1
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Petralla S, Panayotova M, Franchina E, Fricker G, Puris E. Low-Density Lipoprotein Receptor-Related Protein 1 as a Potential Therapeutic Target in Alzheimer's Disease. Pharmaceutics 2024; 16:948. [PMID: 39065645 PMCID: PMC11279518 DOI: 10.3390/pharmaceutics16070948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease impacting the lives of millions of people worldwide. The formation of amyloid β (Aβ) plagues in the brain is the main pathological hallmark of AD. The Aβ deposits are formed due to the imbalance between the production and Aβ clearance in the brain and across the blood-brain barrier (BBB). In this respect, low-density lipoprotein receptor-related protein 1 (LRP1) plays a significant role by mediating both brain Aβ production and clearance. Due to its important role in AD pathogenesis, LRP1 is considered an attractive drug target for AD therapies. In the present review, we summarize the current knowledge about the role of LRP1 in AD pathogenesis as well as recent findings on changes in LRP1 expression and function in AD. Finally, we discuss the advances in utilizing LRP1 as a drug target for AD treatments as well as future perspectives on LRP1 research.
Collapse
Affiliation(s)
| | | | | | | | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany; (S.P.); (M.P.); (E.F.); (G.F.)
| |
Collapse
|
3
|
Van Etten EJ, Bharadwaj PK, Grilli MD, Raichlen DA, Hishaw GA, Huentelman MJ, Trouard TP, Alexander GE. Impact of age and apolipoprotein E ε4 status on regional white matter hyperintensity volume and cognition in healthy aging. J Int Neuropsychol Soc 2024; 30:553-563. [PMID: 38515367 PMCID: PMC11864114 DOI: 10.1017/s1355617724000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
OBJECTIVE White matter hyperintensity (WMH) volume is a neuroimaging marker of lesion load related to small vessel disease that has been associated with cognitive aging and Alzheimer's disease (AD) risk. METHOD The present study sought to examine whether regional WMH volume mediates the relationship between APOE ε4 status, a strong genetic risk factor for AD, and cognition and if this association is moderated by age group differences within a sample of 187 healthy older adults (APOE ε4 status [carrier/non-carrier] = 56/131). RESULTS After we controlled for sex, education, and vascular risk factors, ANCOVA analyses revealed significant age group by APOE ε4 status interactions for right parietal and left temporal WMH volumes. Within the young-old group (50-69 years), ε4 carriers had greater right parietal and left temporal WMH volumes than non-carriers. However, in the old-old group (70-89 years), right parietal and left temporal WMH volumes were comparable across APOE ε4 groups. Further, within ε4 non-carriers, old-old adults had greater right parietal and left temporal WMH volumes than young-old adults, but there were no significant differences across age groups in ε4 carriers. Follow-up moderated mediation analyses revealed that, in the young-old, but not the old-old group, there were significant indirect effects of ε4 status on memory and executive functions through left temporal WMH volume. CONCLUSIONS These findings suggest that, among healthy young-old adults, increased left temporal WMH volume, in the context of the ε4 allele, may represent an early marker of cognitive aging with the potential to lead to greater risk for AD.
Collapse
Affiliation(s)
- Emily J. Van Etten
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K. Bharadwaj
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - David A. Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Georg A. Hishaw
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Matthew J. Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Theodore P. Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
- Department of Psychiatry, University of Arizona, Tucson, AZ 85721, USA
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Sethiya NK, Ghiloria N, Srivastav A, Bisht D, Chaudhary SK, Walia V, Alam MS. Therapeutic Potential of Myricetin in the Treatment of Neurological, Neuropsychiatric, and Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:865-882. [PMID: 37461364 DOI: 10.2174/1871527322666230718105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/12/2024]
Abstract
Myricetin (MC), 3,5,7,3',4',5'-hexahydroxyflavone, chemically belongs to a flavonoid category known to confer antioxidant, antimicrobial, antidiabetic, and neuroprotective effects. MC is known to suppress the generation of Reactive Oxygen Species (ROS), lipid peroxidation (MDA), and inflammatory markers. It has been reported to improve insulin function in the human brain and periphery. Besides this, it modulates several neurochemicals including glutamate, GABA, serotonin, etc. MC has been shown to reduce the expression of the enzyme Mono Amine Oxidase (MAO), which is responsible for the metabolism of monoamines. MC treatment reduces levels of plasma corticosterone and restores hippocampal BDNF (full form) protein in stressed animals. Further, MC has shown its protective effect against amyloid-beta, MPTP, rotenone, 6-OHDA, etc. suggesting its potential role against neurodegenerative disorders. The aim of the present review is to highlight the therapeutic potential of MC in the treatment of several neurological, neuropsychiatric, and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Neha Ghiloria
- Dr. Baba Saheb Ambedkar Hospital, Rohini, New Delhi 110085, India
| | | | - Dheeraj Bisht
- Department of Pharmaceutical Sciences, Sir J.C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, Uttarakhand 263002, India
| | | | - Vaibhav Walia
- Department of Pharmacology, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Md Sabir Alam
- Department of Pharmaceutics, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| |
Collapse
|
5
|
Zhao Z, Wang J, Wang Y, Liu X, He K, Guo Q, Xie F, Huang Q, Li Z. 18F-AV45 PET and MRI Reveal the Influencing Factors of Alzheimer's Disease Biomarkers in Subjective Cognitive Decline Population. J Alzheimers Dis 2023; 93:585-594. [PMID: 37066915 DOI: 10.3233/jad-221251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is a self-perceived decline in cognitive ability, which exhibits no objective impairment but increased risk of conversion to mild cognitive impairment and Alzheimer's disease (AD). OBJECTIVE To investigate how influencing factors (risk gene, age, sex, and education) affect amyloid-β (Aβ) deposition and gray matter (GM) atrophy in SCD population. METHODS 281 SCD subjects were included in this study, who underwent clinical evaluation, cognitive ability assessment, apolipoprotein E (APOE) genotyping, 18F-Florbetapir positron emission computed tomography, and magnetic resonance imaging screening. Two-sample t tests and analysis of variance were performed based on voxel-wise outcome. RESULTS In 281 SCD subjects with an average age of 63.86, 194 subjects (69.04%) were female, and 56 subjects carried APOE ɛ4 genes. Statistical results revealed APOE ɛ4 gene, age, and sex influenced Aβ deposition in different brain regions; moreover, only the interaction exhibited between age and APOE ɛ4 genes. The GM atrophy of hippocampal, amygdala, precentral, and occipital lobes occurred in the group age over 60. The GM volume of the hippocampal, frontal, and occipital lobe in females was less than males. Education has an effect only on cognitive function. CONCLUSION In SCD, APOE ɛ4 gene, age, and sex significantly influenced Aβ deposition and APOE ɛ4 gene can interact with age in impacting Aβ deposition. Both age and sex can affect GM atrophy. The results suggested that female SCD with APOE ɛ4 genes and aged more than 60 years old might exhibit advanced AD biomarkers.
Collapse
Affiliation(s)
- Zixiao Zhao
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xia Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
ApoE4 reduction: an emerging and promising therapeutic strategy for Alzheimer's disease. Neurobiol Aging 2022; 115:20-28. [DOI: 10.1016/j.neurobiolaging.2022.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022]
|
7
|
Suh H, Lee YM, Park JM, Lee BD, Moon E, Jeong H, Kim SY, Lee KY, Kim HJ, Pak K, Choi KU, Mun CW, Chung YI. Smaller hippocampal volume in APOE ε4 carriers independent of amyloid-β (Aβ) burden. Psychiatry Res Neuroimaging 2021; 317:111381. [PMID: 34508954 DOI: 10.1016/j.pscychresns.2021.111381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/12/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the association of the APOE ε4 genotype with hippocampal volume, independent of Aβ burden. METHOD This cross-sectional study included 71 participants with mild cognitive impairment or mild AD. All participants were divided into carriers or non-carriers of the ε4 allele. The main outcome was hippocampal volume measured using structural magnetic resonance imaging; 18F-florbetaben positron emission tomography was additionally performed to investigate the association of APOE ε4 genotype with hippocampal volumes, independently of Aβ burden. Analysis of covariance was conducted to compare the differences in hippocampal volumes between carriers and non-carriers of the ε4 allele after controlling for global Aβ burden or local hippocampal Aβ burden. RESULTS The APOE ε4 genotype was associated with a smaller right and total hippocampal volume (right: 3160.16 ± 365.71 vs. 3365.24 ± 434.88, p < 0.05; total: 6257.48 ± 790.60 vs. 6599.52 ± 840.58, p < 0.05), independent of Aβ burden. CONCLUSION Our findings on the association of APOEε4 genotype with hippocampal volume independent of Aβ burden suggest that the APOEε4 genotype may contribute to hippocampal neurodegeneration through an Aβ-independent mechanism.
Collapse
Affiliation(s)
- Hwagyu Suh
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| | - Je-Min Park
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Byung-Dae Lee
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Eunsoo Moon
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hee Jeong
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Soo Yeon Kim
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kang Yoon Lee
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hak-Jin Kim
- Department of Radiology, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Kyung-Un Choi
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Pathology, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Chi-Woong Mun
- Department of Biomedical Engineering and FIRST, Inje University, Gimhae, Republic of Korea
| | - Young-In Chung
- Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
8
|
Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Savard M, Chamoun M, Thomas E, Kang MS, Lussier F, Tissot C, Soucy JP, Massarweh G, Rej S, Saha-Chaudhuri P, Poirier J, Gauthier S, Rosa-Neto P. APOEε4 potentiates the relationship between amyloid-β and tau pathologies. Mol Psychiatry 2021; 26:5977-5988. [PMID: 32161362 PMCID: PMC8758492 DOI: 10.1038/s41380-020-0688-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
APOEε4 is the most well-established genetic risk factor for sporadic Alzheimer's disease and is associated with cerebral amyloid-β. However, the association between APOEε4 and tau pathology, the other major proteinopathy of Alzheimer's disease, has been controversial. Here, we sought to determine whether the relationship between APOEε4 and tau pathology is determined by local interactions with amyloid-β. We examined three independent samples of cognitively unimpaired, mild cognitive impairment and Alzheimer's disease subjects: (1) 211 participants who underwent tau-PET with [18F]MK6240 and amyloid-PET with [18F]AZD4694, (2) 264 individuals who underwent tau-PET with [18F]Flortaucipir and amyloid-PET with [18F]Florbetapir and (3) 487 individuals who underwent lumbar puncture and amyloid-PET with [18F]Florbetapir. Using a novel analytical framework, we applied voxel-wise regression models to assess the interactive effect of APOEε4 and amyloid-β on tau load, independently of age and clinical diagnosis. We found that the interaction effect between APOEε4 and amyloid-β, rather than the sum of their independent effects, was related to increased tau load in Alzheimer's disease-vulnerable regions. The interaction between one APOEε4 allele and amyloid-β was related to increased tau load, while the interaction between amyloid-β and two APOEε4 alleles was related to a more widespread pattern of tau aggregation. Our results contribute to an emerging framework in which the elevated risk of developing dementia conferred by APOEε4 genotype involves mechanisms associated with both amyloid-β and tau aggregation. These results may have implications for future disease-modifying therapeutic trials targeting amyloid or tau pathologies.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Emilie Thomas
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Radiochemistry, McGill University, Montreal, QC, Canada
| | - Soham Rej
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Montreal Neurological Institute, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Whitwell JL, Tosakulwong N, Weigand SD, Graff-Radford J, Ertekin-Taner N, Machulda MM, Duffy JR, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Josephs KA. Relationship of APOE, age at onset, amyloid and clinical phenotype in Alzheimer disease. Neurobiol Aging 2021; 108:90-98. [PMID: 34551374 DOI: 10.1016/j.neurobiolaging.2021.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
The apolipoprotein E (APOE) ε4 allele is the most well-established risk factor for Alzheimer's disease (AD), although its relationship to age at onset and clinical phenotype is unclear. We aimed to assess relationships between APOE genotype and age at onset, amyloid-beta (Aβ) deposition and typical versus atypical clinical presentations in AD. Frequency of APOE ε4 carriers by age at onset was assessed in 447 AD patients, 138 atypical AD patients recruited by the Neurodegenerative Research Group at Mayo Clinic, and 309 with typical AD from ADNI. APOE ε4 frequency increased with age at onset in atypical AD but showed a bell-shaped curve in typical AD where highest frequencies were observed between 65 and 70 years. Typical AD showed higher APOE ε4 frequencies than atypical AD only between the ages of 57 and 69 years. Global Aβ standard uptake value ratios did not differ according to APOE e4 status in either group. APOE genotype varies by both age at onset and clinical phenotype in AD, highlighting the heterogeneous nature of AD.
Collapse
Affiliation(s)
| | | | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Mary M Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
10
|
Indomethacin Disrupts the Formation of β-Amyloid Plaques via an α2-Macroglobulin-Activating lrp1-Dependent Mechanism. Int J Mol Sci 2021; 22:ijms22158185. [PMID: 34360951 PMCID: PMC8348656 DOI: 10.3390/ijms22158185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies have implied that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows the development and progression of Alzheimer’s disease (AD). However, the underlying mechanisms are notably understudied. Using a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) (APP/PS1) expressing transgenic (Tg) mice and neuroblastoma (N) 2a cells as in vivo and in vitro models, we revealed the mechanisms of indomethacin in ameliorating the cognitive decline of AD. By screening AD-associated genes, we observed that a marked increase in the expression of α2-macroglobulin (A2M) was markedly induced after treatment with indomethacin. Mechanistically, upregulation of A2M was caused by the inhibition of cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), which are responsible for the synthesis of prostaglandin (PG)H2 and PGD2, respectively. The reduction in PGD2 levels induced by indomethacin alleviated the suppression of A2M expression through a PGD2 receptor 2 (CRTH2)-dependent mechanism. Highly activated A2M not only disrupted the production and aggregation of β-amyloid protein (Aβ) but also induced Aβ efflux from the brain. More interestingly, indomethacin decreased the degradation of the A2M receptor, low-density lipoprotein receptor-related protein 1 (LRP1), which facilitated the brain efflux of Aβ. Through the aforementioned mechanisms, indomethacin ameliorated cognitive decline in APP/PS1 Tg mice by decreasing Aβ production and clearing Aβ from the brains of AD mice.
Collapse
|
11
|
Chen Q, Zhang Y, Zhao Q. Expression analysis of immune-associated genes in hemocytes of mud crab Scylla paramamosain under low salinity challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 107:16-25. [PMID: 32947031 DOI: 10.1016/j.fsi.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
To gain knowledge on the immune response in Scylla paramamosain under low salinity challenge, S. paramamosain we investigated digital gene expression (DEG) in S. paramamosain hemocytes using the deep-sequencing platform Illumina Hiseq XTen. A total of 97,257 high quality unigenes with mean length 786.59 bp were found to be regulated by low salinity challenge, among which 93 unigenes were significantly up regulated, and 71 were significantly down regulated. Functional categorization and pathways analysis of differentially expressed genes revealed that immune signaling pathway including cAMP and cGMP signaling pathway were affected in low salinity stress. Cellular immunity-related genes including low-density lipoprotein receptor-related protein 6 (LRP6) and xanthine dehydrogenase (XDH) were down-regulated, indicating phagocytosis and oxygen dependent mechanism of phagocyte were suppressed in low salinity stress; Humoral immunity-related genes serine proteases and serpins 3 were up- and down-regulated, respectively, suggest that the proPO system was influenced by low salinity significantly; Moreover, processes related to immune response including carbohydrate metabolism, protein synthesis and lipid transport were found differentially regulated, implying the integrity of the immune response in low salinity stress. This study gained comprehensive insights on the immune mechanism of S. paramamosain at low salinity stress at the molecular level. The findings provide a theoretical basis for understanding immune mechanisms of S. paramamosain under low salinity stress, and technical reference for evaluating physiological adaptation in fresh water environment.
Collapse
Affiliation(s)
- Qinsheng Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yan Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
12
|
Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Chamoun M, Savard M, Thomas E, Kang MS, Lussier F, Tissot C, Parsons M, Qureshi MNI, Vitali P, Massarweh G, Soucy JP, Rej S, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Association of Apolipoprotein E ε4 With Medial Temporal Tau Independent of Amyloid-β. JAMA Neurol 2020; 77:470-479. [PMID: 31860000 DOI: 10.1001/jamaneurol.2019.4421] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Apolipoprotein E ε4 (APOEε4) is the single most important genetic risk factor for Alzheimer disease. While APOEε4 is associated with increased amyloid-β burden, its association with cerebral tau pathology has been controversial. Objective To determine whether APOEε4 is associated with medial temporal tau pathology independently of amyloid-β, sex, clinical status, and age. Design, Setting, and Participants This is a study of 2 cross-sectional cohorts of volunteers who were cognitively normal, had mild cognitive impairment (MCI), or had Alzheimer disease dementia: the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2019) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) (collected between November 2015 and June 2019). The first cohort (TRIAD) comprised cognitively normal elderly participants (n = 124), participants with MCI (n = 50), and participants with Alzheimer disease (n = 50) who underwent tau positron emission tomography (PET) with fluorine 18-labeled MK6240 and amyloid-β PET with [18F]AZD4694. The second sample (ADNI) was composed of cognitively normal elderly participants (n = 157), participants with MCI (n = 83), and participants with Alzheimer disease (n = 25) who underwent tau PET with [18F]flortaucipir and amyloid-β PET with [18F]florbetapir. Exclusion criteria were a history of other neurological disorders, stroke, or head trauma. There were 489 eligible participants, selected based on availability of amyloid-PET, tau-PET, magnetic resonance imaging, and genotyping for APOEε4. Forty-five young adults (<30 years) from the TRIAD cohort were not selected for this study. Main Outcomes and Measures A main association between APOEε4 and tau-PET standardized uptake value ratio, correcting for age, sex, clinical status, and neocortical amyloid-PET standardized uptake value ratio. Results The mean (SD) age of the 489 participants was 70.5 (7.1) years; 171 were APOEε4 carriers (34.9%), and 230 of 489 were men. In both cohorts, APOEε4 was associated in increased tau-PET uptake in the entorhinal cortex and hippocampus independently of amyloid-β, sex, age, and clinical status after multiple comparisons correction (TRIAD: β = 0.33; 95% CI, 0.19-0.49; ADNI: β = 0.13; 95% CI, 0.08-0.19; P < .001). Conclusions and Relevance Our results indicate that the elevated risk of developing dementia conferred by APOEε4 genotype involves mechanisms associated with both amyloid-β and tau aggregation. These results contribute to an evolving framework in which APOEε4 has deleterious consequences in Alzheimer disease beyond its link with amyloid-β and suggest APOEε4 as a potential target for future disease-modifying therapeutic trials targeting tau pathology.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada
| | - Emilie Thomas
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada
| | - Marlee Parsons
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada
| | - Muhammad Naveed Iqbal Qureshi
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Paolo Vitali
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, Montreal, Québec, Canada.,Department of Radiochemistry, McGill University, Montreal, Québec, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada
| | - Soham Rej
- Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | | | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Montreal Neurological Institute, Montreal, Québec, Canada.,Department of Psychiatry, McGill University, Montreal, Québec, Canada
| |
Collapse
|
13
|
Man VH, He X, Ji B, Liu S, Xie XQ, Wang J. Molecular Mechanism and Kinetics of Amyloid-β 42 Aggregate Formation: A Simulation Study. ACS Chem Neurosci 2019; 10:4643-4658. [PMID: 31660732 DOI: 10.1021/acschemneuro.9b00473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As an important neuropathological hallmark of Alzheimer's disease (AD), the oligomerization of amyloid-β (Aβ) peptides has been intensively investigated in both theoretical and experimental studies. However, the oligomerization space in terms of the kinetics, molecular mechanism, and oligomer structures remains mysterious to us. An equation that can quantitatively describe the time it takes for Aβ oligomers to appear in the human brain at a given Aβ monomer concentration is extremely vital for us to understand the development and disease progression of AD. In this study, we utilized molecular dynamics (MD) simulations to investigate the oligomerization of Aβ42 peptides at five different monomer concentrations. We have elucidated the formation pathways of Aβ tetramers, characterized the oligomer structures, estimated the oligomerization time for Aβ dimers, trimers, and tetramers, and for the first-time derived equations that could quantitatively describe the relationship between the oligomerization time and the monomer concentration. Applying these equations, our prediction of oligomerization time agrees well with the experimental and clinical findings, in spite of the limitations of our oligomerization simulations. We have found that the Aβ oligomerization time depends on the monomer concentration by a power of -2.4. The newly established equations will enable us to quantitatively estimate the risk score of AD, which is a function of age. Moreover, we have identified the most dominant pathway of forming Aβ tetramers, probably the most important and toxic Aβ oligomer. Our results have shown that the structures of Aβ42 dimer, trimer, and tetramer, which are distinguishable from each other, depend on the monomer concentration at which the oligomers form. Representative oligomer structures, which can serve as potential drug targets, have been identified by clustering analysis. The MD sampling adequacy has been validated by the excellent agreement between the calculated and measured collisional cross section (CCS) parameters (the prediction errors are within 2%). In a conclusion, this study provides the kinetics and structure basis for developing inhibitors to decelerate the Aβ oligomerization process.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
14
|
Mattei V, Manganelli V, Martellucci S, Capozzi A, Mantuano E, Longo A, Ferri A, Garofalo T, Sorice M, Misasi R. A multimolecular signaling complex including PrP C and LRP1 is strictly dependent on lipid rafts and is essential for the function of tissue plasminogen activator. J Neurochem 2019; 152:468-481. [PMID: 31602645 DOI: 10.1111/jnc.14891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
Prion protein (PrPC ) localizes stably in lipid rafts microdomains and is able to recruit downstream signal transduction pathways by the interaction with promiscuous partners. Other proteins have the ability to occasionally be recruited to these specialized membrane areas, within multimolecular complexes. Among these, we highlight the presence of the low-density lipoprotein receptor-related protein 1 (LRP1), which was found localized transiently in lipid rafts, suggesting a different function of this receptor that through lipid raft becomes able to activate a signal transduction pathway triggered by specific ligands, including Tissue plasminogen activator (tPA). Since it has been reported that PrPC participates in the tPA-mediated plasminogen activation, in this study, we describe the role of lipid rafts in the recruitment and activation of downstream signal transduction pathways mediated by the interaction among tPA, PrPC and LRP1 in human neuroblastoma SK-N-BE2 cell line. Co-immunoprecipitation analysis reveals a consistent association between PrPC and GM1, as well as between LRP1 and GM1, indicating the existence of a glycosphingolipid-enriched multimolecular complex. In our cell model, knocking-down PrPC by siRNA impairs ERK phosphorylation induced by tPA. Moreover the alteration of the lipidic milieu of lipid rafts, perturbing the physical/functional interaction between PrPC and LRP1, inhibits this response. We show that LRP1 and PrPC , following tPA stimulation, may function as a system associated with lipid rafts, involved in receptor-mediated neuritogenic pathway. We suggest this as a multimolecular signaling complex, whose activity depends strictly on the integrity of lipid raft and is involved in the neuritogenic signaling.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Rieti, Italy.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Rieti, Italy.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Elisabetta Mantuano
- Department of Experimental Medicine, Sapienza University, Rome, Italy.,Department of Pathology, University of California at San Diego, La Jolla, CA, USA
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Alberto Ferri
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy.,Fondazione Santa Lucia IRCCS, c/o CERC, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Van Gool B, Storck SE, Reekmans SM, Lechat B, Gordts PLSM, Pradier L, Pietrzik CU, Roebroek AJM. LRP1 Has a Predominant Role in Production over Clearance of Aβ in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2019; 56:7234-7245. [PMID: 31004319 PMCID: PMC6728278 DOI: 10.1007/s12035-019-1594-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP1) has a dual role in the metabolism of the amyloid precursor protein (APP). In cellular models, LRP1 enhances amyloid-β (Aβ) generation via APP internalization and thus its amyloidogenic processing. However, conditional knock-out studies in mice define LRP1 as an important mediator for the clearance of extracellular Aβ from brain via cellular degradation or transcytosis across the blood-brain barrier (BBB). In order to analyze the net effect of LRP1 on production and clearance of Aβ in vivo, we crossed mice with impaired LRP1 function with a mouse model of Alzheimer's disease (AD). Analysis of Aβ metabolism showed that, despite reduced Aβ clearance due to LRP1 inactivation in vivo, less Aβ was found in cerebrospinal fluid (CSF) and brain interstitial fluid (ISF). Further analysis of APP metabolism revealed that impairment of LRP1 in vivo shifted APP processing from the Aβ-generating amyloidogenic cleavage by beta-secretase to the non-amyloidogenic processing by alpha-secretase as shown by a decrease in extracellular Aβ and an increase of soluble APP-α (sAPP-α). This shift in APP processing resulted in overall lower Aβ levels and a reduction in plaque burden. Here, we present for the first time clear in vivo evidence that global impairment of LRP1's endocytosis function favors non-amyloidogenic processing of APP due to its reduced internalization and subsequently, reduced amyloidogenic processing. By inactivation of LRP1, the inhibitory effect on Aβ generation overrules the simultaneous impaired Aβ clearance, resulting in less extracellular Aβ and reduced plaque deposition in a mouse model of AD.
Collapse
Affiliation(s)
- Bart Van Gool
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Steffen E Storck
- Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sara M Reekmans
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Benoit Lechat
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Philip L S M Gordts
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093, USA
| | - Laurent Pradier
- SANOFI, Neuroscience Therapeutic Area, 1 Avenue P. Brossolette, 91385, Chilly-Mazarin, France
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anton J M Roebroek
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium.
| |
Collapse
|
16
|
Lv W, Zhang J, Jiao A, Wang B, Chen B, Lin J. Resveratrol attenuates hIAPP amyloid formation and restores the insulin secretion ability in hIAPP-INS1 cell line via enhancing autophagy. Can J Physiol Pharmacol 2019; 97:82-89. [PMID: 30312115 DOI: 10.1139/cjpp-2016-0686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been proved that human islet amyloid polypeptide (hIAPP), the main constituent of islet amyloid deposition, is one of the important factors that can induce type 2 diabetes or graft failure after islet transplantation. As there is no research on whether resveratrol degrading the amyloid deposition by its special chemical structure or enhancing autophagy had been published, we decided to detect the function of resveratrol in degrading the amyloid deposition in pancreatic beta cells. We established stable hIAPP-INS1 cell line via transfecting INS1 cells by lentivirus that overexpresses hIAPP. Our research demonstrates that amyloid deposition existed in hIAPP-INS1 cell by the thioflavin S fluorescent staining, meanwhile the function of insulin secretion of hIAPP-INS1 cells was decreased significantly (p < 0.01). After treatment with resveratrol (20 μM) for 24 h, amyloid deposition in hIAPP-INS1 cells was decreased significantly, and the insulin secretion was restored significantly (p < 0.01). Once inhibited the autophagy of hIAPP-INS1 cells by 3-methyladenine for 24 h, resveratrol does not effectively remove hIAPP deposits again, and cannot improve the function of insulin secretion. These results provide a novel thought that resveratrol can degrade the amyloid deposition in type 2 diabetes and the graft after islet transplantation.
Collapse
Affiliation(s)
- Wu Lv
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jialin Zhang
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ao Jiao
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Bowen Wang
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baomin Chen
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jie Lin
- Department of General Surgery, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
17
|
Abstract
Mechanisms for elimination of metabolites from ISF include metabolism, blood-brain barrier transport and non-selective, perivascular efflux, this last being assessed by measuring the clearance of markers like inulin. Clearance describes elimination. Clearance of a metabolite generated within the brain is determined as its elimination rate divided by its concentration in interstitial fluid (ISF). However, the more frequently measured parameter is the rate constant for elimination determined as elimination rate divided by amount present, which thus depends on both the elimination processes and the distribution of the metabolite in the brain. The relative importance of the various elimination mechanisms depends on the particular metabolite. Little is known about the effects of sleep on clearance via metabolism or blood-brain barrier transport, but studies with inulin in mice comparing perivascular effluxes during sleep and wakefulness reveal a 4.2-fold increase in clearance. Amongst the important brain metabolites considered, CO2 is eliminated so rapidly across the blood-brain barrier that clearance is blood flow limited and elimination quickly balances production. Glutamate is removed from ISF primarily by uptake into astrocytes and conversion to glutamine, but also by transport across the blood-brain barrier. Both lactate and amyloid-β are eliminated by metabolism, blood-brain barrier transport and perivascular efflux and both show decreased production, decreased ISF concentration and increased perivascular clearance during sleep. Taken altogether available data indicate that sleep increases perivascular and non-perivascular clearances for amyloid-β which reduces its concentration and may have long-term consequences for the formation of plaques and cerebral arterial deposits.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
18
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
19
|
Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 2018; 83:347-357. [PMID: 28434655 PMCID: PMC5599322 DOI: 10.1016/j.biopsych.2017.03.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Apolipoprotein E (apoE) is a lipid carrier in both the peripheral and the central nervous systems. Lipid-loaded apoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and injury repair in the brain. Considering prevalence and relative risk magnitude, the ε4 allele of the APOE gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE4 contributes to AD pathogenesis by modulating multiple pathways, including but not limited to the metabolism, aggregation, and toxicity of amyloid-β peptide, tauopathy, synaptic plasticity, lipid transport, glucose metabolism, mitochondrial function, vascular integrity, and neuroinflammation. Emerging knowledge on apoE-related pathways in the pathophysiology of AD presents new opportunities for AD therapy. We describe the biochemical and biological features of apoE and apoE receptors in the central nervous system. We also discuss the evidence and mechanisms addressing differential effects of apoE isoforms and the role of apoE receptors in AD pathogenesis, with a particular emphasis on the clinical and preclinical studies related to amyloid-β pathology. Finally, we summarize the current strategies of AD therapy targeting apoE, and postulate that effective strategies require an apoE isoform-specific approach.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
20
|
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017; 11:680. [PMID: 29311768 PMCID: PMC5733046 DOI: 10.3389/fnins.2017.00680] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research.
Collapse
Affiliation(s)
- Kevin A Clayton
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Alicia A Van Enoo
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States.,Department of Neurology, Medical School, Boston University, Boston, MA, United States
| |
Collapse
|
21
|
Storck SE, Pietrzik CU. Endothelial LRP1 - A Potential Target for the Treatment of Alzheimer's Disease : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2637-2651. [PMID: 28948494 DOI: 10.1007/s11095-017-2267-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
The accumulation of the neurotoxin beta-amyloid (Aβ) is a major hallmark in Alzheimer's disease (AD). Aβ homeostasis in the brain is governed by its production and various clearance mechanisms. Both pathways are influenced by the ubiquitously expressed low-density lipoprotein receptor-related protein 1 (LRP1). In cerebral blood vessels, LRP1 is an important mediator for the rapid removal of Aβ from brain via transport across the blood-brain barrier (BBB). Here, we summarize recent findings on LRP1 function and discuss the targeting of LRP1 as a modulator for AD pathology and drug delivery into the brain.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
22
|
Wei J, Fan S, Liu B, Zhang B, Su J, Yu D. Transcriptome analysis of the immune reaction of the pearl oyster Pinctada fucata to xenograft from Pinctada maxima. FISH & SHELLFISH IMMUNOLOGY 2017; 67:331-345. [PMID: 28606863 DOI: 10.1016/j.fsi.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The pearl oyster Pinctada maxima exhibits great difficulty to culture pearls through nuclear insertion with an allograft, but it is easy for P. fucata to culture pearls after allografting. If P. fucata could be used as a surrogate mother to culture P. maxima pearls, it would benefit the pearl culture industry of P. maxima. However, this is blocked by the immune rejection of P. fucata against P. maxima mantle grafts. In this study, the immune responses of P. fucata hemocyte to allograft and xenograft were investigated after transplantation by transcriptome analysis. In total, 107.93 Gb clean reads were produced and assembled using the reference genome of P. fucata. Gene Ontology Term enrichment and KEGG enrichment analyses indicated that apoptosis, hippo signaling pathway, oxidation-reduction, MAPK signaling pathway, ribosome, protein processing in endoplasmic reticulum, purine metabolism, NF-kappa B signaling pathway, oxidative phosphorylation, Ras signaling pathway, and ubiquitin mediated proteolysis were involved in response to transplantation. Many genes related to oxidation-reduction reactions, the MAPK signaling pathway, and apoptosis were identified by comparison of the allograft group and the xenograft group at 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, and 96 h post-transplantation. Among them, the expression levels of NADH dehydrogenase, succinate dehydrogenase and other dehydrogenases were increased significantly in the xenograft groups compared with allograft groups at 0 h post transplantation, indicating that a respiratory burst of neutrophils occurred immediately after xenograft transplantation. Additionally, HSP70 was highly expressed from 0 h to 96 h in the xenograft groups, indicating an oyster immune response to the xenograft. The genes enriched in the ribosome and hippo-signaling pathways were also identified, and expression patterns of these DEGs were different as compared between transplantation and control groups. Finally, altered expression levels of 10 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR. These results indicated that oxidation-reduction is likely the key factor responsible for immune rejection to transplantation. The findings should provide some new insight into the molecular mechanism of immune rejection of the host against xenograft, and thus benefit to development of immunosuppressive reagents to facilitate effective xenograft pearling.
Collapse
Affiliation(s)
- Jinfen Wei
- Qinzhou University, Qinzhou 535011, Guangxi, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jiaqi Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Dahui Yu
- Qinzhou University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
23
|
Hou H, Habib A, Zi D, Tian K, Tian J, Giunta B, Sawmiller D, Tan J. Low-Density Lipoprotein Receptor-Related Protein-1 (LRP1) C4408R Mutant Promotes Amyloid Precursor Protein (APP) α-Cleavage in Vitro. Neuromolecular Med 2017; 19:300-308. [PMID: 28612181 DOI: 10.1007/s12017-017-8446-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
Previous studies have demonstrated that the low-density lipoprotein receptor-related protein-1 (LRP1) plays conflicting roles in Alzheimer's disease (AD) pathogenesis, clearing β-amyloid (Aβ) from the brain while also enhancing APP endocytosis and resultant amyloidogenic processing. We have recently discovered that co-expression of mutant LRP1 C-terminal domain (LRP1-CT C4408R) with Swedish mutant amyloid precursor protein (APPswe) in Chinese hamster ovary (CHO) cells decreases Aβ production, while also increasing sAPPα and APP α-C-terminal fragment (α-CTF), compared with CHO cells expressing APPswe alone. Surprisingly, the location of this mutation on LRP1 corresponded with the α-secretase cleavage site of APP. Further experimentation confirmed that in CHO cells expressing APPswe or wild-type APP (APPwt), co-expression of LRP1-CT C4408R decreases Aβ and increases sAPPα and α-CTF compared with co-expression of wild-type LRP1-CT. In addition, LRP1-CT C4408R enhanced the unglycosylated form of LRP1-CT and reduced APP endocytosis as determined by flow cytometry. This finding identifies a point mutation in LRP1 which slows LRP1-CT-mediated APP endocytosis and amyloidogenic processing, while enhancing APP α-secretase cleavage, thus demonstrating a potential novel target for slowing AD pathogenesis.
Collapse
Affiliation(s)
- Huayan Hou
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Dan Zi
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA.,Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, 55004, China
| | - Kathy Tian
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Jun Tian
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Brian Giunta
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA.
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| |
Collapse
|
24
|
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 2017; 58:1267-1281. [PMID: 28381441 DOI: 10.1194/jlr.r075796] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Among the LDL receptor (LDLR) family members, the roles of LDLR-related protein (LRP)1 in the pathogenesis of Alzheimer's disease (AD), especially late-onset AD, have been the most studied by genetic, neuropathological, and biomarker analyses (clinical studies) or cellular and animal model systems (preclinical studies) over the last 25 years. Although there are some conflicting reports, accumulating evidence from preclinical studies indicates that LRP1 not only regulates the metabolism of amyloid-β peptides (Aβs) in the brain and periphery, but also maintains brain homeostasis, impairment of which likely contributes to AD development in Aβ-independent manners. Several preclinical studies have also demonstrated an involvement of LRP1 in regulating the pathogenic role of apoE, whose gene is the strongest genetic risk factor for AD. Nonetheless, evidence from clinical studies is not sufficient to conclude how LRP1 contributes to AD development. Thus, despite very promising results from preclinical studies, the role of LRP1 in AD pathogenesis remains to be further clarified. In this review, we discuss the potential mechanisms underlying how LRP1 affects AD pathogenesis through Aβ-dependent and -independent pathways by reviewing both clinical and preclinical studies. We also discuss potential therapeutic strategies for AD by targeting LRP1.
Collapse
Affiliation(s)
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
25
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
26
|
Improvement of Electroacupuncture on APP/PS1 Transgenic Mice in Spatial Learning and Memory Probably due to Expression of A β and LRP1 in Hippocampus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7603975. [PMID: 27829865 PMCID: PMC5088312 DOI: 10.1155/2016/7603975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022]
Abstract
Objectives. To explore the alterations of β-amyloid (Aβ) and low density lipoprotein receptor-related protein-1 (LRP1) in APP/PS1 mice after electroacupuncture (EA) treatment and further to explore the mechanism. Methods. Forty 6-month-old APP/PS1 mice were randomly divided into a model group and an EA group, with twenty wild-type mice used as a normal control group. Mice in the EA group were treated with EA at GV 20 (băi huì) and bilateral KI 1 (yŏng quán) acupoints for 6 weeks. The Morris water maze was applied to assess the spatial memory in behavior. Immunohistochemistry (IHC), ELISA, Western blotting, and so forth were used to observe the expression of LRP1 and Aβ. Results. The Morris water maze test showed that, compared with the normal control group, the model group's learning and memory capabilities were significantly decreased (P < 0.05; P < 0.01). The EA group was reversed (P < 0.05; P < 0.01). The hippocampal expression of Aβ in the EA group was significantly decreased compared to the model group (P < 0.01). The expression of LRP1 in the model group was significantly lower than that in the normal control group (P < 0.01); the expression in the EA group was significantly higher than that in the model group (P < 0.01). Conclusions. EA therapy can improve the learning and memory capabilities of APP/PS1 mice. The underlying mechanism may lie in the upregulation of an Aβ transport receptor and LRP1.
Collapse
|
27
|
Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, Bennett DA, De Jager PL, Shulman JM, Bellen HJ, Lu HC. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol 2016; 14:e1002472. [PMID: 27254664 PMCID: PMC4890852 DOI: 10.1371/journal.pbio.1002472] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is neuroprotective in numerous preclinical models of neurodegeneration. Here, we show that brain nmnat2 mRNA levels correlate positively with global cognitive function and negatively with AD pathology. In AD brains, NMNAT2 mRNA and protein levels are reduced. NMNAT2 shifts its solubility and colocalizes with aggregated Tau in AD brains, similar to chaperones, which aid in the clearance or refolding of misfolded proteins. Investigating the mechanism of this observation, we discover a novel chaperone function of NMNAT2, independent from its enzymatic activity. NMNAT2 complexes with heat shock protein 90 (HSP90) to refold aggregated protein substrates. NMNAT2’s refoldase activity requires a unique C-terminal ATP site, activated in the presence of HSP90. Furthermore, deleting NMNAT2 function increases the vulnerability of cortical neurons to proteotoxic stress and excitotoxicity. Interestingly, NMNAT2 acts as a chaperone to reduce proteotoxic stress, while its enzymatic activity protects neurons from excitotoxicity. Taken together, our data indicate that NMNAT2 exerts its chaperone or enzymatic function in a context-dependent manner to maintain neuronal health. This study reveals NMNAT2 to be a dual-function neuronal maintenance factor that not only generates NAD to protect neurons from excitotoxicity but also moonlights as a chaperone to combat protein toxicity. Pathological protein aggregates are found in many neurodegenerative diseases, and it has been hypothesized that these protein aggregates are toxic and cause neuronal death. Little is known about how neurons protect against pathological protein aggregates to maintain their health. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a newly identified neuronal maintenance factor. We found that in humans, levels of NMNAT2 transcript are positively correlated with cognitive function and are negatively correlated with pathological features of neurodegenerative disease like plaques and tangles. In this study, we demonstrate that NMNAT2 can act as a chaperone to reduce protein aggregates, and this function is independent from its known function in the enzymatic synthesis of nicotinamide adenine dinucleotide (NAD). We find that NMNAT2 interacts with heat shock protein 90 (HSP90) to refold protein aggregates, and that deleting NMNAT2 in cortical neurons renders them vulnerable to protein stress or excitotoxicity. Interestingly, the chaperone function of NMNAT2 protects neurons from protein toxicity, while its enzymatic function is required to defend against excitotoxicity. Our work here suggests that NMNAT2 uses either its chaperone or enzymatic function to combat neuronal insults in a context-dependent manner. In Alzheimer disease brains, NMNAT2 levels are less than 50% of control levels, and we propose that enhancing NMNAT2 function may provide an effective therapeutic intervention to reserve cognitive function.
Collapse
Affiliation(s)
- Yousuf O. Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hunter M. Allen
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Lei Yu
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dena Bakhshizadehmahmoudi
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Asante Hatcher
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristin McCabe
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jishu Xu
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Nicole Bjorklund
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua M. Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute (HHMI), Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Xu H, Perreau VM, Dent KA, Bush AI, Finkelstein DI, Adlard PA. Iron Regulates Apolipoprotein E Expression and Secretion in Neurons and Astrocytes. J Alzheimers Dis 2016; 51:471-87. [DOI: 10.3233/jad-150797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Victoria M. Perreau
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Krista A. Dent
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Han SH, Park JC, Mook-Jung I. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 2016; 137:17-38. [DOI: 10.1016/j.pneurobio.2015.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
|
30
|
Lim S, Choi JG, Moon M, Kim HG, Lee W, Bak HR, Sung H, Park CH, Kim SY, Oh MS. An Optimized Combination of Ginger and Peony Root Effectively Inhibits Amyloid-β Accumulation and Amyloid-β-Mediated Pathology in AβPP/PS1 Double-Transgenic Mice. J Alzheimers Dis 2016; 50:189-200. [PMID: 26639976 DOI: 10.3233/jad-150839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The progressive aggregation of amyloid-β protein (Aβ) into senile plaques is a major pathological factor of Alzheimer's disease (AD) and is believed to result in memory impairment. We aimed to investigate the effect of an optimized combination of ginger and peony root (OCGP), a standardized herbal mixture of ginger and peony root, on Aβ accumulation and memory impairment in amyloid-β protein precursor (AβPP)/presenilin 1 (PS1) double-transgenic mice. In an in vitro thioflavin T fluorescence assay, 100 μg/ml OCGP inhibited Aβ accumulation to the same extent as did 10 μM curcumin. Furthermore, AβPP/PS1 double-transgenic mice treated with OCGP (50 or 100 mg/kg/day given orally for 14 weeks) exhibited reduced Aβ plaque accumulation in the hippocampus and lower levels of glial fibrillary acid protein and cyclooxygease-2 expression compared with vehicle-treated controls. These results suggest that OCGP may prevent memory impairment in AD by inhibiting Aβ accumulation and inflammation in the brain.
Collapse
Affiliation(s)
- Soonmin Lim
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jin Gyu Choi
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Wonil Lee
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Hyoung-Rok Bak
- CJ Healthcare R&D center, Majang-myeon, Icheon, Gyeonggi, Republic of Korea
| | - Hachang Sung
- CJ Healthcare R&D center, Majang-myeon, Icheon, Gyeonggi, Republic of Korea
| | - Chi Hye Park
- CJ Healthcare R&D center, Majang-myeon, Icheon, Gyeonggi, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
31
|
LRP1 Downregulates the Alzheimer's β-Secretase BACE1 by Modulating Its Intraneuronal Trafficking. eNeuro 2015; 2:eN-NWR-0006-15. [PMID: 26464978 PMCID: PMC4596091 DOI: 10.1523/eneuro.0006-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/02/2023] Open
Abstract
The β-secretase called BACE1 is a membrane-associated protease that initiates the generation of amyloid β-protein (Aβ), a key event in Alzheimer's disease (AD). However, the mechanism of intraneuronal regulation of BACE1 is poorly understood. Here, we present evidence that low-density lipoprotein receptor-related protein 1 (LRP1), a multi-functional receptor, has a previously unrecognized function to regulate BACE1 in neurons. We show that deficiency of LRP1 exerts promotive effects on the protein expression and function of BACE1, whereas expression of LRP-L4, a functional LRP1 mini-receptor, specifically decreases BACE1 levels in both human embryonic kidney (HEK) 293 cells and rat primary neurons, leading to reduced Aβ production. Our subsequent analyses further demonstrate that (1) both endogenous and exogenous BACE1 and LRP1 interact with each other and are colocalized in soma and neurites of primary neurons, (2) LRP1 reduces the protein stability and cell-surface expression of BACE1, and (3) LRP1 facilitates the shift in intracellular localization of BACE1 from early to late endosomes, thereby promoting lysosomal degradation. These findings establish that LRP1 specifically downregulates BACE1 by modulating its intraneuronal trafficking and stability through protein interaction and highlight LRP1 as a potential therapeutic target in AD.
Collapse
|
32
|
Abstract
Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease (AD) pathogenesis and neurodegeneration. This Review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction.
Collapse
|
33
|
Liu Q, Zhang J. Lipid metabolism in Alzheimer's disease. Neurosci Bull 2014; 30:331-45. [PMID: 24733655 DOI: 10.1007/s12264-013-1410-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/25/2014] [Indexed: 12/14/2022] Open
Abstract
Lipids play crucial roles in cell signaling and various physiological processes, especially in the brain. Impaired lipid metabolism in the brain has been implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), and other central nervous system insults. The brain contains thousands of lipid species, but the complex lipid compositional diversity and the function of each of lipid species are currently poorly understood. This review integrates current knowledge about major lipid changes with the molecular mechanisms that underlie AD pathogenesis.
Collapse
Affiliation(s)
- Qiang Liu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China,
| | | |
Collapse
|
34
|
Schmidt V, Carlo AS, Willnow TE. Apolipoprotein E receptor pathways in Alzheimer disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:255-70. [PMID: 24604742 DOI: 10.1002/wsbm.1262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 11/07/2022]
Abstract
UNLABELLED Alzheimer disease (AD) is the most common neurodegenerative disease affecting millions of patients worldwide. According to the amyloid cascade hypothesis, the formation of neurotoxic oligomers composed of amyloid-β (Aβ) peptides is the main mechanism that causes synaptic dysfunction and, eventually, neuronal cell death in this condition. Intriguingly, apolipoprotein E (apoE), the most important genetic risk factor for sporadic AD, emerges as a key factor that contributes to many aspects of the amyloid cascade including the clearance of Aβ from brain interstitial fluid and the ability of this peptide to form neurotoxic oligomers. Central to the activity of apoE in the healthy and in the diseased brain are apoE receptors that interact with this protein to mediate its multiple cellular and systemic effects. This review describes the molecular interactions that link apoE and its cellular receptors with neuronal viability and function, and how defects in these pathways in the brain promote neurodegeneration. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
35
|
Liu R, Wang L, Sun Y, Wang L, Zhang H, Song L. A low-density lipoprotein receptor-related protein (LRP)-like molecule identified from Chlamys farreri participated in immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2014; 36:336-343. [PMID: 24345370 DOI: 10.1016/j.fsi.2013.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
Low-density lipoprotein receptor-related protein (LRP) is a group of important endocytic receptors contributing to binding ligands and maintaining internal environment. In the present study, an LRP-like molecule was identified from Zhikong scallop Chlamys farreri (CfLPR), and its mRNA expression profiles, tissue location, and immunology activities were analyzed to explore its possible function in the innate immune system. The ORF of CfLRP was of 1971 bp encoding a polypeptide of 656 amino acids with ten low-density lipoprotein-receptor YWTD (LY) domains and one scavenger receptor cysteine-rich (SRCR) domain. It shared similar structure with out-membrane domains of LRP family members in mammalian. The mRNA transcripts of CfLRP were dominantly expressed in hepatopancreas and mantle (P < 0.01), and its mRNA level in hemocytes was up-regulated (P < 0.01) significantly after the stimulations of lipopolysaccharides (LPS), peptidoglycan (PGN) and β-glucan. Western blotting assay using polyclonal antibody specific for CfLRP revealed that CfLRP was localized in the plasma. The recombinant protein of CfLRP (rCfLRP) could bind acetylated low density lipoprotein (Ac-LDL), metalloprotease SPF1 of Vibrio splendidus and mannan, but could not bind other typical PAMPs such as LPS, PGN, β-glucan and zymosan. Meanwhile, rCfLRP also exhibited strong bacteriostatic activity to Gram-negative bacteria Vibrio anguillarum and V. splendidus. These results indicated that CfLRP could serve as a receptor to recognize and eliminate the invading pathogens, which provided a new implication in the function of LRP-like molecules in invertebrate immunity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bacterial Physiological Phenomena
- Base Sequence
- Blotting, Western
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Gene Expression Regulation
- Immunity, Innate
- Molecular Sequence Data
- Pectinidae/classification
- Pectinidae/genetics
- Pectinidae/immunology
- Pectinidae/microbiology
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Random Allocation
- Real-Time Polymerase Chain Reaction
- Receptors, LDL/chemistry
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
36
|
Watson D, Castaño E, Kokjohn TA, Kuo YM, Lyubchenko Y, Pinsky D, Connolly ES, Esh C, Luehrs DC, Stine WB, Rowse LM, Emmerling MR, Roher AE. Physicochemical characteristics of soluble oligomeric Aβand their pathologic role in Alzheimer's disease. Neurol Res 2013; 27:869-81. [PMID: 16354549 DOI: 10.1179/016164105x49436] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular fibrillar amyloid deposits are prominent and universal Alzheimer's disease (AD) features, but senile plaque abundance does not always correlate directly with the degree of dementia exhibited by AD patients. The mechanism(s) and dynamics of Abeta fibril genesis and deposition remain obscure. Enhanced Abeta synthesis rates coupled with decreased degradative enzyme production and accumulating physical modifications that dampen proteolysis may all enhance amyloid deposit formation. Amyloid accumulation may indirectly exert the greatest pathologic effect on the brain vasculature by destroying smooth muscle cells and creating a cascade of negative impacts on cerebral blood flow. The most visible manifestation of amyloid dis-equilibrium could actually be a defense mechanism employed to avoid serious vascular wall degradation while the major toxic effects to the gray and white matter neurons are mediated by soluble oligomeric Abeta peptides with high beta-sheet content. The recognition that dynamic soluble oligomeric Abeta pools exist in AD and are correlated to disease severity led to neurotoxicity and physical conformation studies. It is now recognized that the most basic soluble Abeta peptides are stable dimers with hydrophobic regions sequestered from the aqueous environment and are capable of higher order aggregations. Time course experiments employing a modified ELISA method able to detect Abeta oligomers revealed dynamic intermolecular interactions and additional experiments physically confirmed the presence of stable amyloid multimers. Amyloid peptides that are rich in beta-sheet structure are capable of creating toxic membrane ion channels and a capacity to self-assemble as annular structures was confirmed in vitro using atomic force microscopy. Biochemical studies have established that soluble Abeta peptides perturb metabolic processes, provoke release of deleterious reactive compounds, reduce blood flow, induce mitochondrial apoptotic toxicity and inhibit angiogenesis. While there is no question that gross amyloid deposition does contribute to AD pathology, the destructive potential now associated with soluble Abeta suggests that treatment strategies that target these molecules may be efficacious in preventing some of the devastating effects of AD.
Collapse
Affiliation(s)
- Desiree Watson
- Pfizer, Global Research and Development, Ann Arbor, MI 48106 USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 2:a006312. [PMID: 22393530 DOI: 10.1101/cshperspect.a006312] [Citation(s) in RCA: 599] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease (AD); the ε4 allele increases risk and the ε2 allele is protective. In the central nervous system (CNS), apoE is produced by glial cells, is present in high-density-like lipoproteins, interacts with several receptors that are members of the low-density lipoprotein receptor (LDLR) family, and is a protein that binds to the amyloid-β (Aβ) peptide. There are a variety of mechanisms by which apoE isoform may influence risk for AD. There is substantial evidence that differential effects of apoE isoform on AD risk are influenced by the ability of apoE to affect Aβ aggregation and clearance in the brain. Other mechanisms are also likely to play a role in the ability of apoE to influence CNS function as well as AD, including effects on synaptic plasticity, cell signaling, lipid transport and metabolism, and neuroinflammation. ApoE receptors, including LDLRs, Apoer2, very low-density lipoprotein receptors (VLDLRs), and lipoprotein receptor-related protein 1 (LRP1) appear to influence both the CNS effects of apoE as well as Aβ metabolism and toxicity. Therapeutic strategies based on apoE and apoE receptors may include influencing apoE/Aβ interactions, apoE structure, apoE lipidation, LDLR receptor family member function, and signaling. Understanding the normal and disease-related biology connecting apoE, apoE receptors, and AD is likely to provide novel insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- David M Holtzman
- Department of Neurology, Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
39
|
Amyloidosis in Alzheimer's Disease: The Toxicity of Amyloid Beta (A β ), Mechanisms of Its Accumulation and Implications of Medicinal Plants for Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:413808. [PMID: 23762130 PMCID: PMC3671299 DOI: 10.1155/2013/413808] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/10/2013] [Accepted: 04/22/2013] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to memory deficits and death. While the number of individuals with AD is rising each year due to the longer life expectancy worldwide, current therapy can only somewhat relieve the symptoms of AD. There is no proven medication to cure or prevent the disease, possibly due to a lack of knowledge regarding the molecular mechanisms underlying disease pathogenesis. Most previous studies have accepted the “amyloid hypothesis,” in which the neuropathogenesis of AD is believed to be triggered by the accumulation of the toxic amyloid beta (Aβ) protein in the central nervous system (CNS). Lately, knowledge that may be critical to unraveling the hidden pathogenic pathway of AD has been revealed. This review concentrates on the toxicity of Aβ and the mechanism of accumulation of this toxic protein in the brain of individuals with AD and also summarizes recent advances in the study of these accumulation mechanisms together with the role of herbal medicines that could facilitate the development of more effective therapeutic and preventive strategies.
Collapse
|
40
|
Martiskainen H, Haapasalo A, Kurkinen KMA, Pihlajamäki J, Soininen H, Hiltunen M. Targeting ApoE4/ApoE receptor LRP1 in Alzheimer's disease. Expert Opin Ther Targets 2013; 17:781-94. [PMID: 23573918 DOI: 10.1517/14728222.2013.789862] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Progressive neuronal loss is a key feature in Alzheimer's disease (AD), which is the most common neurodegenerative disorder in the aging population. Currently, there are no therapeutic means to intervene neuronal damage in AD and therefore innovative approaches to discover novel strategies for the treatment of AD are needed. Based on the prevailing amyloid cascade hypothesis, it is conceivable that lowering the β-amyloid (Aβ) levels is sufficient to slow down the disease process, if started early enough. AREAS COVERED Here, we review genetic and biological functions related to apolipoprotein E (ApoE) and low-density lipoprotein receptor-related protein 1 receptor (LRP1)-mediated clearance of Aβ. Furthermore, we discuss the AD-related therapeutic potential of targeting to ApoE receptor LRP1 at the blood-brain barrier (BBB) and in the periphery. EXPERT OPINION Due to the recent setbacks in the clinical trials targeting AD, it is instrumental to seek alternative therapeutic approaches, which aim to reduce the accumulation of Aβ in the brain tissue. As the ApoE/LRP1-mediated clearance of Aβ across the BBB is the key event in the regulation of Aβ transcytosis from brain to periphery, direct targeting of this protein entity at the BBB holds a great potential in the treatment of AD.
Collapse
Affiliation(s)
- Henna Martiskainen
- Kuopio University Hospital, Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The lipoprotein receptor low-density lipoprotein receptor-related protein 1 (LRP1) functions both in endocytosis and in signal transduction. Recently, it has become clear that LRP1 modulates the inflammatory response to various noxious stimuli. This review is to summarize our current knowledge about the role of LRP1 in inflammation. RECENT FINDINGS LRP1 modulates the inflammatory response in different organs and under various pathophysiological conditions. Both direct regulation of inflammatory signaling through the binding of extracellular messengers or intracellular signaling molecules and indirect modulation through the interaction with other transmembrane receptors or the endocytosis of extracellular factors have been described. Regulation by LRP1 effects cytokine secretion, phagocytosis and migration of cells of the immune system. SUMMARY In recent years, LRP1 emerged as an important regulator of the inflammatory response. Owing to the ubiquitous expression of this receptor, this function is of importance in different organs and under various pathophysiological conditions in which inflammation contributes to disease, that is atherosclerosis, neurodegeneration and organ fibrosis, for example of the lung or liver.
Collapse
Affiliation(s)
- Petra May
- Department of Medicine II and Center for Neurosciences, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
42
|
Kuszczyk MA, Sanchez S, Pankiewicz J, Kim J, Duszczyk M, Guridi M, Asuni AA, Sullivan PM, Holtzman DM, Sadowski MJ. Blocking the interaction between apolipoprotein E and Aβ reduces intraneuronal accumulation of Aβ and inhibits synaptic degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1750-68. [PMID: 23499462 DOI: 10.1016/j.ajpath.2013.01.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 01/09/2023]
Abstract
Accumulation of β-amyloid (Aβ) in the brain is a key event in Alzheimer disease pathogenesis. Apolipoprotein (Apo) E is a lipid carrier protein secreted by astrocytes, which shows inherent affinity for Aβ and has been implicated in the receptor-mediated Aβ uptake by neurons. To characterize ApoE involvement in the intraneuronal Aβ accumulation and to investigate whether blocking the ApoE/Aβ interaction could reduce intraneuronal Aβ buildup, we used a noncontact neuronal-astrocytic co-culture system, where synthetic Aβ peptides were added into the media without or with cotreatment with Aβ12-28P, which is a nontoxic peptide antagonist of ApoE/Aβ binding. Compared with neurons cultured alone, intraneuronal Aβ content was significantly increased in neurons co-cultured with wild-type but not with ApoE knockout (KO) astrocytes. Neurons co-cultured with astrocytes also showed impaired intraneuronal degradation of Aβ, increased level of intraneuronal Aβ oligomers, and marked down-regulation of several synaptic proteins. Aβ12-28P treatment significantly reduced intraneuronal Aβ accumulation, including Aβ oligomer level, and inhibited loss of synaptic proteins. Furthermore, we showed significantly reduced intraneuronal Aβ accumulation in APPSW/PS1dE9/ApoE KO mice compared with APPSW/PS1dE9/ApoE targeted replacement mice that expressed various human ApoE isoforms. Data from our co-culture and in vivo experiments indicate an essential role of ApoE in the mechanism of intraneuronal Aβ accumulation and provide evidence that ApoE/Aβ binding antagonists can effectively prevent this process.
Collapse
Affiliation(s)
- Magdalena A Kuszczyk
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Grana TR, LaMarre J, Kalisch BE. Nerve growth factor-mediated regulation of low density lipoprotein receptor-related protein promoter activation. Cell Mol Neurobiol 2013; 33:269-82. [PMID: 23192564 PMCID: PMC11497883 DOI: 10.1007/s10571-012-9894-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
The mechanisms by which nerve growth factor (NGF) increases the level of low density lipoprotein receptor-related protein (LRP1) are not known. Administration of nitric oxide synthase (NOS) inhibitors modulates several of the neurotrophic actions of NGF, including TrkA signalling pathway activation, increases in gene expression and neurite outgrowth. The present study investigated whether NGF regulates the transcription of LRP1 as well as the role of NO and the individual TrkA signalling pathways in this action of NGF. PC12 cells were transfected with luciferase reporter constructs containing various sized fragments of the LRP1 promoter and treated with NGF (50 ng/mL) to establish whether NGF altered LRP transcription. NGF significantly increased luciferase activity in all LRP1 promoter construct-transfected cells with the NGF-responsive region of the promoter identified to be present in the first 1000 bp. The non-selective NOS inhibitor N(ω)-nitro-L-arginine methylester (L-NAME; 20 mM) had no effect on the NGF-mediated increase in luciferase activity, while the inducible NOS selective inhibitor s-methylisothiourea (S-MIU; 2 mM) attenuated the NGF-induced activation of the LRP1 promoter. Pretreatment of PC12 cells with 10 μM bisindolylmaleimide 1 (BIS-1) prevented the NGF-mediated increase in LRP1 promoter activation while 50 μM U0126 partially inhibited this response. In combination with S-MIU, all of the TrkA signalling pathway inhibitors blocked the ability of NGF to increase LRP1 transcription. These data suggest the NGF-mediated increase in LRP1 levels occurs, at least in part, at the level of transcription and that NO and the TrkA signalling pathways cooperate in the modulation of LRP1 transcription.
Collapse
Affiliation(s)
- Tomas R. Grana
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Bettina E. Kalisch
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
44
|
LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β. J Neurosci 2013; 32:16458-65. [PMID: 23152628 DOI: 10.1523/jneurosci.3987-12.2012] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.
Collapse
|
45
|
Willnow TE, Andersen OM. Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 2013; 126:2751-60. [DOI: 10.1242/jcs.125393] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.
Collapse
|
46
|
Sagare AP, Bell RD, Zlokovic BV. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer's disease. J Alzheimers Dis 2013; 33 Suppl 1:S87-100. [PMID: 22751174 PMCID: PMC4416477 DOI: 10.3233/jad-2012-129037] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evidence that neurovascular dysfunction is an integral part of Alzheimer's disease (AD) pathogenesis has continued to emerge in the last decade. Changes in the brain vasculature have been shown to contribute to the onset and progression of the pathological processes associated with AD, such as microvascular reductions, blood brain barrier (BBB) breakdown, and faulty clearance of amyloid β-peptide (Aβ) from the brain. Herein, we review the role of the neurovascular unit and molecular mechanisms in cerebral vascular cells behind the pathogenesis of AD. In particular, we focus on molecular pathways within cerebral vascular cells and the systemic circulation that contribute to BBB dysfunction, brain hypoperfusion, and impaired clearance of Aβ from the brain. We aim to provide a summary of recent research findings implicated in neurovascular defects and faulty Aβ vascular clearance contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Abhay P. Sagare
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert D. Bell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Sagare AP, Bell RD, Zlokovic BV. Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a011452. [PMID: 23028132 DOI: 10.1101/cshperspect.a011452] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurovascular dysfunction is an integral part of Alzheimer disease (AD). Changes in the brain vascular system may contribute in a significant way to the onset and progression of cognitive decline and the development of a chronic neurodegenerative process associated with accumulation of amyloid β-peptide (Aβ) in brain and cerebral vessels in AD individuals and AD animal models. Here, we review the role of the neurovascular unit and molecular mechanisms in cerebral vascular cells behind the pathogenesis of AD. In particular, we focus on blood-brain barrier (BBB) dysfunction, decreased cerebral blood flow, and impaired vascular clearance of Aβ from brain. The data reviewed here support an essential role of the neurovascular and BBB mechanisms in AD pathogenesis.
Collapse
Affiliation(s)
- Abhay P Sagare
- Center for Neurodegenerative and Vascular Brain Disorders and Interdisciplinary Program in Dementia Research, Arthur Kornberg Medical Research Building, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
48
|
Sagare AP, Deane R, Zlokovic BV. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther 2012; 136:94-105. [PMID: 22820095 PMCID: PMC3432694 DOI: 10.1016/j.pharmthera.2012.07.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is the main cell surface receptor involved in brain and systemic clearance of the Alzheimer's disease (AD) toxin amyloid-beta (Aβ). In plasma, a soluble form of LRP1 (sLRP1) is the major transport protein for peripheral Aβ. LRP1 in brain endothelium and mural cells mediates Aβ efflux from brain by providing a transport mechanism for Aβ across the blood-brain barrier (BBB). sLRP1 maintains a plasma 'sink' activity for Aβ through binding of peripheral Aβ which in turn inhibits re-entry of free plasma Aβ into the brain. LRP1 in the liver mediates systemic clearance of Aβ. In AD, LRP1 expression at the BBB is reduced and Aβ binding to circulating sLRP1 is compromised by oxidation. Cell surface LRP1 and circulating sLRP1 represent druggable targets which can be therapeutically modified to restore the physiological mechanisms of brain Aβ homeostasis. In this review, we discuss how increasing LRP1 expression at the BBB and liver with lifestyle changes, statins, plant-based active principles and/or gene therapy on one hand, and how replacing dysfunctional plasma sLRP1 on the other regulate Aβ clearance from brain ultimately controlling the onset and/or progression of AD.
Collapse
Affiliation(s)
- Abhay P. Sagare
- Department of Physiology and Biophysics, and Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, 1501 San Pablo Street, Los Angeles, CA 90089, United States
| | - Rashid Deane
- Department of Neurosurgery, Arthur Kornberg Medical Research Building, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Berislav V. Zlokovic
- Department of Physiology and Biophysics, and Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, 1501 San Pablo Street, Los Angeles, CA 90089, United States
| |
Collapse
|
49
|
Xu G, Green CC, Fromholt SE, Borchelt DR. Reduction of low-density lipoprotein receptor-related protein (LRP1) in hippocampal neurons does not proportionately reduce, or otherwise alter, amyloid deposition in APPswe/PS1dE9 transgenic mice. ALZHEIMERS RESEARCH & THERAPY 2012; 4:12. [PMID: 22537779 PMCID: PMC4054673 DOI: 10.1186/alzrt110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The low-density lipoprotein receptor-related protein (LRP1) and its family members have been implicated in the pathogenesis of Alzheimer's disease. Multiple susceptibility factors converge to metabolic pathways that involve LRP1, including modulation of the processing of amyloid precursor protein (APP) and the clearance of Aβ peptide. METHODS We used the Cre-lox system to lower LRP1 levels in hippocampal neurons of mice that develop Alzheimer-type amyloid by crosses between mice that express Cre recombinase under the transcriptional control of the GFAP promoter, mice that harbor loxp sites in the LRP1 gene, and the APPswe/PS1dE9 transgenic model. We compared amyloid plaque numbers in APPswe/PS1dE9 mice lacking LRP1 expression in hippocampus (n = 13) to mice with normal levels of LRP1 (n = 12). Student t-test was used to test whether there were significant differences in plaque numbers and amyloid levels between the groups. A regression model was used to fit two regression lines for these groups, and to compare the rates of Aβ accumulation. RESULTS Immunohistochemical analyses demonstrated efficient elimination of LRP1 expression in the CA fields and dentate gyrus of the hippocampus. Within hippocampus, we observed no effect on the severity of amyloid deposition, the rate of Aβ40/42 accumulation, or the architecture of amyloid plaques when LRP1 levels were reduced. CONCLUSIONS Expression of LRP1 by neurons in proximity to senile amyloid plaques does not appear to play a major role in modulating the formation of these proximal deposits or in the appearance of the associated neuritic pathology.
Collapse
Affiliation(s)
- Guilian Xu
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Center, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cameron C Green
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Center, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA ; Department of Educational Psychology and Learning Systems, College of Education, Florida State University, Tallahassee, FL 32306, USA
| | - Susan E Fromholt
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Center, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - David R Borchelt
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Center, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
50
|
Zhang W, Bai M, Xi Y, Hao J, Liu L, Mao N, Su C, Miao J, Li Z. Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice: involvement of oxidative stress and cholinergic dysfunction. Free Radic Biol Med 2012; 52:1443-52. [PMID: 22342520 DOI: 10.1016/j.freeradbiomed.2012.01.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 01/08/2012] [Accepted: 01/26/2012] [Indexed: 12/23/2022]
Abstract
A large body of evidence has shown that cognitive deficits occur early, before amyloid plaque deposition, suggesting that soluble amyloid-β protein (Aβ) contributes to the development of early cognitive dysfunction in Alzheimer disease (AD). However, the underlying mechanism(s) through which soluble Aβ exerts its neurotoxicity responsible for cognitive dysfunction in the early stage of AD remains unclear so far. In this study, we used preplaque APPswe/PS1dE9 mice ages 2.5 and 3.5 months to examine alterations in cognitive function, oxidative stress, and cholinergic function. We found that only soluble Aβ, not insoluble Aβ, was detected in these preplaque APPswe/PS1dE9 mice. APPswe/PS1dE9 mice 2.5 months of age did not show any significant changes in the measures of cognitive function, oxidative stress, and cholinergic function, whereas 3.5-month-old APPswe/PS1dE9 mice exhibited spatial memory impairment in the Morris water maze, accompanied by significantly decreased acetylcholine (ACh), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) as well as increased malondialdehyde (MDA) and protein carbonyls. In 3.5-month-old preplaque APPswe/PS1dE9 mice, correlational analyses revealed that the performance of impaired spatial memory was inversely correlated with soluble Aβ, MDA, and protein carbonyls, as well as being positively correlated with ACh, ChAT, SOD, and GSH-px; soluble Aβ level was inversely correlated with ACh, ChAT, SOD, and GSH-px, as well as being positively correlated with MDA and protein carbonyls; ACh level showed a significant positive correlation with ChAT, SOD, and GSH-px, as well as a significant inverse correlation with MDA and protein carbonyls. Collectively, this study provides direct evidence that increased oxidative damage and cholinergic dysfunction may be early pathological responses to soluble Aβ and involved in early memory deficits in the preplaque stage of AD. These findings suggest that early antioxidant therapy and improving cholinergic function may be a promising strategy to prevent or delay the onset and progression of AD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | | | | | | | | | | | | | | | | |
Collapse
|