1
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Jones BL, Walker C, Azizi B, Tolbert L, Williams LD, Snell TW. Conservation of estrogen receptor function in invertebrate reproduction. BMC Evol Biol 2017; 17:65. [PMID: 28259146 PMCID: PMC5336670 DOI: 10.1186/s12862-017-0909-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/08/2017] [Indexed: 11/12/2022] Open
Abstract
Background Rotifers are microscopic aquatic invertebrates that reproduce both sexually and asexually. Though rotifers are phylogenetically distant from humans, and have specialized reproductive physiology, this work identifies a surprising conservation in the control of reproduction between humans and rotifers through the estrogen receptor. Until recently, steroid signaling has been observed in only a few invertebrate taxa and its role in regulating invertebrate reproduction has not been clearly demonstrated. Insights into the evolution of sex signaling pathways can be gained by clarifying how receptors function in invertebrate reproduction. Results In this paper, we show that a ligand-activated estrogen-like receptor in rotifers binds human estradiol and regulates reproductive output in females. In other invertebrates characterized thus far, ER ligand binding domains have occluded ligand-binding sites and the ERs are not ligand activated. We have used a suite of computational, biochemical and biological techniques to determine that the rotifer ER binding site is not occluded and can bind human estradiol. Conclusions Our results demonstrate that this mammalian hormone receptor plays a key role in reproduction of the ancient microinvertebrate Brachinous manjavacas. The presence and activity of the ER within the phylum Rotifera indicates that the ER structure and function is highly conserved throughout animal evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0909-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brande L Jones
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA.
| | - Chris Walker
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Bahareh Azizi
- Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Laren Tolbert
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| |
Collapse
|
4
|
Mukherjee K, Bhattacharyya S, Peralta-Yahya P. GPCR-Based Chemical Biosensors for Medium-Chain Fatty Acids. ACS Synth Biol 2015; 4:1261-9. [PMID: 25992593 DOI: 10.1021/sb500365m] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A key limitation to engineering microbes for chemical production is a reliance on low-throughput chromatography-based screens for chemical detection. While colorimetric chemicals are amenable to high-throughput screens, many value-added chemicals are not colorimetric and require sensors for high-throughput screening. Here, we use G-protein coupled receptors (GPCRs) known to bind medium-chain fatty acids in mammalian cells to rapidly construct chemical sensors in yeast. Medium-chain fatty acids are immediate precursors to the advanced biofuel fatty acid methyl esters, which can serve as a "drop-in" replacement for D2 diesel. One of the sensors detects even-chain C8-C12 fatty acids with a 13- to 17-fold increase in signal after activation, with linear ranges up to 250 μM. Introduction of a synthetic response unit alters both dynamic and linear range, improving the sensor response to decanoic acid to a 30-fold increase in signal after activation, with a linear range up to 500 μM. To our knowledge, this is the first report of a whole-cell medium-chain fatty acid biosensor, which we envision could be applied to the evolutionary engineering of fatty acid-producing microbes. Given the affinity of GPCRs for a wide range of chemicals, it should be possible to rapidly assemble new biosensors by simply swapping the GPCR sensing unit. These sensors should be amenable to a variety of applications that require different dynamic and linear ranges, by introducing different response units.
Collapse
Affiliation(s)
- Kuntal Mukherjee
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Souryadeep Bhattacharyya
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Li Y, Ginjupalli GK, Baldwin WS. The HR97 (NR1L) group of nuclear receptors: a new group of nuclear receptors discovered in Daphnia species. Gen Comp Endocrinol 2014; 206:30-42. [PMID: 25092536 PMCID: PMC4182176 DOI: 10.1016/j.ygcen.2014.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/14/2014] [Accepted: 07/26/2014] [Indexed: 12/14/2022]
Abstract
The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups.
Collapse
Affiliation(s)
- Yangchun Li
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States
| | - Gautam K Ginjupalli
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States; Department of Biological Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
6
|
Shaffer HA, Rood MK, Kashlan B, Chang EIL, Doyle DF, Azizi B. BAPJ69-4A: A yeast two-hybrid strain for both positive and negative genetic selection. J Microbiol Methods 2012; 91:22-9. [DOI: 10.1016/j.mimet.2012.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/01/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
7
|
Ochsner SA, Watkins CM, McOwiti A, Xu X, Darlington YF, Dehart MD, Cooney AJ, Steffen DL, Becnel LB, McKenna NJ. Transcriptomine, a web resource for nuclear receptor signaling transcriptomes. Physiol Genomics 2012; 44:853-63. [PMID: 22786849 DOI: 10.1152/physiolgenomics.00033.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear receptor (NR) superfamily of ligand-regulated transcription factors directs ligand- and tissue-specific transcriptomes in myriad developmental, metabolic, immunological, and reproductive processes. The NR signaling field has generated a wealth of genome-wide expression data points, but due to deficits in their accessibility, annotation, and integration, the full potential of these studies has not yet been realized. We searched public gene expression databases and MEDLINE for global transcriptomic datasets relevant to NRs, their ligands, and coregulators. We carried out extensive, deep reannotation of the datasets using controlled vocabularies for RNA Source and regulating molecule and resolved disparate gene identifiers to official gene symbols to facilitate comparison of fold changes and their significance across multiple datasets. We assembled these data points into a database, Transcriptomine (http://www.nursa.org/transcriptomine), that allows for multiple, menu-driven querying strategies of this transcriptomic "superdataset," including single and multiple genes, Gene Ontology terms, disease terms, and uploaded custom gene lists. Experimental variables such as regulating molecule, RNA Source, as well as fold-change and P value cutoff values can be modified, and full data records can be either browsed or downloaded for downstream analysis. We demonstrate the utility of Transcriptomine as a hypothesis generation and validation tool using in silico and experimental use cases. Our resource empowers users to instantly and routinely mine the collective biology of millions of previously disparate transcriptomic data points. By incorporating future transcriptome-wide datasets in the NR signaling field, we anticipate Transcriptomine developing into a powerful resource for the NR- and other signal transduction research communities.
Collapse
Affiliation(s)
- Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Castillo HS, Ousley AM, Duraj-Thatte A, Lindstrom KN, Patel DD, Bommarius AS, Azizi B. The role of residue C410 on activation of the human vitamin D receptor by various ligands. J Steroid Biochem Mol Biol 2012; 128:76-86. [PMID: 21884792 DOI: 10.1016/j.jsbmb.2011.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/01/2011] [Accepted: 08/14/2011] [Indexed: 11/16/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate the expression of genes involved in biologically important processes. The human vitamin D receptor (hVDR) is a member of the NR superfamily and is responsible for maintaining calcium and phosphate homeostasis. This receptor is activated by its natural ligand, 1α, 25-dihydroxyvitamin D(3) (1α, 25(OH)(2)D(3)), as well as bile acids such as lithocholic acid (LCA). Disruption of molecular interactions between the hVDR and its natural ligand result in adverse diseases, such as rickets, making this receptor a good target for drug discovery. Previous mutational analyses of the hVDR have mainly focused on residues lining the receptor's ligand binding pocket (LBP) and techniques such as alanine scanning mutagenesis and site-directed mutagenesis. In this work, a rationally designed hVDR library using randomized codons at selected positions provides insight into the role of residue C410, particularly on activation of the receptor by various ligands. A variant, C410Y, was engineered to bind LCA with increased sensitivity (EC(50) value of 3 μM and a 34-fold activation) in mammalian cell culture assays. Furthermore, this variant displayed activation with a novel small molecule, cholecalciferol (chole) which does not activate the wild-type receptor, with an EC(50) value of 4 μM and a 25-fold activation. The presence of a bulky residue at this position, such as a tyrosine or phenylalanine, may contribute towards molecular interactions that allow for the enhanced activation with LCA and novel activation with chole. Additional bulk at the same end of the pocket, such as in the case of the variant H305F; C410Y enhances the receptor's sensitivity for these ligands further, perhaps due to the filling of a cavity. The effects of residue C410 on specificity and activation with the different ligands studied were unforeseen, as this residue does not line the hVDR's LBP. Further investigating of the structure-function relationships between the hVDR and its ligands, including the mutational tolerance of residues within as well as outside the LBP, is needed for a comprehensive understanding of the functionality and interactions of the receptor with these ligands and for development of new small molecules as potential therapeutic drugs.
Collapse
Affiliation(s)
- Hilda S Castillo
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Gredell JA, Frei CS, Cirino PC. Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J 2011; 7:477-99. [PMID: 22031507 DOI: 10.1002/biot.201100266] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/20/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022]
Abstract
Nature takes advantage of the malleability of protein and RNA sequence and structure to employ these macromolecules as molecular reporters whose conformation and functional roles depend on the presence of a specific ligand (an "effector" molecule). By following nature's example, ligand-responsive proteins and RNA molecules are now routinely engineered and incorporated into customized molecular reporting systems (biosensors). Microbial small-molecule biosensors and endogenous molecular reporters based on these sensing components find a variety of applications that include high-throughput screening of biosynthesis libraries, environmental monitoring, and novel gene regulation in synthetic biology. Here, we review recent advances in engineering small-molecule recognition by proteins and RNA and in coupling in vivo ligand binding to reporter-gene expression or to allosteric activation of a protein conferring a detectable phenotype. Emphasis is placed on microbial screening systems that serve as molecular reporters and facilitate engineering the ligand-binding component to recognize new molecules.
Collapse
Affiliation(s)
- Joseph A Gredell
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
10
|
Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:21-56. [PMID: 22020178 DOI: 10.1016/j.bbalip.2011.09.014] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1-3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand-bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Sanford-Burn Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 93207, USA.
| | | |
Collapse
|
11
|
Michener JK, Thodey K, Liang JC, Smolke CD. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metab Eng 2011; 14:212-22. [PMID: 21946159 DOI: 10.1016/j.ymben.2011.09.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/10/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023]
Abstract
Cells are filled with biosensors, molecular systems that measure the state of the cell and respond by regulating host processes. In much the same way that an engineer would monitor a chemical reactor, the cell uses these sensors to monitor changing intracellular environments and produce consistent behavior despite the variable environment. While natural systems derive a clear benefit from pathway regulation, past research efforts in engineering cellular metabolism have focused on introducing new pathways and removing existing pathway regulation. Synthetic biology is a rapidly growing field that focuses on the development of new tools that support the design, construction, and optimization of biological systems. Recent advances have been made in the design of genetically-encoded biosensors and the application of this class of molecular tools for optimizing and regulating heterologous pathways. Biosensors to cellular metabolites can be taken directly from natural systems, engineered from natural sensors, or constructed entirely in vitro. When linked to reporters, such as antibiotic resistance markers, these metabolite sensors can be used to report on pathway productivity, allowing high-throughput screening for pathway optimization. Future directions will focus on the application of biosensors to introduce feedback control into metabolic pathways, providing dynamic control strategies to increase the efficient use of cellular resources and pathway reliability.
Collapse
Affiliation(s)
- Joshua K Michener
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
12
|
Benzoate X receptor zinc-finger gene switches for drug-inducible regulation of transcription. Gene Ther 2011; 19:458-62. [PMID: 21796215 DOI: 10.1038/gt.2011.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted zinc-finger (ZF) DNA-binding domains in conjunction with nuclear receptor ligand-binding domains (LBDs) produce chemically inducible gene switches that have applications in gene therapy and proteomic and genomic research. The benzoate X receptor-β (BXRβ) LBD was used to construct homodimer and single-chain ZF transcription factors (ZF(TF)s). These ZF(TF)s specifically regulated the transcription of target genes in response to two ligands, ethyl-4-hydroxybenzoate and propyl-4-hydroxybenzoate, in a dose-dependent manner. The ZF(TF)s also regulated the expression of endogenous intercellular adhesion molecule-1 in response to either ligand. The advantage of BXRβ-based ZF(TF)s is that the ligands are inexpensive and easily synthetically modified, making the system a base for creation of orthogonal ligand-receptor pairs and expanding the gene-switch toolbox.
Collapse
|
13
|
Ousley AM, Castillo HS, Duraj-Thatte A, Doyle DF, Azizi B. A human vitamin D receptor mutant activated by cholecalciferol. J Steroid Biochem Mol Biol 2011; 125:202-10. [PMID: 21397016 PMCID: PMC3105188 DOI: 10.1016/j.jsbmb.2011.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 02/28/2011] [Accepted: 03/04/2011] [Indexed: 02/02/2023]
Abstract
The human vitamin D receptor (hVDR) is a member of the nuclear receptor superfamily, involved in calcium and phosphate homeostasis; hence implicated in a number of diseases, such as Rickets and Osteoporosis. This receptor binds 1α,25-dihydroxyvitamin D(3) (also referred to as 1,25(OH)(2)D(3)) and other known ligands, such as lithocholic acid. Specific interactions between the receptor and ligand are crucial for the function and activation of this receptor, as implied by the single point mutation, H305Q, causing symptoms of Type II Rickets. In this work, further understanding of the significant and essential interactions between the ligand and the receptor was deciphered, through a combination of rational and random mutagenesis. A hVDR mutant, H305F, was engineered with increased sensitivity towards lithocholic acid, with an EC(50) value of 10 μM and 40±14 fold activation in mammalian cell assays, while maintaining wild-type activity with 1,25(OH)(2)D(3). Furthermore, via random mutagenesis, a hVDR mutant, H305F/H397Y, was discovered to bind a novel small molecule, cholecalciferol, a precursor in the 1α,25-dihydroxyvitamin D(3) biosynthetic pathway, which does not activate wild-type hVDR. This variant, H305F/H397Y, binds and activates in response to cholecalciferol concentrations as low as 100 nM, with an EC(50) value of 300 nM and 70±11 fold activation in mammalian cell assays. In silico docking analysis of the variant displays a dramatic conformational shift of cholecalciferol in the ligand binding pocket in comparison to the docked analysis of cholecalciferol with wild-type hVDR. This shift is hypothesized to be due to the introduction of two bulkier residues, suggesting that the addition of these bulkier residues introduces molecular interactions between the ligand and receptor, leading to activation with cholecalciferol.
Collapse
Affiliation(s)
- Amanda M. Ousley
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Hilda S. Castillo
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anna Duraj-Thatte
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Donald F. Doyle
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Bahareh Azizi
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
14
|
Developing a compound-specific receptor for bisphenol a by directed evolution of human estrogen receptor α. Biotechnol Bioeng 2011; 108:2526-34. [DOI: 10.1002/bit.23214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 11/07/2022]
|
15
|
Nannemann DP, Birmingham WR, Scism RA, Bachmann BO. Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis. Future Med Chem 2011; 3:809-19. [PMID: 21644826 PMCID: PMC3155183 DOI: 10.4155/fmc.11.48] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To address the synthesis of increasingly structurally diverse small-molecule drugs, methods for the generation of efficient and selective biological catalysts are becoming increasingly important. 'Directed evolution' is an umbrella term referring to a variety of methods for improving or altering the function of enzymes using a nature-inspired twofold strategy of mutagenesis followed by selection. This article provides an objective assessment of the effectiveness of directed evolution campaigns in generating enzymes with improved catalytic parameters for new substrates from the last decade, excluding studies that aimed to select for only improved physical properties and those that lack kinetic characterization. An analysis of the trends of methodologies and their success rates from 81 qualifying examples in the literature reveals the average fold improvement for k (cat) (or V (max)), K (m) and k (cat)/K (m) to be 366-, 12- and 2548-fold, respectively, whereas the median fold improvements are 5.4, 3 and 15.6. Further analysis by enzyme class, library-generation methodology and screening methodology explores relationships between successful campaigns and the methodologies employed.
Collapse
Affiliation(s)
- David P Nannemann
- Chemistry Department, 7330 Stevenson Center, Vanderbilt University, Nashville, TN 37235, USA
| | - William R Birmingham
- Chemistry Department, 7330 Stevenson Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Robert A Scism
- Chemistry Department, 7330 Stevenson Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Brian O Bachmann
- Chemistry Department, 7330 Stevenson Center, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
16
|
Peterson-Kaufman KJ, Carlson CD, Rodríguez-Martínez JA, Ansari AZ. Nucleating the assembly of macromolecular complexes. Chembiochem 2010; 11:1955-62. [PMID: 20812316 PMCID: PMC4176617 DOI: 10.1002/cbic.201000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Indexed: 12/23/2022]
Abstract
Nature constructs intricate complexes containing numerous binding partners in order to direct a variety of cellular processes. Researchers have taken a cue from these events to develop synthetic molecules that can nucleate natural and unnatural interactions for a diverse set of applications. These molecules can be designed to drive protein dimerization or to modulate the interactions between proteins, lipids, DNA, or RNA and thereby alter cellular pathways. A variety of components within the cellular machinery can be recruited with or replaced by synthetic compounds. Directing the formation of multicomponent complexes with new synthetic molecules can allow unprecedented control over the cellular machinery.
Collapse
Affiliation(s)
| | - Clayton D. Carlson
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| | - José A. Rodríguez-Martínez
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| | - Aseem Z. Ansari
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| |
Collapse
|
17
|
Abstract
Tools to selectively and reversibly control gene expression are useful to study and model cellular functions. When optimized, these cellular switches can turn a protein's function "on" and "off" based on cues designated by the researcher. These cues include small molecules, drugs, hormones, and even temperature variations. Here we review three distinct areas in gene expression that are commonly targeted when designing cellular switches. Transcriptional switches target gene expression at the level of mRNA polymerization, with examples including the tetracycline gene induction system as well as nuclear receptors. Translational switches target the process of turning the mRNA signal into protein, with examples including riboswitches and RNA interference. Post-translational switches control how proteins interact with one another to attenuate or relay signals. Examples of post-translational modification include dimerization and intein splicing. In general, the delay times between switch and effect decreases from transcription to translation to post-translation; furthermore, the fastest switches may offer the most elegant opportunities to influence and study cell behavior. We discuss the pros and cons of these strategies, which directly influence their usefulness to study and implement drug targeting at the tissue and cellular level.
Collapse
Affiliation(s)
- M.K. Pastuszka
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, United States
| | - J.A. Mackay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, United States
| |
Collapse
|
18
|
Taylor JL, Rohatgi P, Spencer HT, Doyle DF, Azizi B. Characterization of a molecular switch system that regulates gene expression in mammalian cells through a small molecule. BMC Biotechnol 2010; 10:15. [PMID: 20167077 PMCID: PMC2831033 DOI: 10.1186/1472-6750-10-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular switch systems that activate gene expression by a small molecule are effective technologies that are widely used in applied biological research. Nuclear receptors are valuable candidates for these regulation systems due to their functional role as ligand activated transcription factors. Previously, our group engineered a variant of the retinoid x receptor to be responsive to the synthetic compound, LG335, but not responsive to its natural ligand, 9-cis-retinoic acid. RESULTS This work focuses on characterizing a molecular switch system that quantitatively controls transgene expression. This system is composed of an orthogonal ligand/nuclear receptor pair, LG335 and GRQCIMFI, along with an artificial promoter controlling expression of a target transgene. GRQCIMFI is composed of the fusion of the DNA binding domain of the yeast transcription factor, Gal4, and a retinoid x receptor variant. The variant consists of the following mutations: Q275C, I310M, and F313I in the ligand binding domain. When introduced into mammalian cell culture, the switch shows luciferase activity at concentrations as low as 100 nM of LG335 with a 6.3 +/- 1.7-fold induction ratio. The developed one-component system activates transgene expression when introduced transiently or virally. CONCLUSIONS We have successfully shown that this system can induce tightly controlled transgene expression and can be used for transient transfections or retroviral transductions in mammalian cell culture. Further characterization is needed for gene therapy applications.
Collapse
Affiliation(s)
- Jennifer L Taylor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
19
|
Levitsky K, Szymanski P, Jin F, Meurer-Ogden JA, Harkins RN. Development and validation of an improved inducer-regulator protein complex in the pBRES-regulated expression system. Hum Gene Ther 2009; 19:1273-82. [PMID: 19000019 DOI: 10.1089/hum.2008.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Widespread adaptation of small molecule-regulated expression systems requires the development of selective inducer molecules that do not have any significant side effects on the endogenous receptors from which the regulated expression system is derived. Here we report the identification and in vitro validation of a novel inducer-receptor pair for the single-plasmid regulated expression system termed pBRES, which contains the ligand-binding domain from the human progesterone receptor (hPR). A small molecule inducer, BLX-913, has been identified as having a 30-fold lower IC(50) for the human progesterone receptor than mifepristone (MFP), the previously best characterized inducer for pBRES. Using modeling-guided protein engineering, compensatory mutations were installed at positions W755 and V729 (hPR numbering) in the ligand-binding pocket of the pBRES regulator protein (pBRES RP) to accommodate the new inducer and allow induction of transgene expression to levels previously seen with MFP. The improved inducer-pBRES RP complex was validated in vitro by monitoring the induction of luciferase, murine secreted alkaline phosphatase, and human interferon beta transgenes in mouse skeletal muscle cells. The engineered pBRES demonstrated low levels of transgene expression in the absence, and high expression levels in the presence, of the new BLX-913 inducer. Findings presented here allow induction of the pBRES-regulated gene expression system by a compound with markedly lower anti-hPR activity than MFP, the previously best characterized inducer.
Collapse
Affiliation(s)
- Konstantin Levitsky
- Novel Technologies Department, Bayer HealthCare Pharmaceuticals, Richmond, CA 94804, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
One of the key aims of synthetic biology is to engineer artificial processes inside living cells. This requires components that interact in a predictable manner, both with each other and with existing cellular systems. However, the activity of many components is constrained by their interactions with other cellular molecules and often their roles in maintaining cell health. To escape this limitation, researchers are pursuing an "orthogonal" approach, building a parallel metabolism within the cell. Components of this parallel metabolism can be sourced from evolutionarily distant species or reengineered from existing cellular molecules by using rational design and directed evolution. These approaches allow the study of basic principles in cell biology and the engineering of cells that can function as environmental sensors, simple computers, and drug factories.
Collapse
Affiliation(s)
- Aleksandra Filipovska
- Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia,
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Oliver Rackham
- Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia,
| |
Collapse
|
21
|
Kakar M, Cadwallader AB, Davis JR, Lim CS. Signal sequences for targeting of gene therapy products to subcellular compartments: the role of CRM1 in nucleocytoplasmic shuttling of the protein switch. Pharm Res 2007; 24:2146-55. [PMID: 17562146 DOI: 10.1007/s11095-007-9333-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/02/2007] [Indexed: 01/03/2023]
Abstract
PURPOSE The purpose of this study was to understand the mechanism of nuclear export of the protein switch, used for controlled intracellular delivery of gene products, by studying the involvement of classical export receptor CRM1. METHOD Transient transfections of protein switch constructs, isolated nuclear export and import signals were carried out. Effect of leptomycin B (inhibitor of export receptor) and geldanamycin (inhibitor of Hsp90) on localization of these constructs was studied using fluorescence microscopy. Putative nuclear export signals in the glucocorticoid and progesterone receptor ligand binding domains were identified and studied. RESULTS It was observed that treatment with leptomycin B caused nuclear accumulation of the protein switch constructs. However, geldanamycin did not have any pronounced effect on the localization. The isolated nuclear export signal from glucocorticoid receptor localized mostly in the cytoplasm, while its mutated version was present everywhere. CONCLUSION The localization controlled protein switch constructs are exported out of the nucleus by the classical CRM1 receptors. The ligand binding domain of these protein switch constructs plays an important role in maintaining these constructs in the cytoplasm in the absence of ligand, as well the re-export back to the cytoplasm from the nucleus after ligand washout.
Collapse
Affiliation(s)
- Mudit Kakar
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way #318, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
22
|
Chaparro-Riggers JF, Polizzi KM, Bommarius AS. Better library design: data-driven protein engineering. Biotechnol J 2007; 2:180-91. [PMID: 17183506 DOI: 10.1002/biot.200600170] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Data-driven protein engineering is increasingly used as an alternative to rational design and combinatorial engineering because it uses available knowledge to limit library size, while still allowing for the identification of unpredictable substitutions that lead to large effects. Recent advances in computational modeling and bioinformatics, as well as an increasing databank of experiments on functional variants, have led to new strategies to choose particular amino acid residues to vary in order to increase the chances of obtaining a variant protein with the desired property. Strategies for limiting diversity at each position, design of small sub-libraries, and the performance of scouting experiments, have also been developed or even automated, further reducing the library size.
Collapse
Affiliation(s)
- Javier F Chaparro-Riggers
- School of Chemical and Biomolecular Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA
| | | | | |
Collapse
|
23
|
Hawkins AC, Arnold FH, Stuermer R, Hauer B, Leadbetter JR. Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone. Appl Environ Microbiol 2007; 73:5775-81. [PMID: 17675429 PMCID: PMC2074898 DOI: 10.1128/aem.00060-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LuxR is the 3-oxohexanoyl-homoserine lactone (3OC6HSL)-dependent transcriptional activator of the prototypical acyl-homoserine lactone (AHL) quorum-sensing system of Vibrio fischeri. Wild-type LuxR exhibits no response to butanoyl-HSL (C4HSL) in quantitative bioassays at concentrations of up to 1 microM; a previously described LuxR variant (LuxR-G2E) exhibits a broadened response to diverse AHLs, including pentanoyl-HSL (C5HSL), but not to C4HSL. Here, two rounds of directed evolution of LuxR-G2E generated variants of LuxR that responded to C4HSL at concentrations as low as 10 nM. One variant, LuxR-G4E, had only one change, I45F, relative to the parent LuxR-G2E, which itself differs from the wild type at three residues. Dissection of the four mutations within LuxR-G4E demonstrated that at least three of these changes were simultaneously required to achieve any measurable C4HSL response. The four changes improved both sensitivity and specificity towards C4HSL relative to any of the other 14 possible combinations of those residues. These data confirm that LuxR is evolutionarily pliable and suggest that LuxR is not intrinsically asymmetric in its response to quorum-sensing signals with different acyl-side-chain lengths.
Collapse
Affiliation(s)
- Andrew C Hawkins
- Environmental Science & Engineering, California Institute of Technology, 1200 E. California Blvd., Mail Code 138-78, Pasadena, CA 91125-7800, USA
| | | | | | | | | |
Collapse
|
24
|
Lutz S. Tools, tricks and trade secrets: the challenges of disseminating methodology. Nat Chem Biol 2007; 3:128-30. [PMID: 17301795 DOI: 10.1038/nchembio0307-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.
| |
Collapse
|
25
|
Biggins JB, Koh JT. Chemical biology of steroid and nuclear hormone receptors. Curr Opin Chem Biol 2007; 11:99-110. [PMID: 17188557 DOI: 10.1016/j.cbpa.2006.10.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 10/27/2006] [Indexed: 01/25/2023]
Abstract
The nuclear hormone receptors are ligand-gated transcription factors that modulate gene expression by directly acting upon genomic DNA, and have been of profound interest across all biological disciplines. Recent advancements in this area have included the expansion of transgene activation through ligand-receptor engineering, drug development from structural design and the exploitation of innate ligand-specific associations towards developing novel conditional protein-based recombinant and diagnostic tools. These advancements come on the heels of exciting new modes of hormone action that challenge and expand upon the classic paradigms of hormone receptor function.
Collapse
Affiliation(s)
- John B Biggins
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, USA
| | | |
Collapse
|
26
|
Henning H, Leggewie C, Pohl M, Müller M, Eggert T, Jaeger KE. Identification of novel benzoylformate decarboxylases by growth selection. Appl Environ Microbiol 2006; 72:7510-7. [PMID: 17012586 PMCID: PMC1694272 DOI: 10.1128/aem.01541-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A growth selection system was established using Pseudomonas putida, which can grow on benzaldehyde as the sole carbon source. These bacteria presumably metabolize benzaldehyde via the beta-ketoadipate pathway and were unable to grow in benzoylformate-containing selective medium, but the growth deficiency could be restored by expression in trans of genes encoding benzoylformate decarboxylases. The selection system was used to identify three novel benzoylformate decarboxylases, two of them originating from a chromosomal library of P. putida ATCC 12633 and the third from an environmental-DNA library. The novel P. putida enzymes BfdB and BfdC exhibited 83% homology to the benzoylformate decarboxylase from P. aeruginosa and 63% to the enzyme MdlC from P. putida ATCC 12633, whereas the metagenomic BfdM exhibited 72% homology to a putative benzoylformate decarboxylase from Polaromonas naphthalenivorans. BfdC was overexpressed in Escherichia coli, and the enzymatic activity was determined to be 22 U/ml using benzoylformate as the substrate. Our results clearly demonstrate that P. putida KT2440 is an appropriate selection host strain suitable to identify novel benzoylformate decarboxylase-encoding genes. In principle, this system is also applicable to identify a broad range of different industrially important enzymes, such as benzaldehyde lyases, benzoylformate decarboxylases, and hydroxynitrile lyases, which all catalyze the formation of benzaldehyde.
Collapse
Affiliation(s)
- Helge Henning
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Centre Juelich, D-52426 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Kinzel O, Fattori D, Muraglia E, Gallinari P, Nardi MC, Paolini C, Roscilli G, Toniatti C, Gonzalez Paz O, Laufer R, Lahm A, Tramontano A, Cortese R, De Francesco R, Ciliberto G, Koch U. A Structure-Guided Approach to an Orthogonal Estrogen-Receptor-Based Gene Switch Activated by Ligands Suitable for in Vivo Studies. J Med Chem 2006; 49:5404-7. [PMID: 16942012 DOI: 10.1021/jm060516e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A strategy to obtain a fully orthogonal estrogen-receptor-based gene switch responsive to molecules with acceptable pharmacological properties is presented. From a series of tetrahydrofluorenones active on the wild-type estrogen receptor (ER) an inactive analogue is chosen as a new lead compound. Coevolution of receptor mutants and ligands leads to an ER-based gene switch suitable for studies in animal models.
Collapse
Affiliation(s)
- Olaf Kinzel
- IRBM (Merck Research Laboratories Rome), Via Pontina km 30,600, 00040 Pomezia, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hassan AQ, Koh JT. A functionally orthogonal ligand-receptor pair created by targeting the allosteric mechanism of the thyroid hormone receptor. J Am Chem Soc 2006; 128:8868-74. [PMID: 16819881 PMCID: PMC2515387 DOI: 10.1021/ja060760v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear receptors are ligand-dependent transcription factors that are of interest as potential tools to artificially regulate gene expression. Ligand binding induces a conformational change involving helix-12 which forms part of the dimerization interface used to bind transcriptional coactivators. When triiodothyronine (T3) binds the thyroid hormone receptor (TR) it indirectly contacts helix-12 through intermediary residues His(435) and Phe(451) termed a His-Phe switch. The mutant TRbeta(H435A) is nonresponsive to physiological concentrations of T3 but can be activated by the synthetic hormone analogue QH2 which potently activates His435-->Ala mutant at concentrations that do not activate the wild-type receptors TRalpha and TRbeta. QH2 does not show antagonist behavior with the wild-type TRs. QH2's functionally orthogonal behavior with TRbeta(H435A) is preserved on the three consensus thyroid hormone response elements.
Collapse
Affiliation(s)
- A. Quamrul Hassan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - John T. Koh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
29
|
Kormann C, Heinemann FW, Gmeiner P. A consecutive Diels–Alder approach toward a Tet repressor directed combinatorial library. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.04.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
van Sint Fiet S, van Beilen JB, Witholt B. Selection of biocatalysts for chemical synthesis. Proc Natl Acad Sci U S A 2006; 103:1693-8. [PMID: 16446453 PMCID: PMC1413619 DOI: 10.1073/pnas.0504733102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine whether microbial chemosensors can be used to find new or better biocatalysts, we constructed Escherichia coli hosts that recognize the product of a biocatalytic conversion through the transcriptional activator NahR and respond by expression of a lacZ or tetA reporter gene. Equipped with a benzaldehyde dehydrogenase (XylC from Pseudomonas putida), the lacZ-based host responded to the oxidation of benzaldehyde and 2-hydroxybenzaldehyde to the corresponding benzoic acids by forming blue colonies, whereas XylC- cells did not. Similarly, the tetA-based host was able to grow under selective conditions only when equipped with XylC, enabling selection of biocatalytically active cells in inactive populations at frequencies as low as 10(-6).
Collapse
Affiliation(s)
- Stephan van Sint Fiet
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
| | - Jan B. van Beilen
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
| | - Bernard Witholt
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Patrick WM, Firth AE. Strategies and computational tools for improving randomized protein libraries. ACTA ACUST UNITED AC 2005; 22:105-12. [PMID: 16095966 DOI: 10.1016/j.bioeng.2005.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/15/2022]
Abstract
In the last decade, directed evolution has become a routine approach for engineering proteins with novel or altered properties. Concurrently, a trend away from purely 'blind' randomization strategies and towards more 'semi-rational' approaches has also become apparent. In this review, we discuss ways in which structural information and predictive computational tools are playing an increasingly important role in guiding the design of randomized libraries: web servers such as ConSurf-HSSP and SCHEMA allow the prediction of sites to target for producing functional variants, while algorithms such as GLUE, PEDEL and DRIVeR are useful for estimating library completeness and diversity. In addition, we review recent methodological developments that facilitate the construction of unbiased libraries, which are inherently more diverse than biased libraries and therefore more likely to yield improved variants.
Collapse
Affiliation(s)
- Wayne M Patrick
- Center for Fundamental and Applied Molecular Evolution, Emory University, 1510 Clifton Road, Atlanta GA 30322, USA.
| | | |
Collapse
|
32
|
Chockalingam K, Zhao H. Creating new specific ligand-receptor pairs for transgene regulation. Trends Biotechnol 2005; 23:333-5. [PMID: 15978316 DOI: 10.1016/j.tibtech.2005.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 03/21/2005] [Accepted: 05/05/2005] [Indexed: 11/18/2022]
Abstract
The creation of specifically matched ligand-receptor pairs that are orthogonal to naturally present interacting pairs is essential for the development of small molecule-regulated gene expression systems for biotechnological applications. However, for many years this task has represented a significant challenge for synthetic chemists and protein engineers. Recently, Doyle and colleagues demonstrated that highly specific ligand-receptor pairs can be engineered in a rapid fashion by creating large libraries of protein variants and applying a selection scheme to identify variants with improved activation by the target synthetic ligand.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Chemical Engineering and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
33
|
Vogt A, Lazo JS. Chemical complementation: A definitive phenotypic strategy for identifying small molecule inhibitors of elusive cellular targets. Pharmacol Ther 2005; 107:212-21. [PMID: 15925410 DOI: 10.1016/j.pharmthera.2005.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
Forward Pharmacology seeks to identify small or large molecules that modulate a normal or abnormal biological process in living cells or whole organisms and historically has been responsible for the discovery of many clinically used drugs. Forward Pharmacology approaches have become particularly attractive because advances in combinatorial chemistry and laboratory automation have made it possible to generate and interrogate large compound collections in a short period of time. Because many drug discovery efforts are now directed against specific biochemical targets, however, the utility of Forward Pharmacology is limited by the fact that assays to investigate compounds in biological systems are often phenotypic rather than target specific. We discuss here a novel strategy to discover target-based small molecules in intact cells using contemporary Forward Pharmacology in cells with specific genetic manipulations. The method, which we have termed "chemical complementation", is defined as the ability of small molecules to reverse a genetically induced phenotypic change in intact cells. Chemical complementation represents an extension of the commonly used genetic complementation approach, where cDNA libraries are used to investigate the function of genes based on their ability to rescue a specific genetic defect. We present examples of how chemical complementation has been used to identify and credential cell-active, small molecule inhibitors of 2 dual-specificity phosphatases, Cdc25A and MKP-3, which heretofore have eluded small molecule drug discovery efforts.
Collapse
Affiliation(s)
- Andreas Vogt
- Department of Pharmacology, Biomedical Science Tower E-1340, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
34
|
Chockalingam K, Chen Z, Katzenellenbogen JA, Zhao H. Directed evolution of specific receptor-ligand pairs for use in the creation of gene switches. Proc Natl Acad Sci U S A 2005; 102:5691-6. [PMID: 15811944 PMCID: PMC556283 DOI: 10.1073/pnas.0409206102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their versatility and power in controlling gene regulation in nature, nuclear hormone receptors (NHRs) have largely eluded utility in heterologous gene regulation applications such as gene therapy and metabolic engineering. The main reason for this void is the pleiotropic interference of the receptor-ligand combination with regulatory networks in the host organism. In recent years, numerous strategies have been developed to engineer ligand-receptor pairs that do not cross-interact with host regulatory pathways. However, these strategies have either met with limited success or cannot be readily extended to other ligand-receptor pairs. Here, we present a simple, effective, and readily generalizable strategy for reengineering NHRs to respond specifically to a selected synthetic ligand. The method involves generation of genetic diversity by stepwise individual site saturation mutagenesis of a fixed set of ligand-contacting residues and random point mutagenesis, followed by phenotypic screening based on a yeast two-hybrid system. As a test case, this method was used to alter the specificity of the NHR human estrogen receptor alpha in favor of the synthetic ligand 4,4'-dihydroxybenzil, relative to the natural ligand 17beta-estradiol, by >10(7)-fold. The resulting ligand-receptor pair is highly sensitive to the synthetic ligand in human endometrial cancer cells and is essentially fully orthogonal to the wild-type receptor-natural ligand pair. This method should provide a powerful, broadly applicable tool for engineering receptors/enzymes with improved or novel ligand/substrate specificity.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Chemical Engineering and Biomolecular Engineering, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
35
|
Buskirk AR, Liu DR. Creating Small-Molecule-Dependent Switches to Modulate Biological Functions. ACTA ACUST UNITED AC 2005; 12:151-61. [PMID: 15734643 DOI: 10.1016/j.chembiol.2004.11.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 11/17/2004] [Accepted: 11/19/2004] [Indexed: 01/24/2023]
Abstract
Biological small-molecule-dependent switches sense external chemical signals and transduce them into appropriate internal signals and cellular responses. Artificial molecular switches that control the function of any protein of interest using a small molecule are powerful tools for studying biology because they enable cellular responses to be controlled by inputs chosen by researcher. Furthermore, these switches can combine the generality of genetic regulation with the reversibility and temporal control afforded by small molecules. Three approaches to creating molecular switches include altering a natural switch to recognize new exogenous ligands, engineering novel allosteric responses to ligand binding, or enforcing protein localization with chemical dimerizers. Here, we discuss the development of small-molecule-dependent switches that control in a general fashion transcriptional activation, translational initiation, and protein activity posttranslationally.
Collapse
Affiliation(s)
- Allen R Buskirk
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | |
Collapse
|
36
|
Palli SR, Hormann RE, Schlattner U, Lezzi M. Ecdysteroid Receptors and their Applications in Agriculture and Medicine. VITAMINS & HORMONES 2005; 73:59-100. [PMID: 16399408 DOI: 10.1016/s0083-6729(05)73003-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Subba R Palli
- Department of Entomology, College of Agriculture, University of Kentucky Lexington, Kentucky 40546, USA
| | | | | | | |
Collapse
|
37
|
Glickman JF, Auld D. Literature Search and Review. Assay Drug Dev Technol 2004. [DOI: 10.1089/adt.2004.2.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Doug Auld
- National Institutes of Health, Bethesda, MD
| |
Collapse
|