1
|
Bottino-Rojas V, James AA. Mosquito Transposon-Mediated Transgenesis. Cold Spring Harb Protoc 2024; 2024:pdb.top107687. [PMID: 37816607 PMCID: PMC11025883 DOI: 10.1101/pdb.top107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Transposon-mediated transgenesis of mosquito vectors of disease pathogens followed the early success of transgenesis in the vinegar fly, Drosophila melanogaster The P transposable element used in Drosophila does not function canonically in mosquitoes, and repeatable, routine transgenesis in mosquitoes was not accomplished until new transposable elements were discovered and validated. A number of distinct transposons were subsequently identified that mediate the introduction of exogenous DNA in a stable and heritable manner in mosquito species, including members of the genera Aedes, Anopheles, and Culex The most versatile element, piggyBac, is functional in all of these mosquito genera, as well as in many other insects in diverse orders, and has been used extensively outside the class. Transposon-mediated transgenesis of recessive and dominant marker genes and reporter systems has been used to define functional fragments of gene control sequences, introduce exogenous DNA encoding products beneficial to medical interests, and act as "enhancer traps" to identify endogenous genes with specific expression characteristics.
Collapse
Affiliation(s)
- Vanessa Bottino-Rojas
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4500, USA
| | - Anthony A James
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4500, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| |
Collapse
|
2
|
Terradas G, Macias VM, Peterson H, McKeand S, Krawczyk G, Rasgon JL. The Development and Expansion of in vivo Germline Editing Technologies in Arthropods: Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and Beyond. Integr Comp Biol 2023; 63:1550-1563. [PMID: 37742320 PMCID: PMC10755176 DOI: 10.1093/icb/icad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control's main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Vanessa M Macias
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Hillary Peterson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Sage McKeand
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Grzegorz Krawczyk
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| |
Collapse
|
3
|
Byers NM, Burns PL, Stuchlik O, Reed MS, Ledermann JP, Pohl J, Powers AM. Identification of mosquito proteins that differentially interact with alphavirus nonstructural protein 3, a determinant of vector specificity. PLoS Negl Trop Dis 2023; 17:e0011028. [PMID: 36696390 PMCID: PMC9876241 DOI: 10.1371/journal.pntd.0011028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/17/2022] [Indexed: 01/26/2023] Open
Abstract
Chikungunya virus (CHIKV) and the closely related onyong-nyong virus (ONNV) are arthritogenic arboviruses that have caused significant, often debilitating, disease in millions of people. However, despite their kinship, they are vectored by different mosquito subfamilies that diverged 180 million years ago (anopheline versus culicine subfamilies). Previous work indicated that the nonstructural protein 3 (nsP3) of these alphaviruses was partially responsible for this vector specificity. To better understand the cellular components controlling alphavirus vector specificity, a cell culture model system of the anopheline restriction of CHIKV was developed along with a protein expression strategy. Mosquito proteins that differentially interacted with CHIKV nsP3 or ONNV nsP3 were identified. Six proteins were identified that specifically bound ONNV nsP3, ten that bound CHIKV nsP3 and eight that interacted with both. In addition to identifying novel factors that may play a role in virus/vector processing, these lists included host proteins that have been previously implicated as contributing to alphavirus replication.
Collapse
Affiliation(s)
- Nathaniel M. Byers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Paul L. Burns
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Olga Stuchlik
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew S. Reed
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeremy P. Ledermann
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ann M. Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| |
Collapse
|
4
|
Eggleston H, Njoya K, Anderson CE, Holm I, Eiglmeier K, Liang J, Sharakhov IV, Vernick KD, Riehle MM. Molecular characterization and genetic authentication assay for Anopheles 'hemocyte-like' cell lines 4a-3A and 4a-3B. Parasit Vectors 2022; 15:465. [PMID: 36514125 PMCID: PMC9749150 DOI: 10.1186/s13071-022-05590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Anopheles cell lines are used in a variety of ways to better understand the major vectors of malaria in sub-Saharan Africa. Despite this, commonly used cell lines are not well characterized, and no tools are available for cell line identification and authentication. METHODS Utilizing whole genome sequencing, genomes of 4a-3A and 4a-3B 'hemocyte-like' cell lines were characterized for insertions and deletions (indels) and SNP variation. Genomic locations of distinguishing sequence variation and species origin of the cell lines were also examined. Unique indels were targeted to develop a PCR-based cell line authentication assay. Mitotic chromosomes were examined to survey the cytogenetic landscape for chromosome structure and copy number in the cell lines. RESULTS The 4a-3A and 4a-3B cell lines are female in origin and primarily of Anopheles coluzzii ancestry. Cytogenetic analysis indicates that the two cell lines are essentially diploid, with some relatively minor chromosome structural rearrangements. Whole-genome sequence was generated, and analysis indicated that SNPs and indels which differentiate the cell lines are clustered on the 2R chromosome in the regions of the 2Rb, 2Rc and 2Ru chromosomal inversions. A PCR-based authentication assay was developed to fingerprint three indels unique to each cell line. The assay distinguishes between 4a-3A and 4a-3B cells and also uniquely identifies two additional An. coluzzii cell lines tested, Ag55 and Sua4.0. The assay has the specificity to distinguish four cell lines and also has the sensitivity to detect cellular contamination within a sample of cultured cells. CONCLUSIONS Genomic characterization of the 4a-3A and 4a-3B Anopheles cell lines was used to develop a simple diagnostic assay that can distinguish these cell lines within and across research laboratories. A cytogenetic survey indicated that the 4a-3A and Sua4.0 cell lines carry essentially normal diploid chromosomes, which makes them amenable to CRISPR/Cas9 genome editing. The presented simple authentication assay, coupled with screening for mycoplasma, will allow validation of the integrity of experimental resources and will promote greater experimental reproducibility of results.
Collapse
Affiliation(s)
- Heather Eggleston
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kimani Njoya
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cameron E Anderson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Inge Holm
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Karin Eiglmeier
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kenneth D Vernick
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Michelle M Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Krzywinska E, Ferretti L, Krzywinski J. Establishment and a comparative transcriptomic analysis of a male-specific cell line from the African malaria mosquito Anopheles gambiae. Sci Rep 2022; 12:6885. [PMID: 35477969 PMCID: PMC9046191 DOI: 10.1038/s41598-022-10686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cell lines allow studying various biological processes that may not be easily tractable in whole organisms. Here, we have established the first male-specific cell line from the African malaria mosquito, Anopheles gambiae. The cells, named AgMM and derived from the sex-sorted neonate larvae, were able to undergo spontaneous contractions for a number of passages following establishment, indicating their myoblast origin. Comparison of their transcriptome to the transcriptome of an A. gambiae-derived Sua5.1 hemocyte cells revealed distinguishing molecular signatures of each cell line, including numerous muscle-related genes that were highly and uniquely expressed in the AgMM cells. Moreover, the AgMM cells express the primary sex determiner gene Yob and support male sex determination and dosage compensation pathways. Therefore, the AgMM cell line represents a valuable tool for molecular and biochemical in vitro studies of these male-specific processes. In a broader context, a rich transcriptomic data set generated in this study contributes to a better understanding of transcribed regions of the A. gambiae genome and sheds light on the biology of both cell types, facilitating their anticipated use for various cell-based assays.
Collapse
Affiliation(s)
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | | |
Collapse
|
6
|
Abstract
Vector control programs based on population reduction by matings with mass-released sterile insects require the release of only male mosquitoes, as the release of females, even if sterile, would increase the number of biting and potentially disease-transmitting individuals. While small-scale releases demonstrated the applicability of sterile males releases to control the yellow fever mosquito Aedes aegypti, large-scale programs for mosquitoes are currently prevented by the lack of efficient sexing systems in any of the vector species.Different approaches of sexing are pursued, including classical genetic and mechanical methods of sex separation. Another strategy is the development of transgenic sexing systems. Such systems already exist in other insect pests. Genome modification tools could be used to apply similar strategies to mosquitoes. Three major tools to modify mosquito genomes are currently used: transposable elements, site-specific recombination systems, and genome editing via TALEN or CRISPR/Cas. All three can serve the purpose of developing sexing systems and vector control strains in mosquitoes in two ways: first, via their use in basic research. A better understanding of mosquito biology, including the sex-determining pathways and the involved genes can greatly facilitate the development of sexing strains. Moreover, basic research can help to identify other regulatory elements and genes potentially useful for the construction of transgenic sexing systems. Second, these genome modification tools can be used to apply the gained knowledge to build and test mosquito sexing strains for vector control.
Collapse
Affiliation(s)
- Irina Häcker
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Marc F Schetelig
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
7
|
Pondeville E, Puchot N, Meredith JM, Lynd A, Vernick KD, Lycett GJ, Eggleston P, Bourgouin C. Efficient ΦC31 integrase-mediated site-specific germline transformation of Anopheles gambiae. Nat Protoc 2014; 9:1698-712. [PMID: 24945385 DOI: 10.1038/nprot.2014.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current transgenic methodology developed for mosquitoes has not been applied widely to the major malaria vector Anopheles gambiae, which has proved more difficult to genetically manipulate than other mosquito species and dipteran insects. In this protocol, we describe ΦC31-mediated site-specific integration of transgenes into the genome of A. gambiae. The ΦC31 system has many advantages over 'classical' transposon-mediated germline transformation systems, because it allows integration of large transgenes at specific, characterized genomic locations. Starting from a general protocol, we have optimized steps from embryo collection to co-injection of transgene-containing plasmid and in vitro-produced ΦC31 integrase mRNA. We also provide tips for screening transgenic larvae. The outlined procedure provides robust transformation in A. gambiae, resulting in homozygous transgenic lines in ∼2-3 months.
Collapse
Affiliation(s)
- Emilie Pondeville
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS unit URA3012, Paris, France
| | - Nicolas Puchot
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS unit URA3012, Paris, France
| | - Janet M Meredith
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kenneth D Vernick
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS unit URA3012, Paris, France
| | - Gareth J Lycett
- 1] Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK. [2]
| | - Paul Eggleston
- 1] Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK. [2]
| | - Catherine Bourgouin
- 1] Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS unit URA3012, Paris, France. [2]
| |
Collapse
|
8
|
Carter V, Underhill A, Baber I, Sylla L, Baby M, Larget-Thiery I, Zettor A, Bourgouin C, Langel Ü, Faye I, Otvos L, Wade JD, Coulibaly MB, Traore SF, Tripet F, Eggleston P, Hurd H. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog 2013; 9:e1003790. [PMID: 24278025 PMCID: PMC3836994 DOI: 10.1371/journal.ppat.1003790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs) for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.
Collapse
Affiliation(s)
- Victoria Carter
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ann Underhill
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ibrahima Baber
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Lakamy Sylla
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Mounirou Baby
- Centre National de Transfusion Sanguine, Bamako, Mali
| | - Isabelle Larget-Thiery
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Agnès Zettor
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Catherine Bourgouin
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Ülo Langel
- Department of Neurochemistry Svante Arrhenius v. 21A, Stockholm University, Stockholm, Sweden
| | - Ingrid Faye
- Department of Molecular Bioscience, the Wenner-Gren Institute, Svante Arrhenius v. 20C, Stockholm University, Stockholm, Sweden
| | - Laszlo Otvos
- Temple University Department of Biology, Philadelphia, Pennsylvania, United States of America
| | - John D. Wade
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Mamadou B. Coulibaly
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Sekou F. Traore
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
- * E-mail:
| | - Hilary Hurd
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| |
Collapse
|
9
|
Smith RC, Kizito C, Rasgon JL, Jacobs-Lorena M. Transgenic mosquitoes expressing a phospholipase A(2) gene have a fitness advantage when fed Plasmodium falciparum-infected blood. PLoS One 2013; 8:e76097. [PMID: 24098427 PMCID: PMC3788000 DOI: 10.1371/journal.pone.0076097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
Background Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development. Results We have created two transgenic lines of Anophelesstephensi, a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2) into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium-infected blood. Conclusions Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.
Collapse
Affiliation(s)
- Ryan C. Smith
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Christopher Kizito
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jason L. Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Carballar-Lejarazú R, Jasinskiene N, James AA. Exogenous gypsy insulator sequences modulate transgene expression in the malaria vector mosquito, Anopheles stephensi. Proc Natl Acad Sci U S A 2013; 110:7176-81. [PMID: 23584017 PMCID: PMC3645527 DOI: 10.1073/pnas.1304722110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria parasites are transmitted to humans by mosquitoes of the genus Anopheles, and these insects are the targets of innovative vector control programs. Proposed approaches include the use of genetic strategies based on transgenic mosquitoes to suppress or modify vector populations. Although substantial advances have been made in engineering resistant mosquito strains, limited efforts have been made in refining mosquito transgene expression, in particular attenuating the effects of insertions sites, which can result in variations in phenotypes and impacts on fitness due to the random integration of transposon constructs. A promising strategy to mitigate position effects is the identification of insulator or boundary DNA elements that could be used to isolate transgenes from the effects of their genomic environment. We applied quantitative approaches that show that exogenous insulator-like DNA derived from the Drosophila melanogaster gypsy retrotransposon can increase and stabilize transgene expression in transposon-mediated random insertions and recombinase-catalyzed, site-specific integrations in the malaria vector mosquito, Anopheles stephensi. These sequences can contribute to precise expression of transgenes in mosquitoes engineered for both basic and applied goals.
Collapse
Affiliation(s)
- Rebeca Carballar-Lejarazú
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
| | - Nijole Jasinskiene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
| | - Anthony A. James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4500
| |
Collapse
|
11
|
Szemiel AM, Failloux AB, Elliott RM. Role of Bunyamwera Orthobunyavirus NSs protein in infection of mosquito cells. PLoS Negl Trop Dis 2012; 6:e1823. [PMID: 23029584 PMCID: PMC3459826 DOI: 10.1371/journal.pntd.0001823] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/06/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line. METHODOLOGY AND PRINCIPAL FINDINGS To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus. CONCLUSIONS/SIGNIFICANCE Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Agnieszka M. Szemiel
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, North Haugh, St. Andrews, Scotland, United Kingdom
| | | | - Richard M. Elliott
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, North Haugh, St. Andrews, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol 2012; 859:1-28. [PMID: 22367863 DOI: 10.1007/978-1-61779-603-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 6239, Université François Rabelais, UFR des Sciences et Technques, Tours, France
| | | |
Collapse
|
13
|
Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W. Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Abstract
Alphavirus transducing systems (ATSs) are important tools for expressing genes of interest (GOI) in mosquitoes and nonvector insects. ATSs are derived from infectious cDNA clones of mosquito-borne RNA viruses (family Togaviridae). The most common ATSs in use are derived from Sindbis viruses; however, ATSs have been derived from other alphaviruses as well. ATSs generate viruses with genomes that contain GOI's that can be expressed from additional viral subgenomic promoters. ATSs in which an exogenous gene sequence is positioned 5' to the viral structural genes is used for stable protein expression in insects. ATSs in which a gene sequence is positioned 3' to the structural genes is used to trigger RNAi and silence expression of that gene in the insect. ATSs are proving to be invaluable tools for understanding vector-pathogen interactions, vector competence, and other components of vector-pathogen amplification and maintenance cycles in nature. These virus-based expression systems also facilitate the researcher's ability to decide which gene-based disease control strategies merit a further investment in time and resources in transgenic mosquitoes.
Collapse
|
15
|
Meredith JM, Hurd H, Lehane MJ, Eggleston P. The malaria vector mosquito Anopheles gambiae expresses a suite of larval-specific defensin genes. INSECT MOLECULAR BIOLOGY 2008; 17:103-12. [PMID: 18353100 PMCID: PMC2459261 DOI: 10.1111/j.1365-2583.2008.00786.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
cDNAs of Anopheles gambiae Defensin 2 (AgDef2), Defensin 3 (AgDef3) and Defensin 4 (AgDef4), identified in the genome sequence, have been characterized and their expression profiles investigated. In contrast to both typical defensins and insect antimicrobial peptides generally, the newly identified defensins were not upregulated with acute-phase kinetics following immune challenge in insects or cell culture. However, mRNA abundance of AgDef2, AgDef3 and AgDef4 increased significantly during the larval stages. Promoter analysis of all three genes failed to identify putative immune response elements previously identified in other mosquito defensin genes. As previous studies failed to identify these larval-specific defensins, it seems likely that further antimicrobial peptide genes with nontypical expression profiles will be identified as more genome sequences become available.
Collapse
Affiliation(s)
- J M Meredith
- School of Life Sciences, Keele University, Staffordshire, UK
| | | | | | | |
Collapse
|
16
|
Sperança MA, Capurro ML. Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era--a review. Mem Inst Oswaldo Cruz 2008; 102:425-33. [PMID: 17612761 DOI: 10.1590/s0074-02762007005000054] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 04/10/2007] [Indexed: 12/14/2022] Open
Abstract
Arthropod-borne diseases caused by a variety of microorganisms such as dengue virus and malaria parasites afflict billions of people worldwide imposing major economic and social burdens. Despite many efforts, vaccines against diseases transmitted by mosquitoes, with the exception of yellow fever, are not available. Control of such infectious pathogens is mainly performed by vector management and treatment of affected individuals with drugs. However, the numbers of insecticide-resistant insects and drug-resistant parasites are increasing. Therefore, inspired in recent years by a lot of new data produced by genomics and post-genomics research, several scientific groups have been working on different strategies to control infectious arthropod-borne diseases. This review focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to malaria parasites and dengue virus transmission.
Collapse
|
17
|
Pavlopoulos A, Oehler S, Kapetanaki MG, Savakis C. The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates. Genome Biol 2007; 8 Suppl 1:S2. [PMID: 18047694 PMCID: PMC2106841 DOI: 10.1186/gb-2007-8-s1-s2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transposons are powerful tools for conducting genetic manipulation and functional studies in organisms that are of scientific, economic, or medical interest. Minos, a member of the Tc1/mariner family of DNA transposons, exhibits a low insertional bias and transposes with high frequency in vertebrates and invertebrates. Its use as a tool for transgenesis and genome analysis of rather different animal species is described.
Collapse
Affiliation(s)
- Anastasios Pavlopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, PO Box 1385, Heraklion 71110, Crete, Greece
| | | | | | | |
Collapse
|
18
|
Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res 2007; 35:5922-33. [PMID: 17726053 PMCID: PMC2034484 DOI: 10.1093/nar/gkm632] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 01/18/2023] Open
Abstract
Homing endonuclease genes (HEGs) are 'selfish' genetic elements that combine the capability to selectively disrupt specific gene sequences with the ability to rapidly spread from a few individuals to an entire population through homologous recombination repair events. Because of these properties, HEGs are regarded as promising candidates to transfer genetic modifications from engineered laboratory mosquitoes to wild-type populations including Anopheles gambiae the vector of human malaria. Here we show that I-SceI and I-PpoI homing endonucleases cleave their recognition sites with high efficiency in A. gambiae cells and embryos and we demonstrate HEG-induced homologous and non-homologous repair events in a variety of functional assays. We also propose a gene drive system for mosquitoes that is based on our finding that I-PpoI cuts genomic rDNA located on the X chromosome in A. gambiae, which could be used to selectively incapacitate X-carrying spermatozoa thereby imposing a severe male-biased sex ratio.
Collapse
Affiliation(s)
- Nikolai Windbichler
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ and Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK
| | - Philippos Aris Papathanos
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ and Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK
| | - Flaminia Catteruccia
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ and Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK
| | - Hilary Ranson
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ and Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK
| | - Austin Burt
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ and Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK
| | - Andrea Crisanti
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ and Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK
| |
Collapse
|
19
|
Markaki M, Drabek D, Livadaras I, Craig RK, Grosveld F, Savakis C. Stable expression of human growth hormone over 50 generations in transgenic insect larvae. Transgenic Res 2006; 16:99-107. [PMID: 17103025 DOI: 10.1007/s11248-006-9032-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/07/2006] [Indexed: 11/27/2022]
Abstract
Developments in insect transgenesis using transposons combined with available mass rearing technology for insects such as the Medfly, Ceratitis capitata, provide opportunity for the production of protein for industrial, agricultural and healthcare purposes on a very large scale. In this study, we report the germ-line transformation and expression of a cDNA encoding human growth hormone (hGH) in transgenic Drosophila using the Minos transposon. Production and secretion of a bioactive hGH into the haemolymph of transgenic larvae was demonstrated by immunoblot analysis, ELISA and a proliferation bioassay. Stable expression of hGH was observed over 50 generations. The results indicate that mass reared transgenic diptera with a rapid period of larval growth could provide cost effective production systems for the manufacture of therapeutic and other high value proteins.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1385, Heraklion, 71110, Greece
| | | | | | | | | | | |
Collapse
|
20
|
Meredith JM, Munks RJL, Grail W, Hurd H, Eggleston P, Lehane MJ. A novel association between clustered NF-kappaB and C/EBP binding sites is required for immune regulation of mosquito Defensin genes. INSECT MOLECULAR BIOLOGY 2006; 15:393-401. [PMID: 16907826 PMCID: PMC1602061 DOI: 10.1111/j.1365-2583.2006.00635.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A comparative analysis identified key cis-acting regulatory elements responsible for the temporal control of mosquito Defensin gene expression. The promoters of Anopheles gambiae Defensin 1 and two isoforms of Aedes aegypti Defensin A are up-regulated by immune challenge. This stimulated activity depends upon a cluster of three NF-kappaB binding sites and closely associated C/EBP-like motifs, which function as a unit for optimal promoter activity. Binding of NF-kappaB and C/EBP like transcription factors is confirmed by electrophoretic mobility shift assay, including supershifts with antibodies to C/EBP. KappaB-like motifs are abundant within antimicrobial peptide gene promoters and most are very closely associated with putative C/EBP binding sites. This novel association between NF-kappaB and C/EBP binding sites may, therefore, be of widespread significance.
Collapse
Affiliation(s)
- J M Meredith
- School of Life Sciences, Huxley Building, Keele University, Staffordshire, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Ding Y, Hawkes N, Meredith J, Eggleston P, Hemingway J, Ranson H. Characterization of the promoters of Epsilon glutathione transferases in the mosquito Anopheles gambiae and their response to oxidative stress. Biochem J 2006; 387:879-88. [PMID: 15631620 PMCID: PMC1135021 DOI: 10.1042/bj20041850] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epsilon class GSTs (glutathione transferases) are expressed at higher levels in Anopheles gambiae mosquitoes that are resistant to DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] than in insecticide-susceptible individuals. At least one of the eight Epsilon GSTs in this species, GSTe2, efficiently metabolizes DDT to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane]. In the present study, we investigated the factors regulating expression of this class of GSTs. The activity of the promoter regions of GSTe2 and GSTe3 were compared between resistant and susceptible strains by transfecting recombinant reporter constructs into an A. gambiae cell line. The GSTe2 promoter from the resistant strain exhibited 2.8-fold higher activity than that of the susceptible strain. Six polymorphic sites were identified in the 352 bp sequence immediately upstream of GSTe2. Among these, a 2 bp adenosine indel (insertion/deletion) was found to have the greatest effect on determining promoter activity. The activity of the GSTe3 promoter was elevated to a lesser degree in the DDT-resistant strain (1.3-fold). The role of putative transcription-factor-binding sites in controlling promoter activity was investigated by sequentially deleting the promoter constructs. Several putative transcription-factor-binding sites that are responsive to oxidative stress were present within the core promoters of these GSTs, hence the effect of H2O2 exposure on the transcription of the Epsilon GSTs was investigated. In the DDT-resistant strain, expression of GSTe1, GSTe2 and GSTe3 was significantly increased by a 1-h exposure to H2O2, whereas, in the susceptible strain, only GSTe3 expression responded to this treatment.
Collapse
Affiliation(s)
- Yunchuan Ding
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Nicola Hawkes
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Janet Meredith
- †Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, U.K
| | - Paul Eggleston
- †Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, U.K
| | - Janet Hemingway
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Hilary Ranson
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
22
|
Ahmed AM, Hurd H. Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis. Microbes Infect 2006; 8:308-15. [PMID: 16213176 DOI: 10.1016/j.micinf.2005.06.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
The employment of defense mechanisms is recognized as a costly life-history trait. In the malaria vector Anopheles gambiae, reproductive costs have been associated with both humoral and cellular innate immune responses and also with malaria infection. The resorption of developing oocytes associated with malaria infection is preceded by the programmed cell death, or apoptosis, of follicular cells. Here we demonstrate that apoptosis in ovarian follicular epithelial cells also occurs when mosquitoes are subjected to artificial immune-elicitors that induce a melanization response or humoral antimicrobial activity. Caspases are key cysteine proteases involved in apoptosis. Caspase-like activity was detected in epithelial cells in approximately 4.0% of the developing ovarian follicles of untreated, blood-fed, mosquitoes. Lipopolysaccharide injection resulted in a significant increase in anti-Micrococcus luteus humoral activity and a significant increase of 257.7% of follicles exhibiting apoptosis compared to results after saline injections. Melanization also triggered follicular apoptosis, which increased by 106.25% or 134.37% in Sephadex C-25 or G-25 bead-inoculated mosquitoes, respectively, compared to that in sham-injected ones. Ovaries from Plasmodium yoelii nigeriensis-infected mosquitoes exhibited a significant increase in follicular apoptosis of 440.9% compared to non-infected ones. Thus, at the time point investigated, infection had a much greater effect than artificial immune-elicitors. Death of follicular epithelial cells has been shown to lead to follicle resorption and hence a decrease in egg production. We propose the trade-off between reproductive fitness and immune defense in A. gambiae operates via the induction of apoptosis in ovarian follicles and that different immune responses impose costs via the same pathway.
Collapse
Affiliation(s)
- Ashraf M Ahmed
- Department of Zoology, Faculty of Sciences, University of El-Minia, El-Minia, Egypt
| | | |
Collapse
|
23
|
Douris V, Swevers L, Labropoulou V, Andronopoulou E, Georgoussi Z, Iatrou K. Stably Transformed Insect Cell Lines: Tools for Expression of Secreted and Membrane‐anchored Proteins and High‐throughput Screening Platforms for Drug and Insecticide Discovery. Adv Virus Res 2006; 68:113-56. [PMID: 16997011 DOI: 10.1016/s0065-3527(06)68004-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insect cell-based expression systems are prominent amongst current expression platforms for their ability to express virtually all types of heterologous recombinant proteins. Stably transformed insect cell lines represent an attractive alternative to the baculovirus expression system, particularly for the production of secreted and membrane-anchored proteins. For this reason, transformed insect cell systems are receiving increased attention from the research community and the biotechnology industry. In this article, we review recent developments in the field of insect cell-based expression from two main perspectives, the production of secreted and membrane-anchored proteins and the establishment of novel methodological tools for the identification of bioactive compounds that can be used as research reagents and leads for new pharmaceuticals and insecticides.
Collapse
Affiliation(s)
- Vassilis Douris
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology National Centre for Scientific Research Demokritos, GR 153 10 Aghia Paraskevi Attikis (Athens), Greece
| | | | | | | | | | | |
Collapse
|
24
|
Metaxakis A, Oehler S, Klinakis A, Savakis C. Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics 2005; 171:571-81. [PMID: 15972463 PMCID: PMC1456772 DOI: 10.1534/genetics.105.041848] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much of the information about the function of D. melanogaster genes has come from P-element mutagenesis. The major drawback of the P element, however, is its strong bias for insertion into some genes (hotspots) and against insertion into others (coldspots). Within genes, 5'-UTRs are preferential targets. For the successful completion of the Drosophila Genome Disruption Project, the use of transposon vectors other than P will be necessary. We examined here the suitability of the Minos element from Drosophila hydei as a tool for Drosophila genomics. Previous work has shown that Minos, a member of the Tc1/mariner family of transposable elements, is active in diverse organisms and cultured cells; it produces stable integrants in the germ line of several insect species, in the mouse, and in human cells. We generated and analyzed 96 Minos integrations into the Drosophila genome and devised an efficient "jump-starting" scheme for production of single insertions. The ratio of insertions into genes vs. intergenic DNA is consistent with a random distribution. Within genes, there is a statistically significant preference for insertion into introns rather than into exons. About 30% of all insertions were in introns and approximately 55% of insertions were into or next to genes that have so far not been hit by the P element. The insertion sites exhibit, in contrast to other transposons, little sequence requirement beyond the TA dinucleotide insertion target. We further demonstrate that induced remobilization of Minos insertions can delete nearby sequences. Our results suggest that Minos is a useful tool complementing the P element for insertional mutagenesis and genomic analysis in Drosophila.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
25
|
Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, west Kenya. Malar J 2004; 3:48. [PMID: 15581429 PMCID: PMC543573 DOI: 10.1186/1475-2875-3-48] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 12/06/2004] [Indexed: 11/20/2022] Open
Abstract
Background Understanding the genetic structure of island Anopheles gambiae populations is important for the current tactics in mosquito control and for the proposed strategy using genetically-modified mosquitoes (GMM). Genetically-isolated mosquito populations on islands are a potential site for testing GMM. The objective of this study was to determine the genetic structure of A. gambiae populations on the islands in Lake Victoria, western Kenya. Methods The genetic diversity and the population genetic structures of 13 A. gambiae populations from five islands on Lake Victoria and six villages from the surrounding mainland area in the Suba District were examined using six microsatellite markers. The distance range of sampling sites varied between 2.5 and 35.1 km. Results A similar level of genetic diversity between island mosquito populations and adjacent mainland populations was found. The average number of alleles per locus was 7.3 for the island populations and 6.8 for the mainland populations. The average observed heterozygosity was 0.32 and 0.28 for the island and mainland populations, respectively. A low but statistically significant genetic structure was detected among the island populations (FST = 0.019) and between the island and mainland populations (FST = 0.003). A total of 12 private alleles were found, and nine of them were from the island populations. Conclusion A level of genetic differentiation between the island and mainland populations was found. Large extent of gene flow between the island and mainland mosquito populations may result from wind- or human-assisted dispersal. Should the islands on Lake Victoria be used as a trial site for the release program of GMM, mosquito dispersal between the islands and between the island and the mainland should be vigorously monitored.
Collapse
|
26
|
O'Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi DK, Jasinskiene N, Coates CJ, James AA, Lehane MJ, Atkinson PW. Gene vector and transposable element behavior in mosquitoes. J Exp Biol 2003; 206:3823-34. [PMID: 14506218 DOI: 10.1242/jeb.00638] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe development of efficient germ-line transformation technologies for mosquitoes has increased the ability of entomologists to find, isolate and analyze genes. The utility of the currently available systems will be determined by a number of factors including the behavior of the gene vectors during the initial integration event and their behavior after chromosomal integration. Post-integration behavior will determine whether the transposable elements being employed currently as primary gene vectors will be useful as gene-tagging and enhancer-trapping agents. The post-integration behavior of existing insect vectors has not been extensively examined. Mos1 is useful as a primary germ-line transformation vector in insects but is inefficiently remobilized in Drosophila melanogaster and Aedes aegypti. Hermes transforms D. melanogaster efficiently and can be remobilized in this species. This element is also useful for creating transgenic A. aegypti, but its mode of integration in mosquitoes results in the insertion of flanking plasmid DNA. Hermes can be remobilized in the soma of A. aegypti and transposes using a common cut-and-paste mechanism; however, the element does not remobilize in the germ line. piggyBac can be used to create transgenic mosquitoes and occasionally integrates using a mechanism other than a simple cut-and-paste mechanism. Preliminary data suggest that remobilization is infrequent. Minos also functions in mosquitoes and, like the other gene vectors,appears to remobilize inefficiently following integration. These results have implications for future gene vector development efforts and applications.
Collapse
Affiliation(s)
- David A O'Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742-4450, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Morlais I, Mori A, Schneider JR, Severson DW. A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti. Mol Genet Genomics 2003; 269:753-64. [PMID: 14513362 DOI: 10.1007/s00438-003-0882-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 06/06/2003] [Indexed: 10/26/2022]
Abstract
The malaria parasite, Plasmodium, has evolved an intricate life cycle that includes stages specific to a mosquito vector and to the vertebrate host. The mosquito midgut represents the first barrier Plasmodium parasites encounter following their ingestion with a blood meal from an infected vertebrate. Elucidation of the molecular interaction between the parasite and the mosquito could help identify novel approaches to preventing parasite development and subsequent transmission to vertebrates. We have used an integrated Bulked Segregant Analysis-Differential Display (BSA-DD) approach to target genes expressed that are in the midgut and located within two genome regions involved in determining susceptibility to P. gallinaceum in the mosquito Aedes aegypti. A total of twenty-two genes were identified and characterized, including five genes with no homologues in public sequence databases. Eight of these genes were mapped genetically to intervals on chromosome 2 that contain two quantitative trait loci (QTLs) that determine susceptibility to infection by P. gallinaceum. Expression analysis revealed several expression patterns, and ten genes were specifically or preferentially expressed in the midgut of adult females. Real-time PCR quantification of expression with respect to the time of blood meal ingestion and infection status in mosquito strains permissive and refractory for malaria revealed a differential expression pattern for seven genes. These represent candidate genes that may influence the ability of the mosquito vector to support the development of Plasmodium parasites. Here we describe their isolation and discuss their putative roles in parasite-mosquito interactions and their use as potential targets in strategies designed to block transmission of malaria.
Collapse
Affiliation(s)
- I Morlais
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
28
|
Brown AE, Crisanti A, Catteruccia F. Comparative analysis of DNA vectors at mediating RNAi in Anopheles mosquito cells and larvae. J Exp Biol 2003; 206:1817-23. [PMID: 12728003 DOI: 10.1242/jeb.00360] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heritable RNA interference (RNAi) mediated by transgenes exhibiting dyad symmetry represents an important tool to study the function of genes expressed at late developmental stages. In this study, we determined whether the transcriptional machinery of Anopheles mosquitoes is capable of directing suppression of gene expression from DNA constructs designed to transcribe double-stranded RNA (dsRNA) as extended hairpin-loop RNAs. A series of DNA vectors containing sense and antisense regions of the green fluorescent protein EGFP target gene was developed. The effect of these vectors on a transiently expressed or stably integrated EGFP gene was assessed in an Anopheles gambiae cell line and in Anopheles stephensi larvae. Our data indicate that dsRNA-mediated silencing of a target gene from plasmid DNA can be achieved at high levels in Anopheles cell lines and larvae. The region that links the sense and antisense sequences of the target gene plays a determining role in the degree of silencing observed. These results provide important information for the development of heritable RNAi in Anopheles.
Collapse
Affiliation(s)
- Anthony E Brown
- Department of Biological Sciences, SAF Building, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
29
|
Moreira LA, Ghosh AK, Abraham EG, Jacobs-Lorena M. Genetic transformation of mosquitoes: a quest for malaria control. Int J Parasitol 2002; 32:1599-605. [PMID: 12435444 DOI: 10.1016/s0020-7519(02)00188-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Malaria inflicts an enormous toll in human lives and this burden is increasing. Present means to fight the disease, such as drugs and insecticides, are insufficient. Moreover, an effective vaccine has not yet been developed. This review examines an alternative strategy for malaria control, namely the genetic modification of mosquitoes to make them inefficient vectors for the parasite. The article summarises progress made toward the development of transposable element vectors for germ line transformation and the search for mosquito markers of transformation. Also reviewed is the search for anti-malarial effector genes whose products can inhibit development of the parasite in the mosquito with minimal fitness burden. While much progress has been made, much work remains to be done. Future research directions are discussed.
Collapse
Affiliation(s)
- Luciano A Moreira
- Case Western Reserve University, Department of Genetics, Cleveland, OH 44106-4955, USA
| | | | | | | |
Collapse
|
30
|
Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Müller HM, Osta MA, Paskewitz SM, Reichhart JM, Rzhetsky A, Troxler L, Vernick KD, Vlachou D, Volz J, von Mering C, Xu J, Zheng L, Bork P, Kafatos FC. Immunity-related genes and gene families in Anopheles gambiae. Science 2002; 298:159-65. [PMID: 12364793 DOI: 10.1126/science.1077136] [Citation(s) in RCA: 732] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire.
Collapse
|
31
|
James AA. Engineering mosquito resistance to malaria parasites: the avian malaria model. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1317-1323. [PMID: 12225922 DOI: 10.1016/s0965-1748(02)00094-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genetic approaches to controlling the transmission of mosquito-borne diseases are being developed to augment the available chemical control practices and environmental manipulation methods. Much progress has been made in laboratory-based research that seeks to develop antipathogen or antivector effector genes and methods for genetically manipulating host vector strains. Research is summarized here in the development of a malaria-resistant phenotype using as a model system the avian parasite, Plasmodium gallinaceum, and the mosquito, Aedes aegypti. Robust transformation technology based on a number of transposable elements, the identification of promoter regions derived from endogenous mosquito genes, and the development of single-chain antibodies as effector genes have made it possible to produce malaria-resistant mosquitoes. Future challenges include discovery of methods for spreading antiparasite genes through mosquito populations, determining the threshold levels below which parasite intensities of infection must be held, and defining the circumstances in which a genetic control strategy would be employed in the field.
Collapse
Affiliation(s)
- A A James
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3205 BioSci II, Irvine, CA 92697-3900, USA.
| |
Collapse
|
32
|
Kapetanaki MG, Loukeris TG, Livadaras I, Savakis C. High frequencies of Minos transposon mobilization are obtained in insects by using in vitro synthesized mRNA as a source of transposase. Nucleic Acids Res 2002; 30:3333-40. [PMID: 12140317 PMCID: PMC137079 DOI: 10.1093/nar/gkf455] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One of the most frequently encountered problems in transposon-mediated transgenesis is low transformation frequency, often resulting from difficulty in expressing from injected plasmid DNA constructs adequate levels of transposase in embryos. Capped RNA corresponding to the spliced transcript of the Minos transposable element has been synthesized in vitro and shown to be an effective source of transposase protein for Minos transposon mobilization. Transposase produced by this mRNA is shown to catalyze excision of a Minos transposon from plasmid DNA in Medfly embryos. When injected into Drosophila or Medfly embryos, transposase mRNA leads to a several-fold increase in transformation efficiencies compared with injected plasmids expressing transposase. Also, frequent mobilization of a Minos transposon from the X chromosome into autosomes was demonstrated after injections of Minos transposase mRNA into pre-blastoderm Drosophila embryos. The high rates of transposition achieved with transposase mRNA suggest that this is a powerful system for genetic applications in Drosophila and other insects.
Collapse
Affiliation(s)
- Maria G Kapetanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1527, Vassilika Vouton, Heraklion-Crete 71110, Greece
| | | | | | | |
Collapse
|
33
|
Abstract
In the last few years, cases of transformation involving insects other than Dipterans have been reported. Although transgenics have been created only in a few species, transposable element vectors may be successfully developed in most insect forms in the near future. The major remaining problems revolving round transformation in wide-ranging species of insects are mainly related to methods of DNA delivery. Transposable element-mediated gene transfer in non-Drosophila insects is reviewed. In addition, the current status of honeybee transformation will be explained as an example of an insect transgenic system that faces substantial obstacles to the creation of germ-line transformants.
Collapse
Affiliation(s)
- K Kimura
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science, Ibaraki, Japan.
| |
Collapse
|
34
|
Heinrich JC, Li X, Henry RA, Haack N, Stringfellow L, Heath ACG, Scott MJ. Germ-line transformation of the Australian sheep blowfly Lucilia cuprina. INSECT MOLECULAR BIOLOGY 2002; 11:1-10. [PMID: 11841497 DOI: 10.1046/j.0962-1075.2001.00301.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Australian sheep blowfly, Lucilia cuprina, is the most important economic insect pest for the sheep industries in Australia and New Zealand. piggyBac-mediated germ-line transformation of L. cuprina was achieved with a helper plasmid that had the Drosophila melanogaster hsp70 promoter controlling expression of the transposase and a piggyBac vector with an EGFP marker gene. Two transformant lines were obtained, at a frequency of approximately 1-2% per fertile G0. One of these lines has a single copy of the transgene, the other most likely has four copies. This is the first report of germ-line transformation of L. cuprina and is an important step towards the generation of engineered strains that would be suitable for male-only release eradication/suppression programmes.
Collapse
Affiliation(s)
- J C Heinrich
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
35
|
Zagoraiou L, Drabek D, Alexaki S, Guy JA, Klinakis AG, Langeveld A, Skavdis G, Mamalaki C, Grosveld F, Savakis C. In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc Natl Acad Sci U S A 2001; 98:11474-8. [PMID: 11562481 PMCID: PMC58754 DOI: 10.1073/pnas.201392398] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2001] [Accepted: 07/26/2001] [Indexed: 11/18/2022] Open
Abstract
Transposable elements have been used widely in the past 20 years for gene transfer and insertional mutagenesis in Drosophila. Transposon-based technology for gene manipulation and genomic analysis currently is being adopted for vertebrates. We tested the ability of Minos, a DNA transposon from Drosophila hydei, to transpose in mouse tissues. Two transgenic mouse lines were crossed, one expressing Minos transposase in lymphocytes under the control of the CD2 promoter/locus control region and another carrying a nonautonomous Minos transposon. Only mice containing both transgenes show excision of the transposon and transposition into new chromosomal sites in thymus and spleen cells. In addition, expression of Minos transposase in embryonic fibroblast cell lines derived from a transposon-carrying transgenic mouse resulted in excision of the transposon. These results are a first step toward a reversible insertional mutagenesis system in the mouse, opening the way to develop powerful technologies for functional genomic analysis in mammals.
Collapse
Affiliation(s)
- L Zagoraiou
- Institute for Molecular Biology and Biotechnology-Foundation for Research and Technology, Hellas, P.O. Box 1527, Heraklion 71110, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vizioli J, Catteruccia F, della Torre A, Reckmann I, Müller HM. Blood digestion in the malaria mosquito Anopheles gambiae: molecular cloning and biochemical characterization of two inducible chymotrypsins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4027-35. [PMID: 11453997 DOI: 10.1046/j.1432-1327.2001.02315.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The elucidation of digestive processes in the Anopheles gambiae gut leading to the utilization of the blood meal will result in a deeper understanding of the physiology of blood digestion and its impact on parasite-vector interactions. Accordingly, the identification of digestive serine proteases in A. gambiae has implications for the development of alternative strategies for the control of mosquito-borne diseases. We report here on the cDNA and genomic cloning and on the expression analysis of two closely related chymotrypsin genes, Anchym1 and Anchym2. Genomic cloning revealed that Anchym1 and Anchym2, which map on chromosomal division 25D, are clustered in tandem within 6 kb, both genes being interrupted by two short introns. After blood feeding, transcription of Anchym1 and Anchym2 is induced in the midgut epithelium, followed by secretion of the translated products into the midgut lumen where the Anchym1 and Anchym2 zymogens are activated by partial tryptic digestion. The amino-acid residues forming the substrate pocket of Anchym1 and Anchym2 suggested chymotryptic cleavage specificity. This was confirmed by mass spectrometry analysis and Edman degradation sequencing of proteolytic products generated by the recombinant, trypsin-activated Anchym1.
Collapse
Affiliation(s)
- J Vizioli
- Institut de Biologie Moléculaire et Cellulaire 15, Strasbourg, France; Imperial College of Science, Technology and Medicine, Department of Biology, London, UK
| | | | | | | | | |
Collapse
|
37
|
Morlais I, Severson DW. Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis. Genetics 2001; 158:1125-36. [PMID: 11454761 PMCID: PMC1461701 DOI: 10.1093/genetics/158.3.1125] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions.
Collapse
Affiliation(s)
- I Morlais
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
38
|
Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 2001; 104:709-18. [PMID: 11257225 DOI: 10.1016/s0092-8674(01)00267-7] [Citation(s) in RCA: 375] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We characterize a novel hemocyte-specific acute phase glycoprotein from the malaria vector, Anopheles gambiae. It shows substantial structural and functional similarities, including the highly conserved thioester motif, to both a central component of mammalian complement system, factor C3, and to a pan-protease inhibitor, alpha2-macroglobulin. Most importantly, this protein serves as a complement-like opsonin and promotes phagocytosis of some Gram-negative bacteria in a mosquito hemocyte-like cell line. Chemical inactivation by methylamine and depletion by double-stranded RNA knockout demonstrate that this function is dependent on the internal thioester bond. This evidence of a complement-like function in a protostome animal adds substantially to the accumulating evidence of a common ancestry of immune defenses in insects and vertebrates.
Collapse
|
39
|
Handler AM. A current perspective on insect gene transformation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:111-128. [PMID: 11164334 DOI: 10.1016/s0965-1748(00)00159-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genetic transformation of non-drosophilid insects is now possible with several systems, with germ-line transformation reported in published and unpublished accounts for about 12 species using four different transposon vectors. For some of these species, transformation can now be considered routine. Other vector systems include viruses and bacterial symbionts that have demonstrated utility in species and applications requiring transient expression, and for some, the potential exists for genomic integration. Many of these findings are quite recent, presenting a dramatic turning point in our ability to study and manipulate agriculturally and medically important insects. This review discusses these findings from the perspective of all the contributions that has made this technology a reality, the research that has yet to be done for its safe and efficient use in a broader range of species, and an overview of the available methodology to effectively utilize these systems.
Collapse
Affiliation(s)
- A M Handler
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, US Department of Agriculture, 1700 S.W. 23rd Drive, Gainesville, FL 32608, USA.
| |
Collapse
|
40
|
Dimopoulos G, Müller HM, Levashina EA, Kafatos FC. Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol 2001; 13:79-88. [PMID: 11154922 DOI: 10.1016/s0952-7915(00)00186-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anopheles gambiae, the most important vector of malaria, employs its innate immune system in the fight against Plasmodium. This can affect the propagative capacity of Plasmodium in the vector and, in some cases, leads to total refractoriness to the parasite. The components operating in the mosquito's innate immune system and their potential relevance to antimalarial responses are being systematically dissected.
Collapse
Affiliation(s)
- G Dimopoulos
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
41
|
Atkinson PW, Pinkerton AC, O'Brochta DA. Genetic transformation systems in insects. ANNUAL REVIEW OF ENTOMOLOGY 2001; 46:317-346. [PMID: 11112172 DOI: 10.1146/annurev.ento.46.1.317] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The past 5 years have witnessed the emergence of techniques that permit the stable genetic transformation of a number of non-drosophilid insect species. These transposable-element-based strategies, together with virus-based techniques that allow the expression of genes to be quickly examined in insects, provide insect scientists with a first generation of genetic tools that can begin to be harnessed to further increase our understanding of gene function and regulation in insects. We review and compare the characteristics of these gene transfer systems and conclude that, although significant progress has been made, these systems still do not meet the requirements of robust genetic tools. We also review risk assessment issues arising from the generation and probable release of genetically engineered insects.
Collapse
Affiliation(s)
- P W Atkinson
- Department of Entomology, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
42
|
James AA. What's that buzz? Mosquitoes and fruit flies commingle. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:503-4. [PMID: 11121841 DOI: 10.1016/s0169-4758(00)01798-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- A A James
- Department of Molecular Biology and Biochemistry, 3205 Bio Sci II, University of California, Irvine, CA 92697-3900, USA.
| |
Collapse
|
43
|
Klinakis AG, Zagoraiou L, Vassilatis DK, Savakis C. Genome-wide insertional mutagenesis in human cells by the Drosophila mobile element Minos. EMBO Rep 2000; 1:416-21. [PMID: 11258481 PMCID: PMC1083762 DOI: 10.1093/embo-reports/kvd089] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The development of efficient non-viral methodologies for genome-wide insertional mutagenesis and gene tagging in mammalian cells is highly desirable for functional genomic analysis. Here we describe transposon mediated mutagenesis (TRAMM), using naked DNA vectors based on the Drosophila hydei transposable element Minos. By simple transfections of plasmid Minos vectors in HeLa cells, we have achieved high frequency generation of cell lines, each containing one or more stable chromosomal integrations. The Minos-derived vectors insert in different locations in the mammalian genome. Genome-wide mutagenesis in HeLa cells was demonstrated by using a Minos transposon containing a lacZ-neo gene-trap fusion to generate a HeLa cell library of at least 10(5) transposon insertions in active genes. Multiple gene traps for six out of 12 active genes were detected in this library. Possible applications of Minos-based TRAMM in functional genomics are discussed.
Collapse
Affiliation(s)
- A G Klinakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Heraklion, Greece
| | | | | | | |
Collapse
|
44
|
Powers TP, Hogan J, Ke Z, Dymbrowski K, Wang X, Collins FH, Kaufman TC. Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: Culicidae). Evol Dev 2000; 2:311-25. [PMID: 11256376 DOI: 10.1046/j.1525-142x.2000.00072.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hox genes have been found to encode transcription factors, which specify the morphological identity of structures along the anteroposterior axis of animals ranging from worms to mice. The canonical set of nine genes is organized in a cluster in the genome of several protostomes and deuterostomes. However, within insects, whereas the Hox genes are organized in a single cluster in the beetle Tribolium castaneum, they are split into two separate groups in the flies Drosophila melanogaster and Drosophila virilis. The significance of a split Hox cluster is unknown and has been observed in only one organism outside the Drosophila lineage: the nematode Caenorhabditis elegans. We have cloned a majority of the Hox genes from the mosquito Anopheles gambiae (Diptera: Culicidae) and compared their genomic organization with that of Tribolium and Drosophila to determine if a split Hox cluster is found in dipterans aside from the Drosophilidae. We find that the Hox genes in Anopheles, as in Tribolium, are organized in a single cluster that spans a genomic region of at least 700 kb. This finding suggests that, within the insect genome, the partition of the Hox cluster may have evolved exclusively within the Drosophila lineage. The genomic structures of the resident genes, however, appear to be largely conserved between A. gambiae and D. melanogaster.
Collapse
Affiliation(s)
- T P Powers
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Grossman GL, Rafferty CS, Fraser MJ, Benedict MQ. The piggyBac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:909-914. [PMID: 10899457 DOI: 10.1016/s0965-1748(00)00092-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The piggyBac transposable element was tested for transposition activity in plasmid-based excision and inter-plasmid transposition assays to determine if this element would function in Anopheles gambiae cells and embryos. In the Mos55 cell line, precise excision of the piggyBac element was observed only in the presence of a helper plasmid. Excision occurred at a rate of 1 event per 1000 donor plasmids screened. Precise excision of the piggyBac element was also observed in injected An. gambiae embryos, but at a lower rate of 1 excision per 5000 donor plasmids. Transposition of the marked piggyBac element into a target plasmid occurred in An. gambiae cells at a rate of 1 transposition event per 24,000 donor plasmids. The piggyBac element transposed in a precise manner, with the TTAA target site being duplicated upon insertion, in 56% of transpositions observed, and only in the presence of the piggyBac helper. The remaining transpositions resulted in a deletion of target sequence, a novel observation for the phenomenon of piggyBac element insertion. 'Hot spots' for insertion into the target plasmid were observed, with 25 of 34 events involving one particular site. These results are the first demonstration of the precise mobility of piggyBac in this malaria vector and suggest that the lepidopteran piggyBac transposon is a candidate element for germline transformation of anopheline mosquitoes.
Collapse
Affiliation(s)
- G L Grossman
- Centers for Disease Control and Prevention, Division of Parasitic Diseases, Entomology Branch, 4770 Buford Highway, MS-F22, 30341, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
46
|
Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 2000; 405:959-62. [PMID: 10879538 DOI: 10.1038/35016096] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anopheline mosquito species are obligatory vectors for human malaria, an infectious disease that affects hundreds of millions of people living in tropical and subtropical countries. The lack of a suitable gene transfer technology for these mosquitoes has hampered the molecular genetic analysis of their physiology, including the molecular interactions between the vector and the malaria parasite. Here we show that a transposon, based on the Minos element and bearing exogenous DNA, can integrate efficiently and stably into the germ line of the human malaria vector Anopheles stephensi, through a transposase-mediated process.
Collapse
Affiliation(s)
- F Catteruccia
- Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|