1
|
Chen J, Ma C, Li J, Niu X, Fan Y. Collagen-mediated cardiovascular calcification. Int J Biol Macromol 2025; 301:140225. [PMID: 39864707 DOI: 10.1016/j.ijbiomac.2025.140225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions. The content and type of collagen are the result of a dynamic balance between synthesis and degradation. Unregulated processes can lead to adverse outcomes. During cardiovascular calcification, collagen not only serves as a scaffold for ectopic mineral deposition but also acts as a signal transduction pathway that mediates calcification by guiding the aggregation and nucleation of matrix vesicles and promoting the proliferation, migration and phenotypic changes of cells involved in the lesion. This review provides an overview of collagen subtypes in the cardiovascular system under physiological conditions and discusses their distribution. Additionally, we introduce pathological changes and mechanisms of collagen in blood vessels and heart valves. Then, the formation process and characteristic stages of cardiovascular calcification are described. Finally, we highlight the role of collagen in cardiovascular calcification, explore strategied for mediating calcification, and suggest potential directions for future research.
Collapse
Affiliation(s)
- Junlin Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China.
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
2
|
Del Toro K, Sayaman R, Thi K, Licon-Munoz Y, Hines WC. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function. PLoS Biol 2024; 22:e3002820. [PMID: 39499736 PMCID: PMC11537416 DOI: 10.1371/journal.pbio.3002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 11/07/2024] Open
Abstract
A fundamental question in biology, central to our understanding of cancer and other pathologies, is determining how different cell types coordinate to form and maintain tissues. Recognizing the distinct features and capabilities of the cells that compose these tissues is critical. Unfortunately, the complexity of tissues often hinders our ability to distinguish between neighboring cell types and, in turn, scrutinize their transcriptomes and generate reliable and tractable cell models for studying their inherently different biologies. We have recently introduced a novel method that permits the identification and purification of the 12 cell types that compose the human breast-nearly all of which could be reliably propagated in the laboratory. Here, we explore the nature of these cell types. We sequence mRNAs from each purified population and investigate transcriptional patterns that reveal their distinguishing features. We describe the differentially expressed genes and enriched biological pathways that capture the essence of each cell type, and we highlight transcripts that display intriguing expression patterns. These data, analytic tools, and transcriptional analyses form a rich resource whose exploration provides remarkable insights into the inner workings of the cell types composing the breast, thus furthering our understanding of the rules governing normal cell and tissue function.
Collapse
Affiliation(s)
- Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rosalyn Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
3
|
Jansen I, Cahalane R, Hengst R, Akyildiz A, Farrell E, Gijsen F, Aikawa E, van der Heiden K, Wissing T. The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics. Basic Res Cardiol 2024; 119:193-213. [PMID: 38329498 PMCID: PMC11008085 DOI: 10.1007/s00395-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.
Collapse
Affiliation(s)
- Imke Jansen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rachel Cahalane
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ranmadusha Hengst
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ali Akyildiz
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Frank Gijsen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim van der Heiden
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamar Wissing
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Tagzirt M, Rosa M, Corseaux D, Vincent F, Vincentelli A, Daoudi M, Jashari R, Staels B, Van Belle E, Susen S, Dupont A. Modulation of inflammatory M1-macrophages phenotype by valvular interstitial cells. J Thorac Cardiovasc Surg 2023; 166:e377-e389. [PMID: 36182586 DOI: 10.1016/j.jtcvs.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Aortic valve stenosis involves inflammation, excess deposition of a collagen-rich extracellular matrix, and calcification. Recent studies have shown that M1 or inflammatory macrophages derived from infiltrating monocytes promote calcification of valvular interstitial cells, the most prevalent cell type of the aortic valve. We hypothesized that valvular interstitial cells could modulate inflammatory macrophages phenotype. METHODS We first assessed macrophage phenotype in human aortic valve stenosis and control aortic valves from donors. Then, we examined profibrotic and inflammatory-related gene expression in valves and valvular interstitial cells. Finally, we investigated whether valvular interstitial cells can modify the phenotype of inflammatory macrophages. RESULTS Circulating monocytes and plasma transforming growth factor beta-1 levels of patients with aortic valve stenosis were significantly higher compared with patients without aortic valve stenosis. Histologic analysis of thickened spongiosa of the aortic valve from patients with aortic valve stenosis showed a high macrophage infiltration but a low matrix metalloproteinase-9 expression compared with control aortic valves. On the other hand, valvular interstitial cell culture of aortic valve stenosis exhibited a profibrotic phenotype with a high expression of transforming growth factor beta-1 and transforming growth factor beta-1/transforming growth factor beta-3 ratio but a decreased expression of the peroxisome proliferator-activated receptor gamma nuclear receptor. Valvular interstitial cell-conditioned media of aortic valve stenosis led to a decrease in enzymatic activity of matrix metalloproteinase-9 and an increase in production of collagen in inflammatory macrophages compared with valvular interstitial cell-conditioned media from control aortic valve donors. CONCLUSIONS These findings indicate that profibrotic valvular interstitial cells promote the imbalance of extracellular matrix remodeling by reducing matrix metalloproteinase-9 production on inflammatory macrophages that lead to excessive collagen deposition observed in aortic valve stenosis. Further investigation is needed to clarify the role of transforming growth factor beta-1/proliferator-activated receptor gamma nuclear receptor/matrix metalloproteinase-9 in aortic valve stenosis.
Collapse
Affiliation(s)
- Madjid Tagzirt
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Mickael Rosa
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Delphine Corseaux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Flavien Vincent
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - André Vincentelli
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | | | - Ramadan Jashari
- European Homograft Bank, Clinic Saint Jean, Brussels, Belgium
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Eric Van Belle
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Sophie Susen
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Annabelle Dupont
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
5
|
Ono N, Fujita T, Miki M, Nishiyama K, Izawa T, Aoyama T, Kuwamura M, Fujii H, Azuma YT. Interleukin-19 Gene-Deficient Mice Promote Liver Fibrosis via Enhanced TGF-β Signaling, and the Interleukin-19-CCL2 Axis Is Important in the Direction of Liver Fibrosis. Biomedicines 2023; 11:2064. [PMID: 37509702 PMCID: PMC10377488 DOI: 10.3390/biomedicines11072064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
IL-19 is a cytokine discovered by homologous searching with IL-10 and is produced by non-immune cells, such as keratinocytes, in addition to immune cells, such as macrophages. Liver fibrosis results from the inflammation and activation of hepatic stellate cells via chronic liver injury. However, the participation of IL-19 in liver fibrosis remains to be sufficiently elucidated. Our group studied the immunological function of IL-19 in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. IL-19 gene-deficient (KO) mice and body weight-matched wild-type (WT) mice were used. A liver fibrosis mouse model was created via CCl4 administration (two times per week) for 8 weeks. In CCl4-induced liver fibrosis, serum analysis revealed that IL-19 KO mice had higher ALT levels compared to WT mice. IL-19 KO mice had worse fibrosis, as assessed by morphological evaluation of total area stained positive with Azan and Masson trichrome. In addition, the expression of α-SMA was increased in liver tissues of IL-19 KO mice compared to WT mice. Furthermore, mRNA expression levels of TGF-β and α-SMA were enhanced in IL-19 KO mice compared to WT mice. In vitro assays revealed that IL-19-high expressing RAW264.7 cells inhibited the migration of NIH3T3 cells via the inhibited expression of CCL2 in the presence of CCl4 and IL-4. These findings indicate that IL-19 plays a critical role in liver fibrosis by affecting TGF-β signaling and the migration of hepatic stellate cells during liver injury. Enhancement of the IL-19 signaling pathway is a potential treatment for liver fibrosis.
Collapse
Affiliation(s)
- Naoshige Ono
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Takashi Fujita
- Molecular Toxicology Laboratory, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Mariko Miki
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Tomoko Aoyama
- Molecular Toxicology Laboratory, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Yasu-Taka Azuma
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| |
Collapse
|
6
|
Yap J, Irei J, Lozano-Gerona J, Vanapruks S, Bishop T, Boisvert WA. Macrophages in cardiac remodelling after myocardial infarction. Nat Rev Cardiol 2023; 20:373-385. [PMID: 36627513 DOI: 10.1038/s41569-022-00823-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
Myocardial infarction (MI), as a result of thrombosis or vascular occlusion, is the most prevalent cause of morbidity and mortality among all cardiovascular diseases. The devastating consequences of MI are compounded by the complexities of cellular functions involved in the initiation and resolution of early-onset inflammation and the longer-term effects related to scar formation. The resultant tissue damage can occur as early as 1 h after MI and activates inflammatory signalling pathways to elicit an immune response. Macrophages are one of the most active cell types during all stages after MI, including the cardioprotective, inflammatory and tissue repair phases. In this Review, we describe the phenotypes of cardiac macrophage involved in MI and their cardioprotective functions. A specific subset of macrophages called resident cardiac macrophages (RCMs) are derived from yolk sac progenitor cells and are maintained as a self-renewing population, although their numbers decrease with age. We explore sophisticated sequencing techniques that demonstrate the cardioprotective properties of this cardiac macrophage phenotype. Furthermore, we discuss the interactions between cardiac macrophages and other important cell types involved in the pathology and resolution of inflammation after MI. We summarize new and promising therapeutic approaches that target macrophage-mediated inflammation and the cardioprotective properties of RCMs after MI. Finally, we discuss future directions for the study of RCMs in MI and cardiovascular health in general.
Collapse
Affiliation(s)
- Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Javier Lozano-Gerona
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Selena Vanapruks
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Tianmai Bishop
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
7
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
8
|
Tillie RJHA, Theelen TL, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, Betsholtz C, Biessen EAL, Sluimer JC. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells 2021; 10:1746. [PMID: 34359916 PMCID: PMC8308020 DOI: 10.3390/cells10071746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Platelet-derived growth factor B (PDGF-B) is a mitogenic, migratory and survival factor. Cell-associated PDGF-B recruits stabilizing pericytes towards blood vessels through retention in extracellular matrix. We hypothesized that the genetic ablation of cell-associated PDGF-B by retention motif deletion would reduce the local availability of PDGF-B, resulting in microvascular pericyte loss, microvascular permeability and exacerbated atherosclerosis. Therefore, Ldlr-/-Pdgfbret/ret mice were fed a high cholesterol diet. Although plaque size was increased in the aortic root of Pdgfbret/ret mice, microvessel density and intraplaque hemorrhage were unexpectedly unaffected. Plaque macrophage content was reduced, which is likely attributable to increased apoptosis, as judged by increased TUNEL+ cells in Pdgfbret/ret plaques (2.1-fold) and increased Pdgfbret/ret macrophage apoptosis upon 7-ketocholesterol or oxidized LDL incubation in vitro. Moreover, Pdgfbret/ret plaque collagen content increased independent of mesenchymal cell density. The decreased macrophage matrix metalloproteinase activity could partly explain Pdgfbret/ret collagen content. In addition to the beneficial vascular effects, we observed reduced body weight gain related to smaller fat deposition in Pdgfbret/ret liver and adipose tissue. While dampening plaque inflammation, Pdgfbret/ret paradoxically induced systemic leukocytosis. The increased incorporation of 5-ethynyl-2'-deoxyuridine indicated increased extramedullary hematopoiesis and the increased proliferation of circulating leukocytes. We concluded that Pdgfbret/ret confers vascular and metabolic effects, which appeared to be protective against diet-induced cardiovascular burden. These effects were unrelated to arterial mesenchymal cell content or adventitial microvessel density and leakage. In contrast, the deletion drives splenic hematopoiesis and subsequent leukocytosis in hypercholesterolemia.
Collapse
Affiliation(s)
- Renée J. H. A. Tillie
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Thomas L. Theelen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Kim van Kuijk
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Jenny de Bruijn
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Judith C. Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
9
|
Neidhart B, Kowalska M, Valentin JDP, Gall FM, Ren Q, Riedl R, Pot S, Rottmar M. Tissue Inhibitor of Metalloproteinase (TIMP) Peptidomimetic as an Adjunctive Therapy for Infectious Keratitis. Biomacromolecules 2020; 22:629-639. [PMID: 33347749 DOI: 10.1021/acs.biomac.0c01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinase 9 (MMP-9) has a key role in many biological processes, and while it is crucial for a normal immune response, excessive release of this enzyme can lead to severe tissue damage, as evidenced by proteolytic digestion and perforation of the cornea during infectious keratitis. Current medical management strategies for keratitis mostly focus on antibacterial effects, but largely neglect the role of excess MMP activity. Here, a cyclic tissue inhibitor of metalloproteinase (TIMP) peptidomimetic, which downregulated MMP-9 expression both at the mRNA and protein levels as well as MMP-9 activity in THP-1-derived macrophages, is reported. A similar downregulating effect could also be observed on α smooth muscle actin (α-SMA) expression in fibroblasts. Furthermore, the TIMP peptidomimetic reduced Pseudomonas aeruginosa-induced MMP-9 activity in an ex vivo porcine infectious keratitis model and histological examinations demonstrated that a decrease of corneal thickness, associated with keratitis progression, was inhibited upon peptidomimetic treatment. The presented approach to reduce MMP-9 activity thus holds great potential to decrease corneal tissue damage and improve the clinical success of current treatment strategies for infectious keratitis.
Collapse
Affiliation(s)
- Berna Neidhart
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Malwina Kowalska
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Jules D P Valentin
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Flavio Max Gall
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Simon Pot
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
10
|
Tengryd C, Nielsen SH, Cavalera M, Bengtsson E, Genovese F, Karsdal M, Dunér P, Orho-Melander M, Nilsson J, Edsfeldt A, Gonçalves I. The proteoglycan mimecan is associated with carotid plaque vulnerability and increased risk of future cardiovascular death. Atherosclerosis 2020; 313:88-95. [DOI: 10.1016/j.atherosclerosis.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/31/2020] [Accepted: 09/10/2020] [Indexed: 01/28/2023]
|
11
|
Liu Z, Fitzgerald M, Meisinger T, Batra R, Suh M, Greene H, Penrice AJ, Sun L, Baxter BT, Xiong W. CD95-ligand contributes to abdominal aortic aneurysm progression by modulating inflammation. Cardiovasc Res 2020; 115:807-818. [PMID: 30428004 DOI: 10.1093/cvr/cvy264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 07/18/2018] [Accepted: 11/10/2018] [Indexed: 01/12/2023] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is one of the number of diseases associated with a prominent inflammatory cell infiltration, matrix protein degradation, and smooth muscle cell apoptosis. CD95 is an inflammatory mediator and an apoptosis inducer. Previous studies have shown elevated expression of CD95 or CD95L in the aortic tissue of AAA patients. However, how the CD95L/CD95 contributes to aneurysm degeneration and whether blocking its signalling would be beneficial to disease progression remains largely unknown. In the present study, we sought to determine the role of CD95L and its downstream target, caspase 8, in AAA progression. METHODS AND RESULTS By using the CaCl2 murine model of AAA, abdominal aortic aneurysms were induced in C57BL/6 mice. We found that both mRNA and protein levels of CD95L were increased in aneurysm tissue compared with NaCl-treated normal aortic tissue. To determine whether CD95L contributes directly to aneurysm formation, we used CD95L null (CD95L-/-) mice to examine their response to CaCl2 aneurysm induction. Six weeks after periaortic application of CaCl2, aortic diameters of CD95L-/- mice were significantly smaller compared to CaCl2-treated wild-type controls. Connective tissue staining of aortic sections from CaCl2-treated CD95L-/- mice showed minimal damage of medial elastic lamellae which was indistinguishable from the NaCl-treated sham control. Furthermore, CD95L deficiency attenuates macrophage and T cell infiltration into the aortic tissue. To study the role of CD95L in the myelogeous cells in AAA formation, we created chimaeric mice by infusing CD95L-/- bone marrow into sub-leathally irradiated wild-type mice (WT/CD95L-/-BM). As controls, wild-type bone marrow were infused into sub-leathally irradiated CD95L-/- mice (CD95L-/-/WTBM). WT/CD95L-/-BM mice were resistant to aneurysm formation compared to their controls. Inflammatory cell infiltration was blocked by the deletion of CD95L on myeloid cells. Western blot analysis showed the levels of caspase 8 in the aortas of CaCl2-treated wild-type mice were increased compared to NaCl-treated controls. CD95L deletion inhibited caspase 8 expression. Furthermore, a caspase 8-specific inhibitor was able to partially block aneurysm development in CaCl2-treated aneurysm models. CONCLUSION These studies demonstrated that inflammatory cell infiltration during AAA formation is dependent on CD95L from myelogeous cells. Aneurysm inhibition by deletion of CD95L is mediated in part by down-regulation of caspase 8.
Collapse
Affiliation(s)
- Zhibo Liu
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA.,Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Matthew Fitzgerald
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Trevor Meisinger
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Rishi Batra
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa Suh
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Harrison Greene
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexander J Penrice
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Lijun Sun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - B Timothy Baxter
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Wanfen Xiong
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Shuai T, Kan Y, Si Y, Fu W. High-risk factors related to the occurrence and development of abdominal aortic aneurysm. J Interv Med 2020; 3:80-82. [PMID: 34805912 PMCID: PMC8562180 DOI: 10.1016/j.jimed.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common and potentially dangerous vascular disease with many risk factors related to its occurrence and development. This review collects the results from recent studies of different comorbidities including hypertension, diabetes, and hyperlipidemia and summarizes their connections with AAA development and its underlying mechanisms. We believe that hypertension, diabetes, and hyperlipidemia can affect AAA occurrence and development, but more studies are needed to further explore the mechanisms.
Collapse
|
13
|
Borgel D, Bianchini E, Lasne D, Pascreau T, Saller F. Inflammation in deep vein thrombosis: a therapeutic target? Hematology 2019; 24:742-750. [DOI: 10.1080/16078454.2019.1687144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Delphine Borgel
- Laboratoire d’Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Elsa Bianchini
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Dominique Lasne
- Laboratoire d’Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Tiffany Pascreau
- Laboratoire d’Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - François Saller
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
14
|
The Basic Science and Molecular Mechanisms of Lung Injury and Acute Respiratory Distress Syndrome. Int Anesthesiol Clin 2019; 56:1-25. [PMID: 29227309 DOI: 10.1097/aia.0000000000000177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective. Matrix Biol 2018; 78-79:201-218. [PMID: 29792915 DOI: 10.1016/j.matbio.2018.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) due to atherosclerosis is a disease of chronic inflammation at both the systemic and the tissue level. CD44 has previously been implicated in atherosclerosis in both humans and mice. This multi-faceted receptor plays a critical part in the inflammatory response during the onset of CVD, though little is known of CD44's role during the latter stages of the disease. This review focuses on the role of CD44-dependent HA-dependent effects on inflammatory cells in several key processes, from disease initiation throughout the progression of atherosclerosis. Understanding how CD44 and HA regulate inflammation in atherogenesis is key in determining the utility of the CD44-HA axis as a therapeutic target to halt disease and potentially promote disease regression.
Collapse
|
16
|
Sabbione AC, Luna-Vital D, Scilingo A, Añón MC, González de Mejía E. Amaranth peptides decreased the activity and expression of cellular tissue factor on LPS activated THP-1 human monocytes. Food Funct 2018; 9:3823-3834. [DOI: 10.1039/c8fo00323h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunomodulatory activity of amaranth peptides is linked for the first time with their antithrombotic activity. Inhibition of tissue factor expression and the NF-κB pathway was observed after treatment with the peptides.
Collapse
Affiliation(s)
- Ana Clara Sabbione
- Food Science and Human Nutrition
- University of Illinois at Urbana-Champaign
- Urbana
- USA
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)
| | - Diego Luna-Vital
- Food Science and Human Nutrition
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Adriana Scilingo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)
- La Plata
- Argentina
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)
- La Plata
- Argentina
| | | |
Collapse
|
17
|
Bauer C, Niculescu-Morzsa E, Jeyakumar V, Kern D, Späth SS, Nehrer S. Chondroprotective effect of high-molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with M1 macrophages. J Inflamm (Lond) 2016; 13:31. [PMID: 27625590 PMCID: PMC5020517 DOI: 10.1186/s12950-016-0139-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/07/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is described by an imbalance between anabolic and catabolic processes in the affected joint. This dysregulation of metabolism affects not only chondrocytes within cartilage tissue but also the cells of the synovial membrane across the border of the joint. An important factor in OA is the low viscosity of the synovial fluid. High-molecular-weight hyaluronic acid (HA) can be used to increase the viscosity and also reduce inflammatory processes. The purpose was to establish an in vitro inflammation model and to evaluate the effects of high-molecular-weight HA in a co-cultivation inflammation model of osteoarthritic chondrocytes and M1 macrophages. METHODS For the establishment of the inflammation model THP-1 cells were, at first, differentiated to M0 macrophages and then activated to the M1 subtype after 5 days of resting period. Surface markers, cytokine release, and gene expression, were analyzed to examine the successful differentiation. In the inflammation model, the defined M1 macrophages were co-cultivated with osteoarthritic chondrocytes for 2 days, with and without the addition of 10 % HA and further analyzed for chondrogenic gene expression markers and the release of cytokines in the supernatant. RESULTS The differentiation and activation process was successful as M1 macrophages expressed higher levels of pro-inflammatory cytokines and specific genes. Similarly, the surface marker CD14 was significantly decreased compared to M0 macrophages. For the co-culture system, the analysis of gene expression showed that HA increased the expression of cartilage-specific genes while catabolic-encoding genes exhibited lower expression levels than the control group. This positive effect of HA was also demonstrated by the measurement of pro-inflammatory cytokines, as their level decreased. CONCLUSION Our study implies that high-molecular-weight HA has a chondroprotective effect in the present co-cultivation inflammation model, as it decreases pro-inflammatory cytokines and increases anabolic factors.
Collapse
Affiliation(s)
- Christoph Bauer
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Eugenia Niculescu-Morzsa
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Vivek Jeyakumar
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Daniela Kern
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Stephan S. Späth
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Stefan Nehrer
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| |
Collapse
|
18
|
Pont MJ, Honders MW, Kremer AN, van Kooten C, Out C, Hiemstra PS, de Boer HC, Jager MJ, Schmelzer E, Vries RG, Al Hinai AS, Kroes WG, Monajemi R, Goeman JJ, Böhringer S, Marijt WAF, Falkenburg JHF, Griffioen M. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies. PLoS One 2016; 11:e0155165. [PMID: 27171398 PMCID: PMC4865094 DOI: 10.1371/journal.pone.0155165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers.
Collapse
Affiliation(s)
- M. J. Pont
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. W. Honders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - A. N. Kremer
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - C. van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - C. Out
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - P. S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - H. C. de Boer
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - M. J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - E. Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - R. G. Vries
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - A. S. Al Hinai
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - W. G. Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - R. Monajemi
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - J. J. Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
- Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S. Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - W. A. F. Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - J. H. F. Falkenburg
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
19
|
Dabo AJ, Cummins N, Eden E, Geraghty P. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus. PLoS One 2015; 10:e0135970. [PMID: 26284919 PMCID: PMC4540458 DOI: 10.1371/journal.pone.0135970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023] Open
Abstract
Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR.
Collapse
Affiliation(s)
- Abdoulaye J. Dabo
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Neville Cummins
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Edward Eden
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Patrick Geraghty
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kasonga AE, Deepak V, Kruger MC, Coetzee M. Arachidonic acid and docosahexaenoic acid suppress osteoclast formation and activity in human CD14+ monocytes, in vitro. PLoS One 2015; 10:e0125145. [PMID: 25867515 PMCID: PMC4395026 DOI: 10.1371/journal.pone.0125145] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/14/2015] [Indexed: 01/02/2023] Open
Abstract
An unbalanced diet can have adverse effects on health. Long chain polyunsaturated fatty acids (LCPUFAs) have been the focus of research owing to their necessity of inclusion in a healthy diet. However, the effects of LCPUFAs on human osteoclast formation and function have not been explored before. A human CD14+ monocyte differentiation model was used to elucidate the effects of an ω-3 LCPUFA, docosahexaenoic acid (DHA), and an ω-6 LCPUFA, arachidonic acid (AA), on osteoclast formation and activity. CD14+ monocytes were isolated from peripheral blood of healthy donors and stimulated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand to generate osteoclasts. Data from this study revealed that both the LCPUFAs decreased osteoclast formation potential of CD14+ monocytes in a dose-dependent manner when treated at an early stage of differentiation. Moreover, when exposed at a late stage of osteoclast differentiation AA and DHA impaired the bone resorptive potential of mature osteoclasts without affecting osteoclast numbers. AA and DHA abrogated vitronectin receptor expression in differentiating as well as mature osteoclasts. In contrast, the degree of inhibition for calcitonin receptor expression varied between the LCPUFAs with only AA causing inhibition during osteoclast differentiation. Furthermore, AA and DHA down regulated the expression of key osteoclast-specific genes in differentiating as well as mature osteoclasts. This study demonstrates for the first time that LCPUFAs can modulate osteoclast formation and function in a human primary osteoclast cell line.
Collapse
Affiliation(s)
- Abe E. Kasonga
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Vishwa Deepak
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marlena C. Kruger
- School of Food and Nutrition, Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
- Department of Human Nutrition and Associate of the Institute for Food, Nutrition and Well-being, University of Pretoria, Pretoria, South Africa
| | - Magdalena Coetzee
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
21
|
Lee J, Shen M, Parajuli N, Oudit GY, McMurtry MS, Kassiri Z. Gender-dependent aortic remodelling in patients with bicuspid aortic valve-associated thoracic aortic aneurysm. J Mol Med (Berl) 2014; 92:939-49. [DOI: 10.1007/s00109-014-1178-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/01/2014] [Accepted: 05/23/2014] [Indexed: 12/19/2022]
|
22
|
Abstract
The extracellular matrix (ECM) is an essential component of the human body that is responsible for the proper function of various organs. Changes in the ECM have been implicated in the pathogenesis of several cardiovascular conditions including atherosclerosis, restenosis, and heart failure. Matrix components, such as collagens and noncollagenous proteins, influence the function and activity of vascular cells, particularly vascular smooth muscle cells and macrophages. Matrix proteins have been shown to be implicated in the development of atherosclerotic complications, such as plaque rupture, aneurysm formation, and calcification. ECM proteins control ECM remodeling through feedback signaling to matrix metalloproteinases (MMPs), which are the key players of ECM remodeling in both normal and pathological conditions. The production of MMPs is closely related to the development of an inflammatory response and is subjected to significant changes at different stages of atherosclerosis. Indeed, blood levels of circulating MMPs may be useful for the assessment of the inflammatory activity in atherosclerosis and the prediction of cardiovascular risk. The availability of a wide variety of low-molecular MMP inhibitors that can be conjugated with various labels provides a good perspective for specific targeting of MMPs and implementation of imaging techniques to visualize MMP activity in atherosclerotic plaques and, most interestingly, to monitor responses to antiatheroslerosis therapies. Finally, because of the crucial role of ECM in cardiovascular repair, the regenerative potential of ECM could be successfully used in constructing engineered scaffolds and vessels that mimic properties of the natural ECM and consist of the native ECM components or composite biomaterials. These scaffolds possess a great promise in vascular tissue engineering.
Collapse
|
23
|
Fibromodulin Deficiency Reduces Low-Density Lipoprotein Accumulation in Atherosclerotic Plaques in Apolipoprotein E–Null Mice. Arterioscler Thromb Vasc Biol 2013. [DOI: 10.1161/atvbaha.112.300723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Spano A, Barni S, Bertone V, Sciola L. Changes on lysosomal compartment during PMA-induced differentiation of THP-1 monocytic cells: Influence of type I and type IV collagens. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.48a3002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Nienaber CA. Diabetes mellitus and thoracic aortic disease: are people with diabetes mellitus protected from acute aortic dissection? J Am Heart Assoc 2012; 1:e001404. [PMID: 23130140 PMCID: PMC3487334 DOI: 10.1161/jaha.112.001404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christoph A Nienaber
- Heart Center Rostock, Department of Internal Medicine I, Divisions of Cardiology, Pulmonology, and Intensive Care Medicine, University Hospital Rostock Germany
| |
Collapse
|
26
|
Patruno A, Pesce M, Marrone A, Speranza L, Grilli A, De Lutiis MA, Felaco M, Reale M. Activity of matrix metallo proteinases (MMPs) and the tissue inhibitor of MMP (TIMP)-1 in electromagnetic field-exposed THP-1 cells. J Cell Physiol 2012; 227:2767-74. [PMID: 21928345 DOI: 10.1002/jcp.23024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) are the main determinants of tissue remodeling in both physiological and pathological processes. Metabolic processes, which generate oxidants and antioxidants can be influenced by environmental factors such as electromagnetic fields (EMF). We analyzed the effects of EMF on the activity and expression of MMPs in THP-1 cells. Cells were exposed to a 50 Hz, 1 mT EMF for 24 h and incubated with or without LPS. Our data indicate that THP-1 cells exposed to EMF causes a reduction of anti-oxidant enzyme activity and an enhancement of nitrogen intermediates involving the iNOS pathway. We then analyzed the role of nitration of TIMP-1 in increasing the activity of MMPs in EMF exposed cells. Molecular modeling tools were employed to identify the most plausible sites in the active conformation of TIMP-1; at least two protein sites, Y120 and Y38 and/or Y72 were identified. Reactive nitrogen species (RNS) may affect protein targets, such as TIMP-1, which are crucial for the regulation of MMP activities by oxidation of sulfydryl groups, or by nitration of tyrosine residues. These results may suggest a pathway connecting an imbalance of MMPs and their cognate inhibitor TIMP-1.
Collapse
Affiliation(s)
- Antonia Patruno
- Department of Drug Sciences, University G. d'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Skjøt-Arkil H, Barascuk N, Larsen L, Dziegiel M, Henriksen K, Karsdal MA. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes. Assay Drug Dev Technol 2011; 10:69-77. [PMID: 22053710 DOI: 10.1089/adt.2010.0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By secreting proteases such as cathepsins and matrix metalloproteinases (MMPs), macrophage foam cells may be a major cause of ruptured atherosclerotic plaques. The aims of the present study were to investigate in vitro role of human macrophage foam cells in degrading type I collagen, a major component of extracellular matrix (ECM) in plaques, and to establish whether the pro-inflammatory molecules, tumor necrosis factor (TNF)-alpha, and receptor activator of nuclear factor-κB ligand (RANK-L) increase this degradation. CD14+ monocytes isolated from peripheral blood were differentiated into macrophage foam cells and cultured on a type I collagen matrix in the presence of TNF-alpha and RANK-L. Matrix degradation was measured by the cathepsin K-generated C-terminal cross-linked telopeptide of type I collagen (CTX-I) and the MMP-generated carboxyterminal telopeptide of type I collagen (ICTP) in supernatants showing that macrophage foam cells secrete MMPs and cathepsin K, resulting in release of ICTP and CTX-I. Stimulation with TNF-alpha increased CTX-I and ICTP dose dependently, with ICTP levels increasing by 59% and CTX-I levels increasing by 43%. RANK-L enhanced the release of CTX-I and ICTP by 56% and 72%, respectively. This is, to our knowledge, the first data describing a simple in vitro system in which macrophage foam cells degradation of matrix proteins can be monitored. This degradation can be enhanced by cytokines since TNF-alpha and RANK-L significantly increased the matrix degradation. This in vitro system in part is a model system for the macrophage-mediated proteolytic degradation of the ECM, which is found in many diseases with an inflammatory component.
Collapse
|
28
|
Palmieri D, Pane B, Barisione C, Spinella G, Garibaldi S, Ghigliotti G, Brunelli C, Fulcheri E, Palombo D. Resveratrol counteracts systemic and local inflammation involved in early abdominal aortic aneurysm development. J Surg Res 2011; 171:e237-46. [PMID: 21962734 DOI: 10.1016/j.jss.2011.07.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/10/2011] [Accepted: 07/27/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Monocyte activation, macrophage infiltration, vascular oxidative stress and matrix proteolysis are inflammatory key steps contributing to abdominal aortic aneurysm (AAA) development. A phenotypical and functional heterogeneity is recognizable in monocytes by the differential expression of surface molecules: CD62L- subset corresponds to activated monocytes, while CD143/ACE surface expression increases during their differentiation into macrophages. In this work, Resveratrol, which is an antioxidant polyphenol with vasoprotective properties, has been evaluated for its potential to limit aneurysm development and monocyte-dependent inflammatory response in a model of elastase-induced AAA. METHODS Male Sprague-Dawley rats received Resveratrol (10 mg/kg/die) (Rsv group, n=15) or vehicle (ethanol) alone (Et-OH group, n=15) continuously from 7 d before until 14 d after the AAA induction with elastase; five littermates were used as untreated control group (Ctr group, n=5). At the end of treatment, CD143 and CD62L monocyte expression was analyzed by flow cytometry, serum antioxidant capacity was evaluated using the TRAP method and circulating TNFα, and MMP-9 were measured with ELISA and gel zymography, respectively. Aortas were subjected to histology and immunohistochemistry for morphological analysis, macrophage infiltration, and MMP-9, TNFα, and VEGF expression. RESULTS Resveratrol counteracted the CD62L-monocyte subset expansion, CD143 monocyte expression, and circulating levels of MMP-9 activity and TNFα associated to AAA induction. Similarly, treatment with Resveratrol significantly attenuated AAA expansion, vessel wall macrophage infiltration and MMP-9, VEGF, and TNFα expression, compared with AAA from Et-OH group. CONCLUSIONS Resveratrol limited the monocyte-dependent inflammatory response, macrophage differentiation and aortic lumen enlargement in elastase-induced AAA. These data suggest that Resveratrol might be tested in selected patients with small AAA to modulate the early systemic and local inflammatory response associated to AAA progression.
Collapse
Affiliation(s)
- Daniela Palmieri
- Experimental and Clinical Vascular Biology Lab, Vascular and Endovascular Surgery Unit, San Martino Hospital and Department of Internal Medicine, Research Center of Cardiovascular Biology, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Franco C, Britto K, Wong E, Hou G, Zhu SN, Chen M, Cybulsky MI, Bendeck MP. Discoidin Domain Receptor 1 on Bone Marrow–Derived Cells Promotes Macrophage Accumulation During Atherogenesis. Circ Res 2009; 105:1141-8. [DOI: 10.1161/circresaha.109.207357] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rationale
:
We described a critical role for the discoidin domain receptor (DDR)1 collagen receptor tyrosine kinase during atherosclerotic plaque development. Systemic deletion of
Ddr1
in
Ldlr
−/−
mice accelerated matrix accumulation and reduced plaque size and macrophage content. However, whether these effects reflected an independent role for macrophage DDR1 during atherogenesis remained unresolved.
Methods
:
In the present study, we performed sex-mismatched bone marrow transplantation using
Ddr1
+/+
;
Ldlr
−/−
and
Ddr1
−/−
;
Ldlr
−/−
mice to investigate the role of macrophage DDR1 during atherogenesis. Chimeric mice with deficiency of DDR1 in bone marrow–derived cells (
Ddr1
−/−→+/+
) or control chimeric mice that received
Ddr1
+/+
;
Ldlr
−/−
marrow (
Ddr1
+/+→+/+
) were fed an atherogenic diet for 12 weeks.
Results
:
We observed a 66% reduction in atherosclerosis in the descending aorta and a 44% reduction in plaque area in the aortic sinus in
Ddr1
−/−→+/+
mice compared to
Ddr1
+/+→+/+
mice. Furthermore, we observed a specific reduction in the number of donor-derived macrophages in
Ddr1
−/−→+/+
plaques, suggesting that bone marrow deficiency of DDR1 attenuated atherogenesis by limiting macrophage accumulation in the plaque. We have also demonstrated that the effects of DDR1 on macrophage infiltration and accumulation can occur at the earliest stage of atherogenesis, the formation of the fatty streak. Deficiency of DDR1 limited the appearance of 5-bromodeoxyuridine–labeled monocytes/macrophages in the fatty streak and resulted in reduced lesion size in
Ldlr
−/−
mice fed a high fat diet for 2 weeks. In vitro studies to investigate the mechanisms involved revealed that macrophages from
Ddr1
−/−
mice had decreased adhesion to type IV collagen and decreased chemotactic invasion of type IV collagen in response to monocyte chemoattractant protein-1.
Conclusions
:
Taken together, our data support an independent and critical role for DDR1 in macrophage accumulation at early and late stages of atherogenesis.
Collapse
Affiliation(s)
- Christopher Franco
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Karen Britto
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Eric Wong
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Guangpei Hou
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Su-Ning Zhu
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Mian Chen
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Myron I. Cybulsky
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Michelle P. Bendeck
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
30
|
Adiguzel E, Ahmad PJ, Franco C, Bendeck MP. Collagens in the progression and complications of atherosclerosis. Vasc Med 2009; 14:73-89. [PMID: 19144782 DOI: 10.1177/1358863x08094801] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Collagens constitute a major portion of the extracellular matrix in the atherosclerotic plaque, where they contribute to the strength and integrity of the fibrous cap, and also modulate cellular responses via specific receptors and signaling pathways. This review focuses on the diverse roles that collagens play in atherosclerosis; regulating the infiltration and differentiation of smooth muscle cells and macrophages; controlling matrix remodeling through feedback signaling to proteinases; and influencing the development of atherosclerotic complications such as plaque rupture, aneurysm formation and calcification. Expanding our understanding of the pathways involved in cell-matrix interactions will provide new therapeutic targets and strategies for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Eser Adiguzel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Polati R, Castagna A, Bossi A, Campostrini N, Zaninotto F, Timperio AM, Zolla L, Olivieri O, Corrocher R, Girelli D. High resolution preparation of monocyte-derived macrophages (MDM) protein fractions for clinical proteomics. Proteome Sci 2009; 7:4. [PMID: 19228399 PMCID: PMC2649903 DOI: 10.1186/1477-5956-7-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 02/19/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Macrophages are involved in a number of key physiological processes and complex responses such as inflammatory, immunological, infectious diseases and iron homeostasis. These cells are specialised for iron storage and recycling from senescent erythrocytes so they play a central role in the fine tuning of iron balancing and distribution. The comprehension of the many physiological responses of macrophages implies the study of the related molecular events. To this regard, proteomic analysis, is one of the most powerful tools for the elucidation of the molecular mechanisms, in terms of changes in protein expression levels. RESULTS Our aim was to optimize a protocol for protein fractionation and high resolution mapping using human macrophages for clinical studies. We exploited a fractionation protocol based on the neutral detergent Triton X-114. The 2D maps of the fractions obtained showed high resolution and a good level of purity. Western immunoblotting and mass spectrometry (MS/MS analysis) indicated no fraction cross contamination. On 2D-PAGE mini gels (7 x 8 cm) we could count more than five hundred protein spots, substantially increasing the resolution and the number of detectable proteins for the macrophage proteome. The fractions were also evaluated, with preliminary experiments, using Surface Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS). CONCLUSION This relatively simple method allows deep investigation into macrophages proteomics producing discrete and accurate protein fractions, especially membrane-associated and integral proteins. The adapted protocol seems highly suitable for further studies of clinical proteomics, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions.
Collapse
Affiliation(s)
- Rita Polati
- University of Verona, Department of Biotechnology, 37134 Verona, Italy
| | - Annalisa Castagna
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Alessandra Bossi
- University of Verona, Department of Biotechnology, 37134 Verona, Italy
| | - Natascia Campostrini
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Federica Zaninotto
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Anna Maria Timperio
- University of Tuscia, Department of Environmental Sciences, 01100 Viterbo, Italy
| | - Lello Zolla
- University of Tuscia, Department of Environmental Sciences, 01100 Viterbo, Italy
| | - Oliviero Olivieri
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Roberto Corrocher
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Domenico Girelli
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| |
Collapse
|
32
|
Wågsäter D, Zhu C, Björck HM, Eriksson P. Effects of PDGF-C and PDGF-D on monocyte migration and MMP-2 and MMP-9 expression. Atherosclerosis 2009; 202:415-23. [DOI: 10.1016/j.atherosclerosis.2008.04.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/26/2022]
|
33
|
Poitevin S, Garnotel R, Antonicelli F, Gillery P, Nguyen P. Type I collagen induces tissue factor expression and matrix metalloproteinase 9 production in human primary monocytes through a redox-sensitive pathway. J Thromb Haemost 2008; 6:1586-94. [PMID: 18541003 DOI: 10.1111/j.1538-7836.2008.03051.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tissue factor (TF), the main trigger of coagulation cascade, is a major component of the atherosclerotic plaque. Matrix metalloproteinases (MMPs) are recognized as key mediators of extracellular matrix remodeling during inflammation. It was recently emphasized that both TF and MMP-9 were overexpressed in atherosclerotic plaques, suggesting a role of both molecules in plaque instability and thrombogenicity. OBJECTIVE The present study was designed to determine whether human monocytes could co-express TF and MMP-9 when the cells interact with type I collagen, a major component of the extracellular matrix and atherosclerotic plaque. METHODS Human monocytes were isolated by elutriation and incubated in collagen I-coated plates. Tissue factor and MMP-9 expression were examined using real-time reverse transcription-polymerase chain reaction, flow cytometry, western blot and zymography. The activation of nuclear factor-kappa B (NF-kappaB) and the role of reactive oxygen species (ROS) in TF and MMP-9 production was studied using gel shift experiments, antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetyl-cysteine (NAC), and apocynin (a specific inhibitor of the NADPH oxidase). RESULTS Type I collagen induced TF expression and increased MMP-9 production. In addition, the pro-inflammatory tumor necrosis factor-alpha (TNF-alpha), produced in response to collagen I, increased MMP-9 production. PDTC and NAC inhibited NF-kappaB activation during monocyte interaction with collagen I. Finally, both antioxidants and apocynin decreased the expression of TF, TNF-alpha, and MMP-9. CONCLUSIONS These results indicate a new mechanism in the monocyte expression of TF and MMP-9 in response to collagen I involving a ROS-dependent pathway linked to the activation of the NADPH oxidase.
Collapse
Affiliation(s)
- S Poitevin
- EA3801, URCA and Laboratory of Haematology, CHU Robert Debré, Reims, France
| | | | | | | | | |
Collapse
|
34
|
Franco C, Hou G, Ahmad PJ, Fu EY, Koh L, Vogel WF, Bendeck MP. Discoidin Domain Receptor 1 (
Ddr1
) Deletion Decreases Atherosclerosis by Accelerating Matrix Accumulation and Reducing Inflammation in Low-Density Lipoprotein Receptor–Deficient Mice. Circ Res 2008; 102:1202-11. [DOI: 10.1161/circresaha.107.170662] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Collagens are abundant within the atherosclerotic plaque, where they contribute to lesion volume and mechanical stability and influence cell signaling. The discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that binds to collagen, is expressed in blood vessels, but evidence for a functional role during atherogenesis is incomplete. In the present study, we generated
Ddr1
+/+
;
Ldlr
−/−
and
Ddr1
−/−
;
Ldlr
−/−
mice and fed them an atherogenic diet for 12 or 24 weeks. Targeted deletion of
Ddr1
resulted in a 50% to 60% reduction in atherosclerotic lesion area in the descending aorta at both 12 and 24 weeks.
Ddr1
−/−
;
Ldlr
−/−
plaques exhibited accelerated deposition of fibrillar collagen and elastin at 12 weeks compared with
Ddr1
+/+
;
Ldlr
−/−
plaques. Expression analysis of laser microdissected lesions in vivo, and of
Ddr1
−/−
smooth muscle cells in vitro, revealed increased mRNA levels for procollagen α1(I) and α1(III) and tropoelastin, suggesting an enhancement of matrix synthesis in the absence of DDR1. Furthermore, whereas plaque smooth muscle cell content was unchanged,
Ddr1
−/−
;
Ldlr
−/−
plaques had a 49% decrease in macrophage content at 12 weeks, with a concomitant reduction of in situ gelatinolytic activity. Moreover, mRNA expression of both monocyte chemoattractant protein-1 and vascular cell adhesion molecule-1 was reduced in vivo, and
Ddr1
−/−
;
Ldlr
−/−
macrophages demonstrated impaired matrix metalloproteinase expression in vitro. These data suggest novel roles for DDR1 in macrophage recruitment and invasion during atherogenesis. In conclusion, our data support a role for DDR1 in the regulation of both inflammation and fibrosis early in plaque development. Deletion of DDR1 attenuated atherogenesis and resulted in the formation of matrix-rich plaques.
Collapse
Affiliation(s)
- Christopher Franco
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Guangpei Hou
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Pamela J. Ahmad
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Edwin Y.K. Fu
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Lena Koh
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Wolfgang F. Vogel
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Michelle P. Bendeck
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
35
|
Jia L, Wang S, Cao J, Zhou H, Wei W, Zhang J. siRNA targeted against matrix metalloproteinase 11 inhibits the metastatic capability of murine hepatocarcinoma cell Hca-F to lymph nodes. Int J Biochem Cell Biol 2007; 39:2049-62. [PMID: 17627864 DOI: 10.1016/j.biocel.2007.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/27/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Matrix metalloproteinase-11 (MMP-11) belongs to the particular member of MMP family, a group of zinc-dependent endopeptidases involved in tumor progression, invasion and metastasis. MMP-11 is strongly expressed in tumor cells and stromal fibroblasts located in the immediate vicinity of tumor. This study investigated the possible role of MMP-11 expression in mouse hepatocarcinoma cell line Hca-F with highly lymphatic metastasis potential by RNA interference (RNAi) approach. The results showed that a small interfering RNA (siRNA) targeted against MMP-11 significantly impeded Hca-F cells proliferation and colony formation in soft agar, as well as resulted in Hca-F cell apoptosis. This reduction of MMP-11 expression also led to the decreased migration and adhesion of Hca-F cells dramatically both in vitro and in vivo. Furthermore, in vivo metastasis assay indicated that down-regulation of MMP-11 expression in Hca-F cells attenuated the metastatic potential of Hca-F cells to peripheral lymph nodes. These data together provide compelling evidence into the function of MMP-11 and suggest that MMP-11 act as a tumor lymphatic metastasis-associated gene, and could represent a new potential target for gene therapy.
Collapse
Affiliation(s)
- Li Jia
- Department of Biochemistry, Institute of Glycobiology, College of Laboratory Medicine, Dalian Medical University, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
36
|
Ding Q, Jin T, Wang Z, Chen Y. Catalase potentiates retinoic acid-induced THP-1 monocyte differentiation into macrophage through inhibition of peroxisome proliferator-activated receptor gamma. J Leukoc Biol 2007; 81:1568-76. [PMID: 17369494 DOI: 10.1189/jlb.1106672] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macrophage differentiation plays a pivotal role in cardiovascular diseases and many other physiological processes. However, the role of reaction oxygen species in macrophage differentiation has not been elucidated. Here, we report functional characterization of catalase, an enzyme that degrades hydrogen peroxide (H(2)O(2)), in THP-1 monocyte differentiation. Treatment of THP-1 cells with catalase was able to synergize with all-trans retinoic acid (ATRA) to enhance macrophage differentiation, demonstrated by changes of cell adherence, cell cycle arrest, nitroblue tetrazolium reduction, and expression of differentiation markers including CD68, CD11b, and matrix metalloproteinase 9 (MMP9). ATRA could stimulate retinoic acid (RA) receptor-mediated transcription, but this was not affected by catalase. However, ATRA and catalase were capable of reducing transcriptional activity mediated by peroxisome proliferator-activated receptor gamma (PPARgamma). Consistently, PPARgamma antagonists enhanced, and PPARgamma agonists inhibited MMP9 expression stimulated by ATRA and catalase in THP-1 cells. Therefore, these data indicate that catalase is able to potentiate ATRA-induced macrophage differentiation by inhibition of PPARgamma activity, underscoring an important interplay between H(2)O(2), RA, and PPARgamma in macrophages.
Collapse
Affiliation(s)
- Qiurong Ding
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, 294 Tai Yuan Rd., Shanghai 200031, China
| | | | | | | |
Collapse
|
37
|
Norman PE, Davis TME, Le MTQ, Golledge J. Matrix biology of abdominal aortic aneurysms in diabetes: mechanisms underlying the negative association. Connect Tissue Res 2007; 48:125-31. [PMID: 17522995 DOI: 10.1080/03008200701331524] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several case-control studies have shown a significant negative association between diabetes and abdominal aortic aneurysm (AAA). This interaction has the potential to further our understanding of these two diseases but has attracted little research. The changes seen in the walls of aneurysmal aortas include inflammation and the activation of proteolytic pathways resulting in loss of elastin and other structural proteins. In contrast, diabetes is associated with increased synthesis and reduced degradation of matrix. The deposition of advanced glycation end products also renders vascular matrix resistant to proteolysis in diabetic patients. The aim of our present minireview is to compare the changes in matrix biology seen in diabetes and AAA and to explore molecular mechanisms that may explain the negative association and identify possible therapeutic implications.
Collapse
Affiliation(s)
- Paul E Norman
- School of Surgery and Pathology, University of Western Australia, Fremantle, Western Australia.
| | | | | | | |
Collapse
|
38
|
Slomianny MC, Dupont A, Bouanou F, Beseme O, Guihot AL, Amouyel P, Michalski JC, Pinet F. Profiling of membrane proteins from human macrophages: Comparison of two approaches. Proteomics 2006; 6:2365-75. [PMID: 16548059 DOI: 10.1002/pmic.200500546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Macrophages are involved in various important biological processes and their functions are tightly regulated. Hydrophobic proteins are difficult to analyse by 2-DE because of their intrinsic tendency to self-aggregate during the first dimension (IEF). We have compared two protocols for extracting, separating and identifying membrane proteins from human macrophages by MALDI-TOF MS. The first protocol used protein extraction by solvent, followed by 2-DE and allowed us to identify 10% membrane proteins among the proteins identified a being like the peroxisome-activated receptor delta. The second method is based on solubilizing the membranes with Triton X-100, separating the proteins by anion-exchange chromatography followed by SDS-PAGE. This method allowed us to identify 49 membrane proteins, including four integral membrane proteins, ten type I, two type II and one type III membrane proteins. Several receptors were identified, including integrin alpha-3 and ephrin type A receptor 7. Interestingly, several proteins involved in macrophage functions were identified, such as integrin alpha-X and macrophage mannose receptor. These findings show that techniques are available to identify membrane proteins, but that they require large quantities of cells which means that they are not suitable for the limiting amounts of precious samples available from clinical studies.
Collapse
|
39
|
Abstract
BACKGROUND The aim of this study was to compare the activity of neutrophilic granulocytes in patients with severe periodontitis and patients with gingivitis alone. METHODS The study population comprised 22 patients with gingivitis and 44 with periodontitis. Samples of gingival crevicular fluid (GCF) were collected from untreated patients with gingivitis and from shallow and deep pockets in untreated patients with periodontitis. GCF samples were analyzed for lactoferrin, elastase, matrix metalloproteinase-8 and -9, and collagenolytic activity. RESULTS The free elastase activity and the neutrophil activity, estimated as the ratio between elastase and lactoferrin, were significantly higher in the samples from the periodontitis patients. These differences were also observed in shallow pockets in periodontitis patients compared to similar pockets in patients with gingivitis. CONCLUSION This study shows higher levels of free elastase in untreated patients with periodontitis, relative to inflammation-matched controls, which may explain the tissue destruction seen in periodontitis.
Collapse
Affiliation(s)
- C M S Figueredo
- Division of Periodontology, Institute of Odontology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Deng H, Guo RF, Li WM, Zhao M, Lu YY. Matrix metalloproteinase 11 depletion inhibits cell proliferation in gastric cancer cells. Biochem Biophys Res Commun 2005; 326:274-81. [PMID: 15582574 DOI: 10.1016/j.bbrc.2004.11.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Indexed: 01/12/2023]
Abstract
Our previous study has shown that matrix metalloproteinase 11 (MMP11) is highly expressed in tumor cell lines and primary tumor of gastric cancer (GC). In order to reveal the correlation between expression of MMP11 and biological features of GC cell, we have constructed the recombinant plasmids producing hairpin small interfering RNA (siRNA) to target MMP11 mRNA using a vector-based RNA interference technology. Stable transfection of recombinants into GC cell line BGC823 specifically depleted the mRNA and protein of MMP11 as demonstrated by RT-PCR and Western blotting analysis. The siRNA-treated cells exhibited significantly decreased growth ability compared with mock transfectants and parental BGC823 cells. Furthermore, colony formation of MMP11 deficient cells was dramatically inhibited in soft agar and tumorigenicity was reduced in nude mice, respectively. These results provide new insights into the function of MMP11 and suggest that MMP11 may play an important role in the control of cell proliferation and tumor development in GC.
Collapse
Affiliation(s)
- Hua Deng
- Beijing Molecular Oncology Laboratory, Beijing Institute for Cancer Research, School of Oncology, Peking University, Beijing 100034, China
| | | | | | | | | |
Collapse
|
41
|
Matsuyama W, Wang L, Farrar WL, Faure M, Yoshimura T. Activation of discoidin domain receptor 1 isoform b with collagen up-regulates chemokine production in human macrophages: role of p38 mitogen-activated protein kinase and NF-kappa B. THE JOURNAL OF IMMUNOLOGY 2004; 172:2332-40. [PMID: 14764702 DOI: 10.4049/jimmunol.172.4.2332] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Macrophages produce an array of proinflammatory mediators at sites of inflammation and contribute to the development of inflammatory responses. Important roles for cytokines, such as IL-1 or TNF-alpha, and bacterial products, such as LPS, in this process have been well documented; however, the role for the extracellular matrix proteins, such as collagen, remains unclear. We previously reported that discoidin domain receptor 1 (DDR1), a nonintegrin collagen receptor, is expressed during differentiation of human monocytes into macrophages, and the interaction of the DDR1b isoform with collagen facilitates their differentiation via the p38 mitogen-activated protein kinase (MAPK) pathway. In this study, we report that the interaction of DDR1b with collagen up-regulates the production of IL-8, macrophage inflammatory protein-1alpha, and monocyte chemoattractant protein-1 in human macrophages in a p38 MAPK- and NF-kappaB-dependent manner. p38 MAPK was critical for DDR1b-mediated, increased NF-kappaB trans-activity, but not for IkappaB degradation or NF-kappaB nuclear translocation, suggesting a role for p38 MAPK in the modification of NF-kappaB. DDR1b-mediated IkappaB degradation was mediated through the recruitment of the adaptor protein Shc to the LXNPXY motif of the receptor and the downstream TNFR-associated factor 6/NF-kappaB activator 1 signaling cascade. Taken together, our study has identified NF-kappaB as a novel target of DDR1b signaling and provided a novel mechanism by which tissue-infiltrating macrophages produce large amounts of chemokines during the development of inflammatory diseases. Intervention of DDR1b signaling may be useful to control inflammatory diseases in which these proteins play an important role.
Collapse
Affiliation(s)
- Wataru Matsuyama
- Laboratory of Molecular Immunoregulation, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
42
|
Khan KMF, Howe LR, Falcone DJ. Extracellular Matrix-induced Cyclooxygenase-2 Regulates Macrophage Proteinase Expression. J Biol Chem 2004; 279:22039-46. [PMID: 15024003 DOI: 10.1074/jbc.m312735200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic inflammatory diseases are characterized by the persistent presence of macrophages and other mononuclear cells, tissue destruction, cell proliferation, and the deposition of extracellular matrix (ECM). The tissue degradation is mediated, in part, by enhanced proteinase expression by macrophages. It has been demonstrated recently that macrophage proteinase expression can be stimulated or inhibited by purified ECM components. However, in an intact ECM the biologically active domains of matrix components may be masked either by tertiary conformation or by complex association with other matrix molecules. In an effort to determine whether a complex ECM produced by vascular smooth muscle cells (SMC) regulates macrophage degradative phenotype, we prepared insoluble SMC matrices and examined their ability to regulate proteinase expression by RAW264.7 and thioglycollate-elicited peritoneal macrophages. Here we demonstrate that macrophage engagement of SMC-ECM triggers PKC-dependent activation of MAPK(erk1/2) leading to increased expression of cyclooxygenase (COX)-2 and prostaglandin (PG) E(2) synthesis. The addition of PGE(2) to macrophage cultures stimulates their expression of both urokinase-type plasminogen activator and MMP-9, and the selective COX-2 inhibitor NS-398 blocks ECM-induced proteinase expression. Moreover, ECM-induced PGE(2) and MMP-9 expression by elicited COX-2(-/-) macrophages is markedly reduced when compared with the response of either COX-2(+/-) or COX-2(+/+) macrophages. These data clearly demonstrate that SMC-ECM exerts a regulatory role on the degradative phenotype of macrophages via enhanced urokinase-type plasminogen activator and MMP-9 expression, and identify COX-2 as a targetable component of the signaling pathway leading to increased proteinase expression.
Collapse
Affiliation(s)
- K M Faisal Khan
- Department of Pathology and Laboratory Medicine, Joan and Sanford I. Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
43
|
Saijo Y, Miyakawa T, Sasaki H, Tanaka M, Nitta SI. Acoustic properties of aortic aneurysm obtained with scanning acoustic microscopy. ULTRASONICS 2004; 42:695-698. [PMID: 15047369 DOI: 10.1016/j.ultras.2003.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In aortic aneurysm tissues, macrophages and their secretion of matrix metalloproteinases (MMPs) are playing important role for tissue degeneration. Some studies have shown that weakening of the mechanical properties of the degenerated tissues may progress the expansion of the aneurysm. However, actual measurement of the mechanical properties has not been investigated at microscopic level. The objective of the present study is to assess the mechanical properties of aortic aneurysm tissues by measuring acoustic properties by scanning acoustic microscopy (SAM). Twenty-one cases of aortic aneurysm including renal and common iliac aneurysm tissues were surgically excised. Each tissue was fixed by 4% formaldehyde and the specimens were treated as (1) picrosirius red staining for normal and polarized light microscopy, (2) CD68 staining for macrophage detection, and (3) no staining for acoustic microscopy. A specially developed SAM system operating in the frequency range of 100-200 MHz, was employed in the measurement. Images of amplitude and phase are obtained in a field of 2x2 mm. The intima was mainly consisted of degenerated collagen without polarization of picrosirius red staining. Macrophages stained by CD68 were observed near the degenerated collagen fibers. The sound speed was 1567 m/s in the intima, 1576 m/s in the media, 1640 m/s in the adventitia, respectively. Infiltration of macrophages showed higher values of attenuation and sound speed than the surrounding tissues. The sound speed of the intima was significantly lower than our previous measurement of atherosclerotic aorta without aneurismal change. As the tissue elasticity is closely correlated with the sound speed, the elasticity of the intima was considered to be lower in aneurysm tissues. This mechanical weakness may contribute to the expansion of the diameter of the aneurysm. Acoustic microscopy provided important data for assessing tissue mechanical properties of abdominal aneurysm.
Collapse
Affiliation(s)
- Yoshifumi Saijo
- Department of Medical Engineering and Cardiology, Institute of Development, Aging and Cancer, Tohoku University 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | |
Collapse
|