1
|
Trillo Aliaga P, Del Signore E, Fuorivia V, Spitaleri G, Asnaghi R, Attili I, Corvaja C, Carnevale Schianca A, Passaro A, de Marinis F. The Evolving Scenario of ES-SCLC Management: From Biology to New Cancer Therapeutics. Genes (Basel) 2024; 15:701. [PMID: 38927637 PMCID: PMC11203015 DOI: 10.3390/genes15060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma accounting for 15% of lung cancers with dismal survival outcomes. Minimal changes in therapy and prognosis have occurred in SCLC for the past four decades. Recent progress in the treatment of extensive-stage disease (ES-SCLC) has been marked by incorporating immune checkpoint inhibitors (ICIs) into platinum-based chemotherapy, leading to modest improvements. Moreover, few second-line-and-beyond treatment options are currently available. The main limitation for the molecular study of SCLC has been the scarcity of samples, because only very early diseases are treated with surgery and biopsies are not performed when the disease progresses. Despite all these difficulties, in recent years we have come to understand that SCLC is not a homogeneous disease. At the molecular level, in addition to the universal loss of retinoblastoma (RB) and TP53 genes, a recent large molecular study has identified other mutations that could serve as targets for therapy development or patient selection. In recent years, there has also been the identification of new genetic subtypes which have shown us how intertumor heterogeneity exists. Moreover, SCLC can also develop intratumoral heterogeneity linked mainly to the concept of cellular plasticity, mostly due to the development of resistance to therapies. The aim of this review is to quickly present the current standard of care of ES-SCLC, to focus on the molecular landscapes and subtypes of SCLC, subsequently present the most promising therapeutic strategies under investigation, and finally recap the future directions of ongoing clinical trials for this aggressive disease which still remains a challenge.
Collapse
Affiliation(s)
- Pamela Trillo Aliaga
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Valeria Fuorivia
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Riccardo Asnaghi
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ambra Carnevale Schianca
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
2
|
Cani M, Napoli VM, Garbo E, Ferrari G, Del Rio B, Novello S, Passiglia F. Targeted Therapies in Small Cell Lung Cancer: From Old Failures to Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24108883. [PMID: 37240229 DOI: 10.3390/ijms24108883] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical management of small cell lung cancer (SCLC) treatment remains a major challenge for thoracic oncologists, with very few therapeutic advances significantly impacting patients' survival. The recent introduction of immunotherapy in the clinical setting produced a marginal benefit for a limited subset of metastatic patients, while the therapeutic scenario for relapsing extended-disease small cell lung cancers (ED-SCLCs) remains almost deserted. Recent efforts clarified the molecular features of this disease, leading to the identification of key signalling pathways which may serve as potential targets for clinical use. Despite the large number of molecules tested and the numerous therapeutic failures, some targeted therapies have recently shown interesting preliminary results. In this review, we describe the main molecular pathways involved in SCLC development/progression and provide an updated summary of the targeted therapies currently under investigation in SCLC patients.
Collapse
Affiliation(s)
- Massimiliano Cani
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Valerio Maria Napoli
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Edoardo Garbo
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Giorgia Ferrari
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Benedetta Del Rio
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| |
Collapse
|
3
|
Subbiah S, Nam A, Garg N, Behal A, Kulkarni P, Salgia R. Small Cell Lung Cancer from Traditional to Innovative Therapeutics: Building a Comprehensive Network to Optimize Clinical and Translational Research. J Clin Med 2020; 9:jcm9082433. [PMID: 32751469 PMCID: PMC7464169 DOI: 10.3390/jcm9082433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive, complex disease with a distinct biology that contributes to its poor prognosis. Management of SCLC is still widely limited to chemotherapy and radiation therapy, and research recruitment still poses a considerable challenge. Here, we review the current standard of care for SCLC and advances made in utilizing immunotherapy. We also highlight research in the development of targeted therapies and emphasize the importance of a team-based approach to make clinical advances. Building an integrative network between an academic site and community practice sites optimizes biomarker and drug target discovery for managing and treating a difficult disease like SCLC.
Collapse
|
4
|
Mak DW, Li S, Minchom A. Challenging the recalcitrant disease—developing molecularly driven treatments for small cell lung cancer. Eur J Cancer 2019; 119:132-150. [DOI: 10.1016/j.ejca.2019.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022]
|
5
|
Mambetsariev I, Mirzapoiazova T, Lennon F, Jolly MK, Li H, Nasser MW, Vora L, Kulkarni P, Batra SK, Salgia R. Small Cell Lung Cancer Therapeutic Responses Through Fractal Measurements: From Radiology to Mitochondrial Biology. J Clin Med 2019; 8:jcm8071038. [PMID: 31315252 PMCID: PMC6679065 DOI: 10.3390/jcm8071038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine disease with an overall 5 year survival rate of ~7%. Although patients tend to respond initially to therapy, therapy-resistant disease inevitably emerges. Unfortunately, there are no validated biomarkers for early-stage SCLC to aid in early detection. Here, we used readouts of lesion image characteristics and cancer morphology that were based on fractal geometry, namely fractal dimension (FD) and lacunarity (LC), as novel biomarkers for SCLC. Scanned tumors of patients before treatment had a high FD and a low LC compared to post treatment, and this effect was reversed after treatment, suggesting that these measurements reflect the initial conditions of the tumor, its growth rate, and the condition of the lung. Fractal analysis of mitochondrial morphology showed that cisplatin-treated cells showed a discernibly decreased LC and an increased FD, as compared with control. However, treatment with mdivi-1, the small molecule that attenuates mitochondrial division, was associated with an increase in FD as compared with control. These data correlated well with the altered metabolic functions of the mitochondria in the diseased state, suggesting that morphological changes in the mitochondria predicate the tumor’s future ability for mitogenesis and motogenesis, which was also observed on the CT scan images. Taken together, FD and LC present ideal tools to differentiate normal tissue from malignant SCLC tissue as a potential diagnostic biomarker for SCLC.
Collapse
Affiliation(s)
- Isa Mambetsariev
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | | | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Haiqing Li
- City of Hope, Center for Informatics, Duarte, CA 91010, USA
- City of Hope, Dept. of Computational & Quantitative Medicine, Duarte, CA 91010, USA
| | - Mohd W Nasser
- University of Nebraska Medical Center, Dept. of Biochemistry and Molecular Biology, Omaha, NE 68198, USA
| | - Lalit Vora
- City of Hope, Dept. of Diagnostic Radiology, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | - Surinder K Batra
- University of Nebraska Medical Center, Dept. of Biochemistry and Molecular Biology, Omaha, NE 68198, USA
| | - Ravi Salgia
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA.
| |
Collapse
|
6
|
Mallick S, Barua A, Paul G, Banerjee SN. Novel combination of 2-methoxyestradiol and cyclophosphamide enhances the antineoplastic and pro-apoptotic effects on S-180 ascitic tumour cells. J Cell Commun Signal 2018; 12:467-478. [PMID: 28795302 PMCID: PMC5910319 DOI: 10.1007/s12079-017-0404-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/20/2017] [Indexed: 11/26/2022] Open
Abstract
Sarcoma 180 (S-180) tumour cell line is a stable murine tumour cell line with 98-99% stumour takes capacity in Swiss albino mouse - Mus musculus. 2 Methoxyestradiol (2ME) - a promising anti-neoplastic and anti-angiogenic agent, showed toxicity to host body in higher concentration. Cyclophosphamide (CP), the anti-neoplastic agent has long been used as a chemotherapeutic drug for treatment of different cancers. Our studies have shown that the combination effect of 2ME and CP on S-180 tumour cell line is anti-proliferative and less toxic. The treatment with lower concentrations of 2ME and CP (6.5 mg 2ME/kg body weight + 75 mg CP/kg body weight) antagonistically increased the life span of tumour bearing mice and synergistically inhibited the viable cell population. 2ME or CP treatment individually induces G2/M arrest. The combination treatment of 2ME + CP (6.5 mg 2ME/kg body weight + 75 mg CP/kg body weight) produced a significant increase of cells in the G0 which is the indication of cell arrest or apoptosis. Reduction of cell viability by 2ME + CP treatments is due to apoptotic cell death. This combination therapy produced a significant inhibitory effect of cell proliferation and augmentation of cell accumulation in the G0 phase (i.e. apoptosis). Apoptosis is validated by Fluorescence staining of control and treated S-180 tumour cells with Acridine Orange and EtBr dye. Moreover, a steady increase in the frequency of complex chromosomal aberrations (i.e. tri-, qudri-radial translocations) in tumour cells was noted in that particular concentration of combination therapy treated series along with the increase in dead cell frequency and tumour regression pattern. It is assumed that, these chromosomal abnormalities or damages recorded in higher frequency prevent the affected metaphases to enter into the next cell cycle through apoptosis or necrosis. This study introduces a novel combination, where this particular concentration of 2ME + CP (i.e. 6.5 mg 2ME/kg body weight + 75 mg CP/kg body weight) not only enhanced the life span of tumour bearing mouse and decreased the tumour volume antagonistically but also inhibited the viable cell population synergistically, which could serve as a potential effective regimen for cancer treatment.
Collapse
Affiliation(s)
- Srabantika Mallick
- Department of Zoology, Rammohan College, 102/1 Raja Rammohan Sarani, Kolkata, 700009, India
| | - Atish Barua
- Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, India
| | - Goutam Paul
- Department of Physiology, University of Kalyani, Kalyani, West Bengal, India
| | | |
Collapse
|
7
|
Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications. DISEASE MARKERS 2016; 2016:9214056. [PMID: 27528792 PMCID: PMC4977389 DOI: 10.1155/2016/9214056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/24/2022]
Abstract
Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as “omics” has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs) have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed.
Collapse
|
8
|
Ellis PM. Anti-angiogenesis in Personalized Therapy of Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 893:91-126. [PMID: 26667340 DOI: 10.1007/978-3-319-24223-1_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upregulation of angiogenesis is a frequent occurrence in lung cancer and is reported to represent a negative prognostic factor. This provides a rationale for the development and evaluation of anti-angiogenic agents. To date bevacizumab, a monoclonal antibody directed against serum VEGF, is the only anti-angiogenic agent that has demonstrated improved overall survival for patients with lung cancer. Meta-analysis of trials of bevacizumab in combination with platinum-based chemotherapy for NSCLC, show a 10% reduction in the risk of death (HR 0.90, 95% CI 0.81-0.99). However, therapy with bevacizumab is limited to NSCLC patients with non-squamous histology, good performance status, no brain metastases and the absence of bleeding or thrombotic disorders. More recently, similar survival was observed in a non bevacizumab containing regimen of carboplatin, pemetrexed and maintenance pemetrexed. Multiple oral anti-angiogenic compounds have been evaluated in NSCLC, both in first-line therapy, or upon disease progression. The majority of agents have shown some evidence of activity, but none have clearly demonstrated improvements in overall survival. Increased toxicities have been observed, including an increased risk of death for some agents, limiting their development. Promising data exist for sunitinib in patients with heavily pre-treated NSCLC, and nintedanib in combination with docetaxel, as second-line therapy for NSCLC. However, these findings require validation. Currently, there is no established role for anti-angiogenic therapy in SCLC, although there is some promise for sunitinib as maintenance therapy following platinum and etoposide chemotherapy. The challenge for anti-angiogenic therapy is to understand whether treatment effects in a subpopulation, are lost among a larger unselected population of patients. There is a need for additional translational research to identify predictive biomarkers for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Peter M Ellis
- Department of Oncology, McMaster University, Hamilton, ON, Canada. .,Juravinski Cancer Centre, Hamilton, ON, Canada.
| |
Collapse
|
9
|
Combinational Therapy Enhances the Effects of Anti-IGF-1R mAb Figitumumab to Target Small Cell Lung Cancer. PLoS One 2015; 10:e0135844. [PMID: 26287334 PMCID: PMC4545894 DOI: 10.1371/journal.pone.0135844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a recalcitrant malignancy with distinct biologic properties. Antibody targeting therapy has been actively investigated as a new drug modality. METHODS We tested the expression of IGF-1R and calculated the survival in 61 SCLC patients. We also evaluated the anti-tumor effects of anti-IGF-1R monoclonal antibody Figitumumab (CP) on SCLC, and tried two drug combinations to improve CP therapy. RESULTS Our clinical data suggested that high IGF-1R expression was correlated with low SCLC patient survival. We then demonstrated the effect of CP was likely through IGF-1R blockage and down-regulation without IGF-1R auto-phosphorylation and PI3K/AKT activation. However, we observed elevated MEK/ERK activation upon CP treatment in SCLC cells, and this MEK/ERK activation was enhanced by ß-arrestin1 knockdown while attenuated by ß-arrestin2 knockdown. We found both MEK/ERK inhibitor and metformin could enhance CP treatment in SCLC cells. We further illustrated the additive effect of metformin was likely through promoting further IGF-1R down-regulation. CONCLUSION Our results highlighted the potential of anti-IGF-1R therapy and the adjuvant therapy strategy with either MEK/ERK inhibitor or metformin to target SCLC, warranting further studies.
Collapse
|
10
|
Nagel R, Stigter-van Walsum M, Buijze M, van den Berg J, van der Meulen IH, Hodzic J, Piersma SR, Pham TV, Jiménez CR, van Beusechem VW, Brakenhoff RH. Genome-wide siRNA Screen Identifies the Radiosensitizing Effect of Downregulation of MASTL and FOXM1 in NSCLC. Mol Cancer Ther 2015; 14:1434-44. [PMID: 25808837 DOI: 10.1158/1535-7163.mct-14-0846] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/11/2015] [Indexed: 11/16/2022]
Abstract
Lung cancer is the most common cancer worldwide and on top of that has a very poor prognosis, which is reflected by a 5-year survival rate of 5% to 15%. Radiotherapy is an integral part of most treatment regimens for this type of tumor, often combined with radiosensitizing cytotoxic drugs. In this study, we identified many genes that could potentially be exploited for targeted radiosensitization using a genome-wide siRNA screen in non-small cell lung cancer (NSCLC) cells. The screen identified 433 siRNAs that potentially sensitize lung cancer cells to radiation. Validation experiments showed that knockdown of expression of Forkhead box M1 (FOXM1) or microtubule-associated serine/threonine kinase-like (MASTL) indeed causes radiosensitization in a panel of NSCLC cells. Strikingly, this effect was not observed in primary human fibroblasts, suggesting that the observed radiosensitization is specific for cancer cells. Phosphoproteomics analyses with and without irradiation showed that a number of cell-cycle-related proteins were significantly less phosphorylated after MASTL knockdown in comparison to the control, while there were no changes in the levels of phosphorylation of DNA damage response proteins. Subsequent analyses showed that MASTL knockdown cells respond differently to radiation, with a significantly shortened G2-M phase arrest and defects in cytokinesis, which are followed by a cell-cycle arrest. In summary, we have identified many potential therapeutic targets that could be used for radiosensitization of NSCLC cells, with MASTL being a very promising and druggable target to combine with radiotherapy.
Collapse
Affiliation(s)
- Remco Nagel
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Marijke Stigter-van Walsum
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Marijke Buijze
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Jaap van den Berg
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ida H van der Meulen
- RNA Interference Functional Oncogenomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands. Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jasmina Hodzic
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Connie R Jiménez
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Victor W van Beusechem
- RNA Interference Functional Oncogenomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands. Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Coe BP, Thu KL, Aviel-Ronen S, Vucic EA, Gazdar AF, Lam S, Tsao MS, Lam WL. Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer. PLoS One 2013; 8:e71670. [PMID: 23967231 PMCID: PMC3744458 DOI: 10.1371/journal.pone.0071670] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/02/2013] [Indexed: 01/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive lung neoplasm with extremely poor clinical outcomes and no approved targeted treatments. To elucidate the mechanisms responsible for driving the SCLC phenotype in hopes of revealing novel therapeutic targets, we studied copy number and methylation profiles of SCLC. We found disruption of the E2F/Rb pathway was a prominent feature deregulated in 96% of the SCLC samples investigated and was strongly associated with increased expression of EZH2, an oncogene and core member of the polycomb repressive complex 2 (PRC2). Through its catalytic role in the PRC2 complex, EZH2 normally functions to epigenetically silence genes during development, however, it aberrantly silences genes in human cancers. We provide evidence to support that EZH2 is functionally active in SCLC tumours, exerts pro-tumourigenic functions in vitro, and is associated with aberrant methylation profiles of PRC2 target genes indicative of a “stem-cell like” hypermethylator profile in SCLC tumours. Furthermore, lentiviral-mediated knockdown of EZH2 demonstrated a significant reduction in the growth of SCLC cell lines, suggesting EZH2 has a key role in driving SCLC biology. In conclusion, our data confirm the role of EZH2 as a critical oncogene in SCLC, and lend support to the prioritization of EZH2 as a potential therapeutic target in clinical disease.
Collapse
Affiliation(s)
- Bradley P. Coe
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
| | - Kelsie L. Thu
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
- * E-mail:
| | | | - Emily A. Vucic
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Stephen Lam
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology, Princess Margaret Hospital University Health Network, Toronto, Canada
| | - Wan L. Lam
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Description of the recent findings of the biological roles of bombesin-like peptides and their receptors in lungs. RECENT FINDINGS Gastrin-releasing peptide (GRP) was involved in the airway inflammation in murine models of airway hyperreactivity. The circulating proGRP could serve as a valuable tumor marker for small-cell lung cancers, and the plasma level of proGRP is more stable compared with that of serum proGRP. Recent studies also shed light on the intracellular signaling pathways of bombesin receptor subtype-3 (BRS-3) activation in cultured human lung cancer cells. SUMMARY The relevant biology of BLPs and their receptors in lung cancers and other lung diseases still remains largely unknown. With the development of several highly specific BRS-3 agonists, recent studies provided some insights into the biological effects of BRS-3 in lungs.
Collapse
Affiliation(s)
- Xiao-Qun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China.
| | | |
Collapse
|
13
|
Kalari S, Jung M, Kernstine KH, Takahashi T, Pfeifer GP. The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells. Oncogene 2012; 32:3559-68. [PMID: 22907430 DOI: 10.1038/onc.2012.362] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 05/18/2012] [Accepted: 07/04/2012] [Indexed: 12/23/2022]
Abstract
Small cell lung cancer (SCLC) is a disease characterized by aggressive clinical behavior and lack of effective therapy. Owing to its tendency for early dissemination, only a third of patients have limited-stage disease at the time of diagnosis. SCLC is thought to derive from pulmonary neuroendocrine cells. Although several molecular abnormalities in SCLC have been described, there are relatively few studies on epigenetic alterations in this type of tumor. Here, we have used methylation profiling with the methylated-CpG island recovery assay in combination with microarrays and conducted the first genome-scale analysis of methylation changes that occur in primary SCLC and SCLC cell lines. Among the hundreds of tumor-specifically methylated genes discovered, we identified 73 gene targets that are methylated in >77% of primary SCLC tumors, most of which have never been linked to aberrant methylation in tumors. These methylated targets have potential for biomarker development for early detection and therapeutic management of SCLC. SCLC cell lines had a greater number of hypermethylated genes than primary tumors. Gene ontology analysis indicated a significant enrichment of methylated genes functioning as transcription factors and in processes of neuronal differentiation. Motif analysis of tumor-specific methylated regions identified enrichment of binding sites for several neural cell fate-specifying transcription factors including NEUROD1, HAND1, ZNF423 and REST. We hypothesize that two potential mechanisms, loss of cell fate-determining transcription factors by methylation of their promoters and functional inactivation of their corresponding genomic-binding sites by DNA methylation, can promote a differentiation defect of neuroendocrine cells thus enhancing the ability of tumor progenitor cells to transition toward SCLC.
Collapse
Affiliation(s)
- S Kalari
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | | | |
Collapse
|
14
|
Pietanza MC, Rudin CM. Novel therapeutic approaches for small cell lung cancer: the future has arrived. Curr Probl Cancer 2012; 36:156-73. [PMID: 22495056 DOI: 10.1016/j.currproblcancer.2012.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
D'Angelo SP, Pietanza MC. [The molecular pathogenesis of small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:C46-57. [PMID: 21081036 PMCID: PMC6134416 DOI: 10.3779/j.issn.1009-3419.2010.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandra P D'Angelo
- Department of Medicine, Thoracic Oncology Service, Division of Solid Tumor Oncology, Memorial Sloan-Kettering Cancer Center and the Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
16
|
Shibata T, Kokubu A, Miyamoto M, Hosoda F, Gotoh M, Tsuta K, Asamura H, Matsuno Y, Kondo T, Imoto I, Inazawa J, Hirohashi S. DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung. Oncogene 2010; 29:4671-81. [PMID: 20543864 DOI: 10.1038/onc.2010.217] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 04/26/2010] [Accepted: 05/02/2010] [Indexed: 01/06/2023]
Abstract
Lung cancer shows diverse histological subtypes. Large-cell neuroendocrine cell carcinoma and small-cell lung carcinoma show similar histological features and clinical behaviors, and can be classified as high-grade neuroendocrine carcinoma (HGNEC) of the lung. Here we elucidated the molecular classification of pulmonary endocrine tumors by copy-number profiling. We compared alterations of copy number with the clinical outcome of HGNEC and identified a chromosomal gain of the DEK oncogene locus (6p22.3) that was significantly associated with poor prognosis. We further confirmed that DEK overexpression was associated with poor prognosis in a larger set of HGNEC. Downregulation of DEK by small hairpin RNA led to a marked reduction of in vitro colony formation, in vivo tumorigenicity and chemo-resistance, and was associated with loss of lung cancer stem cell markers. Gene expression profiling revealed that DEK downregulation was associated with altered expression of transcriptional regulators, which specifically include known targets of interchromosomal translocations in hematopoietic tumors, and knockdown of these epigenetic modifiers affected colony formation activity. Our study showed that DEK overexpression, partly through an increase in its gene dose, mediates the activity of global transcriptional regulators and is associated with tumor initiation activity and poor prognosis in HGNEC.
Collapse
MESH Headings
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/metabolism
- Carcinoma, Small Cell/pathology
- Cell Growth Processes/genetics
- Cell Movement/genetics
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/genetics
- Cluster Analysis
- Down-Regulation
- Gene Dosage
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Neoplastic Stem Cells/pathology
- Oncogene Proteins/biosynthesis
- Oncogene Proteins/genetics
- Poly-ADP-Ribose Binding Proteins
- Prognosis
- RNA, Small Interfering/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- T Shibata
- Cancer Genomics Project, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Linnoila RI, Naizhen X, Meuwissen R, Berns A, DeMayo FJ. Mouse Lung Neuroendocrine Carcinomas: Distinct Morphologies, Same Transcription Factors. Exp Lung Res 2009; 31:37-55. [PMID: 15765918 DOI: 10.1080/01902140490495002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Constitutive expression of human achaete-scute homolog-1 (hASH-1) in combination with simian virus large Tantigen under the Clara cell 10-kDa secretory protein (CC10) promoter results in adenocarcinomas with focal neuroendocrine (NE) differentiation. Mice carrying conditional alleles for both Rb-1 and p53 in lung epithelial cells develop aggressive lung tumors with similarities to human small cell lung cancers, including high level expression of ASH-1, NE markers, and extra-pulmonary metastases. Tumors in both models originate from bronchiolar epithelium, reveal a range of premalignant changes, express thyroid transcription factor-1 (TTF-1), a marker of peripheral airway cell lineage, and display varying degrees of bidirectional epithelial/NE differentiation.
Collapse
MESH Headings
- Animals
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Basic Helix-Loop-Helix Transcription Factors
- Biomarkers, Tumor/metabolism
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/secondary
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/secondary
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- E2F Transcription Factors
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Transgenic
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Respiratory Mucosa/metabolism
- Respiratory Mucosa/pathology
- Thyroid Nuclear Factor 1
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Uteroglobin/genetics
- Uteroglobin/metabolism
Collapse
Affiliation(s)
- R Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA.
| | | | | | | | | |
Collapse
|
19
|
Platta CS, Greenblatt DY, Kunnimalaiyaan M, Chen H. Valproic acid induces Notch1 signaling in small cell lung cancer cells. J Surg Res 2008; 148:31-7. [PMID: 18570928 PMCID: PMC2900385 DOI: 10.1016/j.jss.2008.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/28/2008] [Accepted: 03/10/2008] [Indexed: 01/10/2023]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive malignancy. Current treatments yield dismal survival rates. We have previously demonstrated that histone deacetylase (HDAC) inhibitors can inhibit neuroendocrine tumor growth. Activation of the Notch1 signaling pathway also impairs SCLC cell viability. In this study, we investigated the ability of the HDAC inhibitor valproic acid (VPA) to activate Notch1 signaling and inhibit proliferation in SCLC cells. MATERIALS AND METHODS DMS53 human SCLC cells were treated with VPA (0-10 mM) for 2 d. Light microscopy was used to examine changes in cell morphology. Western analysis was performed using antibodies against various Notch1 pathway proteins to assess Notch1 activation. Additionally, immunoblotting was performed for two neuroendocrine tumor markers, chromogranin A and achaete-scute complex-like 1. Finally, a cell proliferation assay was used to measure the effects of VPA on SCLC growth over 8 d. RESULTS After treatment with VPA, DMS53 cells underwent dramatic changes in morphology. VPA induced expression of the full-length and active forms of Notch1 protein. Furthermore, VPA suppressed levels of neuroendocrine tumor markers chromogranin A and ASLC-1. Importantly, VPA treatment led to dose-dependent inhibition of SCLC cell proliferation. CONCLUSIONS The HDAC inhibitor VPA activates Notch1 signaling in SCLC cells. VPA induces changes in cell morphology and suppresses neuroendocrine tumor markers, indicating a change in phenotype. Additionally, VPA profoundly inhibits SCLC cell growth. These results suggest that VPA has potential as a novel therapeutic agent for SCLC.
Collapse
Affiliation(s)
| | | | - Muthusamy Kunnimalaiyaan
- Endocrine Surgery Research Laboratories, Department of Surgery and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Herbert Chen
- Endocrine Surgery Research Laboratories, Department of Surgery and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
20
|
The Tyrosine Kinase Inhibitor Cediranib for Non-small Cell Lung Cancer and Other Thoracic Malignancies. J Thorac Oncol 2008; 3:S131-4. [DOI: 10.1097/jto.0b013e318174e910] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Platta CS, Greenblatt DY, Kunnimalaiyaan M, Chen H. The HDAC inhibitor trichostatin A inhibits growth of small cell lung cancer cells. J Surg Res 2007; 142:219-26. [PMID: 17612559 DOI: 10.1016/j.jss.2006.12.555] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/13/2006] [Accepted: 12/21/2006] [Indexed: 12/26/2022]
Abstract
BACKGROUND An estimated 162,460 people will die of lung cancer in the United States in 2006, making it the leading cause of cancer deaths. Small cell lung cancer (SCLC) accounts for 20% of all lung cancers and exhibits aggressive behavior with early metastases. Current treatments yield five-year survival rates of 5 to 10%, indicating a need for novel therapeutic approaches. Histone deacetylase inhibitors (HDACIs) represent a new class of anticancer agents. Trichostatin A (TSA), an HDACI, has been shown to inhibit growth in several cancers. We hypothesized that TSA may inhibit proliferation of SCLC cells. MATERIALS AND METHODS Human SCLC DMS53 cells were treated with TSA (0 to 400 nM). Light microscopy was used to assess changes in cell morphology. Western analysis was performed for acetylated histone 4 to confirm HDAC inhibition. The effect of TSA treatment on cellular growth was measured by the MTT assay. Finally, levels of BCL-2, cleaved poly(ADP-ribose) polymerase, p21, and p27 proteins were measured to look for induction of cell cycle arrest and/or apoptosis. RESULTS DMS53 cells treated with TSA underwent dramatic changes in cell appearance. Treated cells assumed round and spindle shapes with distinct cellular borders. Western analysis demonstrated increased levels of acetylated histone 4. TSA treatment resulted in a dose-dependent inhibition of growth. Lastly, elevated p21, p27, and cleaved poly(ADP-ribose) polymerase along with decreased BCL-2 protein levels were observed. CONCLUSIONS TSA causes morphological differentiation and dose-dependent inhibition of cell growth via cell cycle arrest and subsequent apoptosis. This suggests that TSA and other HDACIs may represent a new potential therapy for patients with SCLC.
Collapse
Affiliation(s)
- Christopher S Platta
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin, University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Extrapulmonary small cell carcinomas (EPSCCs) are uncommon malignant neoplasms with a reported incidence of 0.1% to 0.4% in the United States. Since their first description in 1930, they have been seen in nearly every organ system. Like their more common pulmonary counterparts, EPSCCs are thought to arise from a multipotential stem cell. However, there is recent molecular evidence that small cell elements may arise as a late-stage phenomenon in the genetic progression of more organ-typical carcinomas. The morphologic, immunohistochemical, and ultrastructural features are similar to those described in pulmonary small cell carcinomas (PSCCs). The differential diagnosis of EPSCC includes PSCC, other neuroendocrine tumors, small round blue cell tumors, metastatic melanoma, lymphoma, and poorly differentiated non-small cell carcinomas. Molecular alterations reported to occur in EPSCCs include abnormalities described in PSCC and changes found in carcinomas more typically encountered in the organ from which they arise. In this article we discuss the pathology of EPSCC with a review of theories of histogenesis, sites of occurrence, diagnostic features, differential diagnosis, molecular alterations, and clinical behavior.
Collapse
Affiliation(s)
- Shellaine R Frazier
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
23
|
|
24
|
Garraway LA, Weir BA, Zhao X, Widlund H, Beroukhim R, Berger A, Rimm D, Rubin MA, Fisher DE, Meyerson ML, Sellers WR. "Lineage addiction" in human cancer: lessons from integrated genomics. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 70:25-34. [PMID: 16869735 DOI: 10.1101/sqb.2005.70.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genome-era advances in the field of oncology endorse the notion that many tumors may prove vulnerable to targeted therapeutic avenues once their salient molecular alterations are elucidated. Accomplishing this requires both detailed genomic characterization and the ability to identify in situ the critical dependencies operant within individual tumors. To this end, DNA microarray platforms such as high-density single-nucleotide polymorphism (SNP) arrays enable large-scale cancer genome characterization, including copy number and loss-of-heterozygosity analyses at high resolution. Clustering analyses of SNP array data from a large collection of tumor samples and cell lines suggest that certain copy number alterations correlate strongly with the tissue of origin. Such lineage-restricted alterations may harbor novel cancer genes directing genesis or progression of tumors from distinct tissue types. We have explored this notion through combined analysis of genome-scale data sets from the NCI60 cancer cell line collection. Here, several melanoma cell lines clustered on the basis of increased dosage at a region of chromosome 3p containing the master melanocyte regulator MITF. Combined analysis of gene expression data and additional functional studies established MITF as an amplified oncogene in melanoma. MITF may therefore represent a nodal point within a critical lineage survival pathway operant in a subset of melanomas. These findings suggest that, like oncogene addiction, "lineage addiction" may represent a fundamental tumor survival mechanism with important therapeutic implications.
Collapse
Affiliation(s)
- L A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Foster MC, Kleinerman RA, Abramson DH, Seddon JM, Tarone RE, Tucker MA. Tobacco Use in Adult Long-term Survivors of Retinoblastoma. Cancer Epidemiol Biomarkers Prev 2006; 15:1464-8. [PMID: 16896033 DOI: 10.1158/1055-9965.epi-05-0783] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A significant risk of lung cancer was identified among hereditary, but not nonhereditary, retinoblastoma (Rb) patients. Tobacco use was investigated to determine whether differences in smoking prevalence might explain the lung cancer excess and to characterize smoking patterns in adult survivors of Rb. Subjects were 441 hereditary and 395 nonhereditary 1-year survivors of Rb, age >or=18 years, who responded to a telephone survey about current health behavior, including tobacco use. Response rates were 76% for hereditary and 73% for nonhereditary survivors. We compared patterns and predictors of current tobacco use among hereditary and nonhereditary survivors with other childhood cancer survivor studies and the U.S. population. Hereditary Rb survivors currently smoke cigarettes significantly less frequently than nonhereditary survivors (16. 8% versus 24.3%), although among current smokers, age at smoking initiation (17 years old) and average cigarettes (1.5 packs) smoked daily are similar. Predictors of current and ever cigarette smoking include nonhereditary Rb, older age, being female, less education, and use of other tobacco products. Rb survivors smoke cigarettes significantly less than the U.S. population (rate ratio, 0.63; 95% confidence interval, 0.5-0.8 for males; rate ratio, 0.75; 95% confidence interval, 0.6-0.9 for females), but Rb survivors have comparable smoking rates with other childhood cancer survivors. Smoking did not account for the increased risk of lung cancer among hereditary Rb patients, and this may point to an enhanced sensitivity to the carcinogenic effects of tobacco. Adult survivors of Rb should be encouraged to stop smoking.
Collapse
Affiliation(s)
- Meredith C Foster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, EPS 7044, 6120 Executive Boulevard, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
26
|
Zhou J, Chen J, Zhong R, Mokotoff M, Shultz LD, Ball ED. Targeting gastrin-releasing peptide receptors on small cell lung cancer cells with a bispecific molecule that activates polyclonal T lymphocytes. Clin Cancer Res 2006; 12:2224-31. [PMID: 16609038 DOI: 10.1158/1078-0432.ccr-05-1524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Gastrin-releasing peptide (GRP) is a growth factor for small cell lung cancer (SCLC). GRP belongs to the bombesin peptide family and has significant homology to bombesin. We constructed a bispecific molecule, OKT3xAntag2, by conjugating a monoclonal antibody OKT3 (anti-CD3) with a bombesin/GRP antagonist (Antag2) and evaluated cytotoxicity against SCLC cells. EXPERIMENTAL DESIGN We tested binding of the bispecific molecule to SCLC cell lines and T cells by flow cytometry, antibody-dependent cellular cytotoxicity (ADCC) of SCLC cells in vitro and in a murine SCLC xenograft model. We studied SCLC apoptosis and necrosis during ADCC and the activity and cleavage of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP). RESULTS The bispecific molecule functions as a cross-linker between T cells and SCLC cells, induces T cell activation, and mediates ADCC of SCLC cells; 40% to 80% growth inhibition of SCLC cells mediated by the bispecific molecule at low effector to target cell ratios was achieved. Activation of T cells by the bispecific molecule resulted in significant increases in IFNgamma production and apoptosis and necrosis of SCLC cells associated with cleavage of PARP and caspase-3. Targeted immunotherapy with the bispecific molecule-armed human T cells significantly reduced SCLC tumor burdens in a mouse model. CONCLUSION The bispecific molecule OKT3xAntag2 mediates growth inhibition and apoptosis of SCLC cells by activated T cells through activation and cleavage of caspase-3 and PARP in vitro and in vivo. Clinical trials of this bispecific molecule through adoptive transfer of ex vivo activated T cells in GRP receptor-positive tumors, such as SCLC, are warranted.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/immunology
- Binding Sites
- Carcinoma, Small Cell/drug therapy
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cytotoxicity Tests, Immunologic
- Disease Models, Animal
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacology
- Immunotherapy/methods
- Interferon-gamma/biosynthesis
- Lung Neoplasms/drug therapy
- Mice
- Mice, Inbred NOD
- Muromonab-CD3/chemistry
- Oxytocin/analogs & derivatives
- Oxytocin/chemistry
- Receptors, Bombesin/drug effects
- Receptors, Bombesin/immunology
- Structure-Activity Relationship
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Transplantation, Heterologous
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jiehua Zhou
- Division of Blood and Marrow Transplantation, Department of Medicine and Moores University of California at San Diego Cancer Center, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
27
|
Coe BP, Lee EHL, Chi B, Girard L, Minna JD, Gazdar AF, Lam S, MacAulay C, Lam WL. Gain of a region on 7p22.3, containing MAD1L1, is the most frequent event in small-cell lung cancer cell lines. Genes Chromosomes Cancer 2006; 45:11-9. [PMID: 16130125 DOI: 10.1002/gcc.20260] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive lung neoplasm, which accounts for 20% of yearly lung cancer cases. The lack of knowledge of the progenitor cell type for SCLC precludes the definition of a normal gene expression profile and has hampered the identification of gene expression changes, while the low resolution of conventional genomic screens such as comparative genomic hybridization (CGH) and loss of heterozygosity analysis limit our ability to fine-map genetic alterations. The recent advent of whole genome tiling path array CGH enables profiling of segmental DNA copy number gains and losses at a resolution 100 times that of conventional methods. Here we report the analysis of 14 SCLC cell lines and six matched normal B-lymphocyte lines. We detected 7p22.3 copy number gain in 13 of the 14 SCLC lines and 0 of the 6 matched normal lines. In 4 of the 14 cell lines, this gain is present as a 350 kbp gene specific copy number gain centered at MAD1L1 (the human homologue of the yeast gene MAD1). Fluorescence in situ hybridization validated the array CGH finding. Intriguingly, MAD1L1 has been implicated to have tumor-suppressing functions. Our data suggest a more complex role for this gene, as MAD1L1 is the most frequent copy number gain in SCLC cell lines.
Collapse
Affiliation(s)
- Bradley P Coe
- British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rossi G, Cavazza A, Marchioni A, Longo L, Migaldi M, Sartori G, Bigiani N, Schirosi L, Casali C, Morandi U, Facciolongo N, Maiorana A, Bavieri M, Fabbri LM, Brambilla E. Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung. J Clin Oncol 2006; 23:8774-85. [PMID: 16314638 DOI: 10.1200/jco.2005.02.8233] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Pulmonary large-cell neuroendocrine carcinoma (LCNEC) is a relatively uncommon, high-grade neuroendocrine tumor sharing several features with small-cell lung carcinoma (SCLC) but currently considered as a variant of non-SCLC and accordingly treated with poor results. Little is known about the optimal therapy of LCNEC and the possible therapeutic molecular targets. PATIENTS AND METHODS We reviewed 83 patients with pure pulmonary LCNEC to investigate their clinicopathologic features, therapeutic strategy, and immunohistochemical expression and the mutational status of the receptor tyrosine kinases (RTKs) KIT, PDGFRalpha, PDGFRbeta, and Met. RESULTS LCNEC histology predicted a dismal outcome (overall median survival, 17 months) even in stage I patients (5-year survival rate, 33%). LCNEC strongly expressed RTKs (KIT in 62.7% of patients, PDGFRalpha in 60.2%, PDGFRbeta in 81.9%, and Met in 47%), but no mutations were detected in the exons encoding for the relevant juxtamembrane domains. Tumor stage and size (> or = 3 cm) and Met expression were significantly correlated with survival. At univariate and multivariate analysis, SCLC-based chemotherapy (platinum-etoposide) was the most important variable correlating with survival, both in the adjuvant and metastatic settings (P < .0001). CONCLUSION Pulmonary LCNEC represents an aggressive tumor requiring multimodal treatment even for resectable stage I disease, and LCNEC seems to respond to adjuvant platinum-etoposide-based chemotherapy. Patients who received this therapy had the best survival rate. Despite our failure in finding mutational events in the tested RTKs, the strong expression of KIT, PDGFRalpha, PDGFRbeta, and Met in tumor cells suggests an important role of these RTKs in LCNEC, and these RTKs seem to be attractive therapeutic targets.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carboplatin/administration & dosage
- Carcinoma, Large Cell/drug therapy
- Carcinoma, Large Cell/enzymology
- Carcinoma, Large Cell/mortality
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/enzymology
- Carcinoma, Neuroendocrine/mortality
- Carcinoma, Small Cell/drug therapy
- Carcinoma, Small Cell/enzymology
- Carcinoma, Small Cell/mortality
- Cisplatin/administration & dosage
- DNA Mutational Analysis
- Deoxycytidine/administration & dosage
- Deoxycytidine/analogs & derivatives
- Female
- Follow-Up Studies
- Humans
- Immunohistochemistry
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/mortality
- Male
- Middle Aged
- Multivariate Analysis
- Neoplasm Staging
- Paclitaxel/administration & dosage
- Polymerase Chain Reaction
- Proto-Oncogene Proteins c-kit/biosynthesis
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-met/biosynthesis
- Proto-Oncogene Proteins c-met/genetics
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Platelet-Derived Growth Factor alpha/biosynthesis
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor beta/biosynthesis
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Survival Analysis
- Survival Rate
- Treatment Outcome
- Gemcitabine
Collapse
Affiliation(s)
- Giulio Rossi
- Integrated Department of Diagnostic and Laboratory Services and Legal Medicine, Section of Pathologic Anatomy, Respiratory Disease Clinic, University of Modena and Reggio Emilia, via del Pozzo, 71-41100, Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Neuroendocrine pulmonary and thymic tumors constitute a distinct category of tumors collectively disclosing morphologic and biologic neuroendocrine features. They are classified in 4 histopathological types and 3 malignancy grades. The typical carcinoids are of low grade, the atypical carcinoids of intermediate grade and the large cell neuroendocrine carcinoma with the small cell carcinoma are high grade neuroendocrine tumors. Their distinction relies on objective morphologic and phenotypic criteria of strong clinical significance and predictive prognostic value.
Collapse
|
30
|
Abstract
This article reviews novel therapies that are under development for non-small cell lung cancer and small cell lung cancer.
Collapse
Affiliation(s)
- Olwen Hahn
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Cancer Research Center, Pritzker School of Medicine, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA
| | | |
Collapse
|
31
|
Chen YL, Law PY, Loh HH. Inhibition of akt/protein kinase B signaling by naltrindole in small cell lung cancer cells. Cancer Res 2005; 64:8723-30. [PMID: 15574783 DOI: 10.1158/0008-5472.can-03-3091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phosphatidylinositol 3-kinase-Akt/protein kinase B (PKB) survival signaling is very important for cancer cell survival and growth. Constitutively active phosphatidylinositol 3-kinase-Akt/PKB signaling in small cell lung cancer (SCLC) is a major factor for the survival of SCLC cells. Inhibitors of this signaling pathway would be potential antitumor agents, particularly for SCLC. Here we report that naltrindole, which has been used as a classic delta opioid antagonist, inhibited growth and induced apoptosis in the three characteristic SCLC cell lines, NCI-H69, NCI-H345, and NCI-H510. Naltrindole treatment reduced constitutive phosphorylation of Akt/PKB on serine 473 and threonine 308 in cells. We found that the levels of constitutive phosphorylation of Akt/PKB on serine 473 correlate with the sensitivity of the three cell lines to naltrindole treatment. Furthermore, naltrindole treatment not only reduced the phosphorylation of the Akt/PKB upstream kinase phosphoinositide-dependent kinase-1, but also its downstream effectors glycogen synthase kinase-3beta and the Forkhead transcription factors AFX and FKHR. DNA array analysis of 205 apoptosis-related genes indicated that some Akt/PKB-dependent genes were either up- or down-regulated by naltrindole. Flow cytometric and microscopic analyses clearly showed that naltrindole induced apoptosis in SCLC cells. RNA interference experiments confirmed that naltrindole-induced cell death was associated with the Akt/PKB survival pathway. Together, these results show that naltrindole is a new inhibitor of the Akt/PKB signaling pathway, suggesting that naltrindole could be a potential lead for the development of a new type of inhibitors that target the constitutively active Akt/PKB signaling-dependent SCLC cells.
Collapse
Affiliation(s)
- Yulong L Chen
- Department of Pharmacology, the University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
32
|
Coe BP, Henderson LJ, Garnis C, Tsao MS, Gazdar AF, Minna J, Lam S, Macaulay C, Lam WL. High-resolution chromosome arm 5p array CGH analysis of small cell lung carcinoma cell lines. Genes Chromosomes Cancer 2005; 42:308-13. [PMID: 15611929 DOI: 10.1002/gcc.20137] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genomic amplification of regions on chromosome arm 5p has been observed frequently in small cell lung cancer (SCLC), implying the presence of multiple oncogenes on this arm. Although conventional comparative genomic hybridization (CGH) detects gross chromosomal copy number changes, gene discovery requires a higher-resolution approach in order to identify regions of alteration precisely. To identify candidate genes on this chromosome arm, we developed a high-resolution, 10-clone-per-megabase bacterial artificial chromosome CGH array for 5p and examined a panel of 15 SCLC cell lines. Utilization of this CGH array has allowed the fine-mapping of breakpoints to regions as small as 200 kb in a single experiment. In addition to reporting our observations of aberrations at the well-characterized SKP2 and TERT loci, we describe the identification of microdeletions that have escaped detection by conventional screens and the identification TRIO and ANKH as novel putative oncogenes.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Small Cell/genetics
- Chromosome Aberrations
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Human, Pair 5/ultrastructure
- DNA/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Lung Neoplasms/genetics
- Male
- Nucleic Acid Hybridization
- Oligonucleotide Array Sequence Analysis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Bradley P Coe
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Patel J. Cytokine targeted treatments for lung cancer. Cancer Treat Res 2005; 126:289-311. [PMID: 16209071 DOI: 10.1007/0-387-24361-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Jyoti Patel
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
34
|
Kazanjian A, Wallis D, Au N, Nigam R, Venken KJT, Cagle PT, Dickey BF, Bellen HJ, Gilks CB, Grimes HL. Growth factor independence-1 is expressed in primary human neuroendocrine lung carcinomas and mediates the differentiation of murine pulmonary neuroendocrine cells. Cancer Res 2004; 64:6874-82. [PMID: 15466176 DOI: 10.1158/0008-5472.can-04-0633] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human small cell lung cancers might be derived from pulmonary cells with a neuroendocrine phenotype. They are driven to proliferate by autocrine and paracrine neuropeptide growth factor stimulation. The molecular basis of the neuroendocrine phenotype of lung carcinomas is relatively unknown. The Achaete-Scute Homologue-1 (ASH1) transcription factor is critically required for the formation of pulmonary neuroendocrine cells and is a marker for human small cell lung cancers. The Drosophila orthologues of ASH1 (Achaete and Scute) and the growth factor independence-1 (GFI1) oncoprotein (Senseless) genetically interact to inhibit Notch signaling and specify fly sensory organ development. Here, we show that GFI1, as with ASH1, is expressed in neuroendocrine lung cancer cell lines and that GFI1 in lung cancer cell lines functions as a DNA-binding transcriptional repressor protein. Forced expression of GFI1 potentiates tumor formation of small-cell lung carcinoma cells. In primary human lung cancer specimens, GFI1 expression strongly correlates with expression of ASH1, the neuroendocrine growth factor gastrin-releasing peptide, and neuroendocrine markers synaptophysin and chromogranin A (P < 0.0000001). GFI1 colocalizes with chromogranin A and calcitonin-gene-related peptide in embryonic and adult murine pulmonary neuroendocrine cells. In addition, mice with a mutation in GFI1 display abnormal development of pulmonary neuroendocrine cells, indicating that GFI1 is important for neuroendocrine differentiation.
Collapse
Affiliation(s)
- Avedis Kazanjian
- Institute for Cellular Therapeutics and Departments of Surgery, Biochemistry, and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
He P, Varticovski L, Bowman ED, Fukuoka J, Welsh JA, Miura K, Jen J, Gabrielson E, Brambilla E, Travis WD, Harris CC. Identification of carboxypeptidase E and gamma-glutamyl hydrolase as biomarkers for pulmonary neuroendocrine tumors by cDNA microarray. Hum Pathol 2004; 35:1196-209. [PMID: 15492986 DOI: 10.1016/j.humpath.2004.06.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pulmonary neuroendocrine tumors vary dramatically in their malignant behavior. Their classification, based on histological examination, is often difficult. In search of molecular and prognostic markers for these tumors, we used cDNA microarray analysis of human transcripts against reference RNA from a well-characterized immortalized bronchial epithelial cell line, BEAS-2B. Tumor cells were isolated by laser-capture microdissection from primary tumors of 17 typical carcinoids, small cell lung cancers, and large cell neuroendocrine carcinomas. An unsupervised, hierarchical clustering algorithm resulted in a precise classification of each tumor subtype according to the proposed histological classification. Selection of genes, using supervised analysis, resulted in the identification of 198 statistically significant genes (P <.004) that also accurately discriminated between 3 predefined tumor subtypes. Two-by-two comparisons of these genes identified classifier genes that distinguished each tumor subtype from the others. Changes in expression of selected differentially expressed genes for each tumor subtype were internally validated by real-time reverse-transcription polymerase chain reaction. Expression of 2 potential classifier gene products, carboxypeptidase E (CPE) and gamma-glutamyl hydrolase (GGH), was validated by immunohistochemistry and cross-validated on additional archival samples of pulmonary neuroendocrine tumors. Kaplan-Meier survival analysis revealed that immunostaining for CPE was a statistically significant predictor of good prognosis, whereas GGH expression correlated with poor prognosis. Thus, cDNA microarray analysis led to the identification of 2 novel biomarkers that should facilitate molecular diagnosis and further study of pulmonary neuroendocrine tumors.
Collapse
Affiliation(s)
- Ping He
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu L, Griffin JD. Modulation of Notch signaling by mastermind-like (MAML) transcriptional co-activators and their involvement in tumorigenesis. Semin Cancer Biol 2004; 14:348-56. [PMID: 15288260 DOI: 10.1016/j.semcancer.2004.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Notch signaling is mediated by cell-cell interactions and is critical for cell fate determination in many species. Recently, a family of mastermind-like (MAML) transcriptional co-activator genes was identified that encode proteins that cooperate with Notch and CSL to activate transcription. Here, we review our current understanding of the roles of the MAML proteins in Notch signaling, and their involvement in certain human cancers. The mounting biochemical and functional evidence indicate that the MAML genes are critical components of the Notch signaling pathway, likely regulating cellular events involved in both normal development and oncogenesis.
Collapse
Affiliation(s)
- Lizi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Abstract
Small-cell lung cancer (SCLC) is a smoking-related disease with a poor prognosis. While SCLC is usually initially sensitive to chemotherapy and radiotherapy, responses are rarely long lasting. Frustratingly, most patients ultimately relapse, often with increasingly treatment resistant disease. Many strategies have been developed in an attempt to improve treatment outcomes, which have plateaued since the introduction of combination chemotherapy in the 1980s. These include trials of maintenance therapy, and dose intensification, the latter by means of increasing dose density, growth factor support and high dose chemotherapy with autologous stem cell rescue. None have been shown to improve patient survival. On the other hand, the integration of concurrent thoracic radiation and prophylactic cranial irradiation has improved the survival outcomes in patients with limited disease. In extensive disease, irinotecan combined with cisplatin has shown promise in improving survival over conventional platinum/etoposide chemotherapy schedules and a confirmatory study is awaited. The future of SCLC treatment may however lie with molecularly targeted therapies, such as antiangiogenesis agents and signal transduction inhibitors, which are being studied at present.
Collapse
Affiliation(s)
- Yu Jo Chua
- Medical Oncology Unit, The Canberra Hospital, P.O. Box 11, Woden, ACT 2606, Australia
| | | | | |
Collapse
|
38
|
Liu J, Blackhall F, Seiden-Long I, Jurisica I, Navab R, Liu N, Radulovich N, Wigle D, Sultan M, Hu J, Tsao MS, Johnston MR. Modeling of lung cancer by an orthotopically growing H460SM variant cell line reveals novel candidate genes for systemic metastasis. Oncogene 2004; 23:6316-24. [PMID: 15247903 DOI: 10.1038/sj.onc.1207795] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endobronchial implantation of NCI-H460 cells into the nude rat generates a primary lung tumor with mediastinal lymph node spread, but rarely systemic metastases. We isolated tumor cells from mediastinal nodes, orthotopically reimplanted the cells into nude rats and repeated this four times to derive a cell line, designated H460SM, that spontaneously metastasizes to bone, kidney, brain, soft tissue and contralateral lung. H460SM cells demonstrated higher invasive activity in vitro than parental NCI-H460 cells. Spectral karyotyping revealed a new inversion within 17q and loss of an extra normal copy of chromosome 14 present in parental NCI-H460 cells. Expression profiling of orthotopic primary tumors revealed differential expression of 360 genes. Of these, 173 were represented in the probe set of a 19.2K OCI cDNA microarray previously used to profile the gene expression of surgically resected lung cancer specimens. We have computationally validated clinical importance of these genes by using in silico analysis of 18 cases of pulmonary adenocarcinoma, which were split into two patient groups with markedly different clinical outcome. The model identifies additional novel candidate genes for the progression of lung cancer to systemic metastases and poor prognosis.
Collapse
Affiliation(s)
- Jiang Liu
- Division of Thoracic Surgery, University Health Network, Princess Margaret Hospital and Ontario Cancer Institute, Ontario, Canada M5G 2M9
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wolff NC, Randle DE, Egorin MJ, Minna JD, Ilaria RL. Imatinib Mesylate Efficiently Achieves Therapeutic Intratumor Concentrations in Vivo but Has Limited Activity in a Xenograft Model of Small Cell Lung Cancer. Clin Cancer Res 2004; 10:3528-34. [PMID: 15161712 DOI: 10.1158/1078-0432.ccr-0957-03] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite recent advances in cancer therapy, long-term survival in small cell lung cancer (SCLC) remains uncommon, underscoring the need for novel therapeutic approaches. Previous studies have identified constitutive expression of the receptor tyrosine kinase, c-Kit, and its ligand, stem cell factor, in a substantial proportion of SCLC specimens. The purpose of this study was to determine whether imatinib mesylate, an inhibitor of c-Kit, could achieve therapeutic concentrations in tumors and in brain (a frequent site of SCLC metastasis) and interfere with SCLC tumor growth in vivo. EXPERIMENTAL DESIGN Human SCLC tumor cell lines with constitutive c-kit expression and tyrosine phosphorylation (NCI-H209, NCI-H526, and NCI-H1607) were used to establish SCLC tumor xenografts in NCr nude (nu/nu)-immunodeficient mice. SCLC tumor-bearing mice were randomly assigned to imatinib or control (water) administered twice a day by oral gavage. Imatinib concentrations in plasma, brain, and tumor were quantitated and correlated with tumor response. RESULTS Therapeutic concentrations of imatinib were achieved in plasma and tumor xenografts but not in the brain. Imatinib blocked the constitutive activation of c-kit in SCLC tumor cell lines in vitro but had a negligible effect on SCLC xenograft growth in vivo. CONCLUSIONS Orally administered imatinib rapidly reaches therapeutic concentrations in SCLC xenografts, suggesting the feasibility of combining imatinib with other novel or traditional chemotherapeutic agents in SCLC or other solid tumors. The c-Kit signaling pathway does not appear to play a critical role in SCLC proliferation and viability in vivo, however, suggesting that imatinib is unlikely to be effective as monotherapy for SCLC.
Collapse
Affiliation(s)
- Nicholas C Wolff
- Division of Hematology/Oncology, Department of Medicine, Simmons Cancer Center , University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The Kit receptor tyrosine kinase is a transmembrane receptor that is expressed in a variety of different tissues and mediates pleiotropic biological effects through its ligand stem cell factor (SCF). Sporadic mutations of Kit as well as autocrine/paracrine activation mechanisms of the SCF/Kit pathway have been implicated in a variety of malignancies, where its primary contribution to metastases is in enhancing tumor growth and reducing apoptosis. For example, Kit is frequently mutated and activated in gastrointestinal stromal tumors (GISTs) and there is ligand-mediated activation of Kit in some lung cancers. Kit is a convenient target in Kit-induced tumors and inhibition of this receptor with the small molecule drug Gleevec (imatinib mesylate, STI571) in GIST has shown dramatic efficacy. Unfortunately, past experience has demonstrated that chemotherapy of cancers with a single drug often leads to resistance of the cancer. Further understanding of the molecular mechanisms underlying Kit-mediated transformation is therefore important and may lead to the identification of further novel drug targets. These Kit-specific signaling pathways may then be targeted to overcome potential drug resistance. This review will focus on our understanding of the molecular mechanisms involved in transformation by Kit. The potential mechanisms by which Kit induces cellular transformation are described. We will also discuss the role and expression of Kit in various malignancies. Ultimately, the understanding of c-Kit biology, biochemistry, and mutational analysis will lead to better therapeutics.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
41
|
Abstract
Because small cell lung cancer is decreasing in frequency in North America, the tempo of clinical trials in general and investigation of molecular-targeted therapy is less active than for non-small cell lung cancer. Nevertheless, progress in the understanding of the molecular pathogenesis of small cell lung cancer has been substantial. Potentially relevant molecular targets have been identified and drugs have been developed to exploit them. This article discusses the common expression of c-Kit receptor tyrosine kinases in small cell lung cancer and its potential to serve as an effective target for small-molecule inhibitors such as imatinib mesylate. Another innovation described is the development of an immunoconjugate (BB-10901) that links an antibody targeting the CD56 antigen of the neural cell adhesion molecule family with a potent maytansinoid cytotoxic component. These novel strategies are currently in clinical trials and potentially will allow additional therapeutic options for patients resistant to conventional strategies. Should these proof-of-concept studies show promise, integration of these agents with conventional modalities in previously untreated patients will follow.
Collapse
|
42
|
Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 2003; 4:181-9. [PMID: 14522252 DOI: 10.1016/s1535-6108(03)00220-4] [Citation(s) in RCA: 460] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive human tumor with a more than 95% mortality rate. Its ontogeny and molecular pathogenesis remains poorly understood. We established a mouse model for neuroendocrine (NE) lung tumors by conditional inactivation of Rb1 and Trp53 in mouse lung epithelial cells. Mice carrying conditional alleles for both Rb1 and Trp53 developed with high incidence aggressive lung tumors with striking morphologic and immunophenotypic similarities to SCLC. Most of these tumors, which we designate MSCLC (murine small cell lung carcinoma), diffusely spread through the lung and gave rise to extrapulmonary metastases. In our model, inactivation of both Rb1 and p53 was a prerequisite for the pathogenesis of SCLC.
Collapse
Affiliation(s)
- Ralph Meuwissen
- Division of Molecular Genetics and Center of Biomedical Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
A rationally designed, conditional p53 and Rb allele-based and lung-targeted mouse model of human small cell lung cancer (SCLC) provides the cancer research community with a valid and important new tool to use in translational research against this deadly disease.
Collapse
Affiliation(s)
- John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
44
|
Kijima T, Maulik G, Ma PC, Madhiwala P, Schaefer E, Salgia R. Fibronectin enhances viability and alters cytoskeletal functions (with effects on the phosphatidylinositol 3-kinase pathway) in small cell lung cancer. J Cell Mol Med 2003; 7:157-64. [PMID: 12927054 PMCID: PMC6740062 DOI: 10.1111/j.1582-4934.2003.tb00214.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Small cell lung cancer (SCLC) is a rapidly progressive disease with ultimate poor outcome. SCLC has been shown to interact closely with the stromal and extracellular matrix (ECM) components of the diseased host. ECM consists of type I/IV collagen, laminin, vitronectin, and fibronectin (FN) among others. Herein, we investigated the behavior of a SCLC cell line (NCI-H446) on FN-coated surface. Over a course of 72 h, FN (10 micro g/ml) caused both increased survival and proliferation of NCI-H446 cells. Survival under serum-starved conditions increased 1.44-fold and proliferation in the presence of fetal calf serum increased by 1.30-fold. The phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 reduced both survival and proliferation of NCI-H446 cells (0.48- and 0.27-fold, respectively), even on FN-coated surface. We next determined the effects of FN on cytoskeletal function such as cell motility/morphology and adhesion. Over a course of 24 h, FN reduced aggregation of NCI-H446 cells and induced flattened cellular morphology with neurite-like projections after 1 h, however, in the presence of LY294002, the cells rounded up. Adhesion of NCI-H446 cells also increased with FN (4.47-fold) which was abrogated with LY294002 treatment. This correlated with phosphorylation of the cytoskeletal protein p125FAK, on Tyr397, Tyr861 and Ser843 residues with FN. Even in the presence of LY294002, these serine/tyrosine residues were still phosphorylated on FN-coated surface. In contrast, the focal adhesion protein paxillin was not phosphorylated at Tyr31 with FN. In summary, FN stimulation of SCLC cells leads to enhancement of viability and changes in cytoskeletal function that are partially mediated through the PI3-K pathway.
Collapse
Affiliation(s)
- T Kijima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Dana 1234B, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|