1
|
Chu Z, Zhang B, Zhou X, Yuan H, Gao C, Liu L, Xiao Y, Zhang J, Hong J, Liang J, Chen D, Yao N. A DNA/RNA heteroduplex oligonucleotide coupling asparagine depletion restricts FGFR2 fusion-driven intrahepatic cholangiocarcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102047. [PMID: 37869260 PMCID: PMC10589379 DOI: 10.1016/j.omtn.2023.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
Pemigatinib, a pan-FGFR inhibitor, is approved to treat intrahepatic cholangiocarcinoma (ICC) harboring FGFR2 fusion mutations. Improving its targeting of FGFR2 fusions remains an unmet clinical need due to its pan selectivity and resistance. Here, we report a cholesterol-conjugated DNA/RNA heteroduplex oligonucleotide targeting the chimeric site in FGFR2-AHCYL1 (F-A Cho-HDO) that accumulates in ICC through endocytosis of low-density lipoprotein receptor (LDLR), which is highly expressed in both human and murine ICC. F-A Cho-HDO was determined to be a highly specific, sustainable, and well-tolerated agent for inhibiting ICC progression through posttranscriptional suppression of F-A in ICC patient-derived xenograft mouse models. Moreover, we identified an EGFR-orchestrated bypass signaling axis that partially offset the efficacy of F-A Cho-HDO. Mechanistically, EGFR-induced STAT1 upregulation promoted asparagine (Asn) synthesis through direct transcriptional upregulation of asparagine synthetase (ASNS) and dictated cell survival by preventing p53-dependent cell cycle arrest. Asn restriction with ASNase or ASNS inhibitors reduced the intracellular Asn, thereby reactivating p53 and sensitizing ICC to F-A Cho-HDO. Our findings highlight the application of genetic engineering therapies in ICC harboring FGFR2 fusions and reveal an axis of adaptation to FGFR2 inhibition that presents a rationale for the clinical evaluation of a strategy combining FGFR2 inhibitors with Asn depletion.
Collapse
Affiliation(s)
- Zhenzhen Chu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Baohuan Zhang
- Morphology Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xuxuan Zhou
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516001, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lihao Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Xiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jichun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Nan Yao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
2
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Pandey MK, Prasad S, Tyagi AK, Deb L, Huang J, Karelia DN, Amin SG, Aggarwal BB. Targeting Cell Survival Proteins for Cancer Cell Death. Pharmaceuticals (Basel) 2016; 9:11. [PMID: 26927133 PMCID: PMC4812375 DOI: 10.3390/ph9010011; 10.3390/biomedicines5020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Amit Kumar Tyagi
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lokesh Deb
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jiamin Huang
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Deepkamal N Karelia
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| | - Shantu G Amin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| | - Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Targeting Cell Survival Proteins for Cancer Cell Death. Pharmaceuticals (Basel) 2016; 9:ph9010011. [PMID: 26927133 PMCID: PMC4812375 DOI: 10.3390/ph9010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022] Open
Abstract
Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise.
Collapse
|
5
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2012; 17:61-75. [PMID: 23173842 DOI: 10.1517/14728222.2013.733001] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation. AREAS COVERED This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors (SMIs) and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics. EXPERT OPINION Strategies to specifically identify and inhibit critical determinants that promote therapy resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying SMIs with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
Collapse
Affiliation(s)
- Shibu Thomas
- Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Aalinkeel R, Nair B, Reynolds JL, Sykes DE, Law WC, Mahajan SD, Prasad PN, Schwartz SA. Quantum rods as nanocarriers of gene therapy. Drug Deliv 2012; 19:220-31. [DOI: 10.3109/10717544.2012.690001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Parlakian A, Gomaa I, Solly S, Arandel L, Mahale A, Born G, Marazzi G, Sassoon D. Skeletal muscle phenotypically converts and selectively inhibits metastatic cells in mice. PLoS One 2010; 5:e9299. [PMID: 20174581 PMCID: PMC2823787 DOI: 10.1371/journal.pone.0009299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 01/24/2010] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle is rarely a site of malignant metastasis; the molecular and cellular basis for this rarity is not understood. We report that myogenic cells exert pronounced effects upon co-culture with metastatic melanoma (B16-F10) or carcinoma (LLC1) cells including conversion to the myogenic lineage in vitro and in vivo, as well as inhibition of melanin production in melanoma cells coupled with cytotoxic and cytostatic effects. No effect is seen with non-tumorigenic cells. Tumor suppression assays reveal that the muscle-mediated tumor suppressor effects do not generate resistant clones but function through the down-regulation of the transcription factor MiTF, a master regulator of melanocyte development and a melanoma oncogene. Our findings point to skeletal muscle as a source of therapeutic agents in the treatment of metastatic cancers.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Differentiation
- Cell Line
- Cell Line, Tumor
- Cell Lineage
- Cells, Cultured
- Coculture Techniques
- Culture Media, Conditioned/pharmacology
- Cytotoxicity, Immunologic/immunology
- Desmin/genetics
- Desmin/metabolism
- Female
- Green Fluorescent Proteins/metabolism
- Humans
- Immunohistochemistry
- Melanins/metabolism
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Muscle, Skeletal/cytology
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/immunology
- Myoblasts/metabolism
- Neoplasm Metastasis
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Ara Parlakian
- Myology Group, UMR S 787 Inserm, Université Paris VI/Pierre et Marie Curie, Paris, France
| | - Iman Gomaa
- Myology Group, UMR S 787 Inserm, Université Paris VI/Pierre et Marie Curie, Paris, France
| | - Sounkary Solly
- Myology Group, UMR S 787 Inserm, Université Paris VI/Pierre et Marie Curie, Paris, France
| | - Ludovic Arandel
- Myology Group, UMR S 787 Inserm, Université Paris VI/Pierre et Marie Curie, Paris, France
| | - Alka Mahale
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Gustav Born
- William Harvey Research Institute, University of London, London, United Kingdom
| | - Giovanna Marazzi
- Myology Group, UMR S 787 Inserm, Université Paris VI/Pierre et Marie Curie, Paris, France
| | - David Sassoon
- Myology Group, UMR S 787 Inserm, Université Paris VI/Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Mei M, Ren Y, Zhou X, Yuan XB, Han L, Wang GX, Jia Z, Pu PY, Kang CS, Yao Z. Downregulation of miR-21 Enhances Chemotherapeutic Effect of Taxol in Breast Carcinoma Cells. Technol Cancer Res Treat 2010; 9:77-86. [PMID: 20082533 DOI: 10.1177/153303461000900109] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The successful of anti-cancer treatment are often limited by the development of drug resistance. Recent work has highlighted the involvement of non-coding RNAs, microRNAs(miRNAs) in cancer development, and their possible involvement in the evolution of drug resistance has been proposed. In this study, we combine taxol chemotherapy and miR-21 inhibitor treatment via polyamidoamine (PAMAM) dendrimers vector to evaluate the effects of combination therapy on suppression of breast cancer cells. The 50% inhibitory concentration (IC50) values for taxol were significantly decreased to a greater extent in the cells transfected with miR-21 inhibitor compared with cells treated with taxol alone. Taxol treatment also increased the percentage of apoptotic breast cancer cells in miR-21 inhibitor transfected cells compared with control cells. Furthermore, treatment of the miR-21 inhibitor-transfected cells with the anti-cancer drugs taxol resulted in significantly reduced cell viability and invasiveness compared with control cells. These results indicated that the miR-21 plays an important role in the resistance of breast carcinoma cells to chemotherapeutic drugs. Therefore, miR-21 inhibitor gene therapy combined with taxol chemotherapy might represent a promising novel therapeutic approach for the treatment of breast malignancies.
Collapse
Affiliation(s)
- Mei Mei
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China P.R
- Equal contribution
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China P.R
- Equal contribution
| | - Xuan Zhou
- The First Department of Head and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China P.R
| | - Xu-bo Yuan
- School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China P.R
| | - Lei Han
- Department of Neurosurgery Tianjin Medical University General Hospital Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China P.R
| | - Guang-xiu Wang
- Department of Neurosurgery Tianjin Medical University General Hospital Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China P.R
| | - Zhifan Jia
- Department of Neurosurgery Tianjin Medical University General Hospital Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China P.R
| | - Pei-yu Pu
- Department of Neurosurgery Tianjin Medical University General Hospital Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China P.R
| | - Chun-sheng Kang
- Department of Neurosurgery Tianjin Medical University General Hospital Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China P.R
| | - Zhi Yao
- Key Laboratory of Immuno Microenviroment and Disease of the Educational Ministry, Department of Immunology, Tianjin Medical University, Tianjin 300070, China P.R
| |
Collapse
|
9
|
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 2009; 66:1858-67. [PMID: 19387548 PMCID: PMC4385580 DOI: 10.1007/s00018-009-9154-y] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Elevated levels of protein kinase CK2 (formerly casein kinase 2 or II) have long been associated with increased cell growth and proliferation both in normal and cancer cells. The ability of CK2 to also act as a potent suppressor of apoptosis offers an important link to its involvement in cancer since deregulation of both cell proliferation and apoptosis are among the key features of cancer cell biology. Dysregulated CK2 may impact both of these processes in cancer cells. All cancers that have been examined show increased CK2 expression, which may also relate to prognosis. The extensive involvement of CK2 in cancer derives from its impact on diverse molecular pathways controlling cell proliferation and cell death. Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- J. H. Trembley
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - G. Wang
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | | | - J. Slaton
- Urology Service, Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - K. Ahmed
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
10
|
Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 2008; 120:4155-66. [PMID: 18032788 DOI: 10.1242/jcs.011163] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Autophagy is a self-digestion process important for cell survival during starvation. It has also been described as a form of programmed cell death. Mitochondria are important regulators of autophagy-induced cell death and damaged mitochondria are often degraded by autophagosomes. Inhibition of the mitochondrial electron transport chain (mETC) induces cell death through generating reactive oxygen species (ROS). The role of mETC inhibitors in autophagy-induced cell death is unknown. Herein, we determined that inhibitors of complex I (rotenone) and complex II (TTFA) induce cell death and autophagy in the transformed cell line HEK 293, and in cancer cell lines U87 and HeLa. Blocking the expression of autophagic genes (beclin 1 and ATG5) by siRNAs or using the autophagy inhibitor 3-methyladenine (3-MA) decreased cell death that was induced by rotenone or TTFA. Rotenone and TTFA induce ROS production, and the ROS scavenger tiron decreased autophagy and cell death induced by rotenone and TTFA. Overexpression of manganese-superoxide dismutase (SOD2) in HeLa cells decreased autophagy and cell death induced by rotenone and TTFA. Furthermore, blocking SOD2 expression by siRNA in HeLa cells increased ROS generation, autophagy and cell death induced by rotenone and TTFA. Rotenone- and TTFA-induced ROS generation was not affected by 3-MA, or by beclin 1 and ATG5 siRNAs. By contrast, treatment of non-transformed primary mouse astrocytes with rotenone or TTFA failed to significantly increase levels of ROS or autophagy. These results indicate that targeting mETC complex I and II selectively induces autophagic cell death through a ROS-mediated mechanism.
Collapse
Affiliation(s)
- Yongqiang Chen
- Manitoba Institute of Cell Biology, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | |
Collapse
|
11
|
Redondo M, Téllez T, Roldan MJ, Serrano A, García-Aranda M, Gleave ME, Hortas ML, Morell M. Anticlusterin treatment of breast cancer cells increases the sensitivities of chemotherapy and tamoxifen and counteracts the inhibitory action of dexamethasone on chemotherapy-induced cytotoxicity. Breast Cancer Res 2008; 9:R86. [PMID: 18078515 PMCID: PMC2246189 DOI: 10.1186/bcr1835] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/07/2007] [Accepted: 12/13/2007] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Overexpression of the apoptosis-related protein clusterin is associated with breast cancer development and tumor progression. We describe the use of clusterin-specific antisense oligonucleotides and antibodies to sensitize breast carcinoma cells to anticancer drugs routinely used in breast cancer therapy. METHODS MCF-7 and MDA-MB-231 cells were treated with the oligonucleotide or antibody, chemotherapeutic agents (doxorubicin or paclitaxel), tamoxifen, or with combinations of these. RESULTS Treatments that include antisense clusterin oligonucleotide or antibody to clusterin have been shown to reduce the number of viable cells more effectively than treatment with the drugs alone. We also demonstrate that dexamethasone pretreatment of breast cancer cell lines inhibits chemotherapy-induced cytotoxicity and is associated with the transcriptional induction of clusterin. However, anticlusterin treatment increases chemotherapy-induced cytotoxicity, even in the presence of glucocorticoids, suggesting a possible role for these proteins in glucocorticoid-mediated survival. CONCLUSION These data suggest that combined treatment with antibodies to clusterin or antisense clusterin oligodeoxynucleotides and paclitaxel, doxorubicin, or tamoxifen could be a novel and attractive strategy to inhibit the progression of breast carcinoma by regulation of the clusterin function. Moreover, glucocorticoid activation in breast cancer cells regulates survival signaling by the direct transactivation of genes like clusterin which encode proteins that decrease susceptibility to apoptosis. Given the widespread clinical administration of dexamethasone before chemotherapy, understanding glucocorticoid-induced survival mechanisms is essential for achieving optimal therapeutic responses.
Collapse
Affiliation(s)
- Maximino Redondo
- Department of Biochemistry, Hospital Costa del Sol, Carretera de Cádiz Km 187, 29600 Marbella, Málaga, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cummings J, Ward TH, Ranson M, Dive C. Apoptosis pathway-targeted drugs--from the bench to the clinic. Biochim Biophys Acta Rev Cancer 2005; 1705:53-66. [PMID: 15585173 DOI: 10.1016/j.bbcan.2004.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is an exciting time for cancer researchers in the field of apoptotic cell death. The avalanche of discoveries over the past decade or so regarding how apoptosis is regulated begins to be exploited for therapeutic benefit as the first apoptosis-targeted drugs enter early clinical trials. This chapter provides a selective review on the development of such drugs. We also outline issues regarding the regulation and design of early clinical trials of this type of molecularly targeted agent. Finally, we discuss the biomarkers and surrogate pharmacodynamic endpoint assays currently available to chart the efficacy of apoptosis-inducing anticancer therapy.
Collapse
Affiliation(s)
- Jeff Cummings
- Clinical and Experimental Pharmacology Group, Cancer Research UK Paterson Institute, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | |
Collapse
|
13
|
Slaton JW, Unger GM, Sloper DT, Davis AT, Ahmed K. Induction of Apoptosis by Antisense CK2 in Human Prostate Cancer Xenograft Model. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.712.2.12] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Protein serine/threonine kinase CK2 (formerly casein kinase 2) is a ubiquitous protein kinase that plays key roles in cell growth, proliferation, and survival. We have shown previously that its molecular down-regulation induces apoptosis in cancer cells in culture. Here, we have employed a xenograft model of prostate cancer to extend these studies to determine whether antisense CK2α evokes a similar response in vivo. A single dose of antisense CK2α oligodeoxynucleotide given directly into the PC3-LN4 xenograft tumor in nude mouse induced a dose- and time-dependent tumor cell death in vivo. The tumor was completely resolved at the higher tested dose of the antisense. Cell death was due to apoptosis and correlated with a potent down-regulation of the CK2α message and loss of CK2 from the nuclear matrix in the xenograft tissue as well as in cancer cells in culture. These observations accorded with several of the earlier studies indicating that loss of CK2 from the nuclear matrix is associated with induction of apoptosis. Comparison of the effects of antisense CK2α oligodeoxynucleotide on cancer versus normal or noncancer cells showed that the concentration of antisense CK2α that elicited extensive apoptosis in tumor cells in culture or xenograft tumors in vivo had a relatively small or minimal effect on noncancer cells in culture or on normal prostate gland subjected to orthotopic injection of antisense oligodeoxynucleotide in vivo. The basis for the difference in sensitivity of cancer versus noncancer cells to antisense CK2α is unknown at this time; however, this differential response under similar conditions of treatment may be significant in considering the potential feasibility of targeting the CK2 signal for induction of apoptosis in cancer cells in vivo. Although much further work will be needed to establish the feasibility of targeting CK2 for cancer therapy, to our knowledge, this is the first report to provide important new evidence as an initial “proof of principle” for the potential application of antisense CK2α in cancer therapy, paving the way for future detailed studies of approaches to targeting CK2 in vivo to induce cancer cell death.
Collapse
Affiliation(s)
- Joel W. Slaton
- 1Minneapolis Veterans Affairs Medical Center,
- 2Departments of Urologic Surgery and
- 4The Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Khalil Ahmed
- 1Minneapolis Veterans Affairs Medical Center,
- 3Laboratory Medicine and Pathology, and
- 4The Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
14
|
Abstract
Drug resistance, intrinsic or acquired, is a problem for all chemotherapeutic agents. In this review, we examine numerous strategies that have been tested or proposed to reverse drug resistance. Included among these strategies are approaches targeting the apoptosis pathway. Although the process of apoptosis is complex, it provides several potential sites for therapeutic intervention. A variety of targets and approaches are being pursued, including the suppression of proteins inhibiting apoptosis using antisense oligonucleotides (ASOs), and small molecules targeted at proteins that modulate apoptosis. An alternate strategy is based on numerous studies that have documented methylation of critical regions in the genome in human cancers. Consequently, efforts have been directed at re-expressing genes, including genes that affect drug sensitivity, using 5-azacytidine and 2'-deoxy-5-azacytidine (DAC, decitabine) as demethylating agents. While this strategy may be effective as a single modality, success will most likely be achieved if it is used to modulate gene expression in combination with other modalities such as chemotherapy. At a more basic level, attempts have been made to modulate glutathione (GSH) levels. Owing to its reactivity and high intracellular concentrations, GSH has been implicated in resistance to several chemotherapeutic agents. Several approaches designed to deplete intracellular GSH levels have been pursued including the use of buthionine-(S,R)-sulfoxime (BSO), a potent and specific inhibitor of gamma-glutamyl cysteine synthetase (gamma-GCS), the rate-limiting step in the synthesis of GSH, a hammerhead ribozyme against gamma-GCS mRNA to downregulate specifically its levels and targeting cJun expression to reduce GSH levels. Alternate strategies have targeted p53. The frequent occurrence of p53 mutations in human cancer has led to the development of numerous approaches to restore wild-type (wt) p53. The goals of these interventions are to either revert the malignant phenotype or enhance drug sensitivity. The approach most extensively investigated has utilized one of several viral vectors. An alternate approach, the use of small molecules to restore wt function to mutant p53, remains an option. Finally, the conceptually simplest mechanism of resistance is one that reduces intracellular drug accumulation. Such reduction can be effected by a variety of drug efflux pumps, of which the most widely studied is P-glycoprotein (Pgp). The first strategy utilized to inhibit Pgp function relied on the identification of non-chemotherapeutic agents as competitors. Other approaches have included the use of hammerhead ribozymes against the MDR-1 gene and MDR-1-targeted ASOs. Although modulation of drug resistance has not yet been proven to be an effective clinical tool, we have learned an enormous amount about drug resistance. Should we succeed, these pioneering basic and clinical studies will have paved the road for future developments.
Collapse
Affiliation(s)
- Tito Fojo
- Center for Cancer Research, National Cancer Institute, Building 10, Room 12-C-103, 9000 Rockville Pike, Bethesda, MA 20892, USA.
| | | |
Collapse
|
15
|
Broxterman HJ, Lankelma J, Hoekman K. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resist Updat 2003; 6:111-27. [PMID: 12860459 DOI: 10.1016/s1368-7646(03)00026-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intrinsic resistance to anticancer drugs, or resistance developed during chemotherapy, remains a major obstacle to successful treatment. This is the case both for resistance to cytotoxic agents, directed at malignant cells, and for resistance to anti-angiogenic agents, directed at non-malignant endothelial cells. In this review, we will discuss mechanisms of resistance which have a bearing on both these conceptually different classes of drugs. The complexity of drug resistance, involving drug transporters, such as P-glycoprotein, as well as resistance related to the tissue structure of solid tumors and its consequences for drug delivery is discussed. Possible mechanisms of resistance to endothelial cell-targeted drugs, including inhibitors of the VEGF receptor and EGF receptor family, are reviewed. The resistance of cancer cells as well as endothelial cells related to anti-apoptotic signaling events initiated by cell integrin-matrix interactions is discussed. Current strategies to overcome resistance mechanisms are summarized; they include high-dose chemotherapy, tumor targeting of cytotoxics to improve tumor uptake, low-dose protracted (metronomic) chemotherapy and combinations of classical agents with anti-angiogenic agents. This review discusses primarily literature published in 2001 and 2002.
Collapse
Affiliation(s)
- Henk J Broxterman
- Department of Medical Oncology, VU University Medical Center, BR 232, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
16
|
Tímár J, Ladányi A, Peták I, Jeney A, Kopper L. Molecular pathology of tumor metastasis III. Target array and combinatorial therapies. Pathol Oncol Res 2003; 9:49-72. [PMID: 12704448 DOI: 10.1007/bf03033715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 03/22/2003] [Indexed: 12/23/2022]
Abstract
Therapy of tumor progression and the metastatic disease is the biggest challenge of clinical oncology. Discovery of the diverse molecular pathways behind this complex disease outlined an approach to better treatment strategies. The development of combined cytotoxic treatment protocols has produced promising results but no breakthrough in the clinical management of metastatic disease. The multiple - specific and non-specific pathways and cellular targets of tumor progression are outlined in this review. Such an approach, individually designed for various cancer types, may have a better chance to treat or even cure cancer patients with progressive disease.
Collapse
Affiliation(s)
- József Tímár
- National Institute of Oncology, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
17
|
Mercatante DR, Mohler JL, Kole R. Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J Biol Chem 2002; 277:49374-82. [PMID: 12381725 DOI: 10.1074/jbc.m209236200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Overexpression of Bcl-xL, an anti-apoptotic member of the Bcl-2 family, negatively correlates with the sensitivity of various cancers to chemotherapeutic agents. We show here that high levels of expression of Bcl-xL promoted apoptosis of cells treated with an antisense oligonucleotide (5'Bcl-x AS) that shifts the splicing pattern of Bcl-x pre-mRNA from the anti-apoptotic variant, Bcl-xL, to the pro-apoptotic variant, Bcl-xS. This surprising finding illustrates the advantage of antisense-induced modulation of alternative splicing versus down-regulation of targeted genes. It also suggests a specificity of the oligonucleotide effects since non-cancerous cells with low levels of Bcl-xL should resist the treatment. 5'Bcl-x AS sensitized cells to several antineoplastic agents and radiation and was effective in promoting apoptosis of MCF-7/ADR cells, a breast cancer cell line resistant to doxorubicin via overexpression of the mdr1 gene. Efficacy of 5'Bcl-x AS combined with chemotherapeutic agents in the PC3 prostate cancer cell line may be translated to clinical prostate cancer since recurrent prostate cancer tissue samples expressed higher levels of Bcl-xL than benign prostate tissue. Treatment with 5'Bcl-x AS may enhance the efficacy of standard anti-cancer regimens and should be explored, especially in recurrent prostate cancer.
Collapse
Affiliation(s)
- Danielle R Mercatante
- UNC Lineberger Comprehensive Cancer Center and Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
18
|
Simões-Wüst AP, Schürpf T, Hall J, Stahel RA, Zangemeister-Wittke U. Bcl-2/bcl-xL bispecific antisense treatment sensitizes breast carcinoma cells to doxorubicin, paclitaxel and cyclophosphamide. Breast Cancer Res Treat 2002; 76:157-66. [PMID: 12452453 DOI: 10.1023/a:1020543004400] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Overexpression of the anti-apoptotic proteins bcl-2 and bcl-xL is implicated in breast cancer development, tumor progression and drug resistance. Here we describe the use of the bcl-2/bcl-xL bispecific antisense oligonucleotide 4625 to sensitize breast carcinoma cells to anti-cancer drugs routinely used in breast cancer therapy. MCF7 cells were treated with oligonucleotide 4625, doxorubicin, paclitaxel or cyclophosphamide alone, or with combinations of oligonucleotide and the anti-cancer drugs. As measured in cell viability assays, treatment with the various combinations reduced the number of viable MCF7 cells more effectively than treatment with the single drugs alone. Treatment with a sequence control oligonucleotide did not affect cell viability. All combination treatments induced apoptosis as demonstrated by the appearance of massive nuclear condensation in a high proportion of the cells. To further characterize the interaction between 4625 and doxorubicin, paclitaxel or cyclophosphamide, the median-effect method was used. In MCF7 cells all combinations resulted in potent synergistic effects over a broad range of toxicity with combination indices ranging from 0.8 to 0.1. Similarly, strong synergistic interactions between oligonucleotide 4625 and the anti-cancer drugs were also observed in cultures of the breast carcinoma cell line MDA-MB-231. Our data suggest the use of 4625 as a potent adjuvant in breast cancer chemotherapy.
Collapse
Affiliation(s)
- A Paula Simões-Wüst
- Division of Oncology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Abstract
The problems of why metastatic cancers develop pleiotropic resistance to all available therapies, and how this might be countered, are the most pressing in cancer chemotherapy. It is likely that such resistance involves a combination of mechanisms including changes in drug transport/drug targets, reduction in the degree of drug-induced apoptosis/cell loss, and increased rate of tumour repopulation following therapy. Current research must consider not only which mechanisms contribute, eventually relating this to individual patients with cancer, but also what strategies might be utilised to counter each of the important resistance mechanisms. A considerable amount of work has been devoted to the development of inhibitors of membrane-associated transport proteins such as P-glycoprotein, which mediate drug efflux. This work is now being complemented by approaches that target cell death pathways such as those mediated by release of mitochondrial proteins and by activation of surface receptors such as Fas. Rapid progress has been made in developing small-molecular-weight drugs that influence the rate of apoptosis, for instance by binding to the bcl-2 family of proteins regulating mitochondrial permeability. Antisense approaches aimed at reducing bcl-2 expression, and thus increasing the rate of cell death, are also showing promise. Modification of repopulation kinetics provides a further approach but has not received as much attention as other aspects of tumour resistance. New therapeutic approaches will have to be complemented by improved diagnostic tests to evaluate the contributions of different resistance mechanisms in individual patients with cancer.
Collapse
Affiliation(s)
- Bruce C Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, PB 92019, Auckland, New Zealand.
| |
Collapse
|
20
|
Olie RA, Hall J, Natt F, Stahel RA, Zangemeister-Wittke U. Analysis of ribosyl-modified, mixed backbone analogs of a bcl-2/bcl-xL antisense oligonucleotide. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:101-9. [PMID: 12031489 DOI: 10.1016/s0167-4781(02)00300-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Progress in oligonucleotide chemistry has provided second-generation antisense oligonucleotides with increased efficacy and reduced non-antisense-related toxicity. The ability of the 2'-O-(2-methoxyethylribose) (2'-MOE)-modified phosphorothioate gapmer oligonucleotide 4625, which matches the bcl-2 mRNA and has three base-mismatches to bcl-xL, to inhibit bcl-2 and bcl-xL expression and induce tumor cell apoptosis has been described. Here we investigated the consequences of adding of 2'-MOE or 2'-Me modifications to ribonucleotides at either the two ends of the sequence, or the center region together with different combinations of phosphodiester/phosphorothioate backbones on the activity of oligonucleotide 4625. The ability of the various 4625 analogs, including the parental first-generation oligonucleotide 3005, to inhibit bcl-2 and bcl-xL expression, and diminish cell growth or induce tumor cell death was assessed in SW2 lung cancer cells using real-time PCR, Western blotting and cell viability assays. Only oligonucleotide 4625 exhibited a potent bispecific antisense activity against bcl-2 and bcl-xL, which effectively reduced tumor cell viability. The other antisense oligonucleotides were either uniquely active against bcl-2 or completely inactive. Our data suggest that the 2'-MOE modification in combination with the phophorothioate gapmer chemistry is the optimal format of the 4625 sequence in terms of antisense activity and biological efficacy.
Collapse
Affiliation(s)
- Robert A Olie
- Division of Medical Oncology, Department of Internal Medicine, University Hospital of Zürich, Haldiweg 4, CH-8044 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Olie RA, Hafner C, Küttel R, Sigrist B, Willers J, Dummer R, Hall J, Stahel RA, Zangemeister-Wittke U. Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. J Invest Dermatol 2002; 118:505-12. [PMID: 11874491 DOI: 10.1046/j.0022-202x.2001.01677.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent clinical studies have shown the promise of bcl-2 antisense therapy in patients with melanoma. To further demonstrate the importance of bcl-2 and validate the related antiapoptotic protein bcl-xL as targets for antisense therapy in melanoma, their implication as survival factors in melanoma cells of different clinical stages as well as in normal melanocytes was investigated. Primary cell cultures derived from 17 melanomas, the cell line A375, and normal melanocytes from healthy donors were treated with antisense oligonucleotides targeting either the bcl-xL mRNA or the bcl-2 and the bcl-xL mRNAs simultaneously. Bcl-2 and bcl-xL expression in cells was analyzed by real-time polymerase chain reaction and Western blotting. Cell viability was assessed in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and apoptosis assays. Bcl-2 expression was low in melanoma cells of stages I, II, and III, hardly detectable in A375 cells, but high in normal melanocytes. Bcl-xL expression was high in all cell types tested. As shown in A375 cells and the stage III melanoma cells 0513, both the bcl-xL monospecific oligonucleotide 4259 and the bcl-2/bcl-xL bispecific oligonucleotide 4625 effectively reduced tumor cell viability by induction of apoptosis with IC50 values ranging from 200 to 350 nM. Oligonucleotide 4625 proved to be superior to 4259, as it significantly reduced the viability of cells from all melanoma stages. Both oligonucleotides reduced also the viability of normal melanocytes. Our data suggest that bcl-2 and bcl-xL are promising targets for antisense therapy of melanoma, and that the simultaneous downregulation of their expression may provide additional clinical benefit.
Collapse
Affiliation(s)
- Robert A Olie
- Division of Oncology, Department of Internal Medicine, University Hospital Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Broxterman HJ, Georgopapadakou N. Cancer research 2001: drug resistance, new targets and drug combinations. Drug Resist Updat 2001; 4:197-209. [PMID: 11768333 DOI: 10.1054/drup.2001.0216] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of new anticancer drugs and the identification of novel targets represent major focus areas for pharmaceutical and biotech companies, universities and research institutes worldwide. The 92nd Annual Meeting of the American Association for Cancer Research (AACR) provided a glimpse of the latest developments in the cancer field. We highlight here presentations on resistance mechanisms (efflux, target modulation), new targets and drugs in development (topoisomerase, angiogenesis, cell cycle inhibitors) and new molecular technologies. The emergence of technologies for concurrently screening for expression of thousands of genes, has provided a new approach for the identification of molecular targets and mechanisms of both action and resistance of new compounds. The importance of inhibiting multiple targets simultaneously was brought up in several presentations.
Collapse
Affiliation(s)
- H J Broxterman
- Department of Medical Oncology, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands.
| | | |
Collapse
|