondrial dysfunction, development of toxic oxysterols, and cholesterol crystallization in lipid droplets, which in turn lead to hepatocyte apoptosis, necrosis, or pyroptosis. Activation of Kupffer cells and hepatic stellate cells by hepatocyte signaling and cholesterol loading contributes to this inflammation and leads to hepatic fibrosis. Cholesterol accumulation in hepatocytes can be readily prevented or reversed by statins. Observational studies suggest that use of statins in NASH not only decreases the substantially increased cardiovascular risk, but may ameliorate liver pathology. Conclusion: Hepatic FC loading may result in cholesterol-associated steatohepatitis and play an important role in the development and progression of NASH. Statins appear to provide significant benefit in preventing progression to NASH and NASH-cirrhosis. Randomized controlled trials are needed to demonstrate whether statins or statin/ezetimibe combination can effectively reverse steatohepatitis and liver fibrosis in patients with NASH.
Collapse
Affiliation(s)
- Christian L Horn
- Division of Gastroenterology and Hepatology, Department of Medicine, San Antonio Military Medical Center, Fort Sam Houston, TX, USA
| | - Amilcar L Morales
- Division of Gastroenterology and Hepatology, Department of Medicine, San Antonio Military Medical Center, Fort Sam Houston, TX, USA
| | - Christopher Savard
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA.,Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Geoffrey C Farrell
- Liver Research Group, ANU Medical School, Australian National University at the Canberra Hospital, Garran, ACT, Australia
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA.,Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
17
|
Garcia-Ruiz C, Conde de la Rosa L, Ribas V, Fernandez-Checa JC. MITOCHONDRIAL CHOLESTEROL AND CANCER. Semin Cancer Biol 2021; 73:76-85. [PMID: 32805396 PMCID: PMC7882000 DOI: 10.1016/j.semcancer.2020.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Cholesterol is a crucial component of membrane bilayers that determines their physical and functional properties. Cells largely satisfy their need for cholesterol through the novo synthesis from acetyl-CoA and this demand is particularly critical for cancer cells to sustain dysregulated cell proliferation. However, the association between serum or tissue cholesterol levels and cancer development is not well established as epidemiologic data do not consistently support this link. While most preclinical studies focused on the role of total celular cholesterol, the specific contribution of the mitochondrial cholesterol pool to alterations in cancer cell biology has been less explored. Although low compared to other bilayers, the mitochondrial cholesterol content plays an important physiological function in the synthesis of steroid hormones in steroidogenic tissues or bile acids in the liver and controls mitochondrial function. In addition, mitochondrial cholesterol metabolism generates oxysterols, which in turn, regulate multiple pathways, including cholesterol and lipid metabolism as well as cell proliferation. In the present review, we summarize the regulation of mitochondrial cholesterol, including its role in mitochondrial routine performance, cell death and chemotherapy resistance, highlighting its potential contribution to cancer. Of particular relevance is hepatocellular carcinoma, whose incidence in Western countries had tripled in the past decades due to the obesity and type II diabetes epidemic. A better understanding of the role of mitochondrial cholesterol in cancer development may open up novel opportunities for cancer therapy.
Collapse
Affiliation(s)
- Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Cells 2021; 10:cells10081851. [PMID: 34440620 PMCID: PMC8391558 DOI: 10.3390/cells10081851] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The fundamental framework of steroidogenesis is similar across steroidogenic cells, especially in initial mitochondrial steps. For instance, the START domain containing protein-mediated cholesterol transport to the mitochondria, and its conversion to pregnenolone by the enzyme P450scc, is conserved across steroidogenic cells. The enzyme P450scc localizes to the inner mitochondrial membrane, which makes the mitochondria essential for steroidogenesis. Despite this commonality, mitochondrial structure, number, and dynamics vary substantially between different steroidogenic cell types, indicating implications beyond pregnenolone biosynthesis. This review aims to focus on the growing roles of mitochondria, autophagy and lipophagy in cholesterol uptake, trafficking and homeostasis in steroidogenic cells and consequently in steroidogenesis. We will focus on these aspects in the context of the physiological need for different steroid hormones and cell-intrinsic inherent features in different steroidogenic cell types beyond mitochondria as a mere site for the beginning of steroidogenesis. The overall goal is to provide an authentic and comprehensive review on the expanding role of steroidogenic cell-intrinsic processes in cholesterol homeostasis and steroidogenesis, and to bring attention to the scientific community working in this field on these promising advancements. Moreover, we will discuss a novel mitochondrial player, prohibitin, and its potential role in steroidogenic mitochondria and cells, and consequently, in steroidogenesis.
Collapse
|
19
|
Sreekumar PG, Ferrington DA, Kannan R. Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants (Basel) 2021; 10:661. [PMID: 33923192 PMCID: PMC8146950 DOI: 10.3390/antiox10050661] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Glutathione (GSH) is present ubiquitously, and its role as a crucial cellular antioxidant in tissues, including the retina, is well established. GSH's antioxidant function arises from its ability to scavenge reactive oxygen species or to serve as an essential cofactor for GSH S-transferases and peroxidases. This review summarizes the general functions, retinal distribution, disorders linked to GSH deficiency, and the emerging role for mitochondrial GSH (mGSH) in retinal function. Though synthesized only in the cytosol, the presence of GSH in multiple cell organelles suggests the requirement for its active transport across organellar membranes. The localization and distribution of 2-oxoglutarate carrier (OGC) and dicarboxylate carrier (DIC), two recently characterized mitochondrial carrier proteins in RPE and retina, show that these transporters are highly expressed in human retinal pigment epithelium (RPE) cells and retinal layers, and their expression increases with RPE polarity in cultured cells. Depletion of mGSH levels via inhibition of the two transporters resulted in reduced mitochondrial bioenergetic parameters (basal respiration, ATP production, maximal respiration, and spare respiratory capacity) and increased RPE cell death. These results begin to reveal a critical role for mGSH in maintaining RPE bioenergetics and cell health. Thus, augmentation of mGSH pool under GSH-deficient conditions may be a valuable tool in treating retinal disorders, such as age-related macular degeneration and optic neuropathies, whose pathologies have been associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Parameswaran G. Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA 90033, USA;
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA 90033, USA;
- Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Diverse Roles of Mitochondria in Renal Injury from Environmental Toxicants and Therapeutic Drugs. Int J Mol Sci 2021; 22:ijms22084172. [PMID: 33920653 PMCID: PMC8073222 DOI: 10.3390/ijms22084172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are well-known to function as the primary sites of ATP synthesis in most mammalian cells, including the renal proximal tubule. Other functions have also been associated with different mitochondrial activities, including the regulation of redox status and the initiation of mitophagy and apoptosis. Mechanisms for the membrane transport of glutathione (GSH) and various GSH-derived metabolites across the mitochondrial inner membrane of renal proximal tubular cells are critical determinants of these functions and may serve as pharmacological targets for potential therapeutic approaches. Specific interactions of reactive intermediates, derived from drug metabolism, with molecular components in mitochondria have been identified as early steps in diverse forms of chemically-induced nephrotoxicity. Applying this key observation, we developed a novel hypothesis regarding the identification of early, sensitive, and specific biomarkers of exposure to nephrotoxicants. The underlying concept is that upon exposure to a diverse array of environmental contaminants, as well as therapeutic drugs whose efficacy is limited by nephrotoxicity, renal mitochondria will release both high- and low-molecular-weight components into the urine or the extracellular medium in an in vitro model. The detection of these components may then serve as indicators of exposure before irreversible renal injury has occurred.
Collapse
|
21
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
22
|
Marí M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A. Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants (Basel) 2020; 9:antiox9100909. [PMID: 32987701 PMCID: PMC7598719 DOI: 10.3390/antiox9100909] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are the main source of reactive oxygen species (ROS), most of them deriving from the mitochondrial respiratory chain. Among the numerous enzymatic and non-enzymatic antioxidant systems present in mitochondria, mitochondrial glutathione (mGSH) emerges as the main line of defense for maintaining the appropriate mitochondrial redox environment. mGSH’s ability to act directly or as a co-factor in reactions catalyzed by other mitochondrial enzymes makes its presence essential to avoid or to repair oxidative modifications that can lead to mitochondrial dysfunction and subsequently to cell death. Since mitochondrial redox disorders play a central part in many diseases, harboring optimal levels of mGSH is vitally important. In this review, we will highlight the participation of mGSH as a contributor to disease progression in pathologies as diverse as Alzheimer’s disease, alcoholic and non-alcoholic steatohepatitis, or diabetic nephropathy. Furthermore, the involvement of mitochondrial ROS in the signaling of new prescribed drugs and in other pathologies (or in other unmet medical needs, such as gender differences or coronavirus disease of 2019 (COVID-19) treatment) is still being revealed; guaranteeing that research on mGSH will be an interesting topic for years to come.
Collapse
Affiliation(s)
- Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Cristina de Dios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Vicente Roca-Agujetas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Blanca Cucarull
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic, Network Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| |
Collapse
|
23
|
Transporter-Mediated Mitochondrial GSH Depletion Leading to Mitochondrial Dysfunction and Rescue with αB Crystallin Peptide in RPE Cells. Antioxidants (Basel) 2020; 9:antiox9050411. [PMID: 32408520 PMCID: PMC7278883 DOI: 10.3390/antiox9050411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial glutathione (mGSH) is critical for cell survival. We recently reported the localization of OGC (SLC25A11) and DIC (SLC25A10) in hRPE. Herein, we investigated the suppression of OGC and DIC and the effect of αB crystallin chaperone peptide co-treatment on RPE cell death and mitochondrial function. Non-polarized and polarized human RPE were co-treated for 24 h with phenyl succinic acid (PS, 5 mM) or butyl malonic acid (BM, 5 mM) with or without αB cry peptide (75 µg/mL). mGSH levels, mitochondrial bioenergetics, and ETC proteins were analyzed. The effect of mGSH depletion on cell death and barrier function was determined in polarized RPE co-treated with PS, OGC siRNA or BM and αB cry peptide. Inhibition of OGC and DIC resulted in a significant decrease in mGSH and increased apoptosis. mGSH depletion significantly decreased mitochondrial respiration, ATP production, and altered ETC protein expression. αB cry peptide restored mGSH, attenuated apoptosis, upregulated ETC proteins, and improved mitochondrial bioenergetics and biogenesis. mGSH transporters exhibited differential polarized localization: DIC (apical) and OGC (apical and basal). Inhibition of mGSH transport compromised barrier function which was partially restored by αB cry peptide. Our findings suggest mGSH augmentation by its transporters may be a valuable approach in AMD therapy.
Collapse
|
24
|
Panee J, Pomozi V, Franke AA, Le Saux O, Gerschenson M. Chronic marijuana use moderates the correlations of serum cholesterol with systemic mitochondrial function and fluid cognition. Mitochondrion 2020; 52:135-143. [PMID: 32169611 DOI: 10.1016/j.mito.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 11/24/2022]
Abstract
Activating type 1 cannabinoid (CB1) receptor decreases the particle size of high-density lipoprotein (HDL) and inhibits reverse cholesterol transport (RCT). This study examined whether marijuana (MJ) use is associated with changes of RCT, and how the latter is associated with mitochondrial function and fluid cognition. We recruited 19 chronic MJ users and 20 nonusers with matched age, BMI, sex, ethnicity, and education. We measured their fluid cognition, mitochondrial function (basal and max respiration, ATP production) in peripheral blood mononuclear cells, cholesterol content in serum lipoprotein fractions, enterolactone/creatinine ratio in urine as a marker for dietary polyphenol intake, and lipase activity in serum. We found that higher percentage of large HDL cholesterol (HDL-C) correlated positively, while that of small HDL-C correlated inversely, with mitochondrial function among MJ users, but correlations of the opposite directions were found among nonusers. The concentrations of large and intermediate HDL-C correlated positively with mitochondrial function and fluid cognition among MJ users, but not among nonusers. Both percentage and concentration of large HDL-C correlated positively, while those of small HDL-C correlated inversely, with amounts of daily and lifetime MJ use. In all participants, higher urinary enterolactone/creatinine ratio and lower serum lipase activity were associated with higher large HDL-C/small HDL-C ratio, implying greater RCT. This study suggests that high MJ use may compromise RCT, which is strongly associated with mitochondrial function and fluid cognition among MJ users.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA.
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| | - Adrian A Franke
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| |
Collapse
|
25
|
Solsona-Vilarrasa E, Fucho R, Torres S, Nuñez S, Nuño-Lámbarri N, Enrich C, García-Ruiz C, Fernández-Checa JC. Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes. Redox Biol 2019; 24:101214. [PMID: 31108462 PMCID: PMC6526464 DOI: 10.1016/j.redox.2019.101214] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial cholesterol accumulation is a hallmark of alcoholic and non-alcoholic fatty liver diseases and impairs the function of specific solute carriers through changes in membrane physical properties. However, its impact on mitochondrial respiration and organization of respiratory supercomplexes has not been determined so far. Here we fed mice a cholesterol-enriched diet (HC) supplemented with sodium cholate to examine the effect of cholesterol in mitochondrial function. HC feeding increased liver cholesterol content, which downregulated Srebp2 and Hmgcr expression, while sodium cholate administration decreased Cyp7a1 and Cyp8b1 mRNA levels, suggesting the downregulation of bile acid synthesis through the classical pathway. HC-fed mice exhibited increased expression of Stard1 and Mln64 and enhanced mitochondrial free cholesterol levels (2–3 fold), leading to decreased membrane fluidity. Mitochondria from HC-fed mice displayed increased cholesterol loading in both outer and inner mitochondrial membranes. Cholesterol loading decreased complex I and complex II-driven state 3 respiration and mitochondrial membrane potential. Decreased respiratory and uncoupling control ratio from complex I was also observed after in situ enrichment of mouse liver mitochondria with cholesterol or enantiomer cholesterol, the mirror image of natural cholesterol. Moreover, in vivo cholesterol loading decreased the level of complex III2 and the assembly of respiratory supercomplexes I1+III2+IV and I1+III2. Moreover, HC feeding caused oxidative stress and mitochondrial GSH (mGSH) depletion, which translated in hepatic steatosis and liver injury, effects that were rescued by replenishing mGSH with GSH ethyl ester. Overall, mitochondrial cholesterol accumulation disrupts mitochondrial functional performance and the organization of respiratory supercomplexes assembly, which can contribute to oxidative stress and liver injury. Hepatic mitochondrial cholesterol enrichment impairs oxidative phosphorylation. Cholesterol accumulation perturbs mitochondrial membrane physical properties and morphology. Cholesterol loading disrupts the assembly of mitochondrial respiratory supercomplexes. In vivo mitochondrial cholesterol accumulation induces liver injury, which is prevented by GSH ethyl ester administration.
Collapse
Affiliation(s)
- Estel Solsona-Vilarrasa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Department of Biomedical Sciences, Medicine Faculty, Universitat de Barcelona (UB), Spain
| | - Raquel Fucho
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Susana Nuñez
- Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Natalia Nuño-Lámbarri
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Traslational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Carlos Enrich
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Biomedical Sciences, Medicine Faculty, Universitat de Barcelona (UB), Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; (e)Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; (e)Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
26
|
Wang M, Lau LI, Sreekumar PG, Spee C, Hinton DR, Sadda SR, Kannan R. Characterization and Regulation of Carrier Proteins of Mitochondrial Glutathione Uptake in Human Retinal Pigment Epithelium Cells. Invest Ophthalmol Vis Sci 2019; 60:500-516. [PMID: 30707752 PMCID: PMC6360990 DOI: 10.1167/iovs.18-25686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose To characterize two mitochondrial membrane transporters 2-oxoglutarate (OGC) and dicarboxylate (DIC) in human RPE (hRPE) and to elucidate their role in the regulation of mitochondrial glutathione (mGSH) uptake and cell death in oxidative stress. Methods The localization of OGC and DIC proteins in confluent hRPE, polarized hRPE monolayers and mouse retina was assessed by immunoblotting and confocal microscopy. Time- and dose-dependent expression of the two carriers were determined after treatment of hRPE with H2O2, phenyl succinate (PS), and butyl malonate (BM), respectively, for 24 hours. The effect of inhibition of OGC and DIC on apoptosis (TUNEL), mGSH, and mtDNA was determined. Silencing of OGC by siRNA knockdown on RPE cell death was studied. Kinetics of caspase 3/7 activation with OGC and DIC inhibitors and effect of cotreatment with glutathione monoethyl ester (GSH-MEE) was determined using the IncuCyte live cell imaging. Results OGC and DIC are expressed in hRPE mitochondria and exhibited a time- and dose-dependent decrease with stress. Pharmacologic inhibition caused a decrease in OGC and DIC in mitochondria without changes in mtDNA and resulted in increased apoptosis and mGSH depletion. GSH-MEE prevented apoptosis through restoration of mGSH. OGC siRNA exacerbated apoptotic cell death in stressed RPE which was inhibited by increased mGSH from GSH-MEE cotreatment. Conclusions Characterization and mechanism of action of two carrier proteins of mGSH uptake in RPE are reported. Regulation of OGC and DIC will be of value in devising therapeutic strategies for retinal disorders such as AMD.
Collapse
Affiliation(s)
- Mo Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, California, United States
| | - Lin-Ing Lau
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, California, United States
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Parameswaran G Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, California, United States
| | - Christine Spee
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - David R Hinton
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Srinivas R Sadda
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, California, United States
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, California, United States
| |
Collapse
|
27
|
Murale DP, Hong SC, Haque MM, Lee JS. Chloro-Functionalized Photo-crosslinking BODIPY for Glutathione Sensing and Subcellular Trafficking. Chembiochem 2018. [DOI: 10.1002/cbic.201800059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dhiraj P. Murale
- Molecular Recognition Research Center; Korea Institute of Science and Technology; 5 Hwarang-ro 14gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Seong Cheol Hong
- Molecular Recognition Research Center; Korea Institute of Science and Technology; 5 Hwarang-ro 14gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biological Chemistry; KIST-School UST; 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Md Mamunul Haque
- Molecular Recognition Research Center; Korea Institute of Science and Technology; 5 Hwarang-ro 14gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Korea Institute of Science and Technology; 5 Hwarang-ro 14gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biological Chemistry; KIST-School UST; 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
28
|
Kennedy BE, Charman M, Karten B. Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct. Methods Mol Biol 2018; 1583:163-184. [PMID: 28205173 DOI: 10.1007/978-1-4939-6875-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
All animal membranes require cholesterol as an essential regulator of biophysical properties and function, but the levels of cholesterol vary widely among different subcellular compartments. Mitochondria, and in particular the inner mitochondrial membrane, have the lowest levels of cholesterol in the cell. Nevertheless, mitochondria need cholesterol for membrane maintenance and biogenesis, as well as oxysterol, steroid, and hepatic bile acid production. Alterations in mitochondrial cholesterol have been associated with a range of pathological conditions, including cancer, hepatosteatosis, cardiac ischemia, Alzheimer's, and Niemann-Pick Type C Disease. The mechanisms of mitochondrial cholesterol import are not fully elucidated yet, and may vary in different cell types and environmental conditions. Measuring cholesterol trafficking to the mitochondrial membranes is technically challenging because of its low abundance; for example, traditional pulse-chase experiments with isotope-labeled cholesterol are not feasible. Here, we describe improvements to a method first developed by the Miller group at the University of California to measure cholesterol trafficking to the inner mitochondrial membrane (IMM) through the conversion of cholesterol to pregnenolone. This method uses a mitochondria-targeted, ectopically expressed fusion construct of CYP11A1, ferredoxin reductase and ferredoxin. Pregnenolone is formed exclusively from cholesterol at the IMM, and can be analyzed with high sensitivity and specificity through ELISA or radioimmunoassay of the medium/buffer to reflect mitochondrial cholesterol import. This assay can be used to investigate the effects of genetic or pharmacological interventions on mitochondrial cholesterol import in cultured cells or isolated mitochondria.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Mark Charman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2.
| |
Collapse
|
29
|
Wollenman LC, Vander Ploeg MR, Miller ML, Zhang Y, Bazil JN. The effect of respiration buffer composition on mitochondrial metabolism and function. PLoS One 2017; 12:e0187523. [PMID: 29091971 PMCID: PMC5665555 DOI: 10.1371/journal.pone.0187523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha-ketoglutarate exchanger are partially inhibited by chloride. Therefore, when the goal is to maximize ADP-stimulated respiration, buffers containing K-lactobionate or K-gluconate are superior choices compared to the standard KCl-based buffers.
Collapse
Affiliation(s)
- Lucas C. Wollenman
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
- Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Matthew R. Vander Ploeg
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Mackinzie L. Miller
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, United States of America
- Nephrology and Hypertension, Henry Ford Hospital, Detroit, MI, United States of America
| | - Yizhu Zhang
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
30
|
Baulies A, Montero J, Matías N, Insausti N, Terrones O, Basañez G, Vallejo C, Conde de La Rosa L, Martinez L, Robles D, Morales A, Abian J, Carrascal M, Machida K, Kumar DBU, Tsukamoto H, Kaplowitz N, Garcia-Ruiz C, Fernández-Checa JC. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biol 2017; 14:164-177. [PMID: 28942194 PMCID: PMC5609874 DOI: 10.1016/j.redox.2017.08.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer cells exhibit mitochondrial cholesterol (mt-cholesterol) accumulation, which contributes to cell death resistance by antagonizing mitochondrial outer membrane (MOM) permeabilization. Hepatocellular mt-cholesterol loading, however, promotes steatohepatitis, an advanced stage of chronic liver disease that precedes hepatocellular carcinoma (HCC), by depleting mitochondrial GSH (mGSH) due to a cholesterol-mediated impairment in mGSH transport. Whether and how HCC cells overcome the restriction of mGSH transport imposed by mt-cholesterol loading to support mGSH uptake remains unknown. Although the transport of mGSH is not fully understood, SLC25A10 (dicarboxylate carrier, DIC) and SLC25A11 (2-oxoglutarate carrier, OGC) have been involved in mGSH transport, and therefore we examined their expression and role in HCC. Unexpectedly, HCC cells and liver explants from patients with HCC exhibit divergent expression of these mitochondrial carriers, with selective OGC upregulation, which contributes to mGSH maintenance. OGC but not DIC downregulation by siRNA depleted mGSH levels and sensitized HCC cells to hypoxia-induced ROS generation and cell death as well as impaired cell growth in three-dimensional multicellular HCC spheroids, effects that were reversible upon mGSH replenishment by GSH ethyl ester, a membrane permeable GSH precursor. We also show that OGC regulates mitochondrial respiration and glycolysis. Moreover, OGC silencing promoted hypoxia-induced cardiolipin peroxidation, which reversed the inhibition of cholesterol on the permeabilization of MOM-like liposomes induced by Bax or Bak. Genetic OGC knockdown reduced the ability of tumor-initiating stem-like cells to induce liver cancer. These findings underscore the selective overexpression of OGC as an adaptive mechanism of HCC to provide adequate mGSH levels in the face of mt-cholesterol loading and suggest that OGC may be a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Anna Baulies
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain
| | - Joan Montero
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain
| | - Nuria Matías
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain
| | - Naroa Insausti
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain
| | - Oihana Terrones
- Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea), Universidad del País Vasco/Euskal Herriko Unibertsitatea, 48080 Bilbao, Spain
| | - Gorka Basañez
- Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea), Universidad del País Vasco/Euskal Herriko Unibertsitatea, 48080 Bilbao, Spain
| | - Carmen Vallejo
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain
| | - Laura Conde de La Rosa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain
| | - Laura Martinez
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain
| | - David Robles
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain
| | - Joaquin Abian
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, 08036 Barcelona, Spain
| | | | - Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| | - Dinesh B U Kumar
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Neil Kaplowitz
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain; Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA; University of Southern California Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, CA, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, 08036 Barcelona, Spain; Liver Unit and Hospital Clínic i Provincial, IDIBAPS, and Centro de Investigación Biomédica en Red (CIBERehd), Spain; Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA; University of Southern California Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, CA, USA.
| |
Collapse
|
31
|
García-Ruiz C, Ribas V, Baulies A, Fernández-Checa JC. Mitochondrial Cholesterol and the Paradox in Cell Death. Handb Exp Pharmacol 2017; 240:189-210. [PMID: 28035533 DOI: 10.1007/164_2016_110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondria are considered cholesterol-poor organelles, and obtain their cholesterol load by the action of specialized proteins involved in its delivery from extramitochondrial sources and trafficking within mitochondrial membranes. Although mitochondrial cholesterol fulfills vital physiological functions, such as the synthesis of bile acids in the liver or the formation of steroid hormones in specialized tissues, recent evidence indicates that the accumulation of cholesterol in mitochondria may be a key event in prevalent human diseases, in particular in the development of steatohepatitis (SH) and its progression to hepatocellular carcinoma (HCC). Mitochondrial cholesterol accumulation promotes the transition from simple steatosis to SH due to the sensitization to oxidative stress and cell death. However, mitochondrial cholesterol loading in HCC determines apoptosis resistance and insensitivity to chemotherapy. These opposing functions of mitochondrial cholesterol in SH and HCC define its paradoxical role in cell death as a pro- and anti-apoptotic factor. Further understanding of this conundrum may be useful to modulate the progression from SH to HCC by targeting mitochondrial cholesterol trafficking.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomedicas de Barcelona, CSIC, C/Rosello 161, 08036, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
- Keck School of Medicine, USC, University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Los Angeles, CA, USA
| | - Vicente Ribas
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomedicas de Barcelona, CSIC, C/Rosello 161, 08036, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
| | - Anna Baulies
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomedicas de Barcelona, CSIC, C/Rosello 161, 08036, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
| | - Jose C Fernández-Checa
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomedicas de Barcelona, CSIC, C/Rosello 161, 08036, Barcelona, Spain.
- Liver Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain.
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain.
- Keck School of Medicine, USC, University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem 2016; 529:127-143. [PMID: 28034792 DOI: 10.1016/j.ab.2016.12.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease.
Collapse
|
33
|
Elustondo P, Martin LA, Karten B. Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:90-101. [PMID: 27565112 DOI: 10.1016/j.bbalip.2016.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
All animal subcellular membranes require cholesterol, which influences membrane fluidity and permeability, fission and fusion processes, and membrane protein function. The distribution of cholesterol among subcellular membranes is highly heterogeneous and the cholesterol content of each membrane must be carefully regulated. Compared to other subcellular membranes, mitochondrial membranes are cholesterol-poor, particularly the inner mitochondrial membrane (IMM). As a result, steroidogenesis can be controlled through the delivery of cholesterol to the IMM, where it is converted to pregnenolone. The low basal levels of cholesterol also make mitochondria sensitive to changes in cholesterol content, which can have a relatively large impact on the biophysical and functional characteristics of mitochondrial membranes. Increased mitochondrial cholesterol levels have been observed in diverse pathological conditions including cancer, steatohepatitis, Alzheimer disease and Niemann-Pick Type C1-deficiency, and are associated with increased oxidative stress, impaired oxidative phosphorylation, and changes in the susceptibility to apoptosis, among other alterations in mitochondrial function. Mitochondria are not included in the vesicular trafficking network; therefore, cholesterol transport to mitochondria is mostly achieved through the activity of lipid transfer proteins at membrane contact sites or by cytosolic, diffusible lipid transfer proteins. Here we will give an overview of the main mechanisms involved in mitochondrial cholesterol import, focusing on the steroidogenic acute regulatory protein StAR/STARD1 and other members of the StAR-related lipid transfer (START) domain protein family, and we will discuss how changes in mitochondrial cholesterol levels can arise and affect mitochondrial function. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Pia Elustondo
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Laura A Martin
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
34
|
Shasthry SM, Sarin SK. New treatment options for alcoholic hepatitis. World J Gastroenterol 2016; 22:3892-3906. [PMID: 27099434 PMCID: PMC4823241 DOI: 10.3748/wjg.v22.i15.3892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/07/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
The burden of alcoholic liver disease has rapidly grown in the past two decades and is expected to increase further in the coming years. Alcoholic hepatitis, the most florid presentation of alcoholic liver disease, continues to have high morbidity and mortality, with significant financial and healthcare burden with limited treatment options. Steroids remain the current standard of care in severe alcoholic hepatitis in carefully selected patients. No specific treatments are available for those patients who are steroid ineligible, intolerant or unresponsive. Liver transplant has shown good short-term outcome; however, feasibility, ethical and economic concerns remain. Modification of gut microbiota composition and their products, such as lipopolysaccharide, nutritional interventions, immune modulation, increasing steroid sensitivity, genetic polymorphism and epigenetic modification of alcohol induced liver damage, augmenting hepatic regeneration using GCSF are potential therapeutic avenues in steroid non-responsive/ineligible patients. With better understanding of the pathophysiology, using “Omics” platforms, newer options for patients with alcoholic hepatitis are expected soon.
Collapse
|
35
|
Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8327410. [PMID: 26788252 PMCID: PMC4691634 DOI: 10.1155/2016/8327410] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte.
Collapse
|
36
|
Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1765-78. [DOI: 10.1016/j.bbadis.2015.05.015] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
37
|
Lash LH. Mitochondrial Glutathione in Diabetic Nephropathy. J Clin Med 2015; 4:1428-47. [PMID: 26239684 PMCID: PMC4519798 DOI: 10.3390/jcm4071428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/05/2023] Open
Abstract
Although there are many etiologies for diabetic nephropathy (DN), one common characteristic of all cases involves mitochondrial oxidative stress and consequent bioenergetic dysfunction. As the predominant low-molecular-weight, intramitochondrial thiol reductant, the mitochondrial glutathione (mtGSH) pool plays important roles in how this organelle adapts to the chronic hyperglycemia and redox imbalances associated with DN. This review will summarize information about the processes by which this important GSH pool is regulated and how manipulation of these processes can affect mitochondrial and cellular function in the renal proximal tubule. Mitochondria in renal proximal tubular (PT) cells do not appear to synthesize GSH de novo but obtain it by transport from the cytoplasm. Two inner membrane organic anion carriers, the dicarboxylate carrier (DIC; Slc25a10) and 2-oxoglutarate carrier (OGC; Slc25a11) are responsible for this transport. Genetic modulation of DIC or OGC expression in vitro in PT cells from diabetic rats can alter mitochondrial function and susceptibility of renal PT cells to oxidants, with overexpression leading to reversion of bioenergetic conditions to a non-diabetic state and protection of cells from injury. These findings support the mtGSH carriers as potential therapeutic targets to correct the underlying metabolic disturbance in DN.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
38
|
Auger C, Alhasawi A, Contavadoo M, Appanna VD. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front Cell Dev Biol 2015; 3:40. [PMID: 26161384 PMCID: PMC4479819 DOI: 10.3389/fcell.2015.00040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
The liver is involved in a variety of critical biological functions including the homeostasis of glucose, fatty acids, amino acids, and the synthesis of proteins that are secreted in the blood. It is also at the forefront in the detoxification of noxious metabolites that would otherwise upset the functioning of the body. As such, this vital component of the mammalian system is exposed to a notable quantity of toxicants on a regular basis. It therefore comes as no surprise that there are over a hundred disparate hepatic disorders, encompassing such afflictions as fatty liver disease, hepatitis, and liver cancer. Most if not all of liver functions are dependent on energy, an ingredient that is primarily generated by the mitochondrion, the power house of all cells. This organelle is indispensable in providing adenosine triphosphate (ATP), a key effector of most biological processes. Dysfunctional mitochondria lead to a shortage in ATP, the leakage of deleterious reactive oxygen species (ROS), and the excessive storage of fats. Here we examine how incapacitated mitochondrial bioenergetics triggers the pathogenesis of various hepatic diseases. Exposure of liver cells to detrimental environmental hazards such as oxidative stress, metal toxicity, and various xenobiotics results in the inactivation of crucial mitochondrial enzymes and decreased ATP levels. The contribution of the latter to hepatic disorders and potential therapeutic cues to remedy these conditions are elaborated.
Collapse
Affiliation(s)
- Christopher Auger
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Azhar Alhasawi
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Manuraj Contavadoo
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Vasu D Appanna
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| |
Collapse
|
39
|
Use of metabolomics to elucidate the metabolic perturbation associated with hypertension in a black South African male cohort: the SABPA study. ACTA ACUST UNITED AC 2015; 9:104-14. [DOI: 10.1016/j.jash.2014.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 01/06/2023]
|
40
|
Booty LM, King MS, Thangaratnarajah C, Majd H, James AM, Kunji ERS, Murphy MP. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione. FEBS Lett 2015; 589:621-8. [PMID: 25637873 PMCID: PMC4332691 DOI: 10.1016/j.febslet.2015.01.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/23/2023]
Abstract
Glutathione carries out vital protective roles within mitochondria, but is synthesised in the cytosol. Previous studies have suggested that the mitochondrial dicarboxylate and 2-oxoglutarate carriers were responsible for glutathione uptake. We set out to characterise the putative glutathione transport by using fused membrane vesicles of Lactococcus lactis overexpressing the dicarboxylate and 2-oxoglutarate carriers. Although transport of the canonical substrates could be measured readily, an excess of glutathione did not compete for substrate uptake nor could transport of glutathione be measured directly. Thus these mitochondrial carriers do not transport glutathione and the identity of the mitochondrial glutathione transporter remains unknown.
Collapse
Affiliation(s)
- Lee M Booty
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Homa Majd
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew M James
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
41
|
Ruszkiewicz J, Albrecht J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 2015; 88:66-72. [PMID: 25576182 DOI: 10.1016/j.neuint.2014.12.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 12/29/2014] [Indexed: 12/30/2022]
Abstract
Oxidative and nitrosative stress (ONS) contributes to the pathogenesis of most brain maladies, and the magnitude of ONS is related to the ability of cellular antioxidants to neutralize the accumulating reactive oxygen and nitrogen species (ROS/RNS). While the major ROS/RNS scavengers and regenerators of bio-oxidized molecules, superoxide dysmutases (SODs), glutathione (GSH), thioredoxin (Trx) and peroxiredoxin (Prx), are distributed in all cellular compartments. This review specifically focuses on the role of the systems operating in mitochondria. There is a growing consensus that the mitochondrial SOD isoform - SOD2 and GSH are critical for the cellular antioxidant defense. Variable changes of the expression or activities of one or more of the mitochondrial antioxidant systems have been documented in the brains derived from human patients and/or in animal models of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), cerebral ischemia, toxic brain cell damage associated with overexposure to mercury or excitotoxins, or hepatic encephalopathy. In many cases, ambiguity of the responses of the different antioxidant systems in one and the same disease needs to be more conclusively evaluated before the balance of the changes is viewed as beneficial or detrimental. Modulation of the mitochondrial antioxidant systems may in the future become a target of antioxidant therapy.
Collapse
Affiliation(s)
- Joanna Ruszkiewicz
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
42
|
Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 2014; 48:137-51. [PMID: 25425472 DOI: 10.1007/s10863-014-9592-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.
Collapse
|
43
|
Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol accumulation in alcoholic liver disease: Role of ASMase and endoplasmic reticulum stress. Redox Biol 2014; 3:100-8. [PMID: 25453982 PMCID: PMC4297930 DOI: 10.1016/j.redox.2014.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease and a growing health concern in theworld. While the pathogenesis of ALD is poorly characterized key players identified in experimental models and patients, such as perturbations in mitochondrial structure and function, selective loss of antioxidant defense and susceptibility to inflammatory cytokines, contribute to ALD progression. Both oxidative stress and mitochondrial dysfunction compromise essential cellular functions and energy generation and hence are important pathogenic mechanisms of ALD. An important process mediating the mitochondrial disruption induced by alcohol intake is the trafficking of cholesterol to mitochondria, mediated by acid sphingomyelinase-induced endoplasmic reticulum stress, which contributes to increased cholesterol synthesis and StARD1upregulation. Mitochondrial cholesterol accumulation not only sensitizes to oxidative stress but it can contribute to the metabolic reprogramming in ALD, manifested by activation of the hypoxia inducible transcription factor 1 and stimulation of glycolysis and lactate secretion. Thus, a better understanding of the mechanisms underlying alcohol-mediated mitochondrial impairment and oxidative stress may lead to the identification of novel treatments for ALD. The present review briefly summarizes current knowledge on the cellular and molecular mechanisms contributing to alcohol-induced mitochondrial dysfunction and cholesterol accumulation and provides insights for potential therapeutic targets in ALD. Alcohol perturbs mitochondria function, which modulates ROS generation and alcohol metabolism. Alcohol stimulates mitochondrial cholesterol (mChol) accumulation. MChol accumulation impairs mitochondrial function and mediates alcohol-induced lipotoxicity. ASMase promotes mitochondrial dysfunction by stimulating mChol loading.
Collapse
Affiliation(s)
- Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain.
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Jose C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain; Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014; 5:151. [PMID: 25024695 PMCID: PMC4079069 DOI: 10.3389/fphar.2014.00151] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
45
|
Arnal N, Castillo O, de Alaniz MJT, Marra CA. Effects of Copper and/or Cholesterol Overload on Mitochondrial Function in a Rat Model of Incipient Neurodegeneration. Int J Alzheimers Dis 2013; 2013:645379. [PMID: 24363953 PMCID: PMC3836397 DOI: 10.1155/2013/645379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/13/2013] [Indexed: 01/22/2023] Open
Abstract
Copper (Cu) and cholesterol (Cho) are both associated with neurodegenerative illnesses in humans and animals models. We studied the effect in Wistar rats of oral supplementation with trace amounts of Cu (3 ppm) and/or Cho (2%) in drinking water for 2 months. Increased amounts of nonceruloplasmin-bound Cu were observed in plasma and brain hippocampus together with a higher concentration of ceruloplasmin in plasma, cortex, and hippocampus. Cu, Cho, and the combined treatment Cu + Cho were able to induce a higher Cho/phospholipid ratio in mitochondrial membranes with a simultaneous decrease in glutathione content. The concentration of cardiolipin decreased and that of peroxidation products, conjugated dienes and lipoperoxides, increased. Treatments including Cho produced rigidization in both the outer and inner mitochondrial membranes with a simultaneous increase in permeability. No significant increase in Cyt C leakage to the cytosol was observed except in the case of cortex from rats treated with Cu and Cho nor were there any significant changes in caspase-3 activity and the Bax/Bcl2 ratio. However, the A β (1-42)/(1-40) ratio was higher in cortex and hippocampus. These findings suggest an incipient neurodegenerative process induced by Cu or Cho that might be potentiated by the association of the two supplements.
Collapse
Affiliation(s)
- Nathalie Arnal
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Omar Castillo
- Centro de Investigaciones Cardiovasculares (CIC), CCT-CONICET, 1900 La Plata, Argentina
| | - María J. T. de Alaniz
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Carlos A. Marra
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
- INIBIOLP, Cátedra de Bioquímica, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calles 60 y 120, 1900 La Plata, Argentina
| |
Collapse
|
46
|
Abstract
The mitochondrion relies on compartmentalization of certain enzymes, ions and metabolites for the sake of efficient metabolism. In order to fulfil its activities, a myriad of carriers are properly expressed, targeted and folded in the inner mitochondrial membrane. Among these carriers, the six-transmembrane-helix mitochondrial SLC25 (solute carrier family 25) proteins facilitate transport of solutes with disparate chemical identities across the inner mitochondrial membrane. Although their proper function replenishes building blocks needed for metabolic reactions, dysfunctional SLC25 proteins are involved in pathological states. It is the purpose of the present review to cover the current knowledge on the role of SLC25 transporters in health and disease.
Collapse
|
47
|
Sid B, Verrax J, Calderon PB. Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radic Res 2013; 47:894-904. [PMID: 23800214 DOI: 10.3109/10715762.2013.819428] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic alcohol consumption is a well-known risk factor for liver disease, which represents a major cause of morbidity and mortality worldwide. The pathological process of alcohol-induced liver disease is characterized by a broad spectrum of morphological changes ranging from steatosis with minimal injury to more advanced liver damage, including steato-hepatitis and fibrosis/cirrhosis. Experimental and clinical studies increasingly show that the oxidative damage induced by ethanol contribute in many ways to the pathogenesis of alcohol hepatotoxicity. This article describes the contribution of oxidative mechanisms to liver damage by alcohol.
Collapse
Affiliation(s)
- B Sid
- Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group (GTOX) , Brussels , Belgium
| | | | | |
Collapse
|
48
|
Orman ES, Odena G, Bataller R. Alcoholic liver disease: pathogenesis, management, and novel targets for therapy. J Gastroenterol Hepatol 2013; 28 Suppl 1:77-84. [PMID: 23855300 PMCID: PMC4405238 DOI: 10.1111/jgh.12030] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2013] [Indexed: 02/06/2023]
Abstract
Alcohol use is a leading cause of preventable morbidity and mortality worldwide, with much of its negative impact as the result of alcoholic liver disease (ALD). ALD is a broad term that encompasses a spectrum of phenotypes ranging from simple steatosis to steatohepatitis, progressive fibrosis, cirrhosis, and hepatocellular carcinoma. The mechanisms underlying the development of these different disease stages are incompletely understood. Standard treatment of ALD, which includes abstinence, nutritional support, and corticosteroids, has not changed in the last 40 years despite continued poor outcomes. Novel therapies are therefore urgently needed. The development of such therapies has been hindered by inadequate resources for research and unsuitable animal models. However, recent developments in translational research have allowed for identification of new potential targets for therapy. These targets include: (i) CXC chemokines, (ii) IL-22/STAT3, (iii) TNF receptor superfamily, (iv) osteopontin, (v) gut microbiota and lipopolysaccharide (LPS), (vi) endocannabinoids, and (vii) inflammasomes. We review the natural history, risk factors, pathogenesis, and current treatments for ALD. We further discuss the findings of recent translational studies and potential therapeutic targets.
Collapse
Affiliation(s)
- Eric S Orman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
49
|
Monné M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G. The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr 2013; 45:1-13. [PMID: 23054077 DOI: 10.1007/s10863-012-9475-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 2-oxoglutarate carrier (OGC) belongs to the mitochondrial carrier protein family whose members are responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. Initially, OGC was characterized by determining substrate specificity, kinetic parameters of transport, inhibitors and molecular probes that form covalent bonds with specific residues. It was shown that OGC specifically transports oxoglutarate and certain carboxylic acids. The substrate specificity combination of OGC is unique, although many of its substrates are also transported by other mitochondrial carriers. The abundant recombinant expression of bovine OGC in Escherichia coli and its ability to functionally reconstitute into proteoliposomes made it possible to deduce the individual contribution of each and every residue of OGC to the transport activity by a complete set of cys-scanning mutants. These studies give experimental support for a substrate binding site constituted by three major contact points on the even-numbered α-helices and identifies other residues as important for transport function through their crucial positions in the structure for conserved interactions and the conformational changes of the carrier during the transport cycle. The results of these investigations have led to utilize OGC as a model protein for understanding the transport mechanism of mitochondrial carriers.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnology and Pharmacological Sciences, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
50
|
Prabhu AV, Krycer JR, Brown AJ. Overexpression of a key regulator of lipid homeostasis, Scap, promotes respiration in prostate cancer cells. FEBS Lett 2013; 587:983-8. [PMID: 23454642 DOI: 10.1016/j.febslet.2013.02.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
Prostate metabolism is unique, characterised by cholesterol accumulation and reduced respiration. Are these related? We modulated cholesterol levels and despite changes in mitochondrial cholesterol content, we saw no effects on lactate production or respiration. Instead, these features may be related via sterol regulatory element-binding protein 2 (SREBP-2), the master transcriptional regulator of cholesterol synthesis. SREBP-2 diverts acetyl-CoA into cholesterol synthesis and may thus reduce respiration. We examined LNCaP cells overexpressing the SREBP-2 regulator, Scap: although having higher SREBP-2 activity, these cells displayed higher respiration. This striking observation warrants further investigation. Given that SREBP-2 and Scap are regulated by factors driving prostate growth, exploring this observation further could shed light on prostate carcinogenesis.
Collapse
Affiliation(s)
- Anika Vinayak Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|