1
|
Atkin SL, Butler AE, Jamialahmadi T, Sahebkar A. PCSK7 levels in women with and without PCOS. J Clin Transl Endocrinol 2024; 38:100376. [PMID: 39691660 PMCID: PMC11650127 DOI: 10.1016/j.jcte.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Affiliation(s)
- Stephen L. Atkin
- Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | | | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Moon SH, Chung I, Yoon NH, Jin J, Kweon HY, Yoon WK, Seidah NG, Oh GT. Targeting proprotein convertase subtilisin/kexin type 7 in macrophages as a therapeutic strategy to mitigate myocardial infarction-induced inflammation. BMB Rep 2024; 57:553-558. [PMID: 39622633 PMCID: PMC11693601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Myocardial infarction (MI), a major form of coronary artery disease (CAD), triggers a severe inflammatory response in the heart, resulting in increased cell death and adverse ventricular remodeling. Despite treatment advancements, MI remains a significant risk factor for heart failure, underscoring the necessity for a more in-depth exploration of immune cell mechanisms. Proprotein convertase subtilisin/kexin type 7 (PCSK7), expressed in various tissues and immune cells, has been implicated in cardiovascular disease, yet its specific role in cardiac immune cells remains poorly understood. This study aimed to elucidate the role of PCSK7 in MI-related inflammation. Our findings indicate that PCSK7 deficiency reduces circulating cholesterol levels, potentially mitigating infarct injury and improving cardiac function by modulating immune cells. Additionally, PCSK7 promotes macrophage activation and lipid uptake at the ischemic site, intensifying the pathology. We also observed that PCSK7 activates the TNF-α/JNK signaling pathway in macrophages intracellularly, amplifying the inflammatory response. Therefore, targeting PCSK7 in macrophages could help mitigate post-MI inflammation, alleviate disease severity, and offer novel therapeutic strategies for patients with CAD. [BMB Reports 2024; 57(12): 553-558].
Collapse
Affiliation(s)
- Shin Hye Moon
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Inyoung Chung
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Na Hyeon Yoon
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Won Kee Yoon
- Korea Research Institute of Bioscience & Biotechnology, Laboratory Animal Resource Center, Cheongju 28116, Korea, Seoul 03760, Korea
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada, Seoul 03760, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
- Imvastech Inc., Seoul 03760, Korea
| |
Collapse
|
3
|
Su W, Ahmad I, Wu Y, Tang L, Khan I, Ye B, Liang J, Li S, Zheng YH. Furin Egress from the TGN is Regulated by Membrane-Associated RING-CH Finger (MARCHF) Proteins and Ubiquitin-Specific Protease 32 (USP32) via Nondegradable K33-Polyubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403732. [PMID: 39031635 PMCID: PMC11425283 DOI: 10.1002/advs.202403732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.
Collapse
Affiliation(s)
- Wenqiang Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Iqbal Ahmad
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - You Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ilyas Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bowei Ye
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Sunan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Hui Zheng
- Department of Microbiology and Immunology, The University of Illinois Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
4
|
Sharma A, Sharma C, Sharma L, Wal P, Mishra P, Sachdeva N, Yadav S, Vargas De-La Cruz C, Arora S, Subramaniyan V, Rawat R, Behl T, Nandave M. Targeting the vivid facets of apolipoproteins as a cardiovascular risk factor in rheumatoid arthritis. Can J Physiol Pharmacol 2024; 102:305-317. [PMID: 38334084 DOI: 10.1139/cjpp-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Preeti Mishra
- Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, India
| | - Nitin Sachdeva
- Department of Anesthesia, Mediclinic Aljowhara Hospital, Al Ain, United Arab Emirates
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Celia Vargas De-La Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Sandeep Arora
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Ravi Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Delhi, India
| |
Collapse
|
5
|
Ruscica M, Macchi C, Gandini S, Macis D, Guerrieri-Gonzaga A, Aristarco V, Serrano D, Lazzeroni M, Rizzuto AS, Gaeta A, Corsini A, Gulisano M, Johansson H, Bonanni B. Prognostic Value of PCSK9 Levels in Premenopausal Women at Risk of Breast Cancer-Evidence from a 17-Year Follow-Up Study. Cancers (Basel) 2024; 16:1411. [PMID: 38611089 PMCID: PMC11011028 DOI: 10.3390/cancers16071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND AND AIM The involvement of cholesterol in cancer development remains a topic of debate, and its association with breast cancer has yet to be consistently demonstrated. Considering that circulating cholesterol levels depend on several concomitant processes, we tested the liability of plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of cholesterol levels, as a prognostic biomarker in the context of breast neoplastic events. METHODS Within a prospective randomized breast cancer prevention trial we measured baseline plasma levels of PCSK9. A total of 235 at-risk premenopausal women were randomized and followed up for 17 years. Participants enrolled in this placebo-controlled, phase II, double-blind trial were randomly assigned to receive either tamoxifen 5 mg/d or fenretinide 200 mg/d, both agents, or placebo for 2 years. The associations with breast cancer events were evaluated through competing risk and Cox regression survival models, adjusted for randomization strata (5-year Gail risk ≥ 1.3% vs. intraepithelial neoplasia or small invasive breast cancer of favorable prognosis), age, and treatment allocation. PCSK9 associations with biomarkers linked to breast cancer risk were assessed on blood samples collected at baseline. RESULTS The plasmatic PCSK9 median and interquartile range were 207 ng/mL and 170-252 ng/mL, respectively. Over a median follow-up period of 17 years and 89 breast neoplastic events, disease-free survival curves showed a hazard ratio of 1.002 (95% CI: 0.999-1.005, p = 0.22) for women with PCSK9 plasma levels ≥ 207 ng/mL compared to women with levels below 207 ng/mL. No differences between randomization strata were observed. We found a negative correlation between PCSK9 and estradiol (r = -0.305), maintained even after partial adjustment for BMI and age (r = -0.287). Cholesterol (r = 0.266), LDL-C (r = 0.207), non-HDL-C (r = 0.246), remnant cholesterol (r = 0.233), and triglycerides (r = 0.233) also correlated with PCSK9. CONCLUSIONS In premenopausal women at risk of early-stage breast cancer, PCSK9 did not appear to have a role as a prognostic biomarker of breast neoplastic events. Larger studies are warranted investigating patients in different settings.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.G.); (A.G.)
| | - Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | | | - Aurora Gaeta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.G.); (A.G.)
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, 20126 Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
| | | | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| |
Collapse
|
6
|
Wichaiyo S, Koonyosying P, Morales NP. Functional Roles of Furin in Cardio-Cerebrovascular Diseases. ACS Pharmacol Transl Sci 2024; 7:570-585. [PMID: 38481703 PMCID: PMC10928904 DOI: 10.1021/acsptsci.3c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2025]
Abstract
Furin plays a major role in post-translational modification of several biomolecules, including endogenous hormones, growth factors, and cytokines. Recent reports have demonstrated the association of furin and cardio-cerebrovascular diseases (CVDs) in humans. This review describes the possible pathogenic contribution of furin and its substrates in CVDs. Early-stage hypertension and diabetes mellitus show a negative correlation with furin. A reduction in furin might promote hypertension by decreasing maturation of B-type natriuretic peptide (BNP) or by decreasing shedding of membrane (pro)renin receptor (PRR), which facilitates activation of the renin-angiotensin-aldosterone system (RAAS). In diabetes, furin downregulation potentially leads to insulin resistance by reducing maturation of the insulin receptor. In contrast, the progression of other CVDs is associated with an increase in furin, including dyslipidemia, atherosclerosis, ischemic stroke, myocardial infarction (MI), and heart failure. Upregulation of furin might promote maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which cleaves low-density lipoprotein receptor (LDLR), contributing to dyslipidemia. In atherosclerosis, elevated levels of furin possibly enhance maturation of several substrates related to inflammation, cell proliferation, and extracellular matrix (ECM) deposition and degradation. Neuronal cell death following ischemic stroke has also been shown to involve furin substrates (e.g., MT1-MMP, hepcidin, and hemojuvelin). Moreover, furin and its substrates, including tumor necrosis factor-α (TNF-α), endothelin-1 (ET-1), and transforming growth factor-β1 (TGF-β1), are capable of mediating inflammation, hypertrophy, and fibrosis in MI and heart failure. Taken together, this evidence provides functional significance of furin in CVDs and might suggest a potential novel therapeutic modality for the management of CVDs.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pimpisid Koonyosying
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | | |
Collapse
|
7
|
Ramirez-Suarez NJ, Belalcazar HM, Rahman M, Trivedi M, Tang LTH, Bülow HE. Convertase-dependent regulation of membrane-tethered and secreted ligands tunes dendrite adhesion. Development 2023; 150:dev201208. [PMID: 37721334 PMCID: PMC10546877 DOI: 10.1242/dev.201208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
During neural development, cellular adhesion is crucial for interactions among and between neurons and surrounding tissues. This function is mediated by conserved cell adhesion molecules, which are tightly regulated to allow for coordinated neuronal outgrowth. Here, we show that the proprotein convertase KPC-1 (homolog of mammalian furin) regulates the Menorin adhesion complex during development of PVD dendritic arbors in Caenorhabditis elegans. We found a finely regulated antagonistic balance between PVD-expressed KPC-1 and the epidermally expressed putative cell adhesion molecule MNR-1 (Menorin). Genetically, partial loss of mnr-1 suppressed partial loss of kpc-1, and both loss of kpc-1 and transgenic overexpression of mnr-1 resulted in indistinguishable phenotypes in PVD dendrites. This balance regulated cell-surface localization of the DMA-1 leucine-rich transmembrane receptor in PVD neurons. Lastly, kpc-1 mutants showed increased amounts of MNR-1 and decreased amounts of muscle-derived LECT-2 (Chondromodulin II), which is also part of the Menorin adhesion complex. These observations suggest that KPC-1 in PVD neurons directly or indirectly controls the abundance of proteins of the Menorin adhesion complex from adjacent tissues, thereby providing negative feedback from the dendrite to the instructive cues of surrounding tissues.
Collapse
Affiliation(s)
| | - Helen M. Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Meera Trivedi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leo T. H. Tang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Mohammad AH, Couture F, Gamache I, Chen O, El-Assaad W, Abdel-Malak N, Kwiatkowska A, Muller W, Day R, Teodoro JG. Cleavage of the V-ATPase associated prorenin receptor is mediated by PACE4 and is essential for growth of prostate cancer cells. PLoS One 2023; 18:e0288622. [PMID: 37463144 PMCID: PMC10353799 DOI: 10.1371/journal.pone.0288622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) mutation is common in prostate cancer during progression to metastatic and castration resistant forms. We previously reported that loss of PTEN function in prostate cancer leads to increased expression and secretion of the Prorenin Receptor (PRR) and its soluble processed form, the soluble Prorenin Receptor (sPRR). PRR is an essential factor required for proper assembly and activity of the vacuolar-ATPase (V-ATPase). The V-ATPase is a rotary proton pump required for the acidification of intracellular vesicles including endosomes and lysosomes. Acidic vesicles are involved in a wide range of cancer related pathways such as receptor mediated endocytosis, autophagy, and cell signalling. Full-length PRR is cleaved at a conserved consensus motif (R-X-X-R↓) by a member of the proprotein convertase family to generate sPRR, and a smaller C-terminal fragment, designated M8.9. It is unclear which convertase processes PRR in prostate cancer cells and how processing affects V-ATPase activity. In the current study we show that PRR is predominantly cleaved by PACE4, a proprotein convertase that has been previously implicated in prostate cancer. We further demonstrate that PTEN controls PRR processing in mouse tissue and controls PACE4 expression in prostate cancer cells. Furthermore, we demonstrate that PACE4 cleavage of PRR is needed for efficient V-ATPase activity and prostate cancer cell growth. Overall, our data highlight the importance of PACE4-mediated PRR processing in normal physiology and prostate cancer tumorigenesis.
Collapse
Affiliation(s)
- Amro H Mohammad
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Frédéric Couture
- Department of Surgery/Urology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Isabelle Gamache
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Owen Chen
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Wissal El-Assaad
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Nelly Abdel-Malak
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Anna Kwiatkowska
- Department of Surgery/Urology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - William Muller
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Robert Day
- PhenoSwitch Bioscience, Sherbrooke, Québec, Canada
| | - Jose G Teodoro
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Gianazza E, Macchi C, Banfi C, Ruscica M. Proteomics and Lipidomics to unveil the contribution of PCSK9 beyond cholesterol lowering: a narrative review. Front Cardiovasc Med 2023; 10:1191303. [PMID: 37378405 PMCID: PMC10291627 DOI: 10.3389/fcvm.2023.1191303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of the low-density lipoprotein receptor (LDLR), can play a direct role in atheroma development. Although advances in the understandings of genetic PCSK9 polymorphisms have enabled to reveal the role of PCSK9 in the complex pathophysiology of cardiovascular diseases (CVDs), increasing lines of evidence support non-cholesterol-related processes mediated by PCSK9. Owing to major improvements in mass spectrometry-based technologies, multimarker proteomic and lipidomic panels hold the promise to identify novel lipids and proteins potentially related to PCSK9. Within this context, this narrative review aims to provide an overview of the most significant proteomics and lipidomics studies related to PCSK9 effects beyond cholesterol lowering. These approaches have enabled to unveil non-common targets of PCSK9, potentially leading to the development of novel statistical models for CVD risk prediction. Finally, in the era of precision medicine, we have reported the impact of PCSK9 on extracellular vesicles (EVs) composition, an effect that could contribute to an increased prothrombotic status in CVD patients. The possibility to modulate EVs release and cargo could help counteract the development and progression of the atherosclerotic process.
Collapse
Affiliation(s)
- Erica Gianazza
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Hor L, Pilapitiya A, McKenna JA, Panjikar S, Anderson MA, Desvaux M, Paxman JJ, Heras B. Crystal structure of a subtilisin-like autotransporter passenger domain reveals insights into its cytotoxic function. Nat Commun 2023; 14:1163. [PMID: 36859523 PMCID: PMC9977779 DOI: 10.1038/s41467-023-36719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Autotransporters (ATs) are a large family of bacterial secreted and outer membrane proteins that encompass a wide range of enzymatic activities frequently associated with pathogenic phenotypes. We present the structural and functional characterisation of a subtilase autotransporter, Ssp, from the opportunistic pathogen Serratia marcescens. Although the structures of subtilases have been well documented, this subtilisin-like protein is associated with a 248 residue β-helix and itself includes three finger-like protrusions around its active site involved in substrate interactions. We further reveal that the activity of the subtilase AT is required for entry into epithelial cells as well as causing cellular toxicity. The Ssp structure not only provides details about the subtilase ATs, but also reveals a common framework and function to more distantly related ATs. As such these findings also represent a significant step forward toward understanding the molecular mechanisms underlying the functional divergence in the large AT superfamily.
Collapse
Affiliation(s)
- Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia
| | - James A McKenna
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia
| | - Mickaël Desvaux
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Jason J Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia.
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
11
|
Permethrin as a Potential Furin Inhibitor through a Novel Non-Competitive Allosteric Inhibition. Molecules 2023; 28:molecules28041883. [PMID: 36838867 PMCID: PMC9959265 DOI: 10.3390/molecules28041883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Furin is a potential target protein associated with numerous diseases; especially closely related to tumors and multiple viral infections including SARS-CoV-2. Most of the existing efficient furin inhibitors adopt a substrate analogous structure, and other types of small molecule inhibitors need to be discovered urgently. In this study, a high-throughput screening combining virtual and physical screening of natural product libraries was performed, coupled with experimental validation and preliminary mechanistic assays at the molecular level, cellular level, and molecular simulation. A novel furin inhibitor, permethrin, which is a derivative from pyrethrin I generated by Pyrethrum cinerariifolium Trev. was identified, and this study confirmed that it binds to a novel allosteric pocket of furin through non-competitive inhibition. It exhibits a very favorable protease-selective inhibition and good cellular activity and specificity. In summary, permethrin shows a new parent nucleus with a new mode of inhibition. It could be used as a highly promising lead compound against furin for targeting related tumors and various resistant viral infections, including SARS-CoV-2.
Collapse
|
12
|
Pharmacometabolomics for the Study of Lipid-Lowering Therapies: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24043291. [PMID: 36834701 PMCID: PMC9960554 DOI: 10.3390/ijms24043291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Lipid-lowering therapies are widely used to prevent the development of atherosclerotic cardiovascular disease (ASCVD) and related mortality worldwide. "Omics" technologies have been successfully applied in recent decades to investigate the mechanisms of action of these drugs, their pleiotropic effects, and their side effects, aiming to identify novel targets for future personalized medicine with an improvement of the efficacy and safety associated with the treatment. Pharmacometabolomics is a branch of metabolomics that is focused on the study of drug effects on metabolic pathways that are implicated in the variation of response to the treatment considering also the influences from a specific disease, environment, and concomitant pharmacological therapies. In this review, we summarized the most significant metabolomic studies on the effects of lipid-lowering therapies, including the most commonly used statins and fibrates to novel drugs or nutraceutical approaches. The integration of pharmacometabolomics data with the information obtained from the other "omics" approaches could help in the comprehension of the biological mechanisms underlying the use of lipid-lowering drugs in view of defining a precision medicine to improve the efficacy and reduce the side effects associated with the treatment.
Collapse
|
13
|
Liu QR, Zhu M, Chen Q, Mustapic M, Kapogiannis D, Egan JM. Novel Hominid-Specific IAPP Isoforms: Potential Biomarkers of Early Alzheimer's Disease and Inhibitors of Amyloid Formation. Biomolecules 2023; 13:167. [PMID: 36671553 PMCID: PMC9856209 DOI: 10.3390/biom13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
(1) Background and aims: Amyloidosis due to aggregation of amyloid-β (Aβ42) is a key pathogenic event in Alzheimer's disease (AD), whereas aggregation of mature islet amyloid polypeptide (IAPP37) in human islets leads to β-cell dysfunction. The aim of this study is to uncover potential biomarkers that might additionally point to therapy for early AD patients. (2) Methods: We used bioinformatic approach to uncover novel IAPP isoforms and developed a quantitative selective reaction monitoring (SRM) proteomic assay to measure their peptide levels in human plasma and CSF from individuals with early AD and controls, as well as postmortem cerebrum of clinical confirmed AD and controls. We used Thioflavin T amyloid reporter assay to measure the IAPP isoform fibrillation propensity and anti-amyloid potential against aggregation of Aβ42 and IAPP37. (3) Results: We uncovered hominid-specific IAPP isoforms: hIAPPβ, which encodes an elongated propeptide, and hIAPPγ, which is processed to mature IAPP25 instead of IAPP37. We found that hIAPPβ was significantly reduced in the plasma of AD patients with the accuracy of 89%. We uncovered that IAPP25 and a GDNF derived DNSP11 were nonaggregating peptides that inhibited the aggregation of IAPP37 and Aβ42. (4) Conclusions: The novel peptides derived from hIAPP isoforms have potential to serve as blood-derived biomarkers for early AD and be developed as peptide based anti-amyloid medicine.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Laboratory of Clinical Investigation, NIA-NIH, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | | | | | | | | | - Josephine M. Egan
- Laboratory of Clinical Investigation, NIA-NIH, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Molecular subtypes of ALS are associated with differences in patient prognosis. Nat Commun 2023; 14:95. [PMID: 36609402 PMCID: PMC9822908 DOI: 10.1038/s41467-022-35494-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with poorly understood clinical heterogeneity, underscored by significant differences in patient age at onset, symptom progression, therapeutic response, disease duration, and comorbidity presentation. We perform a patient stratification analysis to better understand the variability in ALS pathology, utilizing postmortem frontal and motor cortex transcriptomes derived from 208 patients. Building on the emerging role of transposable element (TE) expression in ALS, we consider locus-specific TEs as distinct molecular features during stratification. Here, we identify three unique molecular subtypes in this ALS cohort, with significant differences in patient survival. These results suggest independent disease mechanisms drive some of the clinical heterogeneity in ALS.
Collapse
|
15
|
Mangoni AA, Sotgia S, Zinellu A, Carru C, Pintus G, Damiani G, Erre GL, Tommasi S. Methotrexate and cardiovascular prevention: an appraisal of the current evidence. Ther Adv Cardiovasc Dis 2023; 17:17539447231215213. [PMID: 38115784 PMCID: PMC10732001 DOI: 10.1177/17539447231215213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
New evidence continues to accumulate regarding a significant association between excessive inflammation and dysregulated immunity (local and systemic) and the risk of cardiovascular events in different patient cohorts. Whilst research has sought to identify novel atheroprotective therapies targeting inflammation and immunity, several marketed drugs for rheumatological conditions may serve a similar purpose. One such drug, methotrexate, has been used since 1948 for treating cancer and, more recently, for a wide range of dysimmune conditions. Over the last 30 years, epidemiological and experimental studies have shown that methotrexate is independently associated with a reduced risk of cardiovascular disease, particularly in rheumatological patients, and exerts several beneficial effects on vascular homeostasis and blood pressure control. This review article discusses the current challenges with managing cardiovascular risk and the new frontiers offered by drug discovery and drug repurposing targeting inflammation and immunity with a focus on methotrexate. Specifically, the article critically appraises the results of observational, cross-sectional and intervention studies investigating the effects of methotrexate on overall cardiovascular risk and individual risk factors. It also discusses the putative molecular mechanisms underpinning the atheroprotective effects of methotrexate and the practical advantages of using methotrexate in cardiovascular prevention, and highlights future research directions in this area.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Italian Centre of Precision Medicine and Chronic Inflammation, Milan, Italy
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
16
|
He H, Zhang S, Yang H, Xu P, Kutschick I, Pfeffer S, Britzen-Laurent N, Grützmann R, Fu D, Pilarsky C. Identification of Genes Associated with Liver Metastasis in Pancreatic Cancer Reveals PCSK6 as a Crucial Mediator. Cancers (Basel) 2022; 15:241. [PMID: 36612240 PMCID: PMC9818395 DOI: 10.3390/cancers15010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Liver metastasis occurs frequently in patients with pancreatic cancer. We analyzed the molecular profiling in liver metastatic lesions aiming to uncover novel genes responsible for tumor progression. Bioinformatics analysis was applied to identify genes directing liver metastasis. CRISPR/Cas9 technology was used to knock out the candidate gene. Proliferation assays, colony formation assays, cell cycle analysis, migration assays, wound healing assays, Immunofluorescence analysis, and the tumor xenograft model of intrasplenic injection were adopted to evaluate the effects of PCSK6 inactivation on cell growth, migration and liver metastasis. GSEA and Western blot were used to investigate the corresponding signaling pathway. PCSK6 was one of the obtained liver-metastasis-related genes in pancreatic cancer. PCSK6 inactivation inhibited cell growth and cell migration, due to G0/G1 cell cycle arrest and the remodeling of cell-cell junctions or the cell skeleton, respectively. PCSK6 inactivation led to fewer counts and lower outgrowth rates of liver metastatic niches in vivo. The Raf-MEK1/2-ERK1/2 axis was repressed by PCSK6 inactivation. Accordingly, we found PCSK6 inactivation could inhibit cell growth, cell migration, and liver metastasis, and explored the role of the Raf-MEK1/2-ERK1/2 axis in PCSK6 inactivation. PCSK6-targeted therapy might represent a novel approach for combatting liver metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Hang He
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Pengyan Xu
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
17
|
Mehranzadeh E, Crende O, Badiola I, Garcia-Gallastegi P. What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors? Biomedicines 2022; 10:biomedicines10123292. [PMID: 36552048 PMCID: PMC9776400 DOI: 10.3390/biomedicines10123292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Protein convertases (PCs) play a significant role in post-translational procedures by transforming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular homeostasis because they are involved in cell signaling. They have also been described in many diseases such as Alzheimer's and cancer. Cancer cells are secretory cells that send signals to the tumor microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most important components of the TME is the immune system of the tumor. In this review, we describe recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is implicated in the regulation of macrophage activity that contributes to the increased impairment of DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells. The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1 expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in tumor immune escape is a promising topic for further consideration.
Collapse
Affiliation(s)
- Elham Mehranzadeh
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Iker Badiola
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Nanokide Therapeutics SL, Ed. ZITEK, Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Correspondence:
| |
Collapse
|
18
|
Van Lam van T, Ivanova T, Lindberg I, Böttcher-Friebertshäuser E, Steinmetzer T, Hardes K. Design, synthesis, and characterization of novel fluorogenic substrates of the proprotein convertases furin, PC1/3, PC2, PC5/6, and PC7. Anal Biochem 2022; 655:114836. [PMID: 35964735 DOI: 10.1016/j.ab.2022.114836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Proprotein convertases (PCs) are involved in the pathogenesis of various diseases, making them promising drug targets. Most assays for PCs have been performed with few standard substrates, regardless of differences in cleavage efficiencies. Derived from studies on substrate-analogue inhibitors, 11 novel substrates were synthesized and characterized with five PCs. H-Arg-Arg-Tle-Lys-Arg-AMC is the most efficiently cleaved furin substrate based on its kcat/KM value. Due to its higher kcat value, acetyl-Arg-Arg-Tle-Arg-Arg-AMC was selected for further measurements to demonstrate the benefit of this improved substrate. Compared to our standard conditions, its use allowed a 10-fold reduction of the furin concentration, which enabled Ki value determinations of previously described tight-binding inhibitors under classical conditions. Under these circumstances, a slow-binding behavior was observed for the first time with inhibitor MI-1148. In addition to furin, four additional PCs were used to characterize these substrates. The most efficiently cleaved PC1/3 substrate was Ac-Arg-Arg-Arg-Tle-Lys-Arg-AMC. The highest kcat/KM values for PC2 and PC7 were found for the N-terminally unprotected analogue of this substrate, although other substrates possess higher kcat values. The highest efficiency for PC5/6A was observed for the substrate Ac-Arg-Arg-Tle-Lys-Arg-AMC. In summary, we have identified new substrates for furin, PC1/3, PC2, and PC7 suitable for improved enzyme-kinetic measurements.
Collapse
Affiliation(s)
- Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Teodora Ivanova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032, Marburg, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany.
| |
Collapse
|
19
|
The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the pathophysiology of psoriasis and systemic lupus erythematosus. Postepy Dermatol Alergol 2022; 39:645-650. [PMID: 36090718 PMCID: PMC9454343 DOI: 10.5114/ada.2022.118919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
Inflammation and atherogenic dyslipidaemia are often observed in skin diseases and represent an increased risk of cardiovascular disorders. Proprotein convertase subtilisin/kexin type 9 plays an important role in the regulation of serum low-density lipoprotein cholesterol levels. Its biological role, however, seems to go much beyond the regulation of cholesterol metabolism. The article presents potential pathophysiological links between inflammatory process and lipid disorders based on the example of psoriasis and systemic lupus erythematosus.
Collapse
|
20
|
PCSK9 Modulates Macrophage Polarization-Mediated Ventricular Remodeling after Myocardial Infarction. J Immunol Res 2022; 2022:7685796. [PMID: 35832650 PMCID: PMC9273409 DOI: 10.1155/2022/7685796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/08/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims An increasing number of high-risk patients with coronary heart disease (similar to acute myocardial infarction (AMI)) are using PCSK9 inhibitors. However, whether PCSK9 affects myocardial repair and the molecular mechanism of PCSK9 modulation of immune inflammation after AMI are not known. The present research investigated the role of PCSK9 in the immunomodulation of macrophages after AMI and provided evidence for the clinical application of PCSK9 inhibitors after AMI to improve cardiac repair. Methods and Results Wild-type C57BL6/J (WT) and PCSK9−/− mouse hearts were subjected to left anterior descending (LAD) coronary artery occlusion to establish an AMI model. Correlation analysis showed that higher PCSK9 expression indicated worse cardiac function after AMI, and PCSK9 knockout reduced infarct size, improved cardiac function, and attenuated inflammatory cell infiltration compared to WT mice. Notably, the curative effects of PCSK9 inhibition were abolished after the systemic depletion of macrophages using clodronate liposomes. PCSK9 showed a regulatory effect on macrophage polarization in vivo and in vitro. Our studies also revealed that activation of the TLR4/MyD88/NF-κB axis was a possible mechanism of PCSK9 regulation of macrophage polarization. Conclusion Our data suggested that PCSK9 modulated macrophage polarization-mediated ventricular remodeling after myocardial infarction.
Collapse
|
21
|
Lee SN, Yoon JH. The Role of Proprotein Convertases in Upper Airway Remodeling. Mol Cells 2022; 45:353-361. [PMID: 35611689 PMCID: PMC9200660 DOI: 10.14348/molcells.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial, heterogeneous disease characterized by persistent inflammation of the sinonasal mucosa and tissue remodeling, which can include basal/progenitor cell hyperplasia, goblet cell hyperplasia, squamous cell metaplasia, loss or dysfunction of ciliated cells, and increased matrix deposition. Repeated injuries can stimulate airway epithelial cells to produce inflammatory mediators that activate epithelial cells, immune cells, or the epithelial-mesenchymal trophic unit. This persistent inflammation can consequently induce aberrant tissue remodeling. However, the molecular mechanisms driving disease within the different molecular CRS subtypes remain inadequately characterized. Numerous secreted and cell surface proteins relevant to airway inflammation and remodeling are initially synthesized as inactive precursor proteins, including growth/differentiation factors and their associated receptors, enzymes, adhesion molecules, neuropeptides, and peptide hormones. Therefore, these precursor proteins require post-translational cleavage by proprotein convertases (PCs) to become fully functional. In this review, we summarize the roles of PCs in CRS-associated tissue remodeling and discuss the therapeutic potential of targeting PCs for CRS treatment.
Collapse
Affiliation(s)
- Sang-Nam Lee
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
22
|
Dahms SO, Schnapp G, Winter M, Büttner FH, Schlepütz M, Gnamm C, Pautsch A, Brandstetter H. Dichlorophenylpyridine-Based Molecules Inhibit Furin through an Induced-Fit Mechanism. ACS Chem Biol 2022; 17:816-821. [PMID: 35377598 PMCID: PMC9016704 DOI: 10.1021/acschembio.2c00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Inhibitors of the
proprotein convertase furin might serve as broad-spectrum
antiviral therapeutics. High cellular potency and antiviral activity
against acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have
been reported for (3,5-dichlorophenyl)pyridine-derived furin inhibitors.
Here we characterized the binding mechanism of this inhibitor class
using structural, biophysical, and biochemical methods. We established
a MALDI-TOF-MS-based furin activity assay, determined IC50 values, and solved X-ray structures of (3,5-dichlorophenyl)pyridine-derived
compounds in complex with furin. The inhibitors induced a substantial
conformational rearrangement of the active-site cleft by exposing
a central buried tryptophan residue. These changes formed an extended
hydrophobic surface patch where the 3,5-dichlorophenyl moiety of the
inhibitors was inserted into a newly formed binding pocket. Consistent
with these structural rearrangements, we observed slow off-rate binding
kinetics and strong structural stabilization in surface plasmon resonance
and differential scanning fluorimetry experiments, respectively. The
discovered furin conformation offers new opportunities for structure-based
drug discovery.
Collapse
Affiliation(s)
- Sven O. Dahms
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße 34, A-5020 Salzburg, Austria
| | - Gisela Schnapp
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Martin Winter
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Frank H. Büttner
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Marco Schlepütz
- Department of I&R Research, R&D Project Management and Development Strategies, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Christian Gnamm
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Alexander Pautsch
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße 34, A-5020 Salzburg, Austria
| |
Collapse
|
23
|
Testicular Germ Cell Tumours and Proprotein Convertases. Cancers (Basel) 2022; 14:cancers14071633. [PMID: 35406405 PMCID: PMC8996948 DOI: 10.3390/cancers14071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite the high survival rate of the most common neoplasia in young Caucasian men: Testicular Germ Cell Tumors (TGCT), the quality of life of these patients is impaired by the multiple long-term side effects of their treatment. The study of molecules that can serve both as diagnostic biomarkers for tumor development and as therapeutic targets seems necessary. Proprotein convertases (PC) are a group of proteases responsible for the maturation of inactive proproteins with very diverse functions, whose alterations in expression have been associated with various diseases, such as other types of cancer and inflammation. The study of the immune tumor microenvironment and the substrates of PCs could contribute to the development of new and necessary immunotherapies to treat this pathology. Abstract Testicular Germ Cell Tumours (TGCT) are widely considered a “curable cancer” due to their exceptionally high survival rate, even if it is reduced by many years after the diagnosis due to metastases and relapses. The most common therapeutic approach to TGCTs has not changed in the last 50 years despite its multiple long-term side effects, and because it is the most common malignancy in young Caucasian men, much research is needed to better the quality of life of the many survivors. Proprotein Convertases (PC) are nine serine proteases responsible for the maturation of inactive proproteins with many diverse functions. Alterations in their expression have been associated with various diseases, including cancer and inflammation. Many of their substrates are adhesion molecules, metalloproteases and proinflammatory molecules, all of which are involved in tumour development. Inhibition of certain convertases has also been shown to slow tumour formation, demonstrating their involvement in this process. Considering the very established link between PCs and inflammation-related malignancies and the recent studies carried out into the immune microenvironment of TGCTs, the study of the involvement of PCs in testicular cancer may open up avenues for being both a biomarker for diagnosis and a therapeutic target.
Collapse
|
24
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Affiliation(s)
- Masa-Aki Kawashiri
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
26
|
Li H, Tan Y, Zhang D. Genomic discovery and structural dissection of a novel type of polymorphic toxin system in gram-positive bacteria. Comput Struct Biotechnol J 2022; 20:4517-4531. [PMID: 36051883 PMCID: PMC9424270 DOI: 10.1016/j.csbj.2022.08.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Bacteria have developed several molecular conflict systems to facilitate kin recognition and non-kin competition to gain advantages in the acquisition of growth niches and of limited resources. One such example is a large class of so-called polymorphic toxin systems (PTSs), which comprise a variety of the toxin proteins secreted via T2SS, T5SS, T6SS, T7SS and many others. These systems are highly divergent in terms of sequence/structure, domain architecture, toxin-immunity association, and organization of the toxin loci, which makes it difficult to identify and characterize novel systems using traditional experimental and bioinformatic strategies. In recent years, we have been developing and utilizing unique genome-mining strategies and pipelines, based on the organizational principles of both domain architectures and genomic loci of PTSs, for an effective and comprehensive discovery of novel PTSs, dissection of their components, and prediction of their structures and functions. In this study, we present our systematic discovery of a new type of PTS (S8-PTS) in several gram-positive bacteria. We show that the S8-PTS contains three components: a peptidase of the S8 family (subtilases), a polymorphic toxin, and an immunity protein. We delineated the typical organization of these polymorphic toxins, in which a N-terminal signal peptide is followed by a potential receptor binding domain, BetaH, and one of 16 toxin domains. We classified each toxin domain by the distinct superfamily to which it belongs, identifying nine BECR ribonucleases, one Restriction Endonuclease, one HNH nuclease, two novel toxin domains homologous to the VOC enzymes, one toxin domain with the Frataxin-like fold, and several other unique toxin families such as Ntox33 and HicA. Accordingly, we identified 20 immunity families and classified them into different classes of folds. Further, we show that the S8-PTS-associated peptidases are analogous to many other processing peptidases found in T5SS, T7SS, T9SS, and many proprotein-processing peptidases, indicating that they function to release the toxin domains during secretion. The S8-PTSs are mostly found in animal and plant-associated bacteria, including many pathogens. We propose S8-PTSs will facilitate the competition of these bacteria with other microbes or contribute to the pathogen-host interactions.
Collapse
Affiliation(s)
- Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
- Program of Bioinformatics and Computational Biology, College of Arts & Sciences, Saint Louis University, MO 63103, USA
- Corresponding author at: Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA.
| |
Collapse
|
27
|
Rahman F, Wushur I, Malla N, Åstrand OAH, Rongved P, Winberg JO, Sylte I. Zinc-Chelating Compounds as Inhibitors of Human and Bacterial Zinc Metalloproteases. Molecules 2021; 27:molecules27010056. [PMID: 35011288 PMCID: PMC8746695 DOI: 10.3390/molecules27010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of bacterial virulence is believed to be a new treatment option for bacterial infections. In the present study, we tested dipicolylamine (DPA), tripicolylamine (TPA), tris pyridine ethylene diamine (TPED), pyridine and thiophene derivatives as putative inhibitors of the bacterial virulence factors thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) and the human zinc metalloproteases, matrix metalloprotease-9 (MMP-9) and matrix metalloprotease-14 (MMP-14). These compounds have nitrogen or sulfur as putative donor atoms for zinc chelation. In general, the compounds showed stronger inhibition of MMP-14 and PLN than of the other enzymes, with Ki values in the lower μM range. Except for DPA, none of the compounds showed significantly stronger inhibition of the virulence factors than of the human zinc metalloproteases. TPA and Zn230 were the only compounds that inhibited all five zinc metalloproteinases with a Ki value in the lower μM range. The thiophene compounds gave weak or no inhibition. Docking indicated that some of the compounds coordinated zinc by one oxygen atom from a hydroxyl or carbonyl group, or by oxygen atoms both from a hydroxyl group and a carbonyl group, and not by pyridine nitrogen as in DPA and TPA.
Collapse
Affiliation(s)
- Fatema Rahman
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Imin Wushur
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Nabin Malla
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Ove Alexander Høgmoen Åstrand
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, NO-0316 Oslo, Norway; (O.A.H.Å.); (P.R.)
| | - Pål Rongved
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, NO-0316 Oslo, Norway; (O.A.H.Å.); (P.R.)
| | - Jan-Olof Winberg
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Ingebrigt Sylte
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
- Correspondence: ; Tel.: +47-7764-4705
| |
Collapse
|
28
|
de Souza AA, de Andrade DM, Siqueira FDS, Di Iorio JF, Veloso MP, Coelho CDM, Viegas Junior C, Gontijo VS, Dos Santos MH, Meneghetti MCZ, Nader HB, Tersariol ILDS, Juliano L, Juliano MA, Judice WADS. Semysinthetic biflavonoid Morelloflavone-7,4',7″,3‴,4‴-penta-O-butanoyl is a more potent inhibitor of Proprotein Convertases Subtilisin/Kexin PC1/3 than Kex2 and Furin. Biochim Biophys Acta Gen Subj 2021; 1865:130016. [PMID: 34560176 DOI: 10.1016/j.bbagen.2021.130016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/11/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Garcinia brasiliensis is a species native to the Amazon forest. The white mucilaginous pulp is used in folk medicine as a wound healing agent and for peptic ulcer, urinary, and tumor disease treatments. The activity of the proprotein convertases (PCs) Subtilisin/Kex is associated with the development of viral, bacterial and fungal infections, osteoporosis, hyperglycemia, atherosclerosis, cardiovascular, neurodegenerative and neoplastic diseases. METHODS Morelloflavone (BF1) and semisynthetic biflavonoid (BF2, 3 and 4) from Garcinia brasiliensis were tested as inhibitor of PCs Kex2, PC1/3 and Furin, and determined IC50, Ki, human proinflammatory cytokines secretion in Caco-2 cells, mechanism of inhibition, and performed molecular docking studies. RESULTS Biflavonoids were more effective in the inhibition of neuroendocrine PC1/3 than mammalian Furin and fungal Kex2. BF1 presented a mixed inhibition mechanism for Kex2 and PC1, and competitive inhibition for Furin. BF4 has no good interaction with Kex2 and Furin since carboxypropyl groups results in steric hindrance to ligand-protein interactions. Carboxypropyl groups of BF4 promote steric hindrance with Kex2 and Furin, but effective in the affinity of PC1/3. BF4 was more efficient at inhibiting PCl/3 (IC50 = 1.13 μM and Ki = 0,59 μM, simple linear competitive mechanism of inhibition) than Kex2, Furin. Also, our results strongly suggested that BF4 also inhibits the endogenous cellular PC1/3 activity in Caco-2 cells, since PC1/3 inhibition by BF4 causes a large increase in IL-8 and IL-1β secretion in Caco-2 cells. CONCLUSIONS BF4 is a potent and selective inhibitor of PC1/3. GENERAL SIGNIFICANCE BF4 is the best candidate for further clinical studies on inhibition of PC1/3.
Collapse
Affiliation(s)
- Aline Aparecida de Souza
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Débora Martins de Andrade
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Fábio da Silva Siqueira
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Juliana Fortes Di Iorio
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Marcia Paranho Veloso
- Laboratório de Modelagem Molecular e Simulação Computacional, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Camila de Morais Coelho
- Laboratório de Modelagem Molecular e Simulação Computacional, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Claudio Viegas Junior
- Laboratório de Pesquisa em Química Medicinal, Universidade Federal de Alfenas, 37,133-840 Alfenas, MG, Brazil
| | - Vanessa Silva Gontijo
- Laboratório de Pesquisa em Química Medicinal, Universidade Federal de Alfenas, 37,133-840 Alfenas, MG, Brazil
| | | | - Maria Cecília Zorél Meneghetti
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Ivarne Luis Dos Santos Tersariol
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil; Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Wagner Alves de Souza Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil.
| |
Collapse
|
29
|
Song Y, Du Z, Chen X, Zhang W, Zhang G, Li H, Chang L, Wu Y. Astrocytic N-Methyl-D-Aspartate Receptors Protect the Hippocampal Neurons Against Amyloid-β142-Induced Synaptotoxicity by Regulating Nerve Growth Factor. J Alzheimers Dis 2021; 85:167-178. [PMID: 34776441 DOI: 10.3233/jad-210730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Soluble oligomeric amyloid-β (Aβ)-induced synaptic dysfunction is an early event in Alzheimer's disease (AD) pathogenesis. Mounting evidence has suggested N-methyl-D-aspartate receptors (NMDARs) play an important role in Aβ-induced synaptotoxicity. Originally NMDARs were believed to be expressed exclusively in neurons; however, recent two decades studies have demonstrated functional NMDARs present on astrocytes. Neuronal NMDARs are modulators of neurodegeneration, while our previous initial study found that astrocytic NMDARs mediated synaptoprotection and identified nerve growth factor (NGF) secreted by astrocytes, as a likely mediator, but how astrocytic NMDARs protect neurons against Aβ-induced synaptotoxicity through regulating NGF remains unclear. OBJECTIVE To achieve further insight into the mechanism of astrocytic NMDARs oppose Aβ-induced synaptotoxicity through regulating NGF. METHODS With the primary hippocampal neuronal and astrocytic co-cultures, astrocytes were pretreated with agonist or antagonist of NMDARs before Aβ142 oligomers application to neuron-astrocyte co-cultures. Western blot, RT-PCR, etc., were used for the related proteins evaluation. RESULTS Activation of astrocytic NMDARs can significantly mitigate Aβ142-induced loss of PSD-95 and synaptophysin through increasing NGF release. Blockade of astrocytic NMDARs inhibited Aβ-induced compensatory protective NGF increase in protein and mRNA levels through modulating NF-κB of astrocytes. Astrocytic NMDARs activation can enhance Aβ-induced Furin increase, and blockade of astrocytic NMDARs inhibited Aβ-induced immunofluorescent intensity elevation of vesicle trafficking protein VAMP3 and NGF double-staining. CONCLUSION Astrocytic NMDARs oppose Aβ-induced synaptotoxicity through modulating the synthesis, maturation, and secretion of NGF in astrocytes. This new information may contribute to the quest for specific targeted strategy of intervention to delay the onset of AD.
Collapse
Affiliation(s)
- Yizhi Song
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zunshu Du
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xinyue Chen
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Wanning Zhang
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
CDH2 mutation affecting N-cadherin function causes attention-deficit hyperactivity disorder in humans and mice. Nat Commun 2021; 12:6187. [PMID: 34702855 PMCID: PMC8548587 DOI: 10.1038/s41467-021-26426-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder characterized by inattention, impulsivity and hyperactivity. ADHD exhibits substantial heritability, with rare monogenic variants contributing to its pathogenesis. Here we demonstrate familial ADHD caused by a missense mutation in CDH2, which encodes the adhesion protein N-cadherin, known to play a significant role in synaptogenesis; the mutation affects maturation of the protein. In line with the human phenotype, CRISPR/Cas9-mutated knock-in mice harboring the human mutation in the mouse ortholog recapitulated core behavioral features of hyperactivity. Symptoms were modified by methylphenidate, the most commonly prescribed therapeutic for ADHD. The mutated mice exhibited impaired presynaptic vesicle clustering, attenuated evoked transmitter release and decreased spontaneous release. Specific downstream molecular pathways were affected in both the ventral midbrain and prefrontal cortex, with reduced tyrosine hydroxylase expression and dopamine levels. We thus delineate roles for CDH2-related pathways in the pathophysiology of ADHD. Molecular mechanisms of attention-deficit hyperactivity disorder (ADHD) are not fully understood. Here the authors demonstrate a mutation in CDH2, encoding N-cadherin, that is associated with ADHD, and in a mouse model, delineate molecular electrophysiological characteristics associated with this mutation.
Collapse
|
31
|
Furuhashi M, Kataoka Y, Nishikawa R, Koyama M, Sakai A, Higashiura Y, Tanaka M, Saitoh S, Shimamoto K, Ohnishi H. Circulating PCSK7 Level is Independently Associated with Obesity, Triglycerides Level and Fatty Liver Index in a General Population without Medication. J Atheroscler Thromb 2021; 29:1275-1284. [PMID: 34565765 PMCID: PMC9444688 DOI: 10.5551/jat.63159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Dyslipidemia and altered iron metabolism are typical features of non-alcoholic fatty liver disease (NAFLD). Proprotein convertase subtilisin/kexin type 7 (PCSK7), a transmembrane-anchored endonuclease, is associated with triglycerides level and processing of transferrin receptor 1. However, the significance of circulating PCSK7 has not been fully addressed, though prosegment PCSK7 is secreted from cells. We investigated the associations of plasma PCSK7 level with several parameters. METHODS Plasma PCSK7 concentration was measured in 282 subjects (male/female: 126/156) without medication of the Tanno-Sobetsu Study, a population-based cohort study. RESULTS There was no significant sex difference in PCSK7 level. Current smoking habit, but not alcohol drinking habit, was associated with increased PCSK7 level. PCSK7 concentration was negatively correlated with age and blood urea nitrogen and was positively correlated with body mass index (BMI) and levels of γ-glutamyl transpeptidase (γGTP), triglycerides and fatty liver index (FLI), which is calculated by BMI, waist circumference and levels of γGTP and triglycerides, as a noninvasive and simple predictor of NAFLD. There were no significant correlations of PCSK7 level with levels of iron and plasma PCSK9, a secreted PCSK family member and a regulator of low-density lipoprotein cholesterol level. Multivariable regression analyses after adjustment of age, sex and current smoking habit showed that PCSK7 concentration was independently associated with BMI (β=0.130, P=0.035), triglycerides (β=0.141, P=0.027) or FLI (β=0.139, P=0.030). CONCLUSIONS Plasma PCSK7 concentration is independently associated with chronic liver disease including obesity and elevated triglycerides level in a general population of individuals who had not regularly taken any medications.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Public Health, Sapporo Medical University School of Medicine
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences
| | | | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Public Health, Sapporo Medical University School of Medicine
| |
Collapse
|
32
|
Dahms SO, Haider T, Klebe G, Steinmetzer T, Brandstetter H. OFF-State-Specific Inhibition of the Proprotein Convertase Furin. ACS Chem Biol 2021; 16:1692-1700. [PMID: 34415722 PMCID: PMC8453481 DOI: 10.1021/acschembio.1c00411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The pro-protein convertase
furin is a highly specific serine protease
involved in the proteolytic maturation of many proteins in the secretory
pathway. It also activates surface proteins of many viruses including
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Furin inhibitors effectively suppress viral replication and thus are
promising antiviral therapeutics with broad application potential.
Polybasic substrate-like ligands typically trigger conformational
changes shifting furin’s active site cleft from the OFF-state
to the ON-state. Here, we solved the X-ray structures of furin in
complex with four different arginine mimetic compounds with reduced
basicity. These guanylhydrazone-based inhibitor complexes showed for
the first time an active site-directed binding mode to furin’s
OFF-state conformation. The compounds undergo unique interactions
within the S1 pocket, largely different compared to substrate-like
ligands. A second binding site was identified at the S4/S5 pocket
of furin. Crystallography-based titration experiments confirmed the
S1 site as the primary binding pocket. We also tested the proprotein
convertases PC5/6 and PC7 for inhibition by guanylhydrazones and found
an up to 7-fold lower potency for PC7. Interestingly, the observed
differences in the Ki values correlated
with the sequence conservation of the PCs at the allosteric sodium
binding site. Therefore, OFF-state-specific targeting of furin can
serve as a valuable strategy for structure-based development of PC-selective
small-molecule inhibitors.
Collapse
Affiliation(s)
- Sven O. Dahms
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Tanja Haider
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| |
Collapse
|
33
|
Zhang Y, Xu C, Tang Z, Guo D, Yao R, Zhao H, Chen Z, Ni X. Furin is involved in uterine activation for labor. FASEB J 2021; 35:e21565. [PMID: 33864414 DOI: 10.1096/fj.202002128rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
The uterus undergoes distinct molecular and functional changes during pregnancy and parturition. These processes are associated with the dramatic changes in various proteins. Given that the maturation and activation of many proteins require proteolytic processing by proprotein convertases (PCs), we sought to explore the role of PCs in uterine activation for labor. First, we found that furin was the most dramatically increased PC member in myometrial tissues from the pregnant women after onset of labor at term. Using the model of cultured human myometrial smooth muscle cells (HMSMCs), we showed that furin inhibitor CMK, D6R treatment and furin siRNA transfection suppressed contractility. Inhibition of furin activity or interfering furin expression decreased connexin 43 (CX43), prostaglandin (PG) endoperoxide synthase-2 (COX-2) and PGF2α receptor (FP) expression and NF-κB activation. In mouse model, administration of furin inhibitors prolonged gestational length. However, D6R treatment did not affect RU38486- and lipopolysaccharides (LPS)-induced preterm birth. Furthermore, D6R and furin siRNA treatment reduced the release of soluble form of tumor necrosis factor (TNF)-related weak inducer of apoptosis (TWEAK), while furin overexpression led to an increase in soluble TWEAK release in cultured HMSMCs. D6R treatment decreased TWEAK level in blood of pregnant mice. TWEAK treatment promoted contractility and NF-κB activation, while TWEAK receptor fibroblast growth factor-inducible 14 (FN14) antagonist treatment inhibited contractility and NF-κB activation in HMSMCs. In pregnant mice, administration of FN14 antagonist prolonged gestational length. Our data suggest that furin can act as a stimulator for uterine activation for labor at term. TWEAK is one of the potential substrates which mediate furin regulation of parturition initiation.
Collapse
Affiliation(s)
- Youyi Zhang
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Medical School of Fundan University, Shanghai, China
| | - Zhengshan Tang
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Dewei Guo
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Ruojin Yao
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Huina Zhao
- Department of Gynecology and Obstetrics, Changhai Hospital, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Seventh People's Hospital, Shanghai, China
| | - Zixi Chen
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
34
|
Rahman F, Nguyen TM, Adekoya OA, Campestre C, Tortorella P, Sylte I, Winberg JO. Inhibition of bacterial and human zinc-metalloproteases by bisphosphonate- and catechol-containing compounds. J Enzyme Inhib Med Chem 2021; 36:819-830. [PMID: 33757387 PMCID: PMC7993378 DOI: 10.1080/14756366.2021.1901088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Compounds containg catechol or bisphosphonate were tested as inhibitors of the zinc metalloproteases, thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) which are bacterial virulence factors, and the human matrix metalloproteases MMP-9 and -14. Inhibition of virulence is a putative strategy in the development of antibacterial drugs, but the inhibitors should not interfere with human enzymes. Docking indicated that the inhibitors bound MMP-9 and MMP-14 with the phenyl, biphenyl, chlorophenyl, nitrophenyl or methoxyphenyl ringsystem in the S1'-subpocket, while these ringsystems entered the S2'- or S1 -subpockets or a region involving amino acids in the S1'- and S2'-subpockets of the bacterial enzymes. An arginine conserved among the bacterial enzymes seemed to hinder entrance deeply into the S1'-subpocket. Only the bisphosphonate containing compound RC2 bound stronger to PLN and TLN than to MMP-9 and MMP-14. Docking indicated that the reason was that the conserved arginine (R203 in TLN and R198 in PLN) interacts with phosphate groups of RC2.
Collapse
Affiliation(s)
- Fatema Rahman
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Tra-Mi Nguyen
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Olayiwola A Adekoya
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Cristina Campestre
- Department of Pharmacy, University of "G. d'Annunzio" Chieti, Chieti, Italy
| | - Paolo Tortorella
- Department of Pharmacy, Science of Pharmacy, University "A. Moro" Bari, Bari, Italy
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
35
|
Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021; 6:233. [PMID: 34117216 PMCID: PMC8193598 DOI: 10.1038/s41392-021-00653-w] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of transmissibility and extremely broad tissue tropism. However, the underlying molecular mechanism responsible for sustaining this degree of virulence remains largely unexplored. In this article, we review the current knowledge and crucial information about how SARS-CoV-2 attaches on the surface of host cells through a variety of receptors, such as ACE2, neuropilin-1, AXL, and antibody-FcγR complexes. We further explain how its spike (S) protein undergoes conformational transition from prefusion to postfusion with the help of proteases like furin, TMPRSS2, and cathepsins. We then review the ongoing experimental studies and clinical trials of antibodies, peptides, or small-molecule compounds with anti-SARS-CoV-2 activity, and discuss how these antiviral therapies targeting host-pathogen interaction could potentially suppress viral attachment, reduce the exposure of fusion peptide to curtail membrane fusion and block the formation of six-helix bundle (6-HB) fusion core. Finally, the specter of rapidly emerging SARS-CoV-2 variants deserves a serious review of broad-spectrum drugs or vaccines for long-term prevention and control of COVID-19 in the future.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
36
|
Rose M, Duhamel M, Rodet F, Salzet M. The Role of Proprotein Convertases in the Regulation of the Function of Immune Cells in the Oncoimmune Response. Front Immunol 2021; 12:667850. [PMID: 33995401 PMCID: PMC8117212 DOI: 10.3389/fimmu.2021.667850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Proprotein convertases (PC) are a family of 9 serine proteases involved in the processing of cellular pro-proteins. They trigger the activation, inactivation or functional changes of many hormones, neuropeptides, growth factors and receptors. Therefore, these enzymes are essential for cellular homeostasis in health and disease. Nine PC subtilisin/kexin genes (PCSK1 to PCSK9) encoding for PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P and PCSK9 are known. The expression of PC1/3, PC2, PC5/6, Furin and PC7 in lymphoid organs such as lymph nodes, thymus and spleen has suggested a role for these enzymes in immunity. In fact, knock-out of Furin in T cells was associated with high secretion of pro-inflammatory cytokines and autoantibody production in mice. This suggested a key role for this enzyme in immune tolerance. Moreover, Furin through its proteolytic activity, regulates the suppressive functions of Treg and thus prevents chronic inflammation and autoimmune diseases. In macrophages, Furin is also involved in the regulation of their inflammatory phenotype. Similarly, PC1/3 inhibition combined with TLR4 stimulation triggers the activation of the NF-κB signaling pathway with an increased secretion of pro-inflammatory cytokines. Factors secreted by PC1/3 KD macrophages stimulated with LPS exert a chemoattractive effect on naive auxiliary T lymphocytes (Th0) and anti-tumoral activities. The link between TLR and PCs is thus very important in inflammatory response regulation. Furin regulates TL7 and TLR8 processing and trafficking whereas PC1/3 controls TLR4 and TLR9 trafficking. Since PC1/3 and Furin are key regulators of both the innate and adaptive immune responses their inhibition may play a major role in oncoimmune therapy. The role of PCs in the oncoimmune response and therapeutic strategies based on PCs inhibition are proposed in the present review.
Collapse
Affiliation(s)
- Mélanie Rose
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Franck Rodet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| |
Collapse
|
37
|
Rehfeld JF, Goetze JP. Processing-independent analysis (PIA): a method for quantitation of the total peptide-gene expression. Peptides 2021; 135:170427. [PMID: 33069691 DOI: 10.1016/j.peptides.2020.170427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022]
Abstract
The translational product of protein-coding genes undergoes extensive posttranslational modifications. The modifications ensure an increased molecular and functional diversity at protein- and peptide-level. Prohormones are small pro-proteins that are expressed in many cell types, for instance endocrine cells, immune cells, myocytes and neurons. Here they mature to bioactive peptides (cytokines, hormones, growth factors, and neurotransmitters) that are released from the cells in an often regulated manner. The posttranslational processing of prohormones is cell-specific, however, and may vary during evolution and disease. Therefore, it is often inadequate to measure just a single peptide fragment as marker of endocrine, immune, and neuronal functions. In order to meet this challenge, we developed years back a simple "processing-independent analysis" (PIA) for accurate quantification of the total pro-protein product - irrespective of the degree and nature of the posttranslational processing. This review provides an overview of the PIA principle and describes examples of PIA results in different peptide systems.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
38
|
Activation of proprotein convertase in the mouse habenula causes depressive-like behaviors through remodeling of extracellular matrix. Neuropsychopharmacology 2021; 46:442-454. [PMID: 32942293 PMCID: PMC7852607 DOI: 10.1038/s41386-020-00843-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
The lateral habenula (LHb) attracts a growing interest as a regulator of monoaminergic activity which were frequently reported to be defective in depression. Here we found that chronic social defeat stress (CSDS) increased production of pro-inflammatory cytokines in LHb associated with mobilization of monocytes and remodeling of extracellular matrix by increased matrix metalloproteinase (MMP) activity. RNA-seq analysis identified proprotein convertase Pcsk5 as an upstream regulator of MMP activation, with upregulation in LHb neurons of mice with susceptibility to CSDS. PCSK5 facilitated motility of microglia in vitro by converting inactive pro-MMP14 and pro-MMP2 to their active forms, highlighting its role in mobilization of microglia and monocytes in neuroinflammation. Suppression of Pcsk5 expression via small interfering RNA (siRNA) ameliorated depressive-like behaviors and pathological mobilization of monocytes in mice with susceptibility to CSDS. PCSK5-MMPs signaling pathway could be a target for development of the antidepressants targeting the inflammatory response in specific brain regions implicated in depression.
Collapse
|
39
|
Yamamoto M, Nakao T, Ogawa W, Fukuoka H. Aggressive Cushing's Disease: Molecular Pathology and Its Therapeutic Approach. Front Endocrinol (Lausanne) 2021; 12:650791. [PMID: 34220707 PMCID: PMC8242934 DOI: 10.3389/fendo.2021.650791] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cushing's disease is a syndromic pathological condition caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (ACTHomas) mediated by hypercortisolemia. It may have a severe clinical course, including infection, psychiatric disorders, hypercoagulability, and metabolic abnormalities, despite the generally small, nonaggressive nature of the tumors. Up to 20% of ACTHomas show aggressive behavior, which is related to poor surgical outcomes, postsurgical recurrence, serious clinical course, and high mortality. Although several gene variants have been identified in both germline and somatic changes in Cushing's disease, the pathophysiology of aggressive ACTHomas is poorly understood. In this review, we focused on the aggressiveness of ACTHomas, its pathology, the current status of medical therapy, and future prospects. Crooke's cell adenoma (CCA), Nelson syndrome, and corticotroph pituitary carcinoma are representative refractory pituitary tumors that secrete superphysiological ACTH. Although clinically asymptomatic, silent corticotroph adenoma is an aggressive ACTH-producing pituitary adenoma. In this review, we summarize the current understanding of the pathophysiology of aggressive ACTHomas, including these tumors, from a molecular point of view based on genetic, pathological, and experimental evidence. The treatment of aggressive ACTHomas is clinically challenging and usually resistant to standard treatment, including surgery, radiotherapy, and established medical therapy (e.g., pasireotide and cabergoline). Temozolomide is the most prescribed pharmaceutical treatment for these tumors. Reports have shown that several treatments for patients with refractory ACTHomas include chemotherapy, such as cyclohexyl-chloroethyl-nitrosourea combined with 5-fluorouracil, or targeted therapies against several molecules including vascular endothelial growth factor receptor, cytotoxic T lymphocyte antigen 4, programmed cell death protein 1 (PD-1), and ligand for PD-1. Genetic and experimental evidence indicates that some possible therapeutic candidates are expected, such as epidermal growth factor receptor tyrosine kinase inhibitor, cyclin-dependent kinase inhibitor, and BRAF inhibitor. The development of novel treatment options for aggressive ACTHomas is an emerging task.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | | | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
- *Correspondence: Hidenori Fukuoka,
| |
Collapse
|
40
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide since its first incidence in Wuhan, China, in December 2019. Although the case fatality rate of COVID-19 appears to be lower than that of SARS and Middle East respiratory syndrome (MERS), the higher transmissibility of SARS-CoV-2 has caused the total fatality to surpass other viral diseases, reaching more than 1 million globally as of October 6, 2020. The rate at which the disease is spreading calls for a therapy that is useful for treating a large population. Multiple intersecting viral and host factor targets involved in the life cycle of the virus are being explored. Because of the frequent mutations, many coronaviruses gain zoonotic potential, which is dependent on the presence of cell receptors and proteases, and therefore the targeting of the viral proteins has some drawbacks, as strain-specific drug resistance can occur. Moreover, the limited number of proteins in a virus makes the number of available targets small. Although SARS-CoV and SARS-CoV-2 share common mechanisms of entry and replication, there are substantial differences in viral proteins such as the spike (S) protein. In contrast, targeting cellular factors may result in a broader range of therapies, reducing the chances of developing drug resistance. In this Review, we discuss the role of primary host factors such as the cell receptor angiotensin-converting enzyme 2 (ACE2), cellular proteases of S protein priming, post-translational modifiers, kinases, inflammatory cells, and their pharmacological intervention in the infection of SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
41
|
Paria K, Paul D, Chowdhury T, Pyne S, Chakraborty R, Mandal SM. Synergy of melanin and vitamin-D may play a fundamental role in preventing SARS-CoV-2 infections and halt COVID-19 by inactivating furin protease. TRANSLATIONAL MEDICINE COMMUNICATIONS 2020; 5:21. [PMID: 33169107 PMCID: PMC7642579 DOI: 10.1186/s41231-020-00073-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 05/28/2023]
Abstract
Since the birth of Christ, in these 2019 years, the man on earth has never experienced a survival challenge from any acellular protist compared to SARS-CoV-2. No specific drugs yet been approved. The host immunity is the only alternative to prevent and or reduce the infection and mortality rate as well. Here, a novel mechanism of melanin mediated host immunity is proposed having potent biotechnological prospects in health care management of COVID-19. Vitamin D is known to enhance the rate of melanin synthesis; and this may concurrently regulate the expression of furin expression. In silico analyses have revealed that the intermediates of melanin are capable of binding strongly with the active site of furin protease. On the other hand, furin expression is negatively regulated via 1-α-hydroxylase (CYP27B1), that belongs to vitamin-D pathway and controls cellular calcium levels. Here, we have envisaged the availability of biological melanin and elucidated the bio-medical potential. Thus, we propose a possible synergistic application of melanin and the enzyme CYP27B1 (regulates vitamin D biosynthesis) as a novel strategy to prevent viral entry through the inactivation of furin protease and aid in boosting our immunity at the cellular and humoral levels.
Collapse
Affiliation(s)
- Kishalay Paria
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, Sector 125 201313 India
| | - Trinath Chowdhury
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Smritikana Pyne
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Ranadhir Chakraborty
- Department of Biotechnology, University of North Bengal, Raja Rammohanpur, Darjeeling, West Bengal 734013 India
| | - Santi M. Mandal
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
42
|
Abstract
The Middle East and North Africa regions, including Lebanon, have recently witnessed rapid urbanization and modernization over the last couple of decades that has led to a dramatic transformation affecting lifestyle and diet. The World Health Organization reports that the leading cause of death in Lebanon is due to cardiovascular disease (CVD) at 47% of all-cause mortality. Over the last 30 years, especially the last 10, the population of Lebanon has changed dramatically due to the effect of wars in the region and refugees seeking asylum. With a population of around 4.5 million and a relatively high rate of consanguinity in Lebanon, a variety of novel mutations have been discovered explaining several familial causes of hypercholesterolemia, diabetes mellitus, congenital heart disease, and cardiomyopathies. Due to the Syrian civil war, 1.5 million Syrian refugees now reside in Lebanon in either low-income housing or tented settlements. A National Institutes of Health study is examining diabetes and CVD in Syrian refugees in comparison to native Lebanese. We provide the first review of CVD in Lebanon in its metabolic component including coronary artery disease and its risk factors, mainly hyperlipidemia and diabetes mellitus, and its structural component, including congenital heart disease, valvular heart disease, cardiomyopathies, and heart failure. The knowledge in this review has been compiled to guide clinicians and assist researchers in efforts to recognize risk factors for disease, improve delivery of health care, and prevent and treat CVDs in Lebanon, both for the native Lebanese and Syrian refugees.
Collapse
|
43
|
Bai L, Chang HM, Zhang L, Zhu YM, Leung PCK. BMP2 increases the production of BDNF through the upregulation of proBDNF and furin expression in human granulosa-lutein cells. FASEB J 2020; 34:16129-16143. [PMID: 33047388 DOI: 10.1096/fj.202000940r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/26/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Locally produced in human granulosa cells of the developing follicle, bone morphogenetic protein 2 (BMP2) plays a crucial role in the regulation of ovarian folliculogenesis and luteal formation. Brain-derived neurotrophic factor (BDNF) is an intraovarian neurotrophic factor that has been shown to promote oocyte maturation and subsequent fertilization competency. At present, little is known regarding the intracellular regulation, assembly and secretion of endogenous BDNF in human granulosa cells. The aim of this study was to explore the effect of BMP2 on the expression and production of BDNF in human granulosa cells and the molecular mechanisms underlying this effect. An immortalized human granulosa cell line (SVOG) and primary human granulosa-lutein (hGL) cells were utilized as in vitro study models. Our results showed that BMP2 significantly increased the mRNA and secreted levels of BDNF. Additionally, BMP2 upregulated the expression of furin at the transcriptional and translational levels. Knockdown of endogenous furin partially attenuated the BMP2-induced increase in BDNF production, indicating that furin is involved in the maturation process of BDNF. Using pharmacological (kinase receptor inhibitors) and siRNA-mediated inhibition approaches, we demonstrated that BMP2-induced upregulation of BDNF and furin expression is most likely mediated by the activin receptor-like kinase (ALK)2/ALK3-SMAD4 signaling pathway. Notably, analysis using clinical samples revealed that there was a positive correlation between follicular fluid concentrations of BMP2 and those of BDNF. These results indicate that BMP2 increases the production of mature BDNF by upregulating the precursor BDNF and promoting the proteolytic processing of mature BDNF. Finally, we also investigated the effects of BMP2 on ovarian steroidogenesis and the results showed that BMP2 treatment significantly increased the accumulated level of estradiol (by upregulating the expression of FSH receptor and cytochrome P450 aromatase), whereas it decreased the accumulated level of progesterone (by downregulating the expression of LH receptors and steroidogenic acute regulatory protein) in primary hGL cells. Our findings provide a novel paracrine mechanism underlying the regulation of an intraovarian growth factor in human granulosa cells.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Liang Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peter C K Leung
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
44
|
Structural and functional modelling of SARS-CoV-2 entry in animal models. Sci Rep 2020; 10:15917. [PMID: 32985513 PMCID: PMC7522990 DOI: 10.1038/s41598-020-72528-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
SARS-CoV-2 is the novel coronavirus responsible for the outbreak of COVID-19, a disease that has spread to over 100 countries and, as of the 26th July 2020, has infected over 16 million people. Despite the urgent need to find effective therapeutics, research on SARS-CoV-2 has been affected by a lack of suitable animal models. To facilitate the development of medical approaches and novel treatments, we compared the ACE2 receptor, and TMPRSS2 and Furin proteases usage of the SARS-CoV-2 Spike glycoprotein in human and in a panel of animal models, i.e. guinea pig, dog, cat, rat, rabbit, ferret, mouse, hamster and macaque. Here we showed that ACE2, but not TMPRSS2 or Furin, has a higher level of sequence variability in the Spike protein interaction surface, which greatly influences Spike protein binding mode. Using molecular docking simulations we compared the SARS-CoV and SARS-CoV-2 Spike proteins in complex with the ACE2 receptor and showed that the SARS-CoV-2 Spike glycoprotein is compatible to bind the human ACE2 with high specificity. In contrast, TMPRSS2 and Furin are sufficiently similar in the considered hosts not to drive susceptibility differences. Computational analysis of binding modes and protein contacts indicates that macaque, ferrets and hamster are the most suitable models for the study of inhibitory antibodies and small molecules targeting the SARS-CoV-2 Spike protein interaction with ACE2. Since TMPRSS2 and Furin are similar across species, our data also suggest that transgenic animal models expressing human ACE2, such as the hACE2 transgenic mouse, are also likely to be useful models for studies investigating viral entry.
Collapse
|
45
|
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41:1141-1149. [PMID: 32747721 PMCID: PMC7396720 DOI: 10.1038/s41401-020-0485-4] [Citation(s) in RCA: 1440] [Impact Index Per Article: 288.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 is a newly emerging infectious disease currently spreading across the world. It is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike (S) protein of SARS-CoV-2, which plays a key role in the receptor recognition and cell membrane fusion process, is composed of two subunits, S1 and S2. The S1 subunit contains a receptor-binding domain that recognizes and binds to the host receptor angiotensin-converting enzyme 2, while the S2 subunit mediates viral cell membrane fusion by forming a six-helical bundle via the two-heptad repeat domain. In this review, we highlight recent research advance in the structure, function and development of antivirus drugs targeting the S protein.
Collapse
Affiliation(s)
- Yuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin-Feng Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
47
|
Krahel JA, Baran A, Kamiński TW, Maciaszek M, Flisiak I. Methotrexate Decreases the Level of PCSK9-A Novel Indicator of the Risk of Proatherogenic Lipid Profile in Psoriasis. The Preliminary Data. J Clin Med 2020; 9:jcm9040910. [PMID: 32225075 PMCID: PMC7230388 DOI: 10.3390/jcm9040910] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) exerts an important role in inflammatory processes, lipids homeostasis, and cardiometabolic disorders that are closely associated with psoriasis. The aim of the study was to analyze the clinical and diagnostic value of serum PCSK9 concentrations and their connections with disease severity, inflammation, metabolic syndrome, and impact of systemic therapies in psoriatic patients. The study enrolled thirty-five patients with active plaque-type psoriasis and eighteen healthy volunteers served as controls. Blood samples were obtained before and after 12 weeks of treatment with methotrexate or acitretin. Serum PCSK9 concentrations were measured by the ELISA (Enzyme-Linked Immunosorbent Assay) commercial kits. Morphological and biochemical parameters were assayed using routine laboratory techniques. Psoriatic patients showed significantly elevated levels of PCSK9 compared to controls (p < 0.01), mostly in patients with a mild and moderate course of psoriasis. PCSK9 concentrations correlated positively with BMI and triglyceride levels (p < 0.05). Interestingly, PCSK9 had a strong negative correlation with low-density lipoprotein levels and total cholesterol (p < 0.05). Three months of monotherapy with methotrexate significantly reduced PCSK9 level (p < 0.05), on the contrary, the acitretin group showed a further increase of PCSK9 levels (p < 0.05). PCSK9 seems to be a novel marker of psoriasis and a putative explanation of lipid disturbances, which are common in patients with psoriasis and are vital for the further developing of metabolic syndrome. Methotrexate should be considered as a treatment of choice in patients with an elevated PCSK9 concentration.
Collapse
Affiliation(s)
- Julita Anna Krahel
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
- Correspondence: ; Tel. & Fax: +48-8-5740-9570
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| | - Tomasz W. Kamiński
- Department of Farmacodynamics, Medical University of Bialystok, Mickiewicza 2c St., 15-222 Bialystok, Poland;
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Magdalena Maciaszek
- Department of Infectious Diseases and Hepatology Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland;
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| |
Collapse
|
48
|
He Z, Thorrez L, Siegfried G, Meulemans S, Evrard S, Tejpar S, Khatib AM, Creemers JWM. The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer. Oncogene 2020; 39:3571-3587. [PMID: 32139876 DOI: 10.1038/s41388-020-1238-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022]
Abstract
Mutations in KRAS and/or BRAF that activate the ERK kinase are frequently found in colorectal cancer (CRC) and drive resistance to targeted therapies. Therefore, the identification of therapeutic targets that affect multiple signaling pathways simultaneously is crucial for improving the treatment of patients with KRAS or BRAF mutations. The proprotein convertase furin activates several oncogenic protein precursors involved in the ERK-MAPK pathway by endoproteolytic cleavage. Here we show that genetic inactivation of furin suppresses tumorigenic growth, proliferation, and migration in KRAS or BRAF mutant CRC cell lines but not in wild-type KRAS and BRAF cells. In a mouse xenograft model, these KRAS or BRAF mutant cells lacking furin displayed reduced growth and angiogenesis, and increased apoptosis. Mechanistically, furin inactivation prevents the processing of various protein pecursors including proIGF1R, proIR, proc-MET, proTGF-β1 and NOTCH1 leading to potent and durable ERK-MAPK pathway suppression in KRAS or BRAF mutant cells. Furthermore, we identified genes involved in activating the ERK-MAPK pathway, such as PTGS2, which are downregulated in the KRAS or BRAF mutant cells after furin inactivation but upregulated in wild-type KRAS and BRAF cells. Analysis of human colorectal tumor samples reveals a positive correlation between enhanced furin expression and KRAS or BRAF expression. These results indicate that furin plays an important role in KRAS or BRAF-associated ERK-MAPK pathway activation and tumorigenesis, providing a potential target for personalized treatment.
Collapse
Affiliation(s)
- Zongsheng He
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lieven Thorrez
- Interdisciplinary Research Facility, Department of Development and Regeneration, KU Leuven, Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Sandra Meulemans
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Serge Evrard
- INSERM, LAMC, UMR, Allée Geoffroy St Hilaire, 1029, Pessac, France.,Institut Bergonié, Bordeaux, France
| | - Sabine Tejpar
- Digestive Oncology Unit, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
Yin J, Chang HM, Yi Y, Yao Y, Leung PC. TGF-β1 Increases GDNF Production by Upregulating the Expression of GDNF and Furin in Human Granulosa-Lutein Cells. Cells 2020; 9:cells9010185. [PMID: 31936902 PMCID: PMC7016865 DOI: 10.3390/cells9010185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is expressed at a high level in the human ovary and GDNF signaling is involved in the direct control of follicular activation and oocyte maturation. Transforming growth factor-β1 (TGF-β1) plays an important role in the regulation of various ovarian functions. Furin is an intracellular serine endopeptidase of the subtilisin family that is closely associated with the activation of multiple protein precursors. Despite the important roles of GDNF and TGF-β1 in the regulation of follicular development, whether TGF-β is able to regulate the expression and production of GDNF in human granulosa cells remains to be determined. The aim of this study was to investigate the effect of TGF-β1 on the production of GDNF and its underlying mechanisms in human granulosa-lutein (hGL) cells. We used two types of hGL cells (primary hGL cells and an established immortalized hGL cell line, SVOG cells) as study models. Our results show that TGF-β1 significantly induced the expression of GDNF and furin, which, in turn, increased the production of mature GDNF. Using a dual inhibition approach combining RNA interference and kinase inhibitors against cell signaling components, we showed that the TβRII type II receptor and ALK5 type I receptor are the principal receptors that mediated TGF-β1-induced cellular activity in hGL cells. Additionally, Sma- and Mad-related protein (SMAD)3 and SMAD4 are the downstream signaling transducers that mediate the biological response induced by TGF-β1. Furthermore, furin is the main proprotein convertase that induces the production of GDNF. These findings provide additional regulatory mechanisms by which an intrafollicular factor influences the production of another growth factor through a paracrine or autocrine interaction in hGL cells.
Collapse
Affiliation(s)
- Jingwen Yin
- School of Medicine, Nankai University, Tianjin 300071, China;
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (H.-M.C.); (Y.Y.)
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (H.-M.C.); (Y.Y.)
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (H.-M.C.); (Y.Y.)
| | - Yuanqing Yao
- School of Medicine, Nankai University, Tianjin 300071, China;
- Correspondence: (Y.Y.); (P.C.K.L.)
| | - Peter C.K. Leung
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (H.-M.C.); (Y.Y.)
- Correspondence: (Y.Y.); (P.C.K.L.)
| |
Collapse
|
50
|
Assessment and Management of Patients with Hyperlipidemia Referred for Initiation of PCSK9 Inhibitor Therapy: A Lipid Clinic Experience. Am J Cardiovasc Drugs 2019; 19:553-559. [PMID: 31119582 DOI: 10.1007/s40256-019-00352-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Previous studies have reported that monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9) in clinical practice have been underutilized due to several barriers, including high cost, stringent insurance authorization, patient cost-sharing and insufficient documentation of a patient's medical history. The purpose of our study was to determine if prescribing PCSK9 inhibitors only to patients meeting the established indications would significantly improve the approval rate and utilization. METHODS We conducted a review and analysis of the medical records of patients referred by their physician to a hospital-based lipid clinic over a 20-month period specifically for initiation of a PCSK9 inhibitor. RESULTS There were 180 patients referred to our lipid clinic by their cardiologist or internist specifically for initiation of a PCSK9 inhibitor. Only 76 (42%) of these patients met the approved indications for this therapy and were provided PCSK9 inhibitor prescriptions. All received insurance approval within 3 weeks. Three did not initiate therapy due to excessive out-of-pocket cost, three discontinued therapy after two injections because of intolerable side effects (rhinorrhea), with the remaining 70 patients starting and continuing therapy, long-term. The remaining 104 patients were not given a PCSK9 inhibitor prescription and were treated with oral lipid-lowering medications. CONCLUSION Our findings suggest that those physicians who referred patients to our lipid clinic specifically for initiation of a PCSK9 inhibitor were not aware of the established indications. By prescribing a PCSK9 inhibitor to only those patients meeting the established indications, 100% obtained approval. Therefore, to achieve higher insurance approval rates and utilization, it is essential that physicians understand the indications for PCSK9 inhibitor therapy and prescribe them only to patients meeting the established indications.
Collapse
|