1
|
Feng H, Chen Z, Li J, Feng J, Yang F, Meng F, Yin H, Guo Y, Xu H, Liu Y, Liu R, Lou W, Liu L, Han X, Su H, Zhang L. Unveiling circulating targets in pancreatic cancer: Insights from proteogenomic evidence and clinical cohorts. iScience 2025; 28:111693. [PMID: 40060891 PMCID: PMC11889678 DOI: 10.1016/j.isci.2024.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/23/2024] [Accepted: 12/23/2024] [Indexed: 03/04/2025] Open
Abstract
Pancreatic cancer (PC), characterized by the absence of effective biomarkers and therapies, remains highly fatal. Data regarding the correlations between PC risk and individual plasma proteome known for minimally invasive biomarkers are scarce. Here, we analyzed 1,345 human plasma proteins using proteome-wide association studies, identifying 78 proteins significantly associated with PC risk. Of these, four proteins (ROR1, FN1, APOA5, and ABO) showed the most substantial causal link to PC, confirmed through Mendelian randomization and colocalization analyses. Data from two clinical cohorts further demonstrated that FN1 and ABO were notably overexpressed in both blood and tumor samples from PC patients, compared to healthy controls or para-tumor tissues. Additionally, elevated FN1 and ABO levels correlated with shorter median survival in patients. Multiple drugs targeting FN1 or ROR1 are available or in clinical trials. These findings suggest that plasma protein FN1 associated with PC holds potential as both prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fei Yang
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Fansheng Meng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuquan Guo
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuxin Liu
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Runjie Liu
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 201104, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Su
- Institutes of Biomedical Sciences, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Jain T, Heyman B. Updates on the Treatment of Richter's Syndrome, Including Novel Combination Approaches. Cancers (Basel) 2025; 17:943. [PMID: 40149279 PMCID: PMC11940134 DOI: 10.3390/cancers17060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Richter's syndrome (RS) or transformation of chronic lymphocytic leukemia (CLL) into a more aggressive lymphoma (e.g., diffuse large B cell lymphoma, DLBCL) is a distinct disease that portends an overall poor prognosis and remains a challenge for clinicians to identify and treat effectively. This review of the current literature focuses on the pathology, diagnosis, and management of Richter's syndrome. Clonally related RS has been found to have a worse prognosis than unrelated disease and the genomic profile of DLBCL-RS differs from that of de novo DLBCL. The standard of care therapy for RS has historically been chemoimmunotherapy; consolidative stem cell transplants have a role in improving durability of disease response. Given generally poor response rates to chemotherapy, there have been recent investigations into combination treatments with immune checkpoint inhibitors and small molecule targeted therapies, which have had mixed results. Additional studies are evaluating the use of bispecific antibodies, chimeric antigen receptor T cell therapy, and antibody drug conjugates. RS remains difficult to manage; however, advancements in the understanding of the underlying pathology of transformation and continued investigations into new therapies demonstrate promise for the future.
Collapse
Affiliation(s)
- Tanim Jain
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Benjamin Heyman
- Division of Regenerative Medicine, Department of Medicine, UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Balla J, Siddi C, Scherma M, Fadda P, Dedoni S. Antibody conjugates in neuroblastoma: a step forward in precision medicine. Front Oncol 2025; 15:1548524. [PMID: 40129921 PMCID: PMC11931395 DOI: 10.3389/fonc.2025.1548524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer that often manifests in a high-risk form and is characterized by frequent relapses and resistance to conventional therapies. This underscores the urgent need for more effective and targeted treatment strategies. One promising avenue has been the identification of unique or overexpressed surface antigens on neoplastic cells, which has facilitated the development of antibody conjugates and related technologies. These include antibody-drug conjugates (ADCs) and immunotoxins (ITs), which deliver cytotoxic agents directly to tumor cells, as well as antibody-fluorophore conjugates (AFCs), which bind to surface antigens with high specificity to target malignant tumors. Additionally, radioimmunotherapy (RIT) allows the precise delivery of radioactive isotopes linked to a monoclonal antibody directly to the tumor cells. ADCs, ITs, and RIT represent a novel class of anti-cancer agents offering precision therapy with reduced systemic toxicity, enabling longer and potentially more effective treatment regimens. Meanwhile, AFCs are valuable tools in diagnostics, aiding in detecting and characterizing malignant tissues. Despite advancements in antibody conjugates for NB, significant challenges persist, including optimizing payload delivery, mitigating off-target effects, and addressing tumor heterogeneity. Future research should also prioritize refining and integrating these technologies into multimodal treatment protocols to improve outcomes for pediatric NB patients.
Collapse
Affiliation(s)
- Jihane Balla
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Ahmed G, Hamadani M, Al-Juhaishi T. The potential of antibody-drug conjugates for effective therapy in diffuse large B-cell lymphoma. Expert Opin Biol Ther 2025; 25:161-173. [PMID: 39798075 DOI: 10.1080/14712598.2025.2453524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.a. payload) attached through a linker to a monoclonal antibody specific to a particular cancer antigen. Payloads include microtubule disruptors or DNA damaging chemicals. After attaching to the antigen, the ADCs are internalized, and the payload is dissociated from ADC by lysozymes and delivered to the intended site for exerting cytotoxic effects. This unique molecular design permits a better balance of efficacy and safety. Loncastuximab tesirine and polatuzumab vedotin are two ADCs approved in the U.S.A. for treatment of DLBCL. AREAS COVERED This review covers the efficacy and safety data of these two drugs. We will review new ADC-based combination regimens and novel constructs in development. EXPERT OPINION ADCs have made a significant impact in improving outcomes of DLBCL patients. Both polatuzumab vedotin and loncastuximab tesirine are established as useful therapeutics options, with polatuzumab vedotin currently approved in first line and relapsed/refractory setting, while loncastuximab tesirine is approved in relapsed setting. ADCs are effective with tolerable safety profile and currently many more ADCs are undergoing clinical trials.
Collapse
MESH Headings
- Humans
- Immunoconjugates/adverse effects
- Immunoconjugates/administration & dosage
- Immunoconjugates/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Animals
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Benzodiazepines
Collapse
Affiliation(s)
- Gulrayz Ahmed
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
5
|
Rippel N, Sheppard R, Kittai AS. Updates in the Management of Richter Transformation. Cancers (Basel) 2024; 17:95. [PMID: 39796724 PMCID: PMC11720094 DOI: 10.3390/cancers17010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival. Taken together, these considerations precipitate a significant unmet need for novel therapeutic strategies that improve the outcomes of patients with RT. Through this review, we will explore current data on emerging regimens targeting BTK, BCL-2, CD79, CD20, PI3K, and PD-1-both as single agents and as combination therapies with or without concurrent chemoimmunotherapy. Furthermore, we will review the role of bispecific T-cell engagers, anti-CD19 chimeric antigen receptor T-cell therapies, and hematopoietic stem cell transplantation in RT. To guide therapeutic decision-making, we will outline an algorithmic approach to the management of RT, with particular emphasis on prioritization of clinical trial enrollment and utilization of an ever-evolving array of novel therapies.
Collapse
Affiliation(s)
| | | | - Adam S. Kittai
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
8
|
Ryan CE, Kumar A. Dismantling relapsed/refractory mantle cell lymphoma. Blood Rev 2024; 67:101221. [PMID: 38906740 DOI: 10.1016/j.blre.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Despite recent therapeutic advancements in the general field of non-Hodgkin lymphoma, effective treatment of relapsed or refractory (R/R) mantle cell lymphoma (MCL) remains a challenge. The development of Bruton tyrosine kinase (BTK) inhibitors has revolutionized the field and these agents are now the mainstay of R/R MCL management. However, BTK inhibitors are not curative, and as they are increasingly being incorporated into frontline regimens, the shifting treatment landscape for R/R disease presents new challenges. Here we review data for commonly employed treatment strategies including BTK inhibitors, the BCL2-inhibitor venetoclax, lenalidomide-based regimens, and chimeric antigen receptor T-cell therapy. We additionally review data for promising novel agents including antibody-drug conjugates and bispecific antibodies before highlighting some emerging targeted agents that continue to bring promise for improved outcomes in R/R MCL.
Collapse
Affiliation(s)
- Christine E Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Anita Kumar
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Udvorková N, Fekiačová A, Majtánová K, Mego M, Kučerová L. Antibody-drug conjugates as a novel therapeutic modality to treat recurrent refractory germ cell tumors. Am J Physiol Cell Physiol 2024; 327:C362-C371. [PMID: 38912730 DOI: 10.1152/ajpcell.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
This review provides a rationale for using the Food and Drug Administration (FDA)-approved antibody-drug conjugates (ADCs) for implementing as therapy in recurrent refractory germ cell tumors similar to their position in the treatment of other types of chemoresistant solid tumors. Germ cell tumors (GCTs) originate from germ cells; they most frequently develop in ovaries or in the testes, while being the most common type of malignancy in young men. GCTs are very sensitive to cisplatin-based chemotherapy, but therapeutic resistance occurs in a considerable number of cases, which is associated with disease recurrence and poor patient prognosis. ADCs are a novel type of targeted antitumor agents that combine tumor antigen-specific monoclonal antibodies with chemically linked chemotherapeutic drugs (payload) exerting a cytotoxic effect. Several FDA-approved ADCs use as targeting moieties the antigens that are also detected in the GCTs, offering a benefit of this type of targeted therapy even for patients with relapsed/refractory testicular GCTs (rrTGCT) unresponsive to standard chemotherapy.
Collapse
Affiliation(s)
- Natália Udvorková
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Fekiačová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Majtánová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Lucia Kučerová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Ip A, Della Pia A, Goy AH. SOHO State of the Art Updates and Next Questions: Treatment Evolution of Mantle Cell Lymphoma: Navigating the Different Entities and Biological Heterogeneity of Mantle Cell Lymphoma in 2024. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:491-505. [PMID: 38493059 DOI: 10.1016/j.clml.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Progress in mantle cell lymphoma (MCL) has led to significant improvement in outcomes of patients even in the real world (RW) setting albeit to a lesser degree. In parallel to the demonstration of benefit using combination therapy with rituximab plus high-dose cytarabine (R-AraC) as well as dose intensive therapy-autologous stem cell transplantation (DIT-ASCT) consolidation and maintenance, it became clear over the last 2 decades that MCL is a highly heterogenous disease at the molecular level, explaining differences observed in clinical behavior and response to therapy. While clinical prognostic factors and models have helped stratify patients with distinct outcomes, they failed to help guide therapy. The identification of molecular high-risk (HR) features, in particular, but not only, p53 aberrations (including mutations and deletions [del]), as well as complex karyotype (CK), has allowed to identify subsets of patients with poorer outcomes (median overall survival [OS] <2 years) regardless of conventional therapies used. The constant pattern of relapse seen in MCL has fueled sustained and productive efforts, with 7 novel agents approved in the United States (US), showing high and durable efficacy even in HR and chemo-refractory patients and likely curing a subset of patients in the relapsed or refractory (R/R) setting. Progress in diagnostics, in particular next-generation sequencing (NGS), which is accessible in routine practice nowadays, can help recognize patients with HR features, well beyond MIPI or Ki-67 prognostication, although the impact on decision making is still unclear. The era of integrating novel agents into our prior standard of care (SOC) has begun with a confirmed benefit, for example, ibrutinib (Ib) in the TRIANGLE study, defining the first new potential SOC in younger patients in over 30 years. Expanding on novel agents, either in combination, sequentially or to replace chemotherapy altogether, using biological doublets or triplets has led to a median progression-free survival (PFS) in excess of 72 months, certainly competitive with prior SOC and will continue to reshape the management of MCL patients. Achieving minimal residual disease negative (MRD-ve) status is becoming a new endpoint in MCL, and customizing maintenance and/or de-escalation/consolidation strategies is within reach, although it will require prospective, built-in MRD-based approaches, with the goal of eliminating subclinical disease and not simply delaying time to relapse. Taking into account the biological diversity of MCL is now feasible in routine clinical practice and has already helped recognize what not to do for HR patients (i.e., avoid intensive induction chemotherapy and/or ASCT for p53 mutated patients) as well as identify promising novel options. Ongoing and future work will help expand on these dedicated approaches, to further improve the management and outcomes of all MCL patients.
Collapse
Affiliation(s)
- Andrew Ip
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ
| | - Alexandra Della Pia
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ
| | - Andre H Goy
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ.
| |
Collapse
|
11
|
Ruccolo S, Emmert M, Bottecchia C, Qin Y, Barrientos R, Raymond K, Haley M. Electrocatalytic Reduction of Disulfide Bonds across Chemical Modalities. Org Lett 2024; 26:6169-6173. [PMID: 38996056 DOI: 10.1021/acs.orglett.4c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The chemical properties of disulfides are leveraged in a wide array of applications, ranging from protein-drug conjugates for cancer treatment to self-healing materials. However, disulfide reduction strategies remain severely underdeveloped despite being the key to efficiently accessing the desired targets. Specifically, no homogeneous catalyst has been reported for this reaction, and conditions that allow the use of mild and green reductants (e.g., via electrochemical reduction) are not known. Herein, we unveil a vitamin B12-catalyzed, electrochemically driven protocol for efficiently reducing disulfide bonds in various aqueous buffers over a broad pH range. This robust and simple method is suitable for disulfide reductions of substrates ranging from small molecules to large proteins. Finally, one-pot reduction and conjugation of disulfide bonds in a monoclonal antibody were demonstrated to produce antibody conjugates.
Collapse
Affiliation(s)
- Serge Ruccolo
- Process Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Marion Emmert
- Process Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Cecilia Bottecchia
- Process Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Yangzhong Qin
- Analytical Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Rodell Barrientos
- Analytical Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Kelly Raymond
- Analytical Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Monica Haley
- Analytical Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
12
|
D’Alò F, Bellesi S, Maiolo E, Alma E, Bellisario F, Malafronte R, Viscovo M, Campana F, Hohaus S. Novel Targets and Advanced Therapies in Diffuse Large B Cell Lymphomas. Cancers (Basel) 2024; 16:2243. [PMID: 38927948 PMCID: PMC11201587 DOI: 10.3390/cancers16122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Since the introduction of rituximab in the late 1990s, significant progress has been made in advancing targeted therapies for B cell lymphomas, improving patients' chance of being cured and clinicians' therapeutic armamentarium. A better understanding of disease biology and pathogenic pathways, coupled with refinements in immunophenotypic and molecular diagnostics, have been instrumental in these achievements. While traditional chemotherapy remains fundamental in most cases, concerns surrounding chemorefractoriness and cumulative toxicities, particularly the depletion of the hemopoietic reserve, underscore the imperative for personalized treatment approaches. Integrating targeted agents, notably monoclonal antibodies, alongside chemotherapy has yielded heightened response rates and prolonged survival. A notable paradigm shift is underway with innovative-targeted therapies replacing cytotoxic drugs, challenging conventional salvage strategies like stem cell transplantation. This review examines the landscape of emerging targets for lymphoma cells and explores innovative therapies for diffuse large B cell lymphoma (DLBCL). From Chimeric Antigen Receptor-T cells to more potent monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, checkpoint inhibitors, and small molecules targeting intracellular pathways, each modality offers promising avenues for therapeutic advancement. This review aims to furnish insights into their potential implications for the future of DLBCL treatment strategies.
Collapse
Affiliation(s)
- Francesco D’Alò
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Silvia Bellesi
- UOC Servizio e DH di Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.B.); (E.M.)
| | - Elena Maiolo
- UOC Servizio e DH di Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.B.); (E.M.)
| | - Eleonora Alma
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flaminia Bellisario
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Rosalia Malafronte
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marcello Viscovo
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Fabrizia Campana
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Stefan Hohaus
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
13
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Raso MG, Barrientos Toro E, Evans K, Rizvi Y, Lazcano R, Akcakanat A, Sini P, Trapani F, Madlener EJ, Waldmeier L, Lazar A, Meric-Bernstam F. Heterogeneous Profile of ROR1 Protein Expression across Tumor Types. Cancers (Basel) 2024; 16:1874. [PMID: 38791952 PMCID: PMC11119314 DOI: 10.3390/cancers16101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The Wnt receptor ROR1 has generated increased interest as a cancer therapeutic target. Research on several therapeutic approaches involving this receptor is ongoing; however, ROR1 tissue expression remains understudied. We performed an immunohistochemistry analysis of ROR1 protein expression in a large cohort of multiple tumor and histologic types. We analyzed 12 anonymized multi-tumor tissue microarrays (TMAs), including mesothelioma, esophageal and upper gastrointestinal carcinomas, and uterine endometrioid carcinoma, among other tumor types. Additionally, we studied 5 different sarcoma types of TMAs and 6 patient-derived xenografts (PDX) TMAs developed from 19 different anatomic sites and tumor histologic types. A total of 1142 patient cases from different histologic types and 140 PDXs placed in TMAs were evaluated. Pathologists assessed the percentage of tumor cells in each case that were positive for ROR1 and the intensity of staining. For determining the prevalence of staining for each tumor type, a case was considered positive if >1% of its tumor cells showed ROR1 staining. Our immunohistochemistry assays revealed a heterogeneous ROR1 expression profile. A high prevalence of ROR1 expression was found in mesothelioma (84.6%), liposarcoma (36.1%), gastrointestinal stromal tumors (33.3%), and uterine endometrioid carcinoma (28.9%). Other histologic types such as breast, lung, renal cell, hepatocellular, urothelial carcinoma, and colon carcinomas; glioblastoma; cholangiocarcinoma; and leiomyosarcoma showed less ROR1 overall expression, ranging between 0.9 and 13%. No ROR1 expression was seen in mesenchymal chondrosarcoma, rhabdomyosarcoma, or gastric adenocarcinoma cases. Overall, ROR1 expression was relatively infrequent and low in most tumor types investigated; however, ROR1 expression was infrequent but high in selected tumor types, such as gastroesophageal GIST, suggesting that ROR1 prescreening may be preferable for those indications. Further, mesothelioma exhibited frequent and high levels of ROR1 expression, which represents a previously unrecognized therapeutic opportunity. These findings can contribute to the development of ROR1-targeted therapies.
Collapse
Affiliation(s)
- Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.B.T.); (R.L.)
| | - Elizve Barrientos Toro
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.B.T.); (R.L.)
| | - Kurt Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.E.); (Y.R.); (A.A.); (F.M.-B.)
| | - Yasmeen Rizvi
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.E.); (Y.R.); (A.A.); (F.M.-B.)
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.B.T.); (R.L.)
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.E.); (Y.R.); (A.A.); (F.M.-B.)
| | - Patrizia Sini
- Boehringer Ingelheim RCV, 1121 Vienna, Austria (F.T.)
| | | | | | | | - Alexander Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.E.); (Y.R.); (A.A.); (F.M.-B.)
| |
Collapse
|
15
|
Tran TM, Chand Thakuri BK, Nurmukhambetova S, Lee JJ, Hu P, Tran NQ, Steimle B, Dash P, Schneider D. Armored TGFβRIIDN ROR1-CAR T cells reject solid tumors and resist suppression by constitutively-expressed and treatment-induced TGFβ1. J Immunother Cancer 2024; 12:e008261. [PMID: 38609317 PMCID: PMC11029479 DOI: 10.1136/jitc-2023-008261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy target receptor tyrosine kinase-like orphan receptor 1 (ROR1) is broadly expressed in hematologic and solid tumors, however clinically-characterized ROR1-CAR T cells with single chain variable fragment (scFv)-R12 targeting domain failed to induce durable remissions, in part due to the immunosuppressive tumor microenvironment (TME). Herein, we describe the development of an improved ROR1-CAR with a novel, fully human scFv9 targeting domain, and augmented with TGFβRIIDN armor protective against a major TME factor, transforming growth factor beta (TGFβ). METHODS CAR T cells were generated by lentiviral transduction of enriched CD4+ and CD8+ T cells, and the novel scFv9-based ROR1-CAR-1 was compared with the clinically-characterized ROR1-R12-scFv-based CAR-2 in vitro and in vivo. RESULTS CAR-1 T cells exhibited greater CAR surface density than CAR-2 when normalized for %CAR+, and produced more interferon (IFN)-γ tumor necrosis factor (TNF)-α and interleukin (IL)-2 in response to hematologic (Jeko-1, RPMI-8226) and solid (OVCAR-3, Capan-2, NCI-H226) tumor cell lines in vitro. In vivo, CAR-1 and CAR-2 both cleared hematologic Jeko-1 lymphoma xenografts, however only CAR-1 fully rejected ovarian solid OVCAR-3 tumors, concordantly with greater expansion of CD8+ and CD4+CAR T cells, and enrichment for central and effector memory phenotype. When equipped with TGFβ-protective armor TGFβRIIDN, CAR-1 T cells resisted TGFβ-mediated pSmad2/3 phosphorylation, as compared with CAR-1 alone. When co-cultured with ROR-1+ AsPC-1 pancreatic cancer line in the presence of TGFβ1, armored CAR-1 demonstrated improved recovery of killing function, IFN-γ, TNF-α and IL-2 secretion. In mouse AsPC-1 pancreatic tumor xenografts overexpressing TGFβ1, armored CAR-1, in contrast to CAR-1 alone, achieved complete tumor remissions, and yielded accelerated expansion of CAR+ T cells, diminished circulating active TGFβ1, and no apparent toxicity or weight loss. Unexpectedly, in AsPC-1 xenografts without TGFβ overexpression, TGFβ1 production was specifically induced by ROR-1-CAR T cells interaction with ROR-1 positive tumor cells, and the TGFβRIIDN armor conferred accelerated tumor clearance. CONCLUSIONS The novel fully human TGFßRIIDN-armored ROR1-CAR-1 T cells are highly potent against ROR1-positive tumors, and withstand the inhibitory effects of TGFß in solid TME. Moreover, TGFβ1 induction represents a novel, CAR-induced checkpoint in the solid TME, which can be circumvented by co-expressing the TGβRIIDN armor on T cells.
Collapse
Affiliation(s)
- Tri Minh Tran
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | | | | | - Jia-Jye Lee
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Peirong Hu
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Ngoc Q Tran
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Brittany Steimle
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Pradyot Dash
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Dina Schneider
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| |
Collapse
|
16
|
Mooney B, Negri GL, Shyp T, Delaidelli A, Zhang HF, Spencer Miko SE, Weiner AK, Radaoui AB, Shraim R, Lizardo MM, Hughes CS, Li A, El-Naggar AM, Rouleau M, Li W, Dimitrov DS, Kurmasheva RT, Houghton PJ, Diskin SJ, Maris JM, Morin GB, Sorensen PH. Surface and Global Proteome Analyses Identify ENPP1 and Other Surface Proteins as Actionable Immunotherapeutic Targets in Ewing Sarcoma. Clin Cancer Res 2024; 30:1022-1037. [PMID: 37812652 PMCID: PMC10905525 DOI: 10.1158/1078-0432.ccr-23-2187] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Ewing sarcoma is the second most common bone sarcoma in children, with 1 case per 1.5 million in the United States. Although the survival rate of patients diagnosed with localized disease is approximately 70%, this decreases to approximately 30% for patients with metastatic disease and only approximately 10% for treatment-refractory disease, which have not changed for decades. Therefore, new therapeutic strategies are urgently needed for metastatic and refractory Ewing sarcoma. EXPERIMENTAL DESIGN This study analyzed 19 unique Ewing sarcoma patient- or cell line-derived xenografts (from 14 primary and 5 metastatic specimens) using proteomics to identify surface proteins for potential immunotherapeutic targeting. Plasma membranes were enriched using density gradient ultracentrifugation and compared with a reference standard of 12 immortalized non-Ewing sarcoma cell lines prepared in a similar manner. In parallel, global proteome analysis was carried out on each model to complement the surfaceome data. All models were analyzed by Tandem Mass Tags-based mass spectrometry to quantify identified proteins. RESULTS The surfaceome and global proteome analyses identified 1,131 and 1,030 annotated surface proteins, respectively. Among surface proteins identified, both approaches identified known Ewing sarcoma-associated proteins, including IL1RAP, CD99, STEAP1, and ADGRG2, and many new cell surface targets, including ENPP1 and CDH11. Robust staining of ENPP1 was demonstrated in Ewing sarcoma tumors compared with other childhood sarcomas and normal tissues. CONCLUSIONS Our comprehensive proteomic characterization of the Ewing sarcoma surfaceome provides a rich resource of surface-expressed proteins in Ewing sarcoma. This dataset provides the preclinical justification for exploration of targets such as ENPP1 for potential immunotherapeutic application in Ewing sarcoma. See related commentary by Bailey, p. 934.
Collapse
Affiliation(s)
- Brian Mooney
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Taras Shyp
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra E. Spencer Miko
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Amber K. Weiner
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alexander B. Radaoui
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michael M. Lizardo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Li
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amal M. El-Naggar
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Rouleau
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Li
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Dimiter S. Dimitrov
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Raushan T. Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter J. Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregg B. Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Poul H. Sorensen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Shatsky RA, Batra-Sharma H, Helsten T, Schwab RB, Pittman EI, Pu M, Weihe E, Ghia EM, Rassenti LZ, Molinolo A, Cabrera B, Breitmeyer JB, Widhopf GF, Messer K, Jamieson C, Kipps TJ, Parker BA. A phase 1b study of zilovertamab in combination with paclitaxel for locally advanced/unresectable or metastatic Her2-negative breast cancer. Breast Cancer Res 2024; 26:32. [PMID: 38408999 PMCID: PMC10895766 DOI: 10.1186/s13058-024-01782-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Zilovertamab is a humanized monoclonal antibody targeting ROR1, an onco-embryonic antigen expressed by malignant cells of a variety of solid tumors, including breast cancer. A prior phase 1 study showed that zilovertamab was well tolerated and effective in inhibiting ROR1-signaling, which leads to activation of ERK1/2, NF-κB, and NRF2 target genes. This phase 1b study evaluated the safety and tolerability of zilovertamab with paclitaxel in patients with advanced breast cancer. PATIENTS AND METHODS Eligible patients had locally advanced, unresectable, or metastatic HER2- breast cancer with Eastern Cooperative Group performance status of 0-2 and without prior taxane therapy in the advanced setting. Study treatment included 600 mg of zilovertamab administered intravenously (IV) on Days 1 and 15 of Cycle 1 and then Day 1 of each 28-day cycle along with paclitaxel weekly at 80 mg/m2 IV. RESULTS Study patients had received a median of 4 prior therapies (endocrine therapy + chemotherapy) for locally advanced, unresectable, or metastatic disease. No patient discontinued therapy due to toxicity ascribed to zilovertamab. Adverse events were consistent with the known safety profile of paclitaxel. Of 16 patients, 6 (38%) had a partial response, and 6/16 (38%) patients had stable disease as best tumor response. CONCLUSION The combination of zilovertamab and paclitaxel was safe and well tolerated in heavily pre-treated advanced breast cancer patients. Further evaluation of ROR1 targeting in breast cancer patients with zilovertamab is warranted. TRIAL REGISTRATION NCT02776917. Registered on ClinicalTrials.gov on 05/17/2016.
Collapse
Affiliation(s)
- Rebecca A Shatsky
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Hemali Batra-Sharma
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Teresa Helsten
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Richard B Schwab
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Emily I Pittman
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
| | - Minya Pu
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
| | - Elizabeth Weihe
- Department of Radiology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Emanuela M Ghia
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Alfredo Molinolo
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
| | - Betty Cabrera
- University of California San Diego California Institute for Regenerative Medicine Alpha Clinic, La Jolla, San Diego, CA, USA
| | | | - George F Widhopf
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Karen Messer
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Catriona Jamieson
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- University of California San Diego California Institute for Regenerative Medicine Alpha Clinic, La Jolla, San Diego, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Barbara A Parker
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive Mail Code 0987, La Jolla, San Diego, CA, 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
18
|
Al Sbihi A, Alasfour M, Pongas G. Innovations in Antibody-Drug Conjugate (ADC) in the Treatment of Lymphoma. Cancers (Basel) 2024; 16:827. [PMID: 38398219 PMCID: PMC10887180 DOI: 10.3390/cancers16040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Chemoimmunotherapy and cellular therapy are the mainstay of the treatment of relapsed/refractory (R/R) lymphomas. Development of resistance and commonly encountered toxicities of these treatments limit their role in achieving desired response rates and durable remissions. The Antibody-Drug Conjugate (ADC) is a novel class of targeted therapy that has demonstrated significant efficacy in treating various cancers, including lymphomas. To date, three ADC agents have been approved for different lymphomas, marking a significant advancement in the field. In this article, we aim to review the concept of ADCs and their application in lymphoma treatment, provide an analysis of currently approved agents, and discuss the ongoing advancements of ADC development.
Collapse
Affiliation(s)
| | | | - Georgios Pongas
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
19
|
Lu T, Zhang J, McCracken JM, Young KH. Recent advances in genomics and therapeutics in mantle cell lymphoma. Cancer Treat Rev 2024; 122:102651. [PMID: 37976759 DOI: 10.1016/j.ctrv.2023.102651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Over the past decades, significant strides have been made in understanding the pathobiology, prognosis, and treatment options for mantle cell lymphoma (MCL). The heterogeneity observed in MCL's biology, genomics, and clinical manifestations, including indolent and aggressive forms, is intricately linked to factors such as the mutational status of the variable region of the immunoglobulin heavy chain gene, epigenetic profiling, and Sox11 expression. Several intriguing subtypes of MCL, such as Cyclin D1-negative MCL, in situ mantle cell neoplasm, CCND1/IGH FISH-negative MCL, and the impact of karyotypic complexity on prognosis, have been explored. Notably, recent immunochemotherapy regimens have yielded long-lasting remissions in select patients. The therapeutic landscape for MCL is continuously evolving, with a shift towards nonchemotherapeutic agents like ibrutinib, acalabrutinib, and venetoclax. The introduction of BTK inhibitors has brought about a transformative change in MCL treatment. Nevertheless, the challenge of resistance to BTK inhibitors persists, prompting ongoing efforts to discover strategies for overcoming this resistance. These strategies encompass non-covalent BTK inhibitors, immunomodulatory agents, BCL2 inhibitors, and CAR-T cell therapy, either as standalone treatments or in combination regimens. Furthermore, developing novel drugs holds promise for further improving the survival of patients with relapsed or refractory MCL. In this comprehensive review, we methodically encapsulate MCL's clinical and pathological attributes and the factors influencing prognosis. We also undertake an in-depth examination of stratified treatment alternatives. We investigate conceivable resistance mechanisms in MCL from a genetic standpoint and offer precise insights into various therapeutic approaches for relapsed or refractory MCL.
Collapse
Affiliation(s)
- Tingxun Lu
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jenna M McCracken
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ken H Young
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA; Duke Cancer Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Nayak RK, Gerber D, Zhang C, Cohen JB. SOHO State of the Art Updates and Next Questions | Immunotherapeutic Options for Patients With Mantle Cell Lymphoma Who Progress on BTK Inhibitors. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:861-865. [PMID: 37661513 DOI: 10.1016/j.clml.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Mantle cell lymphoma is a challenging subtype of B-cell non-Hodgkin lymphoma treat characterized by its aggressive nature and propensity for relapse or refractory (R/R) disease for many patients. The introduction of Bruton's tyrosine kinase inhibitors has significantly improved the outcomes for patients with R/R MCL, but a considerable proportion of patients eventually experience disease progression or develop resistance to these agents. In recent years, immunotherapeutic approaches have emerged as promising treatment options. The treatment landscape is quickly progressing with the FDA approval of CAR-T cell therapy as well as several promising bispecific antibody therapies and antibody-drug conjugates in clinical development. This review article aims to provide a comprehensive overview of the current state of immunotherapeutic options available for patients with R/R MCL.
Collapse
Affiliation(s)
- Rahul K Nayak
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA
| | - Drew Gerber
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA
| | - Chen Zhang
- Department of Hematology and Medical Oncology, Rush University Medical Center, Chicago, IL
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA.
| |
Collapse
|
21
|
Abstract
New biocompatible methods for post-translational protein modification are challenging to develop but crucial to create improved chemical probes and optimize next-generation biologic therapies such as antibody-drug conjugates (ADCs). Herein, we describe the bottom-up construction of an aqueous nickel-catalyzed cross-coupling for the chemospecific arylation of cysteine residues on peptides and proteins and its use for the preparation of ADCs. A variety of arene linkages are exemplified, enabling the incorporation of small molecules, probes, and cytotoxic payloads. The utility of this new bioconjugation platform in a drug discovery setting is highlighted by the construction of novel ADCs with target-mediated in vitro cytotoxic activity.
Collapse
Affiliation(s)
- Vlad Bacauanu
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Zoe N Merz
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Zhong L Hua
- Discovery Oncology, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Simon B Lang
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Abrisqueta P, Nadeu F, Bosch-Schips J, Iacoboni G, Serna A, Cabirta A, Yáñez L, Quintanilla-Martínez L, Bosch F. From genetics to therapy: Unraveling the complexities of Richter transformation in chronic lymphocytic leukemia. Cancer Treat Rev 2023; 120:102619. [PMID: 37660626 DOI: 10.1016/j.ctrv.2023.102619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Richter transformation (RT) refers to the progression of chronic lymphocytic leukemia, the most prevalent leukemia among adults, into a highly aggressive lymphoproliferative disorder, primarily a diffuse large B-cell lymphoma. This is a severe complication that continues to be a therapeutic challenge and remains an unmet medical need. Over the last five years, significant advances have occurred in uncovering the biological processes leading to the RT, refining criteria for properly diagnose RT from other entities, and exploring new therapeutic options beyond the ineffective chemotherapy. This review summarizes current knowledge in RT, including recent advances in the understanding of the pathogenesis of RT, in the classification of RT, and in the development of novel therapeutic strategies for this grave complication.
Collapse
Affiliation(s)
- Pau Abrisqueta
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jan Bosch-Schips
- Department of Pathology, Hospital Universitari de Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Gloria Iacoboni
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Angel Serna
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alba Cabirta
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lucrecia Yáñez
- Department of Hematology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Leticia Quintanilla-Martínez
- Institute of Pathology and Neuropathology, Tübingen University Hospital and Comprehensive Cancer Center Tübingen-Stuttgart, 72076 Tübingen, Germany
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
23
|
Squires P, Puckett J, Ryland KE, Kamal-Bahl S, Raut M, Doshi JA, Huntington SF. Assessing unmet need among elderly Medicare Beneficiaries with Mantle cell lymphoma: an analysis of treatment patterns, survival, healthcare resource utilization, and costs. Leuk Lymphoma 2023; 64:1752-1770. [PMID: 37497877 DOI: 10.1080/10428194.2023.2234525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023]
Abstract
Studies evaluating real-world outcomes and health care utilization for mantle cell lymphoma are limited. We utilized national Medicare claims (2009-2019) to examine treatment patterns, healthcare resource utilization, costs, and survival in 3664 elderly patients receiving 1 L treatment for MCL. Over a median follow-up of 2.8 years, 40.3% received at least 2 L treatment. The most common 1 L regimen was bendamustine-rituximab (50.1%), with increased use of BTKi-based regimens observed in 2 L (39.4%). Half (51.8%) of patients had an all-cause hospitalization within 12 months of initiating 1 L; hospitalization rates were higher in later lines. Healthcare costs were substantial and most costs (>80%) were MCL-related. Overall survival was poorer among later lines of treatment (median OS from initiation of 1 L: 53.5 months; 2 L: 22.0 months; 3 L: 11.8 months; 4 L: 7.8 months). These results suggest a large unmet need and future work should evaluate whether novel therapies have improved outcomes among elderly patients with MCL.
Collapse
Affiliation(s)
| | | | | | | | | | - Jalpa A Doshi
- Division of General Internal Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott F Huntington
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Romano I, Condoluci A, Rossi D. SOHO State of the Art Updates and Next Questions | Treatment of Richter's Transformation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:786-799. [PMID: 37586917 DOI: 10.1016/j.clml.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Richter's transformation (RT) is a rare condition, represented by the development of an aggressive lymphoma arising from underlying chronic lymphocytic leukemia/small lymphocytic lymphoma. The management of RT remains challenging, necessitating combined therapeutic strategies to achieve favorable outcomes. Traditional treatment options for RT have involved intensive chemotherapy regimens, often with limited success due to the high-risk nature of the disease. However, recent advances in the understanding of RT pathogenesis have led to the emergence of novel targeted therapies that show promising results. Noncovalent Bruton tyrosine kinase inhibitors, T-cell-engaging bispecific antibodies, chimeric antigen receptor T-cells, and conjugated monoclonal antibodies may hold promise for improved outcomes in RT, especially when combined in a multitargeted fashion. Further prospective randomized trials and collaborative efforts are warranted to optimize treatment algorithm and ultimately improve patient outcomes in this dismal condition. This review provides a comprehensive overview of the current treatment options for RT.
Collapse
Affiliation(s)
- Ilaria Romano
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland; Division of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Adalgisa Condoluci
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland; Division of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland; Division of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland..
| |
Collapse
|
25
|
Frachet S, Danigo A, Duchesne M, Richard L, Sturtz F, Magy L, Demiot C. A mouse model of sensory neuropathy induced by a long course of monomethyl-auristatin E treatment. Toxicol Appl Pharmacol 2023; 474:116624. [PMID: 37419214 DOI: 10.1016/j.taap.2023.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Antibody-drug conjugates (ADCs) are anticancer drugs consisting of a monoclonal antibody, targeting selective tumor antigens, to which has been frequently associated a highly potent cytotoxic agent, the monomethyl auristatin E (MMAE) using a chemical linker. MMAE is a tubulin polymerization inhibitor derived from dolastin-10. These MMAE-ADCs are responsible for peripheral nerve toxicities. Our objective was to develop and characterize a mouse model of MMAE-induced peripheral neuropathy induced by free MMAE injections. MMAE was injected in Swiss mice at 50 μg/kg i.p. every other day for 7 weeks. Assessments of motor and sensory nerve functions were performed once a week on MMAE and Vehicle-treated mice. Sciatic nerve and paw skin were removed at the end of experiment for subsequent immunofluorescence and morphological analysis. MMAE did not affect motor coordination, muscular strength and heat nociception, but significantly induced tactile allodynia in MMAE-treated mice compared with Vehicle-treated mice from day 35 to day 49. MMAE significantly reduced myelinated and unmyelinated axon densities in sciatic nerves and led to a loss of intraepidermal nerve fiber in paw skin. In summary, long course of low dose of MMAE induced a peripheral sensory neuropathy associated with nerve degeneration, without general state alteration. This model may represent a ready accessible tool to screen neuroprotective strategies in the context of peripheral neuropathies induced by MMAE-ADCs.
Collapse
Affiliation(s)
- Simon Frachet
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France.
| | - Aurore Danigo
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| | - Mathilde Duchesne
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France; Department of Pathology, University Hospital of Limoges, Limoges 87042, France.
| | - Laurence Richard
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France; Department of Pathology, University Hospital of Limoges, Limoges 87042, France.
| | - Franck Sturtz
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| | - Laurent Magy
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France.
| | - Claire Demiot
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| |
Collapse
|
26
|
Jain N, Mamgain M, Chowdhury SM, Jindal U, Sharma I, Sehgal L, Epperla N. Beyond Bruton's tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody-drug conjugates, CAR T-cells, and novel agents. J Hematol Oncol 2023; 16:99. [PMID: 37626420 PMCID: PMC10463717 DOI: 10.1186/s13045-023-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mantle cell lymphoma is a B cell non-Hodgkin lymphoma (NHL), representing 2-6% of all NHLs and characterized by overexpression of cyclin D1. The last decade has seen the development of many novel treatment approaches in MCL, most notably the class of Bruton's tyrosine kinase inhibitors (BTKi). BTKi has shown excellent outcomes for patients with relapsed or refractory MCL and is now being studied in the first-line setting. However, patients eventually progress on BTKi due to the development of resistance. Additionally, there is an alteration in the tumor microenvironment in these patients with varying biological and therapeutic implications. Hence, it is necessary to explore novel therapeutic strategies that can be effective in those who progressed on BTKi or potentially circumvent resistance. In this review, we provide a brief overview of BTKi, then discuss the various mechanisms of BTK resistance including the role of genetic alteration, cancer stem cells, tumor microenvironment, and adaptive reprogramming bypassing the effect of BTK inhibition, and then provide a comprehensive review of current and emerging therapeutic options beyond BTKi including novel agents, CAR T cells, bispecific antibodies, and antibody-drug conjugates.
Collapse
Affiliation(s)
- Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Mamgain
- Department of Medical Oncology and Hematology, All India Institute of Medical Sciences, Rishikesh, India
| | - Sayan Mullick Chowdhury
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Udita Jindal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Isha Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Lalit Sehgal
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Narendranath Epperla
- The Ohio State University Comprehensive Cancer Center, Suite 7198, 2121 Kenny Rd, Columbus, OH, 43221, USA.
| |
Collapse
|
27
|
Morillo D, Vega G, Moreno V. CDK9 INHIBITORS: a promising combination partner in the treatment of hematological malignancies. Oncotarget 2023; 14:749-752. [PMID: 37552223 PMCID: PMC10408673 DOI: 10.18632/oncotarget.28473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023] Open
Abstract
Most hematological malignancies are characterized by overexpression of certain cancer promoting genes, such as MYC, MCL1 and cyclin D1. Preclinical studies in animal models have shown that CDK9 inhibitors supress the transcription of these anti-apoptotic and pro-survival proteins, and suggest their potential synergism with other drugs. In its first in-human trial, enitociclib demonstrated clinical activity in a small cohort of patients with high grade B lymphoma with MYC and BCL2 and/or BCL6 rearrangements, inducing complete responses in 2 of 7 subjects (29%) in monotherapy. These data suggest CDK9 inhibitors could play a role in the treatment of hematological diseases and could be a great ally when combined with other therapeutic approaches.
Collapse
Affiliation(s)
- Daniel Morillo
- Division of Hematology, START Madrid-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Gala Vega
- Division of Hematology, START Madrid-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Victor Moreno
- Division of Oncology, START Madrid-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
28
|
Sawalha Y, Goyal S, Switchenko JM, Romancik JT, Kamdar M, Greenwell IB, Hess BT, Isaac KM, Portell CA, Mejia Garcia A, Goldsmith S, Grover NS, Riedell PA, Karmali R, Burkart M, Buege M, Akhtar O, Torka P, Kumar A, Hill BT, Kahl BS, Cohen JB. A multicenter analysis of the outcomes with venetoclax in patients with relapsed mantle cell lymphoma. Blood Adv 2023; 7:2983-2993. [PMID: 36809796 PMCID: PMC10320213 DOI: 10.1182/bloodadvances.2022008916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
To report the activity of venetoclax in patients with relapsed mantle cell lymphoma (MCL), we identified 81 patients treated with venetoclax monotherapy (n = 50, 62%) or in combination with a Bruton tyrosine kinase inhibitor (BTKi) (n = 16, 20%), an anti-CD20 monoclonal antibody (n = 11, 14%), or other active agents at 12 US academic medical centers. Patients had high-risk disease features including Ki67 >30% (61%), blastoid/pleomorphic histology (29%), complex karyotype (34%), and TP53 alterations (49%), and received a median of 3 prior treatments including BTKis in 91%. Venetoclax alone or in combination resulted in an overall response rate (ORR) of 40% and median progression-free (PFS) and overall survival (OS) of 3.7 and 12.5 months, respectively. The receipt of ≤3 prior treatments was associated with higher odds of response to venetoclax in a univariable analysis. In a multivariable analysis, having a high-risk Mantle Cell Lymphoma International Prognostic Index score before receiving venetoclax and disease relapse or progression within 24 months of diagnosis were associated with inferior OS whereas the use of venetoclax in combination was associated with superior OS. Although most patients (61%) had low risk for tumor lysis syndrome (TLS), 12.3% of patients developed TLS despite the implementation of several mitigation strategies. In conclusion, venetoclax resulted in good ORR but short PFS in patients with MCL who are at high risk, and may have a better role in earlier lines of treatment and/or in conation with other active agents. TLS remains an important risk in patients with MCL who initiate treatment with venetoclax.
Collapse
Affiliation(s)
- Yazeed Sawalha
- Division of Hematology, The Ohio State University, Columbus, OH
| | - Subir Goyal
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jeffrey M. Switchenko
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jason T. Romancik
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Manali Kamdar
- Division of Hematology, University of Colorado Denver, Denver, CO
| | - I. Brian Greenwell
- Division of Hematology and Oncology, Medical University of South Carolina, Charleston, SC
| | - Brian T. Hess
- Division of Hematology and Oncology, Medical University of South Carolina, Charleston, SC
| | - Krista M. Isaac
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Craig A. Portell
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | | | - Scott Goldsmith
- Department of Medicine, Washington University School of Medicine, Washington University, St. Louis, MO
| | | | - Peter A. Riedell
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Reem Karmali
- Division of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Madelyn Burkart
- Division of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Michael Buege
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Othman Akhtar
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Pallawi Torka
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Anita Kumar
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian T. Hill
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Brad S. Kahl
- Department of Medicine, Washington University School of Medicine, Washington University, St. Louis, MO
| | - Jonathon B. Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
29
|
Parker BA, Shatsky RA, Schwab RB, Wallace AM, Wolf DM, Hirst GL, Brown-Swigart L, Esserman LJ, van 't Veer LJ, Ghia EM, Yau C, Kipps TJ. Association of baseline ROR1 and ROR2 gene expression with clinical outcomes in the I-SPY2 neoadjuvant breast cancer trial. Breast Cancer Res Treat 2023; 199:281-291. [PMID: 37029329 PMCID: PMC10175386 DOI: 10.1007/s10549-023-06914-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/12/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE ROR1 and ROR2 are Type 1 tyrosine kinase-like orphan receptors for Wnt5a that are associated with breast cancer progression. Experimental agents targeting ROR1 and ROR2 are in clinical trials. This study evaluated whether expression levels of ROR1 or ROR2 correlated with one another or with clinical outcomes. METHODS We interrogated the clinical significance of high-level gene expression of ROR1 and/or ROR2 in the annotated transcriptome dataset from 989 patients with high-risk early breast cancer enrolled in one of nine completed/graduated/experimental and control arms in the neoadjuvant I-SPY2 clinical trial (NCT01042379). RESULTS High ROR1 or high ROR2 was associated with breast cancer subtypes. High ROR1 was more prevalent among hormone receptor-negative and human epidermal growth factor receptor 2-negative (HR-HER2-) tumors and high ROR2 was less prevalent in this subtype. Although not associated with pathologic complete response, high ROR1 or high ROR2 each was associated with event-free survival (EFS) in distinct subtypes. High ROR1 associated with a worse EFS in HR + HER2- patients with high post-treatment residual cancer burden (RCB-II/III) (HR 1.41, 95% CI = 1.11-1.80) but not in patients with minimal post-treatment disease (RCB-0/I) (HR 1.85, 95% CI = 0.74-4.61). High ROR2 associated with an increased risk of relapse in patients with HER2 + disease and RCB-0/I (HR 3.46, 95% CI = 1.33-9.020) but not RCB-II/III (HR 1.07, 95% CI = 0.69-1.64). CONCLUSION High ROR1 or high ROR2 distinctly identified subsets of breast cancer patients with adverse outcomes. Further studies are warranted to determine if high ROR1 or high ROR2 may identify high-risk populations for studies of targeted therapies.
Collapse
Affiliation(s)
- Barbara A Parker
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Rebecca A Shatsky
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard B Schwab
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anne M Wallace
- Department of Surgery and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gillian L Hirst
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura J Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Emanuela M Ghia
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Christina Yau
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Thomas J Kipps
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Chu Y, Gardenswartz A, Diorio C, Marks LJ, Lowe E, Teachey DT, Cairo MS. Cellular and humoral immunotherapy in children, adolescents and young adults with non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101442. [PMID: 36907635 DOI: 10.1016/j.beha.2023.101442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The prognosis is dismal (2-year overall survival less than 25%) for childhood, adolescent, and young adult (CAYA) with relapsed and/or refractory (R/R) non-Hodgkin lymphoma (NHL). Novel targeted therapies are desperately needed for this poor-risk population. CD19, CD20, CD22, CD79a, CD38, CD30, LMP1 and LMP2 are attractive targets for immunotherapy in CAYA patients with R/R NHL. Novel anti-CD20 monoclonal antibodies, anti-CD38 monoclonal antibody, antibody drug conjugates and T and natural killer (NK)-cell bispecific and trispecific engagers are being investigated in the R/R setting and are changing the landscape of NHL therapy. A variety of cellular immunotherapies such as viral activated cytotoxic T-lymphocyte, chimeric antigen receptor (CAR) T-cells, NK and CAR NK-cells have been investigated and provide alternative options for CAYA patients with R/R NHL. Here, we provide an update and clinical practice guidance of utilizing these cellular and humoral immunotherapies in CAYA patients with R/R NHL.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Caroline Diorio
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lianna J Marks
- Division of Pediatric Hematology and Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric Lowe
- Division of Pediatric Hematology-Oncology, Children's Hospital of the Kings Daughter, Norfolk, VA, USA
| | - David T Teachey
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA; Department of Epidemiology and Community Health, New York Medical College, Valhalla, NY, USA; Department of Medicine, New York Medical College, Valhalla, NY, USA; Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Cell Biology, New York Medical College, Valhalla, NY, USA; Department of Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
31
|
Kröger K, Siats J, Kerkhoff A, Lenz G, Stelljes M, Eich HT, Reinartz G. Long-Term Survival of Patients with Mantle Cell Lymphoma after Total Body Irradiation, High-Dose Chemotherapy and Stem Cell Transplantation: A Monocenter Study. Cancers (Basel) 2023; 15:983. [PMID: 36765940 PMCID: PMC9913511 DOI: 10.3390/cancers15030983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
INTRODUCTION In patients with mantle cell lymphoma (MCL), long-term remissions can be achieved by stem cell transplantation (SCT). Different conditioning treatment protocols exist with or without total body irradiation (TBI). There are few data published on the role of TBI before autologous stem cell transplantation (autoSCT) or allogenic stem cell transplantation (alloSCT). We report on the long-term survival data of patients treated by TBI prior to autologous or allogenic SCT at our center. PATIENTS In a retrospective analysis, the data of patients treated at the University Hospital of Muenster from May 2004 to February 2015 were collected and evaluated. For the analysis, all data of patients who were histopathologically diagnosed with MCL and underwent TBI prior to stem cell transplantation (SCT) were evaluated. RESULTS A total of 22 patients (19 men and 3 women) were treated with a TBI-based conditioning prior to SCT. The median age at initial diagnosis was 57.5 years (38-65 years). Seventeen patients had Ann Arbor stage IV, two patients had Ann Arbor stage III, and three patients Ann Arbor stage II disease. AutoSCT was performed in 19 patients and alloSCT was performed in 3 patients. In 18 patients, autoSCT was applied as part of first-line therapy, and in one patient after relapse. Two patients received alloSCT after relapse of MCL, and one patient received alloSCT during first-line therapy after an inadequate treatment response. TBI was performed in 12 patients with 10 Gy and in 6 patients with 12 Gy, these patients subsequently received autoSCT. In the group of four patients who received TBI with four Gy, four patients subsequently received alloSCT and one patient received autoSCT. Median overall survival after autoSCT and previous TBI was 11.4 years (142 months). In total, 11 out of 19 patients treated with autoSCT lived longer than 6.8 years (82-202 months). After alloSCT and previous TBI, the median overall survival was 3.25 years (14-59 months). CONCLUSIONS A large proportion of patients with advanced MCL survived remarkably longer than 11.4 years after high-dose chemotherapy, TBI, and SCT. The present results of multimodal treatment support the published reports that TBI-based high-dose therapy followed by autoSCT is highly effective in this prognostically unfavorable disease situation.
Collapse
Affiliation(s)
- Kai Kröger
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer Campus 1, Building 1A, 48419 Muenster, Germany
| | - Jan Siats
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer Campus 1, Building 1A, 48419 Muenster, Germany
| | - Andrea Kerkhoff
- Bone Marrow Transplantation Unit, Department of Hematology and Oncology, University Hospital of Muenster, Albert-Schweitzer Campus 1, Building 1A, 48419 Muenster, Germany
| | - Georg Lenz
- Bone Marrow Transplantation Unit, Department of Hematology and Oncology, University Hospital of Muenster, Albert-Schweitzer Campus 1, Building 1A, 48419 Muenster, Germany
| | - Matthias Stelljes
- Bone Marrow Transplantation Unit, Department of Hematology and Oncology, University Hospital of Muenster, Albert-Schweitzer Campus 1, Building 1A, 48419 Muenster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer Campus 1, Building 1A, 48419 Muenster, Germany
| | - Gabriele Reinartz
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer Campus 1, Building 1A, 48419 Muenster, Germany
| |
Collapse
|
32
|
Lew TE, Minson A, Dickinson M, Handunnetti SM, Blombery P, Khot A, Anderson MA, Ritchie D, Tam CS, Seymour JF. Treatment approaches for patients with TP53-mutated mantle cell lymphoma. Lancet Haematol 2023; 10:e142-e154. [PMID: 36725119 DOI: 10.1016/s2352-3026(22)00355-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 02/01/2023]
Abstract
Mantle cell lymphoma is an uncommon subtype of lymphoma characterised by clinical and biological heterogeneity. Although most patients with mantle cell lymphoma have durable responses after chemoimmunotherapy, there is a need to prospectively identify high-risk subsets of patients for whom disease control with standard chemotherapy will be short lived. Among the available prognostic factors, TP53 mutations are uniquely informative owing to their strong association with early disease progression and death among patients receiving conventional chemoimmunotherapy, with the highest negative prognostic value compared with other established risk indicators, including the mantle cell lymphoma international prognostic index, histological features, elevated Ki-67, and other genetic lesions. The poor outcomes for patients with TP53-mutated mantle cell lymphoma receiving chemoimmunotherapy and second-line Bruton tyrosine kinase inhibitors represent an urgent need for alternative approaches. In this Review, we synthesise the available data to inform the management of this high-risk subset of patients and present a treatment strategy prioritising clinical trials and early use of cellular therapies.
Collapse
Affiliation(s)
- Thomas E Lew
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia; Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Adrian Minson
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sasanka M Handunnetti
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Piers Blombery
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Amit Khot
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia; Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - David Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Constantine S Tam
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, The Alfred Hospital, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - John F Seymour
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Smyth E, Eyre TA, Cheah CY. Emerging Therapies for the Management of Richter Transformation. J Clin Oncol 2023; 41:395-409. [PMID: 36130148 DOI: 10.1200/jco.22.01028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Richter transformation (RT) refers to the development of an aggressive lymphoma in patients with underlying chronic lymphocytic leukemia/small lymphocytic lymphoma. Aside from a small subgroup of patients with clonally unrelated and previously untreated chronic lymphocytic leukemia, the disease responds poorly to standard therapies and prognosis is dismal. Recent developments in the understanding of the biology of RT and the advent of several targeted agents may result in improved outcomes for these patients. The purpose of this review is to analyze recent data on the pathogenesis and treatment of RT. We reviewed studies addressing the pathophysiology of RT and analyzed the data for frontline chemoimmunotherapy and emerging targeted therapies likely to play a significant role in the future management of RT. Several biologic and clinical factors may help identify those who are unlikely to respond to conventional chemoimmunotherapy; where possible, these patients should be managed with a novel approach. Emerging therapies for the management of RT include chimeric antigen receptor T-cell therapy, noncovalent Bruton tyrosine kinase inhibitors, and T-cell-engaging bispecific antibodies. The use of less toxic and more effective targeted therapies may result in improved outcomes. Larger, prospective clinical trials are required to confirm efficacy and safety of novel agents for the management of RT, particularly when used in combination with other targeted therapies and in addition to chemoimmunotherapy regimens.
Collapse
Affiliation(s)
- Elizabeth Smyth
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Toby A Eyre
- Haematology and Cancer Centre, Oxford University Hospitals NHS Foundation Trust Oxford, Oxford, United Kingdom
| | - Chan Y Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
34
|
Barreca M, Lang N, Tarantelli C, Spriano F, Barraja P, Bertoni F. Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:763-794. [PMID: 36654819 PMCID: PMC9834635 DOI: 10.37349/etat.2022.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/28/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of a wide range of malignant conditions, both as monotherapy and in combination with chemotherapy, including for lymphoma patients. Over 100 ADCs are under preclinical and clinical investigation worldwide. This paper it provides an overview of approved and promising ADCs in clinical development for the treatment of lymphoma. Each component of the ADC design, their mechanism of action, and the highlights of their clinical development progress are discussed.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Noémie Lang
- Division of Oncology, Department of Oncology, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
35
|
Zana A, Galbiati A, Gilardoni E, Bocci M, Millul J, Sturm T, Stucchi R, Elsayed A, Nadal L, Cirillo M, Roll W, Stegger L, Asmus I, Backhaus P, Schäfers M, Neri D, Cazzamalli S. Fibroblast Activation Protein Triggers Release of Drug Payload from Non-internalizing Small Molecule Drug Conjugates in Solid Tumors. Clin Cancer Res 2022; 28:5440-5454. [PMID: 36215129 DOI: 10.1158/1078-0432.ccr-22-1788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Small molecule drug conjugates (SMDC) are modular anticancer prodrugs that include a tumor-targeting small organic ligand, a cleavable linker, and a potent cytotoxic agent. Most of the SMDC products that have been developed for clinical applications target internalizing tumor-associated antigens on the surface of tumor cells. We have recently described a novel non-internalizing small organic ligand (named OncoFAP) of fibroblast activation protein (FAP), a tumor-associated antigen highly expressed in the stroma of most solid human malignancies. EXPERIMENTAL DESIGN In this article, we describe a new series of OncoFAP-Drug derivatives based on monomethyl auristatin E (MMAE; a potent cytotoxic tubulin poison) and dipeptide linkers that are selectively cleaved by FAP in the tumor microenvironment. RESULTS The tumor-targeting potential of OncoFAP was confirmed in patients with cancer using nuclear medicine procedures. We used mass spectrometry methodologies to quantify the amount of prodrug delivered to tumors and normal organs, as well as the efficiency of the drug release process. Linkers previously exploited for anticancer drug conjugates were used as benchmark. We identified OncoFAP-Gly-Pro-MMAE as the best performing SMDC, which has now been prioritized for further clinical development. OncoFAP-Gly-Pro-MMAE selectively delivered more than 10% injected dose per gram of MMAE to FAP-positive tumors, with a tumor-to-kidney ratio of 16:1 at 24 hours post-injection. CONCLUSIONS The FAP-specific drug conjugates described in this article promise to be efficacious for the targeting of human malignancies. The extracellular release of potent anticancer payloads mediates durable complete remission in difficult-to-treat animal models of cancer.
Collapse
Affiliation(s)
- Aureliano Zana
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Andrea Galbiati
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | | | - Matilde Bocci
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Jacopo Millul
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Theo Sturm
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | | | - Abdullah Elsayed
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Lisa Nadal
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Martina Cirillo
- Department of Chemistry "G. Ciamician," University of Bologna, Bologna, Italy
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Inga Asmus
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Philipp Backhaus
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Dario Neri
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zürich, Switzerland.,Philogen S.p.A., Siena, Italy
| | | |
Collapse
|
36
|
Vodicka P, Klener P, Trneny M. Diffuse Large B-Cell Lymphoma (DLBCL): Early Patient Management and Emerging Treatment Options. Onco Targets Ther 2022; 15:1481-1501. [PMID: 36510607 PMCID: PMC9739046 DOI: 10.2147/ott.s326632] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents a curable disease with a 60-70% chance of cure with current R-CHOP chemoimmunotherapy. However, 30-40% of patients are refractory or relapsing. Many attempts failed to improve the outcome of DLBCL patients, including the intensification of R-CHOP regimen, consolidation, or maintenance therapy since the introduction of R-CHOP in 2000. Better understanding of both molecular biology of lymphoma cells and the tumor microenvironment raised the hope for future improvement of DLBCL patients' survival. Novel molecular findings have initiated clinical trials exploring targeted therapy based on driver genetic alterations with an intent to improve survival of high-risk subsets of patients. But the preliminary results remain ambiguous. The approach "agnostic" to specific molecular alterations of lymphoma cell includes antibody-drug conjugates (especially polatuzumab vedotin), immunotherapy comprising different antibodies with immunomodulatory effect (tafasitamab, lenalidomide), and T-cell engaging therapy (bispecific antibodies, early use of CAR T-cell). This approach could increase the cure rates and change the current therapeutic paradigm. However, better prognostic stratification, smarter designs of clinical trials, modification of endpoints including the use of ctDNA are needed. This review covers the complexity of DLBCL management.
Collapse
Affiliation(s)
- Prokop Vodicka
- First Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Klener
- First Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
37
|
Hassannia H, Amiri MM, Ghaedi M, Sharifian RA, Golsaz-Shirazi F, Jeddi-Tehrani M, Shokri F. Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model. Cancers (Basel) 2022; 14:5827. [PMID: 36497309 PMCID: PMC9738141 DOI: 10.3390/cancers14235827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a new tumor associated antigen (TAA) which is overexpressed in several hematopoietic and solid malignancies. The present study aimed to produce and evaluate different fusion proteins of mouse ROR1 (mROR1) to enhance immunogenicity and protective efficacy of ROR1. Four ROR1 fusion proteins composed of extracellular region of mROR1, immunogenic fragments of TT as well as Fc region of mouse IgG2a were produced and employed to immunize Balb/C mice. Humoral and cellular immune responses and anti-tumor effects of these fusion proteins were evaluated using two different syngeneic murine ROR1+ tumor models. ROR1-specific antibodies were induced in all groups of mice. The levels of IFN-γ, IL-17 and IL-22 cytokines in culture supernatants of stimulated splenocytes were increased in all groups of immunized mice, particularly mice immunized with TT-mROR1-Fc fusion proteins. The frequency of ROR1-specific CTLs was higher in mice immunized with TT-mROR1-Fc fusion proteins. Finally, results of tumor challenge in immunized mice showed that immunization with TT-mROR1-Fc fusion proteins completely inhibited ROR1+ tumor cells growth in two different syngeneic tumor models until day 120 post tumor challenge. Our preclinical findings, for the first time, showed that our fusion proteins could be considered as a potential candidate vaccine for active immunotherapy of ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari P.O. Box 48157-33971, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mojgan Ghaedi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Ramezan-Ali Sharifian
- Department of Hematology and Oncology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 14197-33141, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran P.O. Box 19839-69412, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| |
Collapse
|
38
|
Abstract
Since its initial identification in 1992 as a possible class 1 cell-surface receptor without a known parent ligand, receptor tyrosine kinase-like orphan receptor 1 (ROR1) has stimulated research, which has made apparent its significance in embryonic development and cancer. Chronic lymphocytic leukemia (CLL) was the first malignancy found to have distinctive expression of ROR1, which can help distinguish leukemia cells from most noncancer cells. Aside from its potential utility as a diagnostic marker or target for therapy, ROR1 also factors in the pathophysiology of CLL. This review is a report of the studies that have elucidated the expression, biology, and evolving strategies for targeting ROR1 that hold promise for improving the therapy of patients with CLL or other ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
39
|
Kumar A, Eyre TA, Lewis KL, Thompson MC, Cheah CY. New Directions for Mantle Cell Lymphoma in 2022. Am Soc Clin Oncol Educ Book 2022; 42:1-15. [PMID: 35561299 DOI: 10.1200/edbk_349509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mantle cell lymphoma is a rare B-cell non-Hodgkin lymphoma that is clinically and biologically heterogeneous. Risk stratification at the time of diagnosis is critical. One of the most powerful prognostic indices is the Mantle Cell Lymphoma International Prognostic Index-Combined, which integrates an estimate of proliferation (Ki67 index) with the standard Mantle Cell Lymphoma International Prognostic Index clinical factors. In addition, the presence of TP53 mutation is associated with suboptimal response to intensive chemoimmunotherapy and particularly dismal survival outcomes. Given their excellent activity in the relapsed/refractory setting, increasingly, biologically targeted therapeutics-such as covalent Bruton tyrosine kinase inhibitors, lenalidomide, and venetoclax-are being incorporated into "chemotherapy-free" regimens and in combination with established chemoimmunotherapy backbones for treatment-naïve mantle cell lymphoma. In addition, risk-adapted treatment programs are increasingly being studied. These programs tailor treatment according to baseline prognostic factors (e.g., presence of TP53 mutation) and may incorporate biomarkers of response such as minimal residual disease assessment. Although still investigational, these studies present an opportunity to move beyond the biology-agnostic, historical fitness-based treatment selection paradigm and toward a more personalized, tailored treatment approach in mantle cell lymphoma. After Bruton tyrosine kinase inhibitor failure, many promising standard or investigational therapies exist, including CAR T-cell therapy (including brexucabtagene autoleucel and lisocabtagene maraleucel), bispecific antibody therapy targeting CD20-CD3, zilovertamab vedotin (an antibody-drug conjugate that targets ROR1), and the noncovalent Bruton tyrosine kinase inhibitor pirtobrutinib. These new therapies show promising efficacy, even among high-risk patients, and will likely translate to improvements in survival outcomes for patients with progressive mantle cell lymphoma following treatment with a Bruton tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Anita Kumar
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Toby A Eyre
- Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Katharine L Lewis
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Australia.,Medical School, University of Western Australia, Perth, Australia
| | | | - Chan Y Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Australia.,Medical School, University of Western Australia, Perth, Australia
| |
Collapse
|
40
|
Burkart M, Karmali R. Relapsed/Refractory Mantle Cell Lymphoma: Beyond BTK Inhibitors. J Pers Med 2022; 12:376. [PMID: 35330376 PMCID: PMC8954159 DOI: 10.3390/jpm12030376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a rare mature B-cell non-Hodgkin lymphoma (B-NHL) with historically poor outcomes. Virtually all patients will eventually experience refractory or relapsed (R/R) disease, with a virulent course of resistance and serial relapses, making treatment challenging. The available therapies for R/R MCL are not curative with conventional therapy, their goal being to palliate and prolong survival. A variety of agents approved for R/R MCL, including Bruton's tyrosine kinase inhibitors (BTKi), changed the treatment landscape of R/R MCL. In the pre-BTKi era, the median progression-free survival (PFS) in R/R disease was 4-9 months. With the introduction of ibrutinib, the median PFS improved to 13-14.6 months. Despite these impressive results, the duration of response is limited, and resistance to BTKi inevitably develops in a subset of patients. Outcomes after progression on BTKi are extremely poor, with a median overall survival (OS) of 6 to 10 months. Certain therapies, such as chimeric antigen receptor (CAR) T cells, have shown promising results after BTKi failure. The preferred combination and sequencing of therapies beyond BTKi remain unestablished and are currently being investigated. In this review, we describe the current evidence for the available treatment of R/R MCL after progression on BTKi.
Collapse
Affiliation(s)
- Madelyn Burkart
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
| | - Reem Karmali
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
41
|
Schuster SJ. ROR1 for Lymphoid Cancers. NEJM EVIDENCE 2022; 1:EVIDe2100014. [PMID: 38319244 DOI: 10.1056/evide2100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
ROR1 for Lymphoid Cancers This editorial discusses the first-in-human, phase 1 clinical trial of a novel antibody-drug conjugate, zilovertamab vedotin, in patients with relapsed or refractory mature B-cell malignancies.
Collapse
Affiliation(s)
- Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia
| |
Collapse
|
42
|
Sawalha Y. Relapsed/Refractory Diffuse Large B-Cell Lymphoma: A Look at the Approved and Emerging Therapies. J Pers Med 2021; 11:1345. [PMID: 34945817 PMCID: PMC8708171 DOI: 10.3390/jpm11121345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 40% of patients with diffuse large B cell lymphoma (DLBCL) do not respond or develop relapsed disease after first-line chemoimmunotherapy. A minority of these patients can be cured with autologous hematopoietic stem cell transplantation (AHCT). Although chimeric antigen receptor (CAR) T cells have transformed the treatment paradigm of relapsed/refractory DLBCL, only 30-40% of patients achieve durable remissions. In addition, many patients with relapsed/refractory DLBCL are ineligible to receive treatment with CAR T cells due to comorbidities or logistical limitations. Since 2019, the following four non-CAR T-cell treatments have been approved in relapsed/refractory DLBCL: polatuzumab in combination with bendamustine and rituximab, selinexor, tafasitamab plus lenalidomide, and loncastuximab. In this article, I review the data behind these four approvals and discuss important considerations on their use in clinical practice. I also review emerging therapies that have shown promising early results in relapsed/refractory DLBCL including the bispecific antibodies, antibody-drug conjugates, Bruton tyrosine kinase inhibitors, BCL2 inhibitors, immune checkpoint inhibitors, and epigenetic modifiers.
Collapse
Affiliation(s)
- Yazeed Sawalha
- Department of Internal Medicine, Division of Hematology, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|