1
|
Yang JK, Kwon H, Kim S. Recent advances in light-triggered cancer immunotherapy. J Mater Chem B 2024; 12:2650-2669. [PMID: 38353138 DOI: 10.1039/d3tb02842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Light-triggered phototherapies, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have shown strong therapeutic efficacy with minimal invasiveness and systemic toxicity, offering opportunities for tumor-specific therapies. Phototherapies not only induce direct tumor cell killing, but also trigger anti-tumor immune responses by releasing various immune-stimulating factors. In recent years, conventional phototherapies have been combined with cancer immunotherapy as synergistic therapeutic modalities to eradicate cancer by exploiting the innate and adaptive immunity. These combined photoimmunotherapies have demonstrated excellent therapeutic efficacy in preventing tumor recurrence and metastasis compared to phototherapy alone. This review covers recent advancements in combined photoimmunotherapy, including photoimmunotherapy (PIT), PDT-combined immunotherapy, and PTT-combined immunotherapy, along with their underlying anti-tumor immune response mechanisms. In addition, the challenges and future research directions for light-triggered cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-eui University, Busan, 47340, Republic of Korea.
| | - Hayoon Kwon
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sehoon Kim
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Kaneko K, Acharya CR, Nagata H, Yang X, Hartman ZC, Hobeika A, Hughes PF, Haystead TAJ, Morse MA, Lyerly HK, Osada T. Combination of a novel heat shock protein 90-targeted photodynamic therapy with PD-1/PD-L1 blockade induces potent systemic antitumor efficacy and abscopal effect against breast cancers. J Immunother Cancer 2022; 10:e004793. [PMID: 36171008 PMCID: PMC9528636 DOI: 10.1136/jitc-2022-004793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND We previously demonstrated potent antitumor activity against human breast cancer xenografts using photodynamic therapy (PDT) targeting a novel tumor-specific photosensitizer (HS201), which binds heat shock protein 90 (HS201-PDT). However, induction of systemic antitumor immunity by HS201-PDT alone or by the combination strategy with immune checkpoint blockade has yet to be determined. METHODS Using unilateral and bilateral implantation models of syngeneic breast tumors (E0771, MM3MG-HER2, and JC-HER3) in mice, we assessed whether HS201-PDT could induce local and systemic antitumor immunity. In an attempt to achieve a stronger abscopal effect for distant tumors, the combination strategy with anti-PD-L1 antibody was tested. Tumor-infiltrating leukocytes were analyzed by single cell RNA-sequencing and receptor-ligand interactome analysis to characterize in more detailed the mechanisms of action of the treatment and key signaling pathways involved. RESULTS HS201-PDT demonstrated greater tumor control and survival in immune competent mice than in immunocompromised mice, suggesting the role of induced antitumor immunity; however, survival was modest and an abscopal effect on distant implanted tumor was weak. A combination of HS201-PDT with anti-PD-L1 antibody demonstrated the greatest antigen-specific immune response, tumor growth suppression, prolonged mouse survival time and abscopal effect. The most significant increase of intratumoral, activated CD8+T cells and decrease of exhausted CD8+T cells occurred following combination treatment compared with HS201-PDT monotherapy. Receptor-ligand interactome analysis showed marked enhancement of several pathways, such as CXCL, GALECTIN, GITRL, PECAM1 and NOTCH, associated with CD8+T cell activation in the combination group. Notably, the expression of the CXCR3 gene signature was the highest in the combination group, possibly explaining the enhanced tumor infiltration by T cells. CONCLUSIONS The increased antitumor activity and upregulated CXCR3 gene signature induced by the combination of anti-PD-L1 antibody with HS201-PDT warrants the clinical testing of HS201-PDT combined with PD-1/PD-L1 blockade in patients with breast cancer, and the use of the CXCR3 gene signature as a biomarker.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Chaitanya R Acharya
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Hiroshi Nagata
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiao Yang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
VİTHANAGE V, C.D. J, M.D.P. DE. C, RAJENDRAM S. Photodynamic Therapy : An Overview and Insights into a Prospective Mainstream Anticancer Therapy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) procedure has minimum invasiveness in contrast to conventional anticancer surgical procedures. Although clinically approved a few decades ago, it is not commonly used due to its poor efficacy, mainly due to poor light penetration into deeper tissues. PDT uses a photosensitizer (PS), which is photoactivated on illumination by light of appropriate wavelength and oxygen in the tissue, leading to a series of photochemical reactions producing reactive oxygen species (ROS) triggering various mechanisms resulting in lethal effects on tumor cells. This review looks into the fundamental aspects of PDT, such as photochemistry, photobiological effects, and the current clinical applications in the light of improving PDT to become a mainstream therapeutic procedure against a broad spectrum of cancers and malignant lesions. The side effects of PDT, both early and late-onset, are elaborated on in detail to highlight the available options to minimize side effects without compromising therapeutic efficacy. This paper summarizes the benefits, drawbacks, and limitations of photodynamic therapy along with the recent attempts to achieve improved therapeutic efficacy via monitoring various cellular and molecular processes through fluorescent imagery aided by suitable biomarkers, prospective nanotechnology-based targeted delivery methods, the use of scintillating nanoparticles to deliver light to remote locations and also combining PDT with conventional anticancer therapies have opened up new dimensions for PDT in treating cancers. This review inquires and critically analyses prospective avenues in which a breakthrough would finally enable PDT to be integrated into mainstream anticancer therapy.
Collapse
|
4
|
Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020; 9:jcm9020333. [PMID: 31991650 PMCID: PMC7074240 DOI: 10.3390/jcm9020333] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer strategy utilizing light-mediated activation of a photosensitizer (PS) which has accumulated in tumor and/or surrounding vasculature. Upon activation, the PS mediates tumor destruction through the generation of reactive oxygen species and tumor-associated vasculature damage, generally resulting in high tumor cure rates. In addition, a PDT-induced immune response against the tumor has been documented in several studies. However, some contradictory results have been reported as well. With the aim of improving the understanding and awareness of the immunological events triggered by PDT, this review focuses on the immunological effects post-PDT, described in preclinical and clinical studies. The reviewed preclinical evidence indicates that PDT is able to elicit a local inflammatory response in the treated site, which can develop into systemic antitumor immunity, providing long-term tumor growth control. Nevertheless, this aspect of PDT has barely been explored in clinical studies. It is clear that further understanding of these events can impact the design of more potent PDT treatments. Based on the available preclinical knowledge, recommendations are given to guide future clinical research to gain valuable information on the immune response induced by PDT. Such insights directly obtained from cancer patients can only improve the success of PDT treatment, either alone or in combination with immunomodulatory approaches.
Collapse
|
5
|
Norman DJ, Gambardella A, Mount AR, Murray AF, Bradley M. A Dual Killing Strategy: Photocatalytic Generation of Singlet Oxygen with Concomitant Pt IV Prodrug Activation. Angew Chem Int Ed Engl 2019; 58:14189-14192. [PMID: 31397963 DOI: 10.1002/anie.201908511] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 12/29/2022]
Abstract
A ruthenium-based mitochondrial-targeting photosensitiser that undergoes efficient cell uptake, enables the rapid catalytic conversion of PtIV prodrugs into their active PtII counterparts, and drives the generation of singlet oxygen was designed. This dual mode of action drives two orthogonal cancer-cell killing mechanisms with temporal and spatial control. The designed photosensitiser was shown to elicit cell death of a panel of cancer cell lines including those showing oxaliplatin-resistance.
Collapse
Affiliation(s)
- Daniel J Norman
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, UK
| | - Alessia Gambardella
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, UK
| | - Andrew R Mount
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, UK
| | - Alan F Murray
- School of Engineering, University of Edinburgh, Mayfield Rd, Edinburgh, UK
| | - Mark Bradley
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, UK
| |
Collapse
|
6
|
Norman DJ, Gambardella A, Mount AR, Murray AF, Bradley M. A Dual Killing Strategy: Photocatalytic Generation of Singlet Oxygen with Concomitant Pt
IV
Prodrug Activation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel J. Norman
- EaStChem School of Chemistry University of Edinburgh David Brewster Road Edinburgh UK
| | - Alessia Gambardella
- EaStChem School of Chemistry University of Edinburgh David Brewster Road Edinburgh UK
| | - Andrew R. Mount
- EaStChem School of Chemistry University of Edinburgh David Brewster Road Edinburgh UK
| | - Alan F. Murray
- School of Engineering University of Edinburgh Mayfield Rd Edinburgh UK
| | - Mark Bradley
- EaStChem School of Chemistry University of Edinburgh David Brewster Road Edinburgh UK
| |
Collapse
|
7
|
Li Y, Li X, Zhou F, Doughty A, Hoover AR, Nordquist RE, Chen WR. Nanotechnology-based photoimmunological therapies for cancer. Cancer Lett 2019; 442:429-438. [PMID: 30476523 PMCID: PMC6613935 DOI: 10.1016/j.canlet.2018.10.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/24/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022]
Abstract
Phototherapy is a non-invasive or minimally invasive therapeutic strategy. Immunotherapy uses different immunological approaches, such as antibodies, vaccines, immunoadjuvants, and cytokines to stimulate the host immune system to fight against diseases. In cancer treatment, phototherapy not only destroys tumor cells, but also induces immunogenic tumor cell death to initiate a systemic anti-tumor immune response. When combined with immunotherapy, the effectiveness of phototherapy can be enhanced. Because of their special physical, chemical, and sometimes immunological properties, nanomaterials have also been used to enhance phototherapy. In this article, we review the recent progress in nanotechnology-based phototherapy, including nano-photothermal therapy, nano-photochemical therapy, and nano-photoimmunological therapy in cancer treatment. Specifically, we focus on the immunological responses induced by nano-phototherapies.
Collapse
Affiliation(s)
- Yong Li
- Interventional Therapy Department, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, 73034, USA
| | - Xiaosong Li
- Department of Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Feifan Zhou
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, 73034, USA; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Austin Doughty
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, 73034, USA
| | - Ashley R Hoover
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, 73034, USA
| | - Robert E Nordquist
- Immunophotonics Inc., 4320 Forest Park Avenue #303, St. Louis, Missouri 63108, USA
| | - Wei R Chen
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, 73034, USA; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
8
|
Guo W, Sun C, Jiang G, Xin Y. Recent Developments of Nanoparticles in the Treatment of Photodynamic Therapy for Cervical Cancer. Anticancer Agents Med Chem 2019; 19:1809-1819. [PMID: 30973114 DOI: 10.2174/1871520619666190411121953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023]
Abstract
Photodynamic therapy (PDT) is a photoactivation or photosensitization process, wherein the photosensitizer
(PS) is activated under appropriate wavelengths. Conventional antitumor therapy for cervical cancer
includes surgery, radiotherapy, and chemotherapy. However, these techniques are accompanied by some evident
shortcomings. PDT is considered an emerging minimally invasive treatment for cervical cancer. In recent years,
new PSs have been synthesized because of the long absorption wavelength, good solubility, and high tumor
targeting ability. Studies also showed that the synergistic combination of nanomaterials with PSs resulted in
considerable benefits compared with the use of small-molecule PSs alone. The compounds can act both as a
drug delivery system and PS and enhance the photodynamic effect. This review summarizes the application of
some newly synthesized PSs and PS-combined nanoparticles in cervical cancer treatment to enhance the efficiency
of PDT. The mechanism and influencing factors of PDT are further elaborated.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Radiation, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Chao Sun
- Department of Dermatology, Xinyi People's Hospital, Xuzhou 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yong Xin
- Department of Radiation, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
9
|
Arthanareeswaran VKA, Berndt-Paetz M, Ganzer R, Stolzenburg JU, Ravichandran-Chandra A, Glasow A, Neuhaus J. Harnessing macrophages in thermal and non-thermal ablative therapies for urologic cancers – Potential for immunotherapy. LAPAROSCOPIC, ENDOSCOPIC AND ROBOTIC SURGERY 2018. [DOI: 10.1016/j.lers.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Malatesti N, Munitic I, Jurak I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys Rev 2017; 9:149-168. [PMID: 28510089 PMCID: PMC5425819 DOI: 10.1007/s12551-017-0257-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) combines a photosensitiser, light and molecular oxygen to induce oxidative stress that can be used to kill pathogens, cancer cells and other highly proliferative cells. There is a growing number of clinically approved photosensitisers and applications of PDT, whose main advantages include the possibility of selective targeting, localised action and stimulation of the immune responses. Further improvements and broader use of PDT could be accomplished by designing new photosensitisers with increased selectivity and bioavailability. Porphyrin-based photosensitisers with amphiphilic properties, bearing one or more positive charges, are an effective tool in PDT against cancers, microbial infections and, most recently, autoimmune skin disorders. The aim of the review is to present some of the recent examples of the applications and research that employ this specific group of photosensitisers. Furthermore, we will highlight the link between their structural characteristics and PDT efficiency, which will be helpful as guidelines for rational design and evaluation of new PSs.
Collapse
Affiliation(s)
- Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| | - Ivana Munitic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| |
Collapse
|
11
|
THE STUDY OF MECHANISMS OF PHOTOINDUCED APOPTOSIS IN THE SKIN MALIGNANT MELANOMA CELL MODEL. BIOMEDICAL PHOTONICS 2016. [DOI: 10.24931/2413-9432-2016-5-3-4-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The results of the experimental study of immune response of human skin malignant melanoma cells Mel 226 on photodynamic exposure are represented in the article. Photoinduced apoptosis of skin malignant melanoma was studied in vitro. The study showed that irradiation with the agent fotoditazin at dose of 0.5–2.5 µg/ml (6 and 10 min exposure 30 min before irradiation; irradiation parameters: wavelength of 662 nm, total light dose from 40 to 60 J/cm2) induced early apoptosis. The increase of the time of laser irradiation significantly accelerates the conversion of photosensitized tumor cells from early to late apoptosis.
Collapse
|
12
|
Immunological aspects of antitumor photodynamic therapy outcome. Cent Eur J Immunol 2016; 40:481-5. [PMID: 26862314 PMCID: PMC4737746 DOI: 10.5114/ceji.2015.56974] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/16/2015] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer is an efficient and promising therapeutic modality approved for the treatment of several types of tumors and non-malignant diseases. It involves administration of a non-toxic photosensitizer followed by illumination of the tumor site with a harmless visible light. A light activated photosensitizer can transfer its energy directly to molecular oxygen, leading to production of highly toxic reactive oxygen species (ROS). Antitumor effects of PDT result from the combination of three independent mechanisms involving direct cytotoxicity to tumor cells, destruction of tumor vasculature and induction of the acute local inflammatory response. PDT-mediated inflammatory reaction is accompanied by tumor infiltration of the leukocytes, enhanced production of pro-inflammatory factors and cytokines. Photodynamic therapy is able to effectively stimulate both the innate and the adaptive arm of the immune system. In consequence, this regimen can lead to development of systemic and specific antitumor immune response. However, there are limited studies suggesting that under some specific circumstances, PDT on its own may exert some immunosuppressive effects leading to activation of immunosuppressive cells or cytokines production. In this report we briefly review all immunological aspects of PDT treatment.
Collapse
|
13
|
Wawrzyniec K, Kawczyk-Krupka A, Czuba ZP, Król W, Sieroń A. The influence of ALA-mediated photodynamic therapy on secretion of selected growth factors by colon cancer cells in hypoxia-like environment in vitro. Photodiagnosis Photodyn Ther 2015; 12:598-611. [DOI: 10.1016/j.pdpdt.2015.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023]
|
14
|
Bastianpillai C, Petrides N, Shah T, Guillaumier S, Ahmed HU, Arya M. Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment. Tumour Biol 2015; 36:9137-46. [PMID: 26423402 DOI: 10.1007/s13277-015-4126-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/20/2015] [Indexed: 01/10/2023] Open
Abstract
Minimally invasive interventional therapies are evolving rapidly and their use for the treatment of solid tumours is becoming more extensive. The in situ destruction of solid tumours by such therapies is thought to release antigens that can prime an antitumour immune response. In this review, we offer an overview of the current evidence for immune response activation associated with the utilisation of the main thermal and non-thermal ablation therapies currently in use today. This is followed by an assessment of the hypothesised mechanisms behind this immune response priming and by a discussion of potential methods of harnessing this specific response, which may subsequently be applicable in the treatment of cancer patients. References were identified through searches of PubMed/MEDLINE and Cochrane databases to identify peer-reviewed original articles, meta-analyses and reviews. Papers were searched from 1850 until October 2014. Articles were also identified through searches of the authors' files. Only papers published in English were reviewed. Thermal and non-thermal therapies have the potential to stimulate antitumour immunity although the current body of evidence is based mostly on murine trials or small-scale phase 1 human trials. The evidence for this immune-modulatory response is currently the strongest in relation to cryotherapy and radiotherapy, although data is accumulating for related ablative treatments such as high-intensity focused ultrasound, radiofrequency ablation and irreversible electroporation. This effect may be greatly enhanced by combining these therapies with other immunostimulatory interventions. Evidence is emerging into the immunomodulatory effect associated with thermal and non-thermal ablative therapies used in cancer treatment in addition to the mechanism behind this effect and how it may be harnessed for therapeutic use. A potential exists for treatment approaches that combine ablation of the primary tumour with control and possible eradication of persistent, locally recurrent and metastatic disease. However, more work is needed into each of these modalities, initially in further animal studies and then subsequently in large-scale prospective human studies.
Collapse
Affiliation(s)
| | - Neophytos Petrides
- Division of Surgery and Interventional Science, University College London, London, UK. .,Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK.
| | - Taimur Shah
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Stephanie Guillaumier
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Hashim U Ahmed
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Manit Arya
- Division of Surgery and Interventional Science, University College London, London, UK.,Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| |
Collapse
|
15
|
Photodynamic therapy in colorectal cancer treatment--The state of the art in preclinical research. Photodiagnosis Photodyn Ther 2015; 13:158-174. [PMID: 26238625 DOI: 10.1016/j.pdpdt.2015.07.175] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used in many different oncologic fields. Also in gastroenterology, where have been a few attempts to treat both the premalignant lesion and advanced colorectal cancer (CRC). This review aims to give a general overview of preclinical photodynamic studies related to CRC cells and animal studies of photodynamic effects related to CRC treatment to emphasize their potential in study of PDT mechanism, safety and efficiency to translate these results into clinical benefit in CRC treatment. MATERIALS AND METHOD Literature on in vitro preclinical photodynamic studies related to CRC cells and animal studies of photodynamic effects related to CRC treatment with the fallowing medical subject headings search terms: colorectal cancer, photodynamic therapy, photosensitizer(s), in vitro, cell culture(s), in vivo, animal experiment(s). The articles were selected by their relevance to the topic. RESULTS The majority of preclinical studies concerning possibility of PDT application in colon and rectal cancer is focused on phototoxic action of photosensitizers toward cultured colorectal tumor cells in vitro. The purposes of animal experiments are usually elucidation of mechanisms of observed photodynamic effects in scale of organism, estimation of PDT safety and efficiency and translation of these results into clinical benefit. CONCLUDING REMARKS In vitro photodynamic studies and animal experiments can be useful for studies of mechanisms and efficiency of photodynamic method as a start point on PDT clinical research. The primary disadvantage of in vitro experiments is a risk of over-interpretation of their results during extrapolation to the entire CRC.
Collapse
|
16
|
Wachowska M, Muchowicz A, Golab J. Targeting Epigenetic Processes in Photodynamic Therapy-Induced Anticancer Immunity. Front Oncol 2015; 5:176. [PMID: 26284197 PMCID: PMC4519687 DOI: 10.3389/fonc.2015.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/16/2015] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) of cancer is an approved therapeutic procedure that generates oxidative stress leading to cell death of tumor and stromal cells. Cell death resulting from oxidative damage to intracellular components leads to the release of damage-associated molecular patterns (DAMPs) that trigger robust inflammatory response and creates local conditions for effective sampling of tumor-associated antigens (TAA) by antigen-presenting cells. The latter can trigger development of TAA-specific adaptive immune response. However, due to a number of mechanisms, including epigenetic regulation of TAA expression, tumor cells evade immune recognition. Therefore, numerous approaches are being developed to combine PDT with immunotherapies to allow development of systemic immunity. In this review, we describe immunoregulatory mechanisms of epigenetic treatments that were shown to restore the expression of epigenetically silenced or down-regulated major histocompatibility complex molecules as well as TAA. We also discuss the results of our recent studies showing that epigenetic treatments based on administration of methyltransferase inhibitors in combination with PDT can release effective mechanisms leading to development of antitumor immunity and potentiated antitumor effects.
Collapse
Affiliation(s)
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw , Warsaw , Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
17
|
Brodin NP, Guha C, Tomé WA. Photodynamic Therapy and Its Role in Combined Modality Anticancer Treatment. Technol Cancer Res Treat 2014; 14:355-68. [DOI: 10.1177/1533034614556192] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 09/26/2014] [Indexed: 01/10/2023] Open
Affiliation(s)
- N. Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
- Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
- Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wolfgang A. Tomé
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
- Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
18
|
Jakubowska M, Michalczyk-Wetula D, Pyka J, Susz A, Urbanska K, Płonka BK, Kuleta P, Łącki P, Krzykawska-Serda M, Fiedor L, Płonka PM. Nitrosylhemoglobin in photodynamically stressed human tumors growing in nude mice. Nitric Oxide 2013; 35:79-88. [PMID: 23973529 DOI: 10.1016/j.niox.2013.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/26/2013] [Accepted: 08/15/2013] [Indexed: 01/21/2023]
Abstract
The role of nitric oxide in human tumor biology and therapy has been the subject of extensive studies. However, there is only limited knowledge about the mechanisms of NO production and its metabolism, and about the role NO can play in modern therapeutic procedures, such as photodynamic therapy. Here, for the first time, we report the presence of nitrosylhemoglobin, a stable complex of NO, in human lung adenocarcinoma A549 tumors growing in situ in nude mice. Using electron paramagnetic resonance spectroscopy we show that the level of nitrosylhemoglobin increases in the course of photodynamic therapy and that the phenomenon is local. Even the destruction of strongly vascularized normal liver tissue did not induce the paramagnetic signal, despite bringing about tissue necrosis. We conclude that photodynamic stress substantiates NO production and blood extravasation in situ, both processes on-going even in non-treated tumors, although at a lower intensity.
Collapse
Affiliation(s)
- Monika Jakubowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pizova K, Tomankova K, Daskova A, Binder S, Bajgar R, Kolarova H. Photodynamic therapy for enhancing antitumour immunity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:93-102. [PMID: 22837129 DOI: 10.5507/bp.2012.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a new modality in cancer treatment. It is based on the tumour-selective accumulation of a photosensitizer followed by irradiation with light of a specific wavelength. PDT is becoming widely accepted owing to its relative specificity and selectivity along with absence of the harmful side-effects of chemo and radiotherapy. There are three known distinct mechanisms of tumour destruction following PDT, generation of reactive oxygen species which can directly kill tumour cells, tumour vascular shutdown which can independently lead to tumour destruction via lack of oxygen and nutrients and thirdly enhanced antitumour immunity. METHODS A review based on the literature acquired from the PubMed database from 1983 with a focus on the enhanced antitumour immunity effects of PTD. RESULTS AND CONCLUSION Tumour cell death is accompanied by the release of a large number of inflammatory mediators. These induce a non-specific inflammatory response followed by gradual adaptive antitumour immunity. Further, a combination of PDT with the immunological approach has the potential to improve PDT efficiency and increase the cure rate. This short review covers specific methods for achieving these goals.
Collapse
Affiliation(s)
- Klara Pizova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry and Institute of Molecular and Translational Medicine, Palacky University Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
20
|
Souto JC, Vila L, Brú A. Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Med Res Rev 2011; 31:311-63. [PMID: 19967776 DOI: 10.1002/med.20185] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant circulating immune cells and represent the first line of immune defense against infection. This review of the biomedical literature of the last 40 years shows that they also have a powerful antitumoral effect under certain circumstances. Typically, the microenvironment surrounding a solid tumor possesses many of the characteristics of chronic inflammation, a condition considered very favorable for tumor growth and spread. However, there are many circumstances that shift the chronic inflammatory state toward an acute inflammatory response around a tumor. This shift seems to convert PMN into very efficient anticancer effector cells. Clinical reports of unexpected antitumoral effects linked to the prolonged use of granulocyte colony-stimulating factor, which stimulates an intense and sustained neutrophilia, suggest that an easy way to fight solid tumors would be to encourage the development of intense peritumoral PMN infiltrates. Specifically designed clinical trials are urgently needed to evaluate the safety and efficacy of such drug-induced neutrophilia in patients with solid tumors. This antitumoral role of neutrophils may provide new avenues for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Juan Carlos Souto
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | | | | |
Collapse
|
21
|
Enhancing photodynamyc therapy efficacy by combination therapy: dated, current and oncoming strategies. Cancers (Basel) 2011; 3:2597-629. [PMID: 24212824 PMCID: PMC3757433 DOI: 10.3390/cancers3022597] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/02/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022] Open
Abstract
Combination therapy is a common practice in many medical disciplines. It is defined as the use of more than one drug to treat the same disease. Sometimes this expression describes the simultaneous use of therapeutic approaches that target different cellular/molecular pathways, increasing the chances of killing the diseased cell. This short review is concerned with therapeutic combinations in which PDT (Photodynamyc Therapy) is the core therapeutic partner. Besides the description of the principal methods used to assess the efficacy attained by combinations in respect to monotherapy, this review describes experimental results in which PDT was combined with conventional drugs in different experimental conditions. This inventory is far from exhaustive, as the number of photosensitizers used in combination with different drugs is very large. Reports cited in this work have been selected because considered representative. The combinations we have reviewed include the association of PDT with anti-oxidants, chemotherapeutics, drugs targeting topoisomerases I and II, antimetabolites and others. Some paragraphs are dedicated to PDT and immuno-modulation, others to associations of PDT with angiogenesis inhibitors, receptor inhibitors, radiotherapy and more. Finally, a look is dedicated to combinations involving the use of natural compounds and, as new entries, drugs that act as proteasome inhibitors.
Collapse
|
22
|
St Denis TG, Aziz K, Waheed AA, Huang YY, Sharma SK, Mroz P, Hamblin MR. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochem Photobiol Sci 2011; 10:792-801. [PMID: 21479313 PMCID: PMC3449163 DOI: 10.1039/c0pp00326c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/08/2011] [Indexed: 01/23/2023]
Abstract
Photodynamic therapy (PDT) has been used as a cancer therapy for forty years but has not advanced to a mainstream cancer treatment. Although it has been shown to be an efficient way to destroy local tumors by a combination of non-toxic dyes and harmless visible light, it is its additional effects in mediating the stimulation of the host immune system that gives PDT great potential to become more widely used. Although the stimulation of tumor-specific cytotoxic T-cells that can destroy distant tumor deposits after PDT has been reported in some animal models, it remains the exception rather than the rule. This realization has prompted several investigators to test various combination approaches that could potentiate the immune recognition of tumor antigens that have been released after PDT. This review will cover these combination approaches using immunostimulants including various microbial preparations that activate Toll-like receptors and other receptors for pathogen-associated molecular patterns, cytokines growth factors, and approaches that target regulatory T-cells. We believe that by understanding the methods employed by tumors to evade immune response and neutralizing them, more precise ways of potentiating PDT-induced immunity can be devised.
Collapse
Affiliation(s)
- Tyler G. St Denis
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- John Jay High School, Cross River, NY, 10518, USA
| | - Kanza Aziz
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Aga Khan University Medical College, Stadium Road, Karachi, 75950, Pakistan
| | - Anam A. Waheed
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Aga Khan University Medical College, Stadium Road, Karachi, 75950, Pakistan
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Aesthetic and Plastic Center of Guangxi Medical University, Nanning, PR China
| | - Sulbha K. Sharma
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
Firczuk M, Nowis D, Gołąb J. PDT-induced inflammatory and host responses. Photochem Photobiol Sci 2011; 10:653-63. [PMID: 21258727 DOI: 10.1039/c0pp00308e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) is used in the management of neoplastic and nonmalignant diseases. Its unique mechanisms of action include direct cytotoxic effects exerted towards tumor cells, destruction of tumor and peritumoral vasculature and induction of local acute inflammatory reaction. The latter develops in response to (1) damage to tumor and stromal cells that leads to the release of cell death-associated molecular patterns (CDAMs) or damage associated molecular patterns (DAMPs), (2) early vascular changes that include increased vascular permeability, vascular occlusion, and release of vasoactive and proinflammatory mediators, (3) activation of alternative pathway of complement leading to generation of potent chemotactic factors, and (4) induction of signaling cascades and transcription factors that trigger secretion of cytokines, matrix metalloproteinases, or adhesion molecules. The majority of studies indicate that induction of local inflammatory response contributes to the antitumor effects of PDT and facilitates development of systemic immunity. However, the degree of PDT-induced inflammation and its subsequent contribution to its antitumor efficacy depend on multiple parameters, such as chemical nature, concentration and subcellular localization of the photosensitizers, the spectral characteristics of the light source, light fluence and fluence rate, oxygenation level, and tumor type. Identification of detailed molecular mechanisms and development of therapeutic approaches modulating PDT-induced inflammation will be necessary to tailor this treatment to particular clinical conditions.
Collapse
Affiliation(s)
- Małgorzata Firczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
24
|
Mroz P, Hashmi JT, Huang YY, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev Clin Immunol 2011; 7:75-91. [PMID: 21162652 PMCID: PMC3060712 DOI: 10.1586/eci.10.81] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy (PDT) is a rapidly developing cancer treatment that utilizes the combination of nontoxic dyes and harmless visible light to destroy tumors by generating reactive oxygen species. PDT produces tumor-cell destruction in the context of acute inflammation that acts as a 'danger signal' to the innate immune system. Activation of the innate immune system increases the priming of tumor-specific T lymphocytes that have the ability to recognize and destroy distant tumor cells and, in addition, lead to the development of an immune memory that can combat recurrence of the cancer at a later point in time. PDT may be also successfully combined with immunomodulating strategies that are capable of overcoming or bypassing the escape mechanisms employed by the progressing tumor to evade immune attack. This article will cover the role of the immune response in PDT anti-tumor effectiveness. It will highlight the milestones in the development of PDT-mediated anti-tumor immunity and emphasize the combination strategies that may improve this therapy.
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Javad T Hashmi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Aesthetic and Plastic Center of Guangxi Medical University, Nanning, P.R China
| | - Norbert Lange
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30, Quai Ernest-Ansermet, CH 1211 Geneva, Switzerland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
25
|
Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis 2010; 15:1050-71. [PMID: 20221698 DOI: 10.1007/s10495-010-0479-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photodynamic therapy (PDT) utilizes the destructive power of reactive oxygen species generated via visible light irradiation of a photosensitive dye accumulated in the cancerous tissue/cells, to bring about their obliteration. PDT activates multiple signalling pathways in cancer cells, which could give rise to all three cell death modalities (at least in vitro). Simultaneously, PDT is capable of eliciting various effects in the tumour microenvironment thereby affecting the tumour-associated/-infiltrating immune cells and by extension, leading to infiltration of various immune cells (e.g. neutrophils) into the treated site. PDT is also associated to the activation of different immune phenomena, e.g. acute-phase response, complement cascade and production of cytokines/chemokines. It has also come to light that, PDT is capable of activating 'anti-tumour adaptive immunity' in both pre-clinical as well as clinical settings. Although the ability of PDT to induce 'anti-cancer vaccine effect' is still debatable, yet it has been shown to be capable of inducing exposure/release of certain damage-associated molecular patterns (DAMPs) like HSP70. Therefore, it seems that PDT is unique among other approved therapeutic procedures in generating a microenvironment suitable for development of systemic anti-tumour immunity. Apart from this, recent times have seen the emergence of certain promising modalities based on PDT like-photoimmunotherapy and PDT-based cancer vaccines. This review mainly discusses the effects exerted by PDT on cancer cells, immune cells as well as tumour microenvironment in terms of anti-tumour immunity. The ability of PDT to expose/release DAMPs and the future perspectives of this paradigm have also been discussed.
Collapse
Affiliation(s)
- Abhishek D Garg
- Department of Molecular Cell Biology, Catholic University of Leuven, Belgium
| | | | | | | |
Collapse
|
26
|
Twenty years of experience with PDD and PDT in Poland—Review. Photodiagnosis Photodyn Ther 2009; 6:73-8. [DOI: 10.1016/j.pdpdt.2009.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 11/17/2022]
|
27
|
Szokalska A, Makowski M, Nowis D, Wilczynski GM, Kujawa M, Wójcik C, Mlynarczuk-Bialy I, Salwa P, Bil J, Janowska S, Agostinis P, Verfaillie T, Bugajski M, Gietka J, Issat T, Glodkowska E, Mrówka P, Stoklosa T, Hamblin MR, Mróz P, Jakóbisiak M, Golab J. Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer Res 2009; 69:4235-43. [PMID: 19435917 DOI: 10.1158/0008-5472.can-08-3439] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity toward tumor cells by inducing production of reactive oxygen species such as singlet oxygen. PDT leads to oxidative damage of cellular macromolecules, including proteins that undergo multiple modifications such as fragmentation, cross-linking, and carbonylation that result in protein unfolding and aggregation. Because the major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in endoplasmic reticulum (ER), aggravated ER stress, and potentiated cytotoxicity toward tumor cells. We observed that Photofrin-mediated PDT leads to robust carbonylation of cellular proteins and induction of unfolded protein response. Pretreatment of tumor cells with three different proteasome inhibitors, including bortezomib, MG132, and PSI, gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells of murine (EMT6 and C-26) as well as human (HeLa) origin to PDT-mediated cytotoxicity. Significant retardation of tumor growth with 60% to 100% complete responses was observed in vivo in two different murine tumor models (EMT6 and C-26) when PDT was combined with either bortezomib or PSI. Altogether, these observations indicate that combination of PDT with proteasome inhibitors leads to potentiated antitumor effects. The results of these studies are of immediate clinical application because bortezomib is a clinically approved drug that undergoes extensive clinical evaluations for the treatment of solid tumors.
Collapse
Affiliation(s)
- Angelika Szokalska
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kumar R, Prasad R. Synthesis, spectral and excited state energy transfer studies on new supramolecular ruthenium polypyridyl triads with octakis(methylthio)tetraazaporphyrinzinc(II). J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Kwitniewski M, Juzeniene A, Glosnicka R, Moan J. Immunotherapy: a way to improve the therapeutic outcome of photodynamic therapy? Photochem Photobiol Sci 2008; 7:1011-7. [DOI: 10.1039/b806710d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Efficacy of ZnPcS2P2 photodynamic therapy solely or with tumor vaccines on mouse tumor models. Photodiagnosis Photodyn Ther 2007; 4:100-5. [DOI: 10.1016/j.pdpdt.2007.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 11/21/2022]
|
31
|
Abstract
Photodynamic therapy (PDT) combines a drug (a photosensitiser or photosensitising agent) with a specific type of light to kill cancer cells. It is a minimally invasive treatment, with great potential in malignant disease and premalignant conditions. Following the administration of the photosensitiser, light of the appropriate wavelength is directed onto the abnormal tissue where the drug has preferentially accumulated. Upon light activation, the photosensitiser transfers its excess energy to molecular oxygen to produce an excited state (i.e., the highly reactive singlet oxygen) that causes oxidative damage at the site of its generation. The energy transfer occurs either directly to oxygen or through an indirect mechanism that requires the formation of intermediate radical species. Many photosensitisers have been developed, but only a few have been approved for therapy in humans. Basic research in model systems (animals, cell lines) has unravelled some fundamental cellular processes involved in the cell response to PDT. The exploitation of relevant molecular observations, the discovery and introduction of new sensitisers, the progress in the light delivery systems and light dosimetry are all concurring to the increase of PDT therapeutic efficacy. However, this field has not yet reached maturity. This review briefly analyses the relevant properties of most photosensitisers and their field of application. Special attention is dedicated to the effects observed in model cancer systems; speculation and suggestions of possible future research directions are also offered.
Collapse
Affiliation(s)
- Giuseppe Palumbo
- University Federico II Naples, Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano and IEOS/CNR, Napoli, Via S. Pansini, 5 80131-Napoli, Italy.
| |
Collapse
|
32
|
Theoretically optimized geometry based qualitative explanations for the 1H NMR and voltammetry behaviors of [Mg(OBTTAP)]. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Prasad R, Kumar A. Syntheses, Spectral and Electrochemical Investigation of Coordination Complexes of Octakis(benzylthio)tetraazaporphyrinmaganese(II). Supramol Chem 2006. [DOI: 10.1080/10610270500384185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rajendra Prasad
- a Indian Institute of Technology Roorkee, Department of Chemistry , Roorkee, 247667, India
| | - Ajay Kumar
- a Indian Institute of Technology Roorkee, Department of Chemistry , Roorkee, 247667, India
| |
Collapse
|
34
|
Abstract
Photodynamic therapy (PDT) uses non-toxic photosensitizers and harmless visible light in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumour microvasculature and stimulate the host immune system. In contrast to surgery, radiotherapy and chemotherapy that are mostly immunosuppressive, PDT causes acute inflammation, expression of heat-shock proteins, invasion and infiltration of the tumour by leukocytes, and might increase the presentation of tumour-derived antigens to T cells.
Collapse
Affiliation(s)
- Ana P Castano
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
35
|
Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczyñski GM, Głodkowska E, Mrówka P, Issat T, Dulak J, Józkowicz A, Waś H, Adamek M, Wrzosek A, Nazarewski S, Makowski M, Stokłosa T, Jakóbisiak M, Gołąb J. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 2006; 25:3365-74. [PMID: 16462769 PMCID: PMC1538962 DOI: 10.1038/sj.onc.1209378] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy is a promising antitumor treatment modality approved for the management of both early and advanced tumors. The mechanisms of its antitumor action include generation of singlet oxygen and reactive oxygen species that directly damage tumor cells and tumor vasculature. A number of mechanisms seem to be involved in the protective responses to PDT that include activation of transcription factors, heat shock proteins, antioxidant enzymes and antiapoptotic pathways. Elucidation of these mechanisms might result in the design of more effective combination strategies to improve the antitumor efficacy of PDT. Using DNA microarray analysis to identify stress-related genes induced by Photofrin-mediated PDT in colon adenocarcinoma C-26 cells, we observed a marked induction of heme oxygenase-1 (HO-1). Induction of HO-1 with hemin or stable transfection of C-26 with a plasmid vector encoding HO-1 increased resistance of tumor cells to PDT-mediated cytotoxicity. On the other hand, zinc (II) protoporphyrin IX, an HO-1 inhibitor, markedly augmented PDT-mediated cytotoxicity towards C-26 and human ovarian carcinoma MDAH2774 cells. Neither bilirubin, biliverdin nor carbon monoxide, direct products of HO-1 catalysed heme degradation, was responsible for cytoprotection. Importantly, desferrioxamine, a potent iron chelator significantly potentiated cytotoxic effects of PDT. Altogether our results indicate that HO-1 is involved in an important protective mechanism against PDT-mediated phototoxicity and administration of HO-1 inhibitors might be an effective way to potentiate antitumor effectiveness of PDT.
Collapse
Affiliation(s)
- D Nowis
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - M Legat
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - T Grzela
- Department of Histology and Embryology, Center of Biostructure Research; The Medical University of Warsaw, Warsaw, Poland
| | - J Niderla
- Department of Histology and Embryology, Center of Biostructure Research; The Medical University of Warsaw, Warsaw, Poland
| | - E Wilczek
- Department of Pathology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - GM Wilczyñski
- Department of Pathology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - E Głodkowska
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - P Mrówka
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - T Issat
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - J Dulak
- Department of Medical Biotechnology, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Józkowicz
- Department of Medical Biotechnology, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - H Waś
- Department of Medical Biotechnology, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - M Adamek
- Center for Laser Diagnostics and Therapy, Chair and Clinic of Internal Diseases and Physical Medicine, Silesian Medical University, Bytom, Poland
| | - A Wrzosek
- Department of Muscle Biochemistry, M Nencki Institute of Experimental Biology, Warsaw, Poland
| | - S Nazarewski
- Department of General and Vascular Surgery and Transplantation, The Medical University of Warsaw, Warsaw, Poland
| | - M Makowski
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - T Stokłosa
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - M Jakóbisiak
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | - J Gołąb
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
The influence of photodynamic therapy on the immune response. Photodiagnosis Photodyn Ther 2005; 2:283-98. [DOI: 10.1016/s1572-1000(05)00098-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 12/17/2022]
|
37
|
Wolfsen HC. Uses of photodynamic therapy in premalignant and malignant lesions of the gastrointestinal tract beyond the esophagus. J Clin Gastroenterol 2005; 39:653-64. [PMID: 16082272 DOI: 10.1097/01.mcg.0000173930.60115.62] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Much has recently been written regarding the use of photodynamic therapy for the treatment of esophageal carcinoma and dysplastic Barrett's esophagus. This review, however, describes the clinical experience using photodynamic therapy with various photosensitizer agents for the treatment of diseases in other areas of the gut, especially the pancreaticobiliary tract where European studies have established the role of porfimer sodium photodynamic therapy in the management of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Herbert C Wolfsen
- Photodynamic Therapy, Esophageal Disease Clinic, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
38
|
Jalili A, Makowski M, Switaj T, Nowis D, Wilczynski GM, Wilczek E, Chorazy-Massalska M, Radzikowska A, Maslinski W, Biały L, Sienko J, Sieron A, Adamek M, Basak G, Mróz P, Krasnodebski IW, Jakóbisiak M, Gołab J. Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res 2005; 10:4498-508. [PMID: 15240542 DOI: 10.1158/1078-0432.ccr-04-0367] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE The unique mechanism of tumor destruction by photodynamic therapy (PDT), resulting from apoptotic and necrotic killing of tumor cells accompanied by local inflammatory reaction and induction of heat shock proteins (HSPs), prompted us to investigate the antitumor effectiveness of the combination of PDT with administration of immature dendritic cells (DCs). EXPERIMENTAL DESIGN Confocal microscopy and Western blotting were used to investigate the influence of PDT on the induction of apoptosis and expression of HSP expression in C-26 cells. Confocal microscopy and flow cytometry studies were used to examine phagocytosis of PDT-treated C-26 cells by DCs. Secretion of interleukin (IL)-12 was measured with ELISA. Cytotoxic activity of lymph node cells was evaluated in a standard (51)Cr-release assay. The antitumor effectiveness of PDT in combination with administration of DCs was investigated in in vivo model. RESULTS PDT treatment resulted in the induction of apoptotic and necrotic cell death and expression of HSP27, HSP60, HSP72/73, HSP90, HO-1, and GRP78 in C-26 cells. Immature DCs cocultured with PDT-treated C-26 cells efficiently engulfed killed tumor cells, acquired functional features of maturation, and produced substantial amounts of IL-12. Inoculation of immature DCs into the PDT-treated tumors resulted in effective homing to regional and peripheral lymph nodes and stimulation of cytotoxic activity of T and natural killer cells. The combination treatment with PDT and administration of DCs produced effective antitumor response. CONCLUSIONS The feasibility and antitumor effectiveness demonstrated in these studies suggest that treatment protocols involving the administration of immature DCs in combination with PDT may have clinical potential.
Collapse
Affiliation(s)
- Ahmad Jalili
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fouad FS, Crasto CF, Lin Y, Jones GB. Photoactivated enediynes: targeted chimeras which undergo photo-Bergman cyclization. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.08.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
van Duijnhoven FH, Aalbers RIJM, Rovers JP, Terpstra OT, Kuppen PJK. The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology 2003; 207:105-13. [PMID: 12675268 DOI: 10.1078/0171-2985-00221] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this review we discuss the effect of photodynamic treatment (PDT) of solid tumors on the immune response. The effect on both the innate and adapted immune response is discussed. We have summarized the evidence that PDT causes or enhances an anti-tumor response. PDT is a local treatment in which the treated tumor remains in situ while the immune system is only locally affected and still functional in contrast with e.g. after systemic chemotherapy. We conclude that PDT of cancer is a way of in situ vaccination to induce a systemic antitumor response. In general, immune cells are found in the tumor stroma, separated from tumor cells by extracellular matrix and basal membrane-like structures. We hypothesize that PDT destroys the structure of a tumor, thereby enabling direct interaction between immune cells and tumor cells resulting in the systemic anti-tumor immune response.
Collapse
|
41
|
Golab J, Nowis D, Skrzycki M, Czeczot H, Baranczyk-Kuzma A, Wilczynski GM, Makowski M, Mroz P, Kozar K, Kaminski R, Jalili A, Kopec' M, Grzela T, Jakobisiak M. Antitumor effects of photodynamic therapy are potentiated by 2-methoxyestradiol. A superoxide dismutase inhibitor. J Biol Chem 2003; 278:407-14. [PMID: 12409296 DOI: 10.1074/jbc.m209125200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photodynamic therapy (PDT), a promising therapeutic modality for the management of solid tumors, is a two-phase treatment consisting of a photosensitizer and visible light. Increasing evidence indicates that tumor cells in regions exposed to sublethal doses of PDT can respond by rescue responses that lead to insufficient cell death. We decided to examine the role of superoxide dismutases (SODs) in the effectiveness of PDT and to investigate whether 2-methoxyestradiol (2-MeOE(2)), an inhibitor of SODs, is capable of potentiating the antitumor effects of this treatment regimen. In the initial experiment we observed that PDT induced the expression of MnSOD but not Cu,Zn-SOD in cancer cells. Pretreatment of cancer cells with a cell-permeable SOD mimetic, Mn(II)-tetrakis(4-benzoic acid)porphyrin chloride, and transient transfection with the MnSOD gene resulted in a decreased effectiveness of PDT. Inhibition of SOD activity in tumor cells by preincubation with 2-MeOE(2) produced synergistic antitumor effects when combined with PDT in 3 murine and 5 human tumor cell lines. The combination treatment was also effective in vivo producing retardation of the tumor growth and prolongation of the survival of tumor-bearing mice. We conclude that inhibition of MnSOD activity by 2-MeOE(2) is an effective treatment modality capable of potentiating the antitumor effectiveness of PDT.
Collapse
Affiliation(s)
- Jakub Golab
- Department of Immunology, The Medical University of Warsaw, 02-004 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|