1
|
Lee H, Nakahashi-Oda C, Lyu W, Tanaka M, Rai A, Muramoto Y, Wang Y, Mizuno S, Shibuya K, Shibuya A. Inhibitory immunoreceptors CD300a and CD300lf cooperate to regulate mast cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae030. [PMID: 40073110 DOI: 10.1093/jimmun/vkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/07/2024] [Indexed: 03/14/2025]
Abstract
Mast cells (MCs) play a central role in allergic immune responses. MC activation is regulated by several inhibitory immunoreceptors. The CD300 family members CD300a and CD300lf recognize phospholipid ligands and inhibit the FcεRI-mediated activating signal in MCs. While CD300a binds to phosphatidylserine (PS) to inhibit MCs activation, CD300lf function is less clear due to its ability to bind with ceramide and PS. Moreover, it also remains blurring whether CD300a and CD300lf function independently, cooperatively, or by interfering with each other in regulating MC activation. Using imaging and flow cytometric analyses of bone marrow-derived cultured MCs (BMMCs) from wild-type (WT), Cd300a-/-, Cd300lf-/-, and Cd300a-/-Cd300lf-/- mice, we show that CD300lf and CD300a colocalized with PS externalized to the outer leaflet of the plasma membrane with a polar formation upon activation, and CD300lf cooperates with CD300a to inhibit BMMCs activation. CD300lf also colocalized with extracellular ceramide in addition to the internal PS on the cell surface, which results in stronger inhibition of MC activation than CD300lf binding to PS alone. Similarly, although both Cd300a-/- and Cd300lf-/- mice showed decreased rectal temperatures compared with WT mice in the model of passive systemic anaphylaxis, Cd300a-/-Cd300lf-/- mice showed lower rectal temperature than either Cd300a-/- or Cd300lf-/- mice. Our results demonstrate the cooperativity of multiple inhibitory receptors expressed on MCs and their regulatory functions upon binding to respective ligands.
Collapse
Affiliation(s)
- Hanbin Lee
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wenxin Lyu
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mamoru Tanaka
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Rai
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoichi Muramoto
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yaqiu Wang
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Xie XB, Shu Y, Cui ZJ. To activate NAD(P)H oxidase with a brief pulse of photodynamic action. FASEB J 2024; 38:e70246. [PMID: 39655710 PMCID: PMC11629461 DOI: 10.1096/fj.202402292r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidases (NOX) are a major cellular source of reactive oxygen species, regulating vital physiological functions, whose dys-regulation leads to a plethora of major diseases. Much effort has been made to develop varied types of NOX inhibitors, but biotechnologies for spatially and temporally controlled NOX activation, however, are not readily available. We previously found that ultraviolet A (UVA) irradiation activates NOX2 in rodent mast cells, to elicit persistent calcium spikes. NOX2 is composed of multiple subunits, making studies of its activation rather complicated. Here we show that the single-subunit nonrodent-expressing NOX5, when expressed ectopically in CHO-K1 cells, is activated by UVA irradiation (380 nm, 0.1-12 mW/cm2, 1.5 min) inducing repetitive calcium spikes, as monitored by Fura-2 fluorescent calcium imaging. UVA-elicited calcium oscillations are inhibited by NOX inhibitor diphenyleneiodonium chloride (DPI) and blocked by singlet oxygen (1O2) quencher Trolox-C (300 μM). A brief pulse of photodynamic action (1.5 min) with photosensitizer sulfonated aluminum phthalocyanine (SALPC 2 μM, 675 nm, 85 mW/cm2) in NOX5-CHO-K1 cells, or with genetically encoded protein photosensitizer miniSOG fused to N-terminus of NOX5 (450 nm, 85 mW/cm2) in miniSOG-NOX5-CHO-K1 cells, induces persistent calcium oscillations, which are blocked by DPI. In the presence of Trolox-C, miniSOG photodynamic action no longer induces any calcium increases in miniSOG-NOX5-CHO-K1 cells. DUOX2 in human thyroid follicular cells SW579 and in DUOX2-CHO-K1 cells is similarly activated by UVA irradiation and SALPC photodynamic action. These data together suggest that NOX is activated with a brief pulse of photodynamic action.
Collapse
Affiliation(s)
- Xiao Bing Xie
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yu Shu
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Zong Jie Cui
- College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
3
|
Sabato V, Beyens M, Toscano A, Van Gasse A, Ebo DG. Mast Cell-Targeting Therapies in Mast Cell Activation Syndromes. Curr Allergy Asthma Rep 2024; 24:63-71. [PMID: 38217824 DOI: 10.1007/s11882-023-01123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Provide an overview of the expanding landscape of mast cell (MC)-targeting treatments in mast cell activation syndromes (MCAS). RECENT FINDINGS Tyrosine-kinase inhibitors (TKIs) targeting wild-type and mutated KIT can efficiently induce MC depletion. Avapritinib and midostaurin can also temper IgE-mediated degranulation. Avapritinib has been recently approved by the FDA for the treatment of indolent systemic mastocytosis (ISM). Targeting activation pathways and inhibitory receptors is a promising therapeutic frontier. Recently, the anti Siglec-8 antibody lirentelimab showed promising results in ISM. MCAS is a heterogeneous disorder demanding a personalized therapeutic approach and, especially when presenting as anaphylaxis, has not been formally captured as outcome in prospective clinical trials with TKI. Long-term safety of TKI needs to be addressed. New drugs under investigation in diseases in which non-neoplastic MCs play a pivotal role can provide important inputs to identify new efficient and safe treatments for MCAS.
Collapse
Affiliation(s)
- Vito Sabato
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Michiel Beyens
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Alessandro Toscano
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Athina Van Gasse
- Department of Paediatrics, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Didier G Ebo
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium.
- Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
4
|
Metz M, Kolkhir P, Altrichter S, Siebenhaar F, Levi-Schaffer F, Youngblood BA, Church MK, Maurer M. Mast cell silencing: A novel therapeutic approach for urticaria and other mast cell-mediated diseases. Allergy 2024; 79:37-51. [PMID: 37605867 DOI: 10.1111/all.15850] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Chronic urticaria (CU) is a mast cell (MC)-dependent disease with limited therapeutic options. Current management strategies are directed at inhibiting IgE-mediated activation of MCs and antagonizing effects of released mediators. Due to the complexity and heterogeneity of CU and other MC diseases and mechanisms of MC activation-including multiple activating receptors and ligands, diverse signaling pathways, and a menagerie of mediators-strategies of MC depletion or MC silencing (i.e., inhibition of MC activation via binding of inhibitory receptors) have been developed to overcome limitations of singularly targeted agents. MC silencers, such as agonist monoclonal antibodies that engage inhibitory receptors (e.g., sialic acid-binding immunoglobulin-like lectin8 -[Siglec-8] [lirentelimab/AK002], Siglec-6 [AK006], and CD200R [LY3454738]), have reached preclinical and clinical stages of development. In this review, we (1) describe the role of MCs in the pathogenesis of CU, highlighting similarities with other MC diseases in disease mechanisms and response to treatment; (2) explore current therapeutic strategies, categorized by nonspecific immunosuppression, targeted inhibition of MC activation or mediators, and targeted modulation of MC activity; and (3) introduce the concept of MC silencing as an emerging strategy that could selectively block activation of MCs without eliciting or exacerbating on- or off-target, immunosuppressive adverse effects.
Collapse
Affiliation(s)
- Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
- Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Martin K Church
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| |
Collapse
|
5
|
Alternatives to Subcutaneous Immunotherapy for Allergic Rhinitis. ALLERGIES 2022. [DOI: 10.3390/allergies2010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Allergic rhinitis (AR) is an important public health issue worldwide due to its increasing prevalence and impact on quality of life, school performance, and work productivity. Subcutaneous immunotherapy (SCIT) is used to treat AR and involves repeated injections of allergen extracts. SCIT is used for cases of severe AR with symptoms that are not adequately controlled by medication, when the side effects of medication limit treatment options, or where the aim is to cure rather than symptomatically treat. Although SCIT is effective, it is not necessarily curative. Furthermore, there is also a low but present risk of systemic allergic reactions, with systemic side effects occurring in less than 0–1% of treated patients. Sublingual immunotherapy (SLIT) has emerged as an effective and safe alternative to SCIT. SCIT and SLIT are the only immunotherapies currently available for AR. In addition to sublingual administration as an alternative to SCIT, other routes of antigen administration have been attempted with the goal of increasing safety while maintaining efficacy. This review discusses the efficacies of SCIT and SLIT, their mechanisms, the utility of intralymphatic immunotherapy (ILIT) as an alternative route of antigen administration, and the potential for immunotherapy using other routes of antigen administration.
Collapse
|
6
|
Strategies for Mast Cell Inhibition in Food Allergy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:719-731. [PMID: 33380934 PMCID: PMC7757070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mast cells are tissue resident allergic effector cells that drive IgE-mediated food allergies. There are several steps leading to mast cell activation in the context of allergic disease that can be targeted to prevent mast cell activation and degranulation. These include blocking IgE-FcεRI crosslinking and type 2 cytokine receptor activation; modulating cell-surface neural chemical receptors; stabilizing mast cell membranes to prevent co-localization of activating receptors; impeding intracellular signaling; and engaging cell surface inhibitory receptors. This review highlights several ITIM-containing inhibitory mast cell surface receptors that could serve as pharmaceutical targets to prevent mast cell activation and degranulation in the context of food allergy. When activated, these ITIM-containing inhibitory receptors recruit the phosphatases SHP-1, SHP-2, and/or SHIP to dephosphorylate the tyrosine kinases responsible for activation signals downstream of the IgE-FcεRI complex. We describe several members of the Ig and Ig-like inhibitory receptor and C-type lectin inhibitory receptor superfamilies. Fundamental studies exploring the behavior of these receptors within the context of experimental food allergy models are needed. A deeper understanding of how these receptors modulate mast cell-driven food allergic responses will shape future strategies to harness these inhibitory receptors to treat food allergy.
Collapse
|
7
|
Tan RJ, Sun HQ, Zhang W, Yuan HM, Li B, Yan HT, Lan CH, Yang J, Zhao Z, Wu JJ, Wu C. A 21-35 kDa Mixed Protein Component from Helicobacter pylori Activates Mast Cells Effectively in Chronic Spontaneous Urticaria. Helicobacter 2016; 21:565-574. [PMID: 27061753 DOI: 10.1111/hel.12312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) seem to involve in the etiology of chronic spontaneous urticaria (CSU). But studies of the pathogenic mechanism are very little. METHODS In this study, we detected the serum-specific anti-H. pylori IgG and IgE antibodies in 211 CSU and 137 normal subjects by enzyme-linked immunosorbent assay (ELISA), evaluated the direct activation effects of H. pylori preparations and its protein components on human LAD2 mast cell line in vitro, and analyzed the specific protein ingredients and functions of the most effective H. pylori mixed protein component using liquid chromatography-mass spectrometry and ELISA assay. RESULTS In CSU patients, the positive rate of anti-H. pylori IgG positive rate was significantly higher than that in normal controls, and the anti-H. pylori IgE levels had no statistical difference between H. pylori-infected patients with and without CSU. Further studies suggested that H. pylori preparations can directly activate human LAD2 mast cell line in a dose-dependent manner and its most powerful protein component was a mixture of 21-35 kDa proteins. Moreover, the 21-35 kDa mixed protein component mainly contained 23 kinds of proteins, which can stimulate the release of histamine, TNF-a, IL-3, IFN-γ, and LTB4 by LAD2 cells in a dose-dependent or time-dependent manner. CONCLUSIONS A 21-35 kDa mixed protein component should be regarded as the most promising pathogenic factor contributing to the CSU associated with H. pylori infection.
Collapse
Affiliation(s)
- Ran-Jing Tan
- Department of Dermatology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China.,Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, The Third Military Medical University, Chongqing, 400038, China
| | - He-Qiang Sun
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, The Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Dermatology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China
| | - Han-Mei Yuan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, The Third Military Medical University, Chongqing, 400038, China
| | - Bin Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, The Third Military Medical University, Chongqing, 400038, China
| | - Hong-Tao Yan
- Department of Dermatology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China
| | - Chun-Hui Lan
- Department of Gastroenterology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China
| | - Jun Yang
- Department of Gastroenterology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China
| | - Zhuo Zhao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, The Third Military Medical University, Chongqing, 400038, China
| | - Jin-Jin Wu
- Department of Dermatology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China
| | - Chao Wu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, The Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
8
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
9
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
10
|
ZHAN B, SANTIAGO H, KEEGAN B, GILLESPIE P, XUE J, BETHONY J, De OLIVEIRA LM, JIANG D, DIEMERT D, XIAO SH, JONES K, FENG X, HOTEZ PJ, BOTTAZZI ME. Fusion of Na-ASP-2 with human immunoglobulin Fcγ abrogates histamine release from basophils sensitized with anti-Na-ASP-2 IgE. Parasite Immunol 2012; 34:404-11. [DOI: 10.1111/j.1365-3024.2012.01371.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Azouz NP, Matsui T, Fukuda M, Sagi-Eisenberg R. Decoding the regulation of mast cell exocytosis by networks of Rab GTPases. THE JOURNAL OF IMMUNOLOGY 2012; 189:2169-80. [PMID: 22826321 DOI: 10.4049/jimmunol.1200542] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exocytosis is a key event in mast cell functions. By this process, mast cells release inflammatory mediators, contained in secretory granules (SGs), which play important roles in immunity and wound healing but also provoke allergic and inflammatory responses. The mechanisms underlying mast cell exocytosis remained poorly understood. An essential step toward deciphering the mechanisms behind exocytosis is the identification of the cellular components that regulate this process. Because Rab GTPases regulate specific trafficking pathways, we screened 44 Rabs for their functional impacts on exocytosis triggered by the FcεRI or combination of Ca ²⁺ ionophore and phorbol ester. Because exocytosis involves the continuous reorganization of the actin cytoskeleton, we also repeated our screen in the presence of cytochalasin D that inhibits actin polymerization. In this paper, we report on the identification of 30 Rabs as regulators of mast cell exocytosis, the involvement of 26 of which has heretofore not been recognized. Unexpectedly, these Rabs regulated exocytosis in a stimulus-dependent fashion, unless the actin skeleton was disrupted. Functional clustering of the identified Rabs suggested their classification as Rabs involved in SGs biogenesis or Rabs that control late steps of exocytosis. The latter could be further divided into Rabs that localize to the SGs and Rabs that regulate transport from the endocytic recycling compartment. Taken together, these findings unveil the Rab networks that control mast cell exocytosis and provide novel insights into their mechanisms of action.
Collapse
Affiliation(s)
- Nurit P Azouz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
12
|
Ohtsu H. Histamine synthesis and lessons learned from histidine decarboxylase deficient mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 709:21-31. [PMID: 21618884 DOI: 10.1007/978-1-4419-8056-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This chapter summarizes the information about the transcriptional regulation of histidine decarboxylase (HDC), which is the catabolic enzyme of histamine synthesis, and the activity of histamine in vivo as clarified using HDC gene deficient mice (HDC-KO). The research of the regulatory mechanism of histamine synthesis has been focused on transcriptional and posttranslational aspects. The generation ofHDC-KO mice clarified several new pathophysiological functions of histamine. It is now recognized that the activity of histamine is not limited to allergic, peptic and neurological functions as in the old paradigm, but extends to other fields such as cardiology, immunology and infectious diseases. Therefore, this chapter will focus on these newly revealed functions of histamine. For example, histamine was known to be involved in the effector phase of allergic responses, but a role has now been shown in the sensitization phases and in innate immunity. In the allergic bronchial asthma model using HDC-KO mice it was found that histamine positively controls eosinophilia, but not bronchial hypersensitivity. The effect on eosinophils was afterwards shown to be mediated through the activity of the histamine H4 receptor. The recent advances in the understanding of histamine synthesis and the activity of HDC have dramatically expanded our understanding of the scope of histamine function.
Collapse
Affiliation(s)
- Hiroshi Ohtsu
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
13
|
Xiao W, Kashiwakura JI, Hong H, Yasudo H, Ando T, Maeda-Yamamoto M, Wu D, Kawakami Y, Kawakami T. Phospholipase C-β3 regulates FcɛRI-mediated mast cell activation by recruiting the protein phosphatase SHP-1. Immunity 2011; 34:893-904. [PMID: 21683628 DOI: 10.1016/j.immuni.2011.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 01/18/2011] [Accepted: 04/08/2011] [Indexed: 01/04/2023]
Abstract
Mast cells are major effectors in high-affinity IgE receptor (FcɛRI)-dependent allergic reactions. Here we show that phospholipase C (PLC)-β3 is crucial for FcɛRI-mediated mast cell activation. Plcb3(-/-) mice showed blunted FcɛRI-dependent late-phase, but not acute, anaphylactic responses and airway inflammation. Accordingly, FcɛRI stimulation of Plcb3(-/-) mast cells exhibited reduced cytokine production but normal degranulation. Reduced cytokine production in Plcb3(-/-) cells could be accounted for by increased activity of the negative regulatory Src family kinase Lyn and reduced activities of the positive regulatory protein kinases MAPKs. Mechanistically, PLC-β3 constitutively interacts with FcɛRI, Lyn, and SHP-1 (protein phosphatase). SHP-1 probably recognizes its substrates Lyn and MAPKs via the recently described kinase tyrosine-based inhibitory motif, KTIM. Consistent with PLC-β3- and SHP-1-mediated repression of Lyn activity by dephosphorylation at Tyr396, FcɛRI-mediated phenotypes were similar in Plcb3(-/-) and SHP-1 mutant mast cells. Thus, we have defined a PLC-β3- and SHP-1-mediated signaling pathway for FcɛRI-mediated cytokine production.
Collapse
Affiliation(s)
- Wenbin Xiao
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hou S, Pauls SD, Liu P, Marshall AJ. The PH domain adaptor protein Bam32/DAPP1 functions in mast cells to restrain FcɛRI-induced calcium flux and granule release. Mol Immunol 2010; 48:89-97. [PMID: 20956018 DOI: 10.1016/j.molimm.2010.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 12/12/2022]
Abstract
Mast cell activation triggered by IgE binding to its high affinity receptor FcɛRI is highly dependent on signaling via phosphoinositde 3-kinases (PI3K). The phosphoinositide phosphatase SHIP controls mast cell activation by regulating accumulation of D3 phosphoinositide second messengers generated by PI3K. The PH domain adaptor protein Bam32/DAPP1 binds specifically to the D3 phosphoinositides PI(3,4,5)P3 and PI(3,4)P2 (the substrate and product of SHIP respectively). In B cells, Bam32 is phosphorylated by Src family kinases including Lyn, and is required for antigen receptor-induced activation; however the function of Bam32 in mast cells is unknown. Here we report that Bam32 is expressed in mast cells, is recruited to the plasma membrane upon stimulation and functions in FcɛRI signaling. Examination of bone marrow-derived mast cells (BMMC) isolated from Bam32-deficient mice revealed enhanced FcɛRI-induced degranulation and IL-6 production, indicating that Bam32 may function to restrain signaling via FcɛRI. These enhanced degranulation responses were PI3K-dependent, as indicated by blockade with PI3K inhibitors wortmannin or IC87114. While Bam32-deficient BMMC showed reduced FcɛRI-induced activation of mitogen-activated protein kinases ERK and JNK, FcɛRI-induced calcium flux and phosphorylation of PLCγ1 and Akt were increased. Bam32-deficient BMMC showed significantly reduced phosphorylation of Lyn and SHIP, indicating reduced activity of inhibitory signaling pathways. Together our results identify Bam32 as a novel regulator of mast cell activation, potentially functioning in membrane-proximal integration of positive and negative signaling pathways.
Collapse
Affiliation(s)
- Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | | | | | | |
Collapse
|
15
|
Abstract
Mast cells are pivotal in innate immunity and play an important role in amplifying adaptive immunity. Nonetheless, they have long been known to be central to the initiation of allergic disorders. This results from the dysregulation of the immune response whereby normally innocuous substances are recognized as non-self, resulting in the production of IgE antibodies to these 'allergens'. Preformed and newly synthesized inflammatory (allergic) mediators are released from the mast cell following allergen-mediated aggregation of allergen-specific IgE bound to the high-affinity receptors for IgE (FcepsilonRI). Thus, the process by which the mast cell is able to interpret the engagement of FcepsilonRI into the molecular events necessary for release of their allergic mediators is of considerable therapeutic interest. Unraveling these molecular events has led to the discovery of a functional class of proteins that are essential in organizing activated signaling molecules and in coordinating and compartmentalizing their activity. These so-called 'adapters' bind multiple signaling proteins and localize them to specific cellular compartments, such as the plasma membrane. This organization is essential for normal mast cell responses. Here, we summarize the role of adapter proteins in mast cells focusing on the most recent advances toward understanding how these molecules work upon FcepsilonRI engagement.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
16
|
Cady CT, Powell MS, Harbeck RJ, Giclas PC, Murphy JR, Katial RK, Weber RW, Hogarth PM, Johnson S, Bonvini E, Koenig S, Cambier JC. IgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both FcgammaRIIA and FcgammaRIIB. Immunol Lett 2010; 130:57-65. [PMID: 20004689 PMCID: PMC2849848 DOI: 10.1016/j.imlet.2009.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/13/2009] [Accepted: 12/02/2009] [Indexed: 02/08/2023]
Abstract
The majority of human subjects who receive subcutaneous allergen immunotherapy (IT) develop decreased sensitivity to their allergens. Multiple factors may explain the efficacy of IT, some evidence support a role for allergen specific IgG antibodies. There is controversy whether such antibodies act by blocking allergen binding to IgE or initiation of active inhibitory signaling through low affinity IgG receptors (FcgammaRIIB) on mast cells and basophils. In this study, we addressed this question using peripheral blood from cat non-allergic, cat allergic, and immunotherapy-treated cat allergic subjects. Blood from subjects who received IT contain IgG antibodies that mediate inhibition of basophil activation by a mechanism that is blocked by antibodies specific for the inhibitory IgG receptor FcgammaRIIB. Surprisingly, inhibition was also blocked by aglycosylated, putatively non-FcR binding, antibodies that are specific for the FcgammaRIIA, suggesting a contribution of this receptor to the observed effect. Consistent with a cooperative effect, ex vivo basophils were found to express both IgG receptors. In other studies we found that basophils from subjects who were both chronically exposed to allergen and were producing both cat allergen specific IgE and IgG, are hyporesponsive to allergen. These studies confirm that IgG antibodies produced during IT act primarily by stimulation of inhibitory signaling, and suggest that FcgammaRIIA and FcgammaRIIB function cooperatively in activation of inhibitory signaling circuit. We suggest that under normal physiologic conditions in which only a small proportion of FcepsilonRI are occupied by IgE of a single allergen specificity, FcgammaRIIA co-aggregation may, by providing activated Lyn, be required to fuel activation of inhibitory FcgammaRIIB function.
Collapse
Affiliation(s)
- Carol T Cady
- Division of Allergy & Immunology, National Jewish Health, Denver, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yamashita K, Gon Y, Shimokawa T, Nunomura S, Endo D, Miyata N, Hashimoto S, Van Lint J, Ra C. High affinity receptor for IgE stimulation activates protein kinase D augmenting activator protein-1 activity for cytokine producing in mast cells. Int Immunopharmacol 2009; 10:277-83. [PMID: 19932769 DOI: 10.1016/j.intimp.2009.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
Abstract
Protein kinase D (PKD) is a serine-threonine kinase involved in the activation of a variety of cells. In mast cells, activation of PKD by cross-linking of high affinity receptor for IgE (FcepsilonRI) has been reported, but little is known for its effects on cytokine production. We investigated the roles of PKD on FcepsilonRI-induced activator protein-1 (AP-1) activation and proinflammatory cytokine productions in mast cells. Pharmacological inhibition of PKD strongly inhibited production of interleukin (IL)-13 and tumor necrosis factor (TNF)-alpha induced by FcepsilonRI stimulation, and the overexpression of PKD significantly increased the IL-13 and TNF-alpha production. Reporter assay revealed that the overexpression of PKD enhanced FcepsilonRI-induced IL-13 promoter activation, and that the 5'-flanking region of IL-13 gene from positions -110 to -52 was under the regulation of PKD. The overexpression of PKD enhanced the induction of AP-1 luciferase activity by FcepsilonRI stimulation, while it had no effect on luciferase activities dependent upon NF-kappaB and NF-AT activated by FcepsilonRI stimulation. In EMSA, c-Jun and c-Fos appear to be the major components of AP-1 complexes activated by FcepsilonRI stimulation. Moreover the overexpression of PKD strongly enhanced the phosphorylation of both c-Jun and c-Fos following FcepsilonRI stimulation. Although stress-activated protein kinase/c-Jun N-terminal kinase (JNK) is known to be an important regulator for c-Jun phosphorylation and AP-1 activation, overexpression and inhibition of PKD had no effects on JNK phosphorylation. These results suggest that PKD may play a pivotal role in FcepsilonRI-induced cytokine production in mast cells through the activation of c-Jun, c-Fos, and AP-1.
Collapse
Affiliation(s)
- Kyoko Yamashita
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mutschlechner S, Deifl S, Bohle B. Genetic allergen modification in the development of novel approaches to specific immunotherapy. Clin Exp Allergy 2009; 39:1635-42. [DOI: 10.1111/j.1365-2222.2009.03317.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Park SK, Qiao H, Beaven MA. Src-like adaptor protein (SLAP) is upregulated in antigen-stimulated mast cells and acts as a negative regulator. Mol Immunol 2009; 46:2133-9. [PMID: 19371953 DOI: 10.1016/j.molimm.2009.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 12/28/2022]
Abstract
Our studies in the RBL-2H3 mast cell line suggest that responses to antigen (Ag) are negatively modulated through upregulation of Src-like adaptor protein (SLAP). Ag stimulation of RBL-2H3 cells leads to increased levels of SLAP (but not SLAP2) transcripts and protein over a period of several hours. The effects of pharmacologic inhibitors indicate that the upregulation of SLAP is dependent on multiple signaling pathways. Knockdown of SLAP with anti-SLAP siRNA is associated with enhanced phosphorylation of Syk, the linker for activation of T cells (LAT), phospholipase C gamma, MAP kinases, and various transcription factors. Production of IL-3 and MCP-1, but not degranulation, is also enhanced. The upregulation of SLAP may thus serve to limit the duration of cytokine production in Ag-stimulated cells.
Collapse
Affiliation(s)
- Seung-Kiel Park
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
20
|
Abstract
Just over a century ago Paul Ehrlich received the Nobel Prize for his studies of immunity. This review describes one of his legacies, the histochemical description of the mast cell, and the research that has ensued since then. After a long period of largely descriptive studies, which revealed little about the biological role of the mast cell, the field was galvanized in the 1950s by the recognition that the mast cell was the main repository of histamine and a key participant in anaphylactic reactions. Although the mast cell was long-viewed in these terms, recent research has now shown that the mast cell also plays a key role in innate and adaptive immune responses, autoimmune disease, and possibly tissue homeostasis by virtue of its expression of a diverse array of receptors and biologically active products. In addition, the responsiveness of mast cells to immunological and pathological stimulants is highly modulated by the tissue cytokine environment and by synergistic, or inhibitory, interactions among the various mast cell receptor systems. This once enigmatic cell of Paul Ehrlich has proved to be both adaptable and multifunctional.
Collapse
Affiliation(s)
- Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Hei ZQ, Gan XL, Huang PJ, Wei J, Shen N, Gao WL. Influence of Ketotifen, Cromolyn Sodium, and Compound 48/80 on the survival rates after intestinal ischemia reperfusion injury in rats. BMC Gastroenterol 2008; 8:42. [PMID: 18808687 PMCID: PMC2564972 DOI: 10.1186/1471-230x-8-42] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 09/22/2008] [Indexed: 01/31/2023] Open
Abstract
Background Mast cells were associated with intestinal ischemia-reperfusion injury, the study was to observe the influence of Ketotifen, Cromolyn Sdium(CS), and Compound 48/80(CP) on the survival rates on the third day after intestinal ischemia-reperfusion injury in rats. Methods 120 healthy Sprague-Dawley rats were randomly divided into 5 groups, Sham-operated group (group S), model group (group M), group K, group C and group CP. Intestinal damage was triggered by clamping the superior mesenteric artery for 75 minutes, group K, C, and CP were treated with kotifen 1 mg·kg-1, CS 50 mg·kg-1, and CP 0.75 mg·kg-1 i.v. at 5 min before reperfusion and once daily for three days following reperfusion respectively. Survival rate in each group was recorded during the three days after reperfusion. All the surviving rats were killed for determining the concentration of serum glutamic-oxaloacetic transaminase(AST), glutamic pyruvic transaminase(ALT), the ratio of AST compare ALT(S/L), total protein(TP), albumin(ALB), globulin(GLB), the ratio of ALB compare GLB(A/G), phosphocreatine kinase(CK), lactate dehydrogenase(LDH), urea nitrogen(BUN) and creatinine(CRE) at the 3rd day after reperfusion. And ultrastructure of IMMC, Chiu's score, lung histology, IMMC counts, the levels of TNF-α, IL-1β, IL-6 and IL-10 of the small intestine were detected at the same time. Results Intestinal ischemia-reperfusion injury reduced the survival rate. The concentrations of TP, ALB and level of IL-10 in intestine in group M decreased significantly while the concentrations of S/L, LDH and the levels of IL-6 and TNF-α in intestine increased significantly compared with group S (P < 0.05). Treatment with Ketotifen and CS increased the survival rate compared with group M (P < 0.05), attenuated the down-regulation or up-regulation of the above index (P < 0.05). Treatment with CP decreased the survival rate on the 3rd day after reperfusion compared with group M(P < 0.05). Group K and C had better morphology in IMMC in the small intestine and in the lungs than in group M and CP, although the Chiu's score and IMMC counts remained the same in the five groups(P > 0.05). Conclusion Mast cell inhibition after ischemia prior to reperfusion and following reperfusion may decrease the multi-organ injury induced by intestine ischemia reperfusion, and increase the survival rates.
Collapse
Affiliation(s)
- Zi-qing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
22
|
Ohtsu H. Progress in allergy signal research on mast cells: the role of histamine in immunological and cardiovascular disease and the transporting system of histamine in the cell. J Pharmacol Sci 2008; 106:347-53. [PMID: 18360091 DOI: 10.1254/jphs.fm0070294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Since its discovery in 1910, histamine has been regarded as one of the most important biogenic amines in the medical and biological fields. This article summarizes the information about the role of histamine in allergic situations, atherosclerosis, and autoimmune encephalomyelitis, especially focusing on our study with histidine decarboxylase gene knockout mouse. In the allergic bronchial asthma model, histamine positively controls eosinophilia but not bronchial hypersensitivity. Histamine is proved to be an important substance that controls body temperature and respiration in systemic anaphylaxis but its role in controlling blood pressure is minor. Histamine also plays a role in inducing atherosclerosis in the mouse model. We showed that experimental autoimmune encephalomyelitis (EAE) is significantly more severe in histamine-deficient mice with diffuse inflammatory infiltrates in the brain and cerebellum, including a prevalent granulocytic component. Histamine is mainly produced in mast cells and basophils in hematopoietic cells. We've shown that mast cells not only produce histamine, but also uptake it from the environmental medium and release it by allergic stimulants. The protein used for the plasma transport of histamine in basophils was identified as organic cation transporter (OCT3).
Collapse
Affiliation(s)
- Hiroshi Ohtsu
- Applied Quantum Medical Engineering, Tohoku University School of Engineering, Japan.
| |
Collapse
|
23
|
Saxon A, Kepley C, Zhang K. "Accentuate the negative, eliminate the positive": engineering allergy therapeutics to block allergic reactivity through negative signaling. J Allergy Clin Immunol 2007; 121:320-5. [PMID: 18086492 DOI: 10.1016/j.jaci.2007.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/24/2022]
Abstract
By targeting the dominant-negative signaling receptor FcgammaRIIb expressed on proallergic cells, we have developed 2 novel platforms for the treatment of IgE-mediated allergic disease. First is a genetically engineered bifunctional human fusion protein GE2, which is comprised of the Fc portions of human IgE and IgG1 with an interposed flexible linker designed as a long-term parenteral allergen-nonspecific therapy. GE2 blocks the effector phase of the IgE response in vitro in mice and human subjects and in vivo in the skin and airway and systemically in mice and monkeys. Whether reactivity against human GE2 in human subjects will limit its applicability remains to be determined. The second platform is designed to provide a safer form of allergen-specific immunotherapy and consists of genetically engineered chimeric human Fcgamma-allergen proteins, with Fcgamma-Fel d 1 as the prototype. The allergen portion binds to specific IgE on FcepsilonRs, whereas the Fcgamma portion coaggregates inhibitory FcgammaRIIb and drives inhibition of allergic reactivity. Fcgamma-Fel d 1 blocked human mast cell Fel d 1-induced allergic reactivity in vitro and in vivo in murine models while functioning as an immunogen but not as an allergen.
Collapse
Affiliation(s)
- Andrew Saxon
- Department of Medicine, University of California, Los Angeles, CA 90095-16908, USA.
| | | | | |
Collapse
|
24
|
El Shikh MEM, El Sayed RM, Wu Y, Szakal AK, Tew JG. TLR4 on Follicular Dendritic Cells: An Activation Pathway That Promotes Accessory Activity. THE JOURNAL OF IMMUNOLOGY 2007; 179:4444-50. [PMID: 17878340 DOI: 10.4049/jimmunol.179.7.4444] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microbial molecular patterns engage TLRs and activate dendritic cells and other accessory cells. Follicular dendritic cells (FDCs) exist in resting and activated states, but are activated in germinal centers, where they provide accessory function. We reasoned that FDCs might express TLRs and that engagement might activate FDCs by up-regulating molecules important for accessory activity. To test this hypothesis, TLR4 expression on FDCs was studied in situ with immunohistochemistry, followed by flow cytometry and RT-PCR analysis. TLR4 was expressed on FDC reticula in situ, and flow cytometry indicated that TLR4 was expressed on surface membranes and TLR4 message was readily apparent in FDCs by RT-PCR. Injecting mice or treating purified FDCs with LPS up-regulated molecules important for accessory activity including, FDC-Fc gammaRIIB, FDC-ICAM-1, and FDC-VCAM-1. Treatment of purified FDCs with LPS also induced intracellular phospho-IkappaB-alpha, indicating NF-kappaB activation, and that correlated with increased Fc gammaRIIB, ICAM-1, and VCAM-1. FDCs in C3H/HeJ mice were not activated with LPS even when mice were reconstituted with C3H/HeN leukocytes, suggesting that engagement of FDC-TLR4 is necessary for activation. Moreover, activated FDCs exhibited increased accessory activity in anti-OVA recall responses in vitro, and the FDC number could be reduced 4-fold if they were activated. In short, we report expression of TLR4 on FDCs for the first time and that engagement of FDC-TLR4 activated NF-kappaB, up-regulated expression of molecules important in FDC accessory function, including Fc gammaRIIB, ICAM-1, and VCAM-1, as well as FDC accessory activity in promoting recall IgG responses.
Collapse
|
25
|
Zhang K, Zhu D, Kepley C, Terada T, Saxon A. Chimeric human fcgamma-allergen fusion proteins in the prevention of allergy. Immunol Allergy Clin North Am 2007; 27:93-103. [PMID: 17276881 PMCID: PMC1868457 DOI: 10.1016/j.iac.2006.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Allergic responses are strongly associated with Th2-type immune responses, and modulation of the skewed Th2 response toward a more balanced response is the major goal of allergen immunotherapy (IT) in allergic disorders. To achieve this goal, several approaches have been tested. The authors previously showed that a human immunoglobulin (Ig) Fcgamma-Fcvarepsilon fusion protein (GE2) that directly cross-links FcvarepsilonRI and FcgammaRIIb on human mast cells and basophils was able to inhibit degranulation, and they reasoned that human gamma-allergen fusion protein would achieve a similar inhibitory effect in an allergen-specific fashion while preserving the immunogenicity of the allergen component. Therefore, the authors constructed and developed a human-cat chimeric fusion protein composed of the human Fcgamma1 and the cat allergen Fel d1 (Felis domesticus) for cat allergen-specific IT. This article summarizes the therapeutic features and potential of this novel fusion protein for allergic IT.
Collapse
Affiliation(s)
- Ke Zhang
- The Hart and Louise Lyon Laboratory, Division of Clinical Immunology/Allergy, Department of Medicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680, USA. Tel: (310) 206-4342.
| | - Daocheng Zhu
- Division of Allergy-Immunology, Department of Medicine, M-215, Northwestern University, 240 East Huron Street, Chicago, IL 60611, USA. Phone: (312) 503-7685
| | - Christopher Kepley
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Virginia Commonwealth University health system, 1112 clay street, Richmond, VA 23298-0263, USA. Tel: (804) 828-9685
| | - Tetsuya Terada
- Department of Otorhinolaryngology, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan. Tel: +81 726 84 6539
| | - Andrew Saxon
- The Hart and Louise Lyon Laboratory, Division of Clinical Immunology/Allergy, Department of Medicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680, USA. Tel: (310) 206-4342.
| |
Collapse
|
26
|
El Shikh ME, El Sayed R, Szakal AK, Tew JG. Follicular dendritic cell (FDC)-FcgammaRIIB engagement via immune complexes induces the activated FDC phenotype associated with secondary follicle development. Eur J Immunol 2006; 36:2715-24. [PMID: 17013985 DOI: 10.1002/eji.200636122] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Follicular dendritic cell (FDC)-FcgammaRIIB levels are up-regulated 1-3 days after challenge of actively immunized mice with Ag. This kinetics suggested that memory cells are not driving this response, prompting the hypothesis that immune complex (IC)-FDC interactions lead to FDC activation. To test this, mice passively immunized with anti-OVA Ab were OVA challenged to produce IC. After 3 days, levels of IC, FcgammaRIIB, ICAM-1, and VCAM-1 on FDC were analyzed. FDC were also stimulated with IC in vitro, and mRNA for FcgammaRIIB, ICAM-1, and VCAM-1 was quantified by quantitative RT-PCR. IC labeling in passively immunized WT and FcgammaRIIB-/- mice revealed five to six FDC-reticula per LN midsagittal section. In WT mice, these IC-bearing FDC-reticula corresponded with FDC-reticula labeling for FcgammaRIIB, ICAM-1, and VCAM-1. Increases in these molecules on IC-stimulated FDC were confirmed by flow cytometry. In marked contrast, in FcgammaRIIB-/- mice, no increased VCAM-1 or ICAM-1 was seen on IC-bearing FDC-reticula or on purified FDC. Addition of IC in vitro resulted in dramatic increases in mRNA for FcgammaRIIB, ICAM-1 and VCAM-1 in WT FDC, but not in FDC from FcgammaRIIB-/- mice, 2.4G2-pretreated WT FDC, B cells, or macrophages. Thus, although FDC-FcgammaRIIB was not essential for IC trapping, engagement of FDC-FcgammaRIIB with IC initiated an FDC activation pathway.
Collapse
Affiliation(s)
- Mohey Eldin El Shikh
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | | | |
Collapse
|
27
|
Coaggregation of FcepsilonRI with FcgammaRIIB Inhibits Degranulation but Not Induction of Bcl-2 Family Members A1 and Bim in Mast Cells. Allergy Asthma Clin Immunol 2006; 2:87-97. [PMID: 20525153 PMCID: PMC2876181 DOI: 10.1186/1710-1492-2-3-87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
: The aggregation of high-affinity immunoglobulin E (IgE) receptors (FcepsilonRI) on mast cells is a critical event in the initiation of an allergic reaction. Coengagement of FcepsilonRI with immunoglobulin G (IgG) low-affinity receptor FcgammaRIIB/CD32 inhibits degranulation and the release of inflammatory mediators from mast cells and has therefore been proposed as a new therapeutic approach for the treatment of allergies. In this study, we investigated whether FcgammaRIIB, besides inhibiting degranulation, negatively regulates other signalling pathways downstream of FcepsilonRI. For this, we determined the phosphorylation and/or expression of proteins involved in the regulation of mast-cell apoptosis. Coaggregation led to an attenuation of Akt phosphorylation but did not inhibit phosphorylation of transcription factor Foxo3a or its proapoptotic target, Bim. Similarly, FcepsilonRI-dependent expression of the prosurvival gene A1 was not affected by coaggregation. Our data demonstrate that coengagement of FcepsilonRI and FcgammaRIIB inhibits degranulation but not the signalling pathways regulating Bcl-2 family members Bim and A1.
Collapse
|
28
|
Zhao W, Kepley CL, Morel PA, Okumoto LM, Fukuoka Y, Schwartz LB. Fc gamma RIIa, not Fc gamma RIIb, is constitutively and functionally expressed on skin-derived human mast cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:694-701. [PMID: 16785568 PMCID: PMC2176083 DOI: 10.4049/jimmunol.177.1.694] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of FcgammaR by human skin-derived mast cells of the MC(TC) type was determined in the current study. Expression of mRNA was analyzed with microarray gene chips and RT-PCR; protein by Western blotting and flow cytometry; function by release of beta-hexosaminidase, PGD(2), leukotriene C(4) (LTC(4)), IL-5, IL-6, IL-13, GM-CSF, and TNF-alpha. FcgammaRIIa was consistently detected along with FcepsilonRI at the mRNA and protein levels; FcgammaRIIc was sometimes detected only by RT-PCR; but FcgammaRIIb, FcgammaRI, and FcgammaRIII mRNA and protein were not detected. FcgammaRIIa-specific mAb caused skin MC(TC) cells to degranulate and secrete PGD(2), LTC(4), GM-CSF, IL-5, IL-6, IL-13, and TNF-alpha in a dose-dependent fashion. FcepsilonRI-specific mAb caused similar amounts of each mediator to be released with the exception of LTC(4), which was not released by this agonist. Simultaneous but independent cross-linking of FcepsilonRI and FcgammaRIIa did not substantially alter mediator release above or below levels observed with each agent alone. Skin MC(TC) cells sensitized with dust-mite-specific IgE and IgG, when coaggregated by Der p2, exhibited enhanced degranulation compared with sensitization with either IgE or IgG alone. These results extend the known capabilities of human skin mast cells to respond to IgG as well as IgE-mediated signals.
Collapse
MESH Headings
- Antibodies, Monoclonal/metabolism
- Antigen-Antibody Complex/physiology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/physiology
- Cell Degranulation/immunology
- Cells, Cultured
- Cross-Linking Reagents/metabolism
- Gene Expression Regulation/immunology
- Humans
- Immunoglobulin E/physiology
- Immunoglobulin G/physiology
- Lung/cytology
- Lung/immunology
- Lung/metabolism
- Mast Cells/immunology
- Mast Cells/metabolism
- Nitrophenols/immunology
- Phenylacetates
- RNA, Messenger/biosynthesis
- Receptor Aggregation/immunology
- Receptors, IgG/biosynthesis
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/physiology
- Serum Albumin, Bovine/immunology
- Skin/cytology
- Skin/immunology
- Skin/metabolism
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298
| | - Christopher L. Kepley
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Lawrence M. Okumoto
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298
| | - Yoshihiro Fukuoka
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Lawrence B. Schwartz
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
- Address correspondence and reprint request to Dr. Lawrence B. Schwartz, Virginia Commonwealth University, P.O. Box 980263, Richmond, VA 23298. E-mail address:
| |
Collapse
|
29
|
Terada T, Zhang K, Belperio J, Londhe V, Saxon A. A chimeric human-cat Fcγ-Fel d1 fusion protein inhibits systemic, pulmonary, and cutaneous allergic reactivity to intratracheal challenge in mice sensitized to Fel d1, the major cat allergen. Clin Immunol 2006; 120:45-56. [PMID: 16473552 DOI: 10.1016/j.clim.2005.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 12/26/2005] [Accepted: 12/28/2005] [Indexed: 11/21/2022]
Abstract
Co-aggregation of FcepsilonRI with FcgammaRIIb can block FcepsilonRI-mediated reactivity and Fc gamma:allergen chimeric proteins, by co-crosslinking FcgammaRIIb to allergen-specific IgE bound to the FcepsilonRI can block allergen-specific reactivity. We evaluated whether a human cat chimeric fusion protein (GFD) composed of part of the human Ig G1 Fc fused to the major cat allergen (Fel d1) would function as allergen immunotherapy while not inducing acute allergic reactivity in mice sensitized to Fel d1. Injection of GFD 6 h prior to Fel d1 challenge acutely blocked systemic and skin reactivity to Fel d1 challenge while mice given subcutaneous immunotherapy with GFD at days 37, 38, and 39 showed inhibition of systemic, lung, and cutaneous reactivity to Fel d1 2 weeks later. GFD immunotherapy did not induce systemic reactivity. Overall, the Fcgamma-Fel d1 chimeric fusion protein blocked Fel d1-induced IgE-mediated reactivity but did not induce in vivo mediator release on its own; suggesting that this approach using allergen combined with Fc gamma1 so as to achieve inhibitory signaling may provide an enhanced form of allergen immunotherapy.
Collapse
Affiliation(s)
- Tetsuya Terada
- Department of Otorhinolaryngology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | | | |
Collapse
|
30
|
Zhu M, Rhee I, Liu Y, Zhang W. Negative Regulation of FcϵRI-mediated Signaling and Mast Cell Function by the Adaptor Protein LAX. J Biol Chem 2006; 281:18408-13. [PMID: 16672218 DOI: 10.1074/jbc.m601535200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
LAX is a transmembrane adaptor protein that is expressed in both T and B cells. Upon stimulation via the antigen receptors, it is tyrosine-phosphorylated and binds Grb2 and the p85 subunit of phosphatidylinositol 3-kinase. Disruption of the Lax gene causes hyperresponsiveness in T and B lymphocytes. Here, we showed that LAX was also expressed in mast cells. Upon engagement of the Fc epsilonRI, LAX was also phosphorylated and interacted with Grb2 and p85. LAX-deficient mast cells were hyperresponsive to stimulation via the Fc epsilonRI, as evidenced by enhanced degranulation, p38 MAPK, Akt, and phosphatidylinositol 3-kinase activation. This hyperresponsiveness was likely a consequence of reduced LAB expression after sensitization of mast cells with anti-dinitrophenyl IgE. In addition, Fc epsilonRI-mediated cytokine production and cell survival were also enhanced. These data suggested that LAX negatively regulates mast cell function.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
31
|
van der Heijden M, Kraneveld A, Redegeld F. Free immunoglobulin light chains as target in the treatment of chronic inflammatory diseases. Eur J Pharmacol 2006; 533:319-26. [PMID: 16455071 DOI: 10.1016/j.ejphar.2005.12.065] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/21/2022]
Abstract
Immunoglobulin free light chains were long considered irrelevant bystander products of immunoglobulin synthesis by B lymphocytes. To date, different studies suggest that free light chains may have important functional activities. For instance, it has been shown that immunoglobulin free light chains can elicit mast cell-driven hypersensitivity responses leading to asthma and contact sensitivity. Free light chains also show other biologic actions such as anti-angiogenic and proteolytic activities or can be used as specific targeting vehicles. Levels of free light chain levels in body fluids increase markedly in diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. In this review, we will focus on the unexpected biological activities of immunoglobulin free light chains with special attention to its possible role in the induction of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maurice van der Heijden
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | |
Collapse
|
32
|
Kraft S, Novak N. Fc receptors as determinants of allergic reactions. Trends Immunol 2006; 27:88-95. [PMID: 16324885 DOI: 10.1016/j.it.2005.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 10/24/2005] [Accepted: 11/17/2005] [Indexed: 11/27/2022]
Abstract
Activation of the high-affinity receptor for IgE (FcepsilonRI) on allergic effector cells induces a multitude of positive signals via immunoreceptor tyrosine-based activation motifs, which leads to the rapid manifestation of allergic inflammatory reactions. As a counterbalance, the coaggregation of the IgG receptor FcgammaRIIB mediates inhibitory signals via immunoreceptor tyrosine-based inhibition motifs. Advances in the positive and negative regulation of Fc receptor expression and signaling have shed light on the role of Fc receptors in our immune system, indicating them to be bifunctional, inhibitory and activating structures. Based on these findings, exciting new therapeutic strategies have been developed, such as the use of chimeric fusion proteins, which concomitantly activate FcepsilonRI and FcgammaRIIB. These new approaches successfully take advantage of the bivalent character of Fc receptors and pave the way for innovative strategies to modulate allergic immune reactions.
Collapse
Affiliation(s)
- Stefan Kraft
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
33
|
Velin D, Bachmann D, Bouzourene H, Michetti P. Mast cells are critical mediators of vaccine-induced Helicobacter clearance in the mouse model. Gastroenterology 2005; 129:142-55. [PMID: 16012944 DOI: 10.1053/j.gastro.2005.04.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Despite the proven ability of immunization to prevent Helicobacter infection in mouse models, the precise mechanism of protection has remained elusive. METHODS We explored the cellular events associated with Helicobacter clearance from the stomach following vaccination by flow cytometry analysis and histological and molecular studies. RESULTS Kinetic studies showed that the infection is undetectable in vaccinated mice at day 5 postbacterial challenge. Flow cytometry analysis showed that the percentages of mast cells (CD3 - CD117 + ) increased in the lymphoid cells isolated from the stomach at day 4 postchallenge in urease + cholera toxin (CT)-vaccinated mice in comparison with mice administered with CT alone (9.4% +/- 4.4% and 3.1% +/- 1%, respectively, for vaccinated and CT administered, n = 5; P < .01). Quantitative PCR analysis showed an increased messenger RNA (mRNA) expression of the mast cell proteases 1 and 2 at day 5 postchallenge in the stomach of vaccinated mice. In contrast to wild-type mice, mast cell-deficient mice (W/W v mice) were not protected from H felis colonization after vaccination. Indeed only 1 out of 12 vaccinated W/W v mice showed a negative urease test. Remarkably, vaccinated W/W v mice reconstituted with cultured bone marrow-derived mast cells recovered the ability to clear the infection after vaccination (8 out of 10 mast cell-reconstituted mice showed negative urease tests [ P < .006 as compared with wild-type mice]). CONCLUSIONS These experiments show that mast cells are, unexpectedly, critical mediators of anti- Helicobacter vaccination.
Collapse
Affiliation(s)
- Dominique Velin
- Service de Gastro-entérologie et d'Hépatologie, CHUV, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
34
|
Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CMM, Tsai M. Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005; 23:749-86. [PMID: 15771585 DOI: 10.1146/annurev.immunol.21.120601.141025] [Citation(s) in RCA: 942] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on recent progress in our understanding of how mast cells can contribute to the initiation, development, expression, and regulation of acquired immune responses, both those associated with IgE and those that are apparently expressed independently of this class of Ig. We emphasize findings derived from in vivo studies in mice, particularly those employing genetic approaches to influence mast cell numbers and/or to alter or delete components of pathways that can regulate mast cell development, signaling, or function. We advance the hypothesis that mast cells not only can function as proinflammatory effector cells and drivers of tissue remodeling in established acquired immune responses, but also may contribute to the initiation and regulation of such responses. That is, we propose that mast cells can also function as immunoregulatory cells. Finally, we show that the notion that mast cells have primarily two functional configurations, off (or resting) or on (or activated for extensive mediator release), markedly oversimplifies reality. Instead, we propose that mast cells are "tunable," by both genetic and environmental factors, such that, depending on the circumstances, the cell can be positioned phenotypically to express a wide spectrum of variation in the types, kinetics, and/or magnitude of its secretory functions.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Zhu D, Kepley CL, Zhang K, Terada T, Yamada T, Saxon A. A chimeric human-cat fusion protein blocks cat-induced allergy. Nat Med 2005; 11:446-9. [PMID: 15793580 DOI: 10.1038/nm1219] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 03/03/2005] [Indexed: 11/09/2022]
Abstract
Animal allergens are an important cause of asthma and allergic rhinitis. We designed and tested a chimeric human-cat fusion protein composed of a truncated human IgG Fcgamma1 and the major cat allergen Fel d1, as a proof of concept for a new approach to allergy immunotherapy. This Fcgamma-Fel d1 protein induced dose-dependent inhibition of Fel d1-driven IgE-mediated histamine release from cat-allergic donors' basophils and sensitized human cord blood-derived mast cells. Such inhibition was associated with altered Syk and ERK signaling. The Fcgamma-Fel d1 protein also blocked in vivo reactivity in FcepsilonRIalpha transgenic mice passively sensitized with human IgE antibody to cat and in Balb/c mice actively sensitized against Fel d1. The Fcgamma-Fel d1 protein alone did not induce mediator release. Chimeric human Fcgamma-allergen fusion proteins may provide a new therapeutic platform for the immune-based therapy of allergic disease.
Collapse
Affiliation(s)
- Daocheng Zhu
- The Hart and Louise Lyon Laboratory, Division of Clinical Immunology/Allergy, Department of Medicine, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, California 90095-1680, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Cherwinski HM, Murphy CA, Joyce BL, Bigler ME, Song YS, Zurawski SM, Moshrefi MM, Gorman DM, Miller KL, Zhang S, Sedgwick JD, Phillips JH. The CD200 receptor is a novel and potent regulator of murine and human mast cell function. THE JOURNAL OF IMMUNOLOGY 2005; 174:1348-56. [PMID: 15661892 DOI: 10.4049/jimmunol.174.3.1348] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD200R is a member of the Ig supergene family that is primarily expressed on myeloid cells. Recent in vivo studies have suggested that CD200R is an inhibitory receptor capable of regulating the activation threshold of inflammatory immune responses. Here we provide definitive evidence that CD200R is expressed on mouse and human mast cells and that engagement of CD200R by agonist Abs or ligand results in a potent inhibition of mast cell degranulation and cytokine secretion responses. CD200R-mediated inhibition of FcepsilonRI activation was observed both in vitro and in vivo and did not require the coligation of CD200R to FcepsilonRI. Unlike the majority of myeloid inhibitory receptors, CD200R does not contain a phosphatase recruiting inhibitory motif (ITIM); therefore, we conclude that CD200R represents a novel and potent inhibitory receptor that can be targeted in vivo to regulate mast cell-dependent pathologies.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Surface/biosynthesis
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Degranulation/immunology
- Cells, Cultured
- Cytokines/antagonists & inhibitors
- Cytokines/metabolism
- Down-Regulation/immunology
- Fetal Blood/cytology
- Fetal Blood/immunology
- Fetal Blood/metabolism
- Humans
- Mast Cells/immunology
- Mast Cells/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Orexin Receptors
- Receptors, Cell Surface
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgE/physiology
- Skin/cytology
- Skin/immunology
- Skin/metabolism
Collapse
|
37
|
Lin TJ, Befus AD. Mast Cells In Mucosal Defenses and Pathogenesis. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Yasunaga S, Tsukui T, Masuda K, Ohno K, Tsujimoto H. CTLA-4 recombinant protein genetically fused to canine Fcepsilon receptor Ialpha enhances allergen specific lymphocyte responses in experimentally sensitized dogs. J Vet Med Sci 2004; 66:611-7. [PMID: 15240934 DOI: 10.1292/jvms.66.611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vaccination with a recombinant antigen fused to a targeting molecule is a potential strategy for inducing efficient immune responses. For the therapeutic purpose of allergic diseases in dogs, a DNA construct which expresses recombinant fusion protein with two functional domains, cytotoxic T lymphocyte antigen (CTLA-4) and Fcepsilon receptor Ialpha, was developed to bridge antigen-presenting cells and IgE-allergen complex. The recombinant fusion protein expressed by the DNA construct was demonstrated to retain the ability to bind monocytes in PBMC and dog IgE, respectively. Additionally, the recombinant protein induced enhancement of allergen-induced lymphoproliferation in experimentally sensitized dogs under conditions of suboptimal allergen stimulation. These results indicated that the DNA construct could enhance allergen-induced immune responses in vivo, implying its usefulness for perspective application in immunotherapy in dogs.
Collapse
Affiliation(s)
- Sho Yasunaga
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Zhu M, Liu Y, Koonpaew S, Granillo O, Zhang W. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL. ACTA ACUST UNITED AC 2004; 200:991-1000. [PMID: 15477350 PMCID: PMC2211849 DOI: 10.1084/jem.20041223] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Linker for activation of B cells (LAB, also called NTAL; a product of wbscr5 gene) is a newly identified transmembrane adaptor protein that is expressed in B cells, NK cells, and mast cells. Upon BCR activation, LAB is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT-deficient mice. To study the in vivo function of LAB, LAB-deficient mice were generated. Although disruption of the Lab gene did not affect lymphocyte development, it caused mast cells to be hyperresponsive to stimulation via the FcɛRI, evidenced by enhanced Erk activation, calcium mobilization, degranulation, and cytokine production. These data suggested that LAB negatively regulates mast cell function. However, mast cells that lacked both linker for activation of T cells (LAT) and LAB proteins had a more severe block in FcɛRI-mediated signaling than LAT−/− mast cells, demonstrating that LAB also shares a redundant function with LAT to play a positive role in FcɛRI-mediated signaling.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Cells of the immune system carry out diverse functions that are controlled by surface receptors for antigen, costimulatory molecules, cytokines, chemokines, and other ligands. A shared feature of signal transduction downstream of most receptors on immune cells, as in nonhematopoietic cell types, is the activation of phosphoinositide 3-kinase (PI3K). The mechanism by which this common signaling event is elicited by distinct receptors and contributes to unique functional outcomes is an intriguing puzzle. Understanding how specificity is achieved in PI3K signaling is of particular significance because altered regulation of this pathway is observed in many disease states, including leukemia and lymphoma. Here we review recent advances in the understanding of PI3K signaling mechanisms in different immune cells and receptor systems. We emphasize the concept that PI3K and its products are components of complex networks of interacting proteins and second messengers, rather than simple links in linear signaling cascades.
Collapse
Affiliation(s)
- Jonathan A Deane
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697, USA.
| | | |
Collapse
|
41
|
Abstract
Mast cells (MC) are highly granulated tissue dwelling cells, widely distributed throughout the body in connective tissues and on mucosal surfaces. They are derived from bone marrow progenitors that migrate into the blood and subsequently into the tissues, where they undergo final maturation. Mast cell proliferation, differentiation, survival and activation are regulated by stem cell factor, the ligand for the c-kit tyrosine kinase receptor, expressed on the mast cell surface. They release a large number of pro-inflammatory and immunoregulatory mediators after activation induced by either immunoglobulin E-dependent or immunoglobulin E-independent mechanisms. Mast cells have been most widely studied in the context of allergic reactions and parasite infections, but there is now compelling evidences that they are important players in innate and acquired immunity, wound healing, fibrosis, tumors and autoimmune diseases. This review will discuss current advances in these fields.
Collapse
Affiliation(s)
- I Puxeddu
- Faculty of Medicine, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | | | | | | |
Collapse
|
42
|
Gorska MM, Alam R. Signaling molecules as therapeutic targets in allergic diseases. J Allergy Clin Immunol 2003; 112:241-50; quiz 251. [PMID: 12897726 DOI: 10.1067/mai.2003.1667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A molecular understanding of physiologic and pathologic processes requires complete knowledge about the signal transduction mechanism of involved cells. Signal transduction research is a rapidly growing field in basic science. Unlike intercellular inflammatory mediators, signaling molecules show less functional redundancy. This allows inhibition of multiple cytokines/mediators by blocking one common signaling molecule. Interference with signaling pathways has shown significant potential for inhibition of fundamental processes as well as clinical phenotype of allergic diseases. The purpose of this review was to provide a theoretical classification of signaling molecules based on their function and to analyze various strategies for developing effective signaling inhibitors for allergic diseases.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy and Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO, USA
| | | |
Collapse
|
43
|
Robbie-Ryan M, Tanzola MB, Secor VH, Brown MA. Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1630-4. [PMID: 12574324 DOI: 10.4049/jimmunol.170.4.1630] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cell-deficient mice (W/W(v)) exhibit significantly reduced severity of experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis. In this study, the contribution of FcR-mediated mast cell activation to disease was examined. W/W(v) mice were reconstituted i.v. with bone marrow-derived mast cells (BMMCs) from wild-type mice or those lacking functional FcRs. Eight weeks later, EAE was induced by immunization with the myelin oligodendrocyte glycoprotein 35-55 peptide. Disease scores were analyzed in reconstituted mice and compared with age-matched W/W(v) mice and wild-type littermates. Mice reconstituted with FcRgamma(-/-) BMMCs or FcgammaRIII(-/-) BMMCs exhibited less severe clinical symptoms similar to W/W(v) controls, while reconstitution with FcRIIB(-/-) BMMCs resulted in disease significantly more severe than wild-type controls. Notably, mice reconstituted with FcgammaRIII(-/-) BMMC exhibit a relapsing-remitting course of disease. These data demonstrate that both activating and inhibitory FcRs expressed on mast cells influence the course of EAE.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantibodies/biosynthesis
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Encephalomyelitis, Autoimmune, Experimental/epidemiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Epitopes/immunology
- Female
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Incidence
- Mast Cells/immunology
- Mast Cells/metabolism
- Mast Cells/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Receptors, Fc/biosynthesis
- Receptors, Fc/deficiency
- Receptors, Fc/genetics
- Receptors, Fc/physiology
- Severity of Illness Index
Collapse
Affiliation(s)
- Michaela Robbie-Ryan
- Graduate Program in Immunology and Molecular Pathogenesis, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Two potential outcomes of dysregulated immunity are allergy and autoimmunity. Both are characterized by localized inflammation that leads to the injury and/or destruction of target tissues. Until recently, it was generally accepted that the mechanisms that govern these disease processes are quite disparate; however, new discoveries suggest that the mast cell may underlie much of the pathology in both these disease syndromes. Amongst these discoveries is the observation that mast cell-deficient mice exhibit significantly reduced disease severity compared to wild-type littermates in a murine model of multiple sclerosis (MS) and drugs that block mast cell function can improve clinical symptoms in this model. In addition, gene microarray analysis has revealed that the expression of several mast cell-specific genes is increased in the central nervous system plaques of MS patients. Although well established as effector cells in allergic inflammation, the location of mast cells and the wealth of inflammatory mediators they express make it likely that they have profound effects on many other autoimmune processes.
Collapse
Affiliation(s)
- Michaela Robbie-Ryan
- Graduate Program in Immunology and Molecular Pathogenesis, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
45
|
Abstract
IgE-dependent activation of mast cells is central to the allergic response. The engagement of IgE-occupied receptors initiates a series of molecular events that cause the release of preformed, and de novo synthesis of, allergic mediators. Recent investigations demonstrate a critical role for non-enzymatic proteins that facilitate the activation and coordination of biochemical signals required for mast cell activation. Among these LAT, SLP-76 and Gab2 are critically important as adapters that facilitate events initiated by IgE receptor-dependent activation of Src family protein tyrosine kinases, Lyn and Fyn. An evaluation of the role of these adapters points to complementary but independent steps in early signaling and the possibility that preference for one or another adaptor complex may result in selective mast cell responses.
Collapse
Affiliation(s)
- Juan Rivera
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-1820, USA.
| |
Collapse
|
46
|
Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2002; 2:773-86. [PMID: 12360215 DOI: 10.1038/nri914] [Citation(s) in RCA: 446] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mast cells and basophils are important effector cells in T helper 2 (T(H)2)-cell-dependent, immunoglobulin-E-associated allergic disorders and immune responses to parasites. The crosslinking of IgE that is bound to the high-affinity receptor Fc epsilon RI with multivalent antigen results in the aggregation of Fc epsilon RI and the secretion of products that can have effector, immunoregulatory or autocrine effects. This response can be enhanced markedly in cells that have been exposed to high levels of IgE, which results in the increased surface expression of Fc epsilon RI. Moreover, recent work indicates that monomeric IgE (in the absence of crosslinking) can render mast cells resistant to apoptosis induced by growth-factor deprivation in vitro and, under certain circumstances, can induce the release of cytokines. So, the binding of IgE to Fc epsilon RI might influence mast-cell and basophil survival directly or indirectly, and can also regulate cellular function.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Allergy, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | | |
Collapse
|
47
|
Makabe-Kobayashi Y, Hori Y, Adachi T, Ishigaki-Suzuki S, Kikuchi Y, Kagaya Y, Shirato K, Nagy A, Ujike A, Takai T, Watanabe T, Ohtsu H. The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis. J Allergy Clin Immunol 2002; 110:298-303. [PMID: 12170272 DOI: 10.1067/mai.2002.125977] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The systemic anaphylaxis reaction comprises various symptoms, including hypotension, changes in respiration pattern, and hypothermia. OBJECTIVE To elucidate the role of histamine in each of these symptoms, we induced the passive systemic anaphylaxis reaction in histidine decarboxylase gene knockout (HDC [-/-]) mice, which lack histamine. METHODS HDC(-/-) mice were generated by knocking out the HDC gene, which codes for the unique histamine-synthesizing enzyme. Twenty-four hours after the injection of IgE, HDC(+/+) and HDC(-/-) mice were injected with allergen and body temperature, blood pressure, and respiratory function were monitored in each mouse. RESULTS Blood pressure dropped in both the HDC(-/-) mice and the HDC(+/+) mice. In contrast, respiratory frequency dropped and the expiratory respiration time was elongated only in the HDC(+/+) mice. Body temperature was decreased in the HDC(+/+) mice and was practically unchanged in the HDC(-/-) mice. Histamine receptor antagonists blocked the body temperature drop in the HDC(+/+) mice. Intravenous histamine induced similar patterns of body temperature decrease in the HDC(+/+) mice and the HDC(-/-) mice. Mast cell-deficient W/W (v) mice did not show the decrease in body temperature; this suggests that the histamine that contributed to the decrease in body temperature was derived from mast cells. CONCLUSION According to the results of this investigation, in the passive systemic anaphylaxis reaction, respiratory frequency, expiratory time, and body temperature are shown to be controlled by the activity of histamine, but its contribution to blood pressure is negligible.
Collapse
Affiliation(s)
- Yoko Makabe-Kobayashi
- Department of Cellular Pharmacology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Arima K, Umeshita-Suyama R, Sakata Y, Akaiwa M, Mao XQ, Enomoto T, Dake Y, Shimazu SI, Yamashita T, Sugawara N, Brodeur S, Geha R, Puri RK, Sayegh MH, Adra CN, Hamasaki N, Hopkin JM, Shirakawa T, Izuhara K. Upregulation of IL-13 concentration in vivo by the IL13 variant associated with bronchial asthma. J Allergy Clin Immunol 2002; 109:980-7. [PMID: 12063528 DOI: 10.1067/mai.2002.124656] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND A substantial body of evidence exists to support the pivotal role of IL-13 in the pathogenesis of bronchial asthma. We recently found that a variant of the IL13 gene (Arg110Gln) is genetically associated with bronchial asthma, which is concordant with animal experiments using IL-13 in the development of asthma. OBJECTIVE To address whether the Gln110 variant of IL13 influences IL-13 function, contributing to the pathogenesis of bronchial asthma, we studied the functional properties of the variant. METHODS We generated 2 types of recombinant IL-13 proteins, the amino acids of which at 110 were arginine or glutamine, and analyzed the binding affinities with the IL-13 receptors, as well as the stability of the proteins. We further compared the relationship between the genotype and serum levels of IL-13. RESULTS The variant showed a lower affinity with the IL-13 receptor alpha2 chain, a decoy receptor, causing less clearance. The variant also demonstrated an enhanced stability in both human and mouse plasma. We further identified that asthmatic patients homozygous for the Gln110 variant have higher serum levels of IL-13 than those without the variant. CONCLUSION These results suggested that the variant might act as a functional genetic factor of bronchial asthma with a unique mechanism to upregulate local and systemic IL-13 concentration in vivo.
Collapse
Affiliation(s)
- Kazuhiko Arima
- Department of Biochemistry, Saga Medical School, Saga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhu D, Kepley CL, Zhang M, Zhang K, Saxon A. A novel human immunoglobulin Fc gamma Fc epsilon bifunctional fusion protein inhibits Fc epsilon RI-mediated degranulation. Nat Med 2002; 8:518-21. [PMID: 11984598 PMCID: PMC1866216 DOI: 10.1038/nm0502-518] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fc epsilon receptor 1 (Fc epsilon RI), have key roles in allergic diseases. Fc epsilon RI cross-linking stimulates the release of allergic mediators. Mast cells and basophils co-express Fc gamma RIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with Fc epsilon RI can block Fc epsilon RI-mediated reactivity. Here we designed, expressed and tested the human basophil and mast-cell inhibitory function of a novel chimeric fusion protein, whose structure is gamma Hinge-CH gamma 2-CH gamma 3-15aa linker-CH epsilon 2-CH epsilon 3-CH epsilon 4. This Fc gamma Fc epsilon fusion protein was expressed as the predicted 140-kappa D dimer that reacted with anti-human epsilon- and gamma-chain specific antibodies. Fc gamma Fc epsilon bound to both human Fc epsilon RI and Fc gamma RII. It also showed dose- and time-dependent inhibition of antigen-driven IgE-mediated histamine release from fresh human basophils sensitized with IgE directed against NIP (4-hydroxy-3-iodo-5-nitrophenylacetyl). This was associated with altered Syk signaling. The fusion protein also showed increased inhibition of human anti-NP (4-hydroxy-3-nitrophenylacetyl) and anti-dansyl IgE-mediated passive cutaneous anaphylaxis in transgenic mice expressing human Fc epsilon RI alpha. Our results show that this chimeric protein is able to form complexes with both Fc epsilon RI and Fc gamma RII, and inhibit mast-cell and basophil function. This approach, using a Fc gamma Fc epsilon fusion protein to co-aggregate Fc epsilon RI with a receptor containing an immunoreceptor tyrosine-based inhibition motif, has therapeutic potential in IgE- and Fc epsilon RI-mediated diseases.
Collapse
Affiliation(s)
- Daocheng Zhu
- The Hart and Louise Lyon Laboratory, Division of Clinical Immunology/Allergy, Department of Medicine, University of California Los Angeles School of Medicine, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
IgE receptors are implicated as important components of the immunological pathway in allergic and inflammatory diseases. Recent investigations have begun to unravel the structure, signal transduction and function of IgE receptors from different cell types in rodent and human systems. Studies of the mechanisms involved might provide opportunities for therapeutic intervention strategies in the treatment of allergic and hypersensitivity reactions.
Collapse
Affiliation(s)
- N Novak
- Department of Dermatology, Friedrich-Wilhelms-University of Bonn, D-53105, Bonn, Germany
| | | | | |
Collapse
|