1
|
Xiao S, Duan S, Caligiuri MA, Ma S, Yu J. YTHDF2: a key RNA reader and antitumor target. Trends Immunol 2025:S1471-4906(25)00095-X. [PMID: 40399203 DOI: 10.1016/j.it.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/23/2025]
Abstract
N6-methyladenosine (m6A) is a key mRNA modification influencing mRNA stability and translation. YTHDF2, a major m6A 'reader', was initially recognized for promoting mRNA decay but is now also known to enhance translation by binding to methylated mRNAs. YTHDF2 maintains the function of immune suppressive cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs), while also supporting cytotoxic immune cells, including natural killer (NK) and CD8+ T cells. Additionally, YTHDF2 acts as a tumor-intrinsic regulator orchestrating tumor immune evasion. Its multifaceted roles in tumor immunity make YTHDF2 a promising yet challenging therapeutic target. This review explores the complex roles and mechanisms of YTHDF2 in cancers, immune regulation, and tumor immune evasion and highlights emerging therapeutic strategies that target YTHDF2.
Collapse
Affiliation(s)
- Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Songqi Duan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA; Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA; The Clemons Family Center for Transformative Cancer Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Xu C, Tang Y, Lu X, Chen R. Fyn, an important molecule in the brain, is a potential therapeutic target for brain tumours. Front Pharmacol 2024; 15:1485919. [PMID: 39697541 PMCID: PMC11652172 DOI: 10.3389/fphar.2024.1485919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Under normal physiological conditions, Fyn, a nonreceptor tyrosine kinase, is involved in signal transduction pathways in the nervous system and in the formation and activation of T lymphocytes. Fyn is a member of the Src family of kinases (SFKs) and plays a role in cell morphogenic transformation, motility, proliferation, and death, which in turn influences the development and progression of various cancer types. SFKs are overexpressed or hyperactive in tumours, and they are engaged in several signalling pathways that lead to tumour development. Inhibition of Fyn can enhance patient outcomes and prolong survival. Thus, Fyn is a desirable therapeutic target in a variety of tumour types. To lay the groundwork for further investigation and targeted therapy in tumours, in this article, we review the most recent findings on the function of Fyn in tumours, with an emphasis on its role in gliomas. Understanding the function of Fyn during tumourigenesis and development and in resistance to anticancer therapeutic agents can aid in the development and application of innovative medicines that specifically target this kinase, thus improving the management of cancers.
Collapse
Affiliation(s)
- Chongxi Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Lu
- Department of Gynecological Nursing, West China Second Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Qin Z, Hou P, Lin H, Chen M, Wang R, Xu T. Inhibition of Lck/Fyn kinase activity promotes the differentiation of induced Treg cells through AKT/mTOR pathway. Int Immunopharmacol 2024; 134:112237. [PMID: 38744170 DOI: 10.1016/j.intimp.2024.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Regulatory T (Treg) cells are indispensable in maintaining the immune homeostasis and preventing autoimmune diseases. Regulatory T (Treg) cells include thymus derived Treg cells (tTregs) and peripherally induced Treg cells (iTreg), which are differentiated from antigen stimulated CD4+ naïve T cells in presence of TGFβ. tTregs are quite stable, and more immune suppressive, while iTreg cells are less stable, and are prone to differentiate into inflammatory T cells. Therefore, identification of small molecules that could promote the differentiation of iTreg cells is an attractive strategy for autoimmune diseases. Inhibition of AKT/mTOR pathway promotes their differentiation. Whether inhibition of Lck/Fyn kinase activity (upstream of AKT/mTOR pathway) can be used to promote the differentiation of iTreg cells has not been determined. Here, we showed that Srci1, a small molecular inhibitor of Lck/Fyn, promoted the differentiation of FOXP3+ iTreg cells. Srci1 treatment resulted in inhibition of phosphorylation of key components of AKT/mTOR pathway, including mTOR, p70 S6K, 4EBP1, and promoted the expression of Foxp3 and its target genes, thereby promoted differentiation of in vitro iTreg cells. Srci1 treated iTreg cells showed more similar gene expression profile to that of tTreg cells. Our results thus suggest that inhibition of Lck/Fyn kinase activity can promote the differentiation of iTreg cells, and may have implication in autoimmune diseases.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Hou
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Huizhen Lin
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Minghui Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruining Wang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. J Transl Med 2023; 21:84. [PMID: 36740671 PMCID: PMC9901160 DOI: 10.1186/s12967-023-03930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN's structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
5
|
Lantz O, Teyton L. Identification of T cell antigens in the 21st century, as difficult as ever. Semin Immunol 2022; 60:101659. [PMID: 36183497 PMCID: PMC10332289 DOI: 10.1016/j.smim.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identifying antigens recognized by T cells is still challenging, particularly for innate like T cells that do not recognize peptides but small metabolites or lipids in the context of MHC-like molecules or see non-MHC restricted antigens. The fundamental reason for this situation is the low affinity of T cell receptors for their ligands coupled with a level of degeneracy that makes them bind to similar surfaces on antigen presenting cells. Herein we will describe non-exhaustively some of the methods that were used to identify peptide antigens and briefly mention the high throughput methods more recently proposed for that purpose. We will then present how the molecules recognized by innate like T cells (NKT, MAIT and γδ T cells) were discovered. We will show that serendipity was instrumental in many cases.
Collapse
Affiliation(s)
- Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428) Institut Curie, Paris 75005, France
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Micklethwaite KP, Gowrishankar K, Gloss BS, Li Z, Street JA, Moezzi L, Mach MA, Sutrave G, Clancy LE, Bishop DC, Louie RHY, Cai C, Foox J, MacKay M, Sedlazeck FJ, Blombery P, Mason CE, Luciani F, Gottlieb DJ, Blyth E. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 2021; 138:1391-1405. [PMID: 33974080 PMCID: PMC8532197 DOI: 10.1182/blood.2021010858] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/24/2021] [Indexed: 11/20/2022] Open
Abstract
We performed a phase 1 clinical trial to evaluate outcomes in patients receiving donor-derived CD19-specific chimeric antigen receptor (CAR) T cells for B-cell malignancy that relapsed or persisted after matched related allogeneic hemopoietic stem cell transplant. To overcome the cost and transgene-capacity limitations of traditional viral vectors, CAR T cells were produced using the piggyBac transposon system of genetic modification. Following CAR T-cell infusion, 1 patient developed a gradually enlarging retroperitoneal tumor due to a CAR-expressing CD4+ T-cell lymphoma. Screening of other patients led to the detection, in an asymptomatic patient, of a second CAR T-cell tumor in thoracic para-aortic lymph nodes. Analysis of the first lymphoma showed a high transgene copy number, but no insertion into typical oncogenes. There were also structural changes such as altered genomic copy number and point mutations unrelated to the insertion sites. Transcriptome analysis showed transgene promoter-driven upregulation of transcription of surrounding regions despite insulator sequences surrounding the transgene. However, marked global changes in transcription predominantly correlated with gene copy number rather than insertion sites. In both patients, the CAR T-cell-derived lymphoma progressed and 1 patient died. We describe the first 2 cases of malignant lymphoma derived from CAR gene-modified T cells. Although CAR T cells have an enviable record of safety to date, our results emphasize the need for caution and regular follow-up of CAR T recipients, especially when novel methods of gene transfer are used to create genetically modified immune therapies. This trial was registered at www.anzctr.org.au as ACTRN12617001579381.
Collapse
MESH Headings
- Aged
- DNA Transposable Elements
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/therapy
- Lymphoma/etiology
- Lymphoma/genetics
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/therapy
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/therapeutic use
- T-Lymphocytes/metabolism
- Transcriptome
- Transgenes
Collapse
Affiliation(s)
- Kenneth P Micklethwaite
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology-ICPMR Westmead, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kavitha Gowrishankar
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ziduo Li
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Janine A Street
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Leili Moezzi
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Melanie A Mach
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gaurav Sutrave
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Leighton E Clancy
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology-ICPMR Westmead, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - David C Bishop
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Raymond H Y Louie
- Kirby Institute, University of New South Wales, Sydney. NSW, Australia
| | - Curtis Cai
- Kirby Institute, University of New South Wales, Sydney. NSW, Australia
| | - Jonathan Foox
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY
| | - Matthew MacKay
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, College of Medicine, Baylor University, Houston, TX
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Christopher E Mason
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY
- The Feil Family Brain and Mind Research Institute, New York, NY; and
- The WorldQuant Initiative for Quantitative Prediction, New York, NY
| | - Fabio Luciani
- Kirby Institute, University of New South Wales, Sydney. NSW, Australia
| | - David J Gottlieb
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology-ICPMR Westmead, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Mammadli M, Huang W, Harris R, Xiong H, Weeks S, May A, Gentile T, Henty-Ridilla J, Waickman AT, August A, Bah A, Karimi M. Targeting SLP76:ITK interaction separates GVHD from GVL in allo-HSCT. iScience 2021; 24:102286. [PMID: 33851101 PMCID: PMC8024657 DOI: 10.1016/j.isci.2021.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for hematological malignancies, due to graft-versus-leukemia (GVL) activity mediated by alloreactive donor T cells. However, graft-versus-host disease (GVHD) is also mediated by these cells. Here, we assessed the effect of attenuating TCR-mediated SLP76:ITK interaction in GVL vs. GVHD effects after allo-HSCT. CD8+ and CD4+ donor T cells from mice expressing a Y145F mutation in SLP-76 did not cause GVHD but preserved GVL effects against B-ALL cells. SLP76Y145FKI CD8+ and CD4+ donor T cells also showed less inflammatory cytokine production and migration to GVHD target organs. We developed a novel peptide to specifically inhibit SLP76:ITK interactions, resulting in decreased phosphorylation of PLCγ1 and ERK, decreased cytokine production in human T cells, and separation of GVHD from GVL effects. Altogether, our data suggest that inhibiting SLP76:ITK interaction could be a therapeutic strategy to separate GVHD from GVL effects after allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Hui Xiong
- Department of Radiology, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Samuel Weeks
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Teresa Gentile
- Division of Hematology, translational research, SUNY Upstate Medical University, Syracuse NY 13210, USA
| | - Jessica Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam T. Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
9
|
Involvement of CD26 in Differentiation and Functions of Th1 and Th17 Subpopulations of T Lymphocytes. J Immunol Res 2021; 2021:6671410. [PMID: 33542930 PMCID: PMC7843192 DOI: 10.1155/2021/6671410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
CD26, acting as a costimulator of T cell activation, plays an important role in the immune system. However, the role of CD26 in the differentiation of T cell subsets, especially of new paradigms of T cells, such as Th17 and Tregs, is not fully clarified. In the present study, the role of CD26 in T cell differentiation was investigated in vitro. CD26 expression was analyzed in the different subsets of human peripheral blood T lymphocytes after solid-phase immobilized specific anti-CD3 mAb stimulation. Here, the percentage of CD4+ cells significantly increased and most of these cells were coexpressed with CD26, suggesting a close correlation of CD26 expression with the proliferation of CD4+ cells. Subsequently, after immobilized anti-CD3 mAb stimulation, CD26 high-expressing cells (CD26high) were separated from CD26 low-expressing cells (CD26low) by magnetic cell sorting. We found that the percentages of cells secreting Th1 typical cytokines (IL-2, IFN-γ) and Th17 typical cytokines (IL-6, IL-17, and IL-22) or expressing Th17 typical biomarkers (IL-23R, CD161, and CD196) in the CD26high group were markedly higher than in those in the CD26low group. In addition, a coexpression of CD26 with IL-2, IFN-γ, IL-17, IL-22, and IL-23R in lymphocytes was demonstrated by fluorescence microscopy. These results provide direct evidence that the high expression of CD26 is accompanied by the differentiation of T lymphocytes into Th1 and Th17, indicating that CD26 plays a crucial role in regulating the immune response.
Collapse
|
10
|
Abstract
A major function of the immune system is to detect threat from foreign invaders, tissue damage, or cancer and to mount a counter response that resolves the threat, restores homeostasis, and supplies immunological memory to prevent a second assault. Our increasing understanding of the immune system has opened up numerous avenues for modulating immune responses against infections, cancer, and autoimmunity. However, agents used for immunomodulation have been traditionally administered systemically via bolus injection, leading to unintended consequences by disrupting homeostasis at nontarget sites. Consequently, systemic hyperactivation and hypoactivation can result from bolus administration of immune-activators and immunosuppressants, respectively. Macroscale biomaterial scaffolds can instead be placed at the intended target site to provide both localized, controlled release of immunomodulatory agents and control over local immune cell trafficking and function, potentially maximizing therapeutic efficacy and limiting systemic exposure. These scaffolds have found utility in the area of cancer immunotherapy, especially in situ cancer vaccination where controlled release of factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and the local presentation of tumor antigen and danger signals lead to the recruitment of immature dendritic cells and facilitate their activation and antigen presentation. These cells eventually migrate into secondary lymphoid organs where they prime tumor specific T cells for downstream tumor clearance. Scaffolds can also be used in adoptive T cell therapy to generate large numbers of potent antigen specific T cells or chimeric antigen receptor (CAR) T cells in vitro for subsequent delivery to patients. Macroscale biomaterial scaffolds have also found utility beyond cancer immunotherapy and have been developed to promote immune tolerance by regulatory T cell induction and to expedite tissue regeneration. The design of these macroscale biomaterial scaffolds considers their biocompatibility, biodegradability, mode of delivery, porosity, and kinetics of therapeutic cargo release. Consequently, the numerous approaches that have been developed to fabricate biomaterial scaffolds are aimed at tuning these parameters to achieve the desired therapeutic outcome. This Account will discuss the use of biomaterial scaffolds as niches for immunomodulation and will focus on (1) approaches that have been used to fabricate various biomaterial systems being employed as niches for immunomodulation and (2) how these biomaterial systems have been used to modulate immune responses, specifically in area of cancer immunotherapy, where we will discuss the role of macroscale biomaterial scaffolds for in situ vaccination and in vitro T cell expansion. We will also briefly discuss the utility of biomaterial scaffolds beyond cancer, drawing examples from tolerance and tissue regeneration.
Collapse
Affiliation(s)
- Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Lee JE, Kye YC, Park SM, Shim BS, Yoo S, Hwang E, Kim H, Kim SJ, Han SH, Park TS, Park BC, Yun CH. Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens. Vet Res 2020; 51:68. [PMID: 32448402 PMCID: PMC7245620 DOI: 10.1186/s13567-020-00788-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Low-pathogenicity avian influenza H9N2 remains an endemic disease worldwide despite continuous vaccination, indicating the need for an improved vaccine strategy. Bacillus subtilis (B. subtilis), a gram-positive and endospore-forming bacterium, is a non-pathogenic species that has been used in probiotic formulations for both animals and humans. The objective of the present study was to elucidate the effect of B. subtilis spores as adjuvants in chickens administered inactivated avian influenza virus H9N2. Herein, the adjuvanticity of B. subtilis spores in chickens was demonstrated by enhancement of H9N2 virus-specific IgG responses. B. subtilis spores enhanced the proportion of B cells and the innate cell population in splenocytes from chickens administered both inactivated H9N2 and B. subtilis spores (Spore + H9N2). Furthermore, the H9N2 and spore administration induced significantly increased expression of the pro-inflammatory cytokines IL-1β and IL-6 compared to that in the H9N2 only group. Additionally, total splenocytes from chickens immunized with inactivated H9N2 in the presence or absence of B. subtilis spores were re-stimulated with inactivated H9N2. The subsequent results showed that the extent of antigen-specific CD4+ and CD8+ T cell proliferation was higher in the Spore + H9N2 group than in the group administered only H9N2. Taken together, these data demonstrate that B. subtilis spores, as adjuvants, enhance not only H9N2 virus-specific IgG but also CD4+ and CD8+ T cell responses, with an increase in pro-inflammatory cytokine production. This approach to vaccination with inactivated H9N2 together with a B. subtilis spore adjuvant in chickens produces a significant effect on antigen-specific antibody and T cell responses against avian influenza virus.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | | | - Sungsik Yoo
- Choong-Ang Vaccine Laboratory, Daejeon, Republic of Korea
| | - Eunmi Hwang
- Department of Biotechnology, Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| | - Hyungkuen Kim
- Department of Biotechnology, Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea. .,Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
12
|
Uddin MJ, Dorotea D, Pak ES, Ha H. Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury. Biomol Ther (Seoul) 2020; 28:213-221. [PMID: 32336052 PMCID: PMC7216742 DOI: 10.4062/biomolther.2019.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/29/2023] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a non-receptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
13
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
14
|
Cong BB, Gao MH, Li B, Wang B, Zhang B, Wang LN, Zhang SC, Li HQ, Wang Z, Han SY. Overexpression of Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains induces cluster of differentiation 59-mediated apoptosis in Jurkat cells. Exp Ther Med 2018; 15:4139-4148. [PMID: 29725363 PMCID: PMC5920370 DOI: 10.3892/etm.2018.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/25/2017] [Indexed: 11/17/2022] Open
Abstract
Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains (CBP/PAG) is a membrane-bound adaptor protein that downregulates the activation of Src family kinases present in lipid rafts. To elucidate the role of CBP/PAG in human T cell activation, a cell line overexpressing CBP/PAG was constructed and the function of CBP/PAG in Jurkat cells was examined. The present study revealed that increased CBP/PAG expression in T cells significantly enhanced their apoptosis and reduced cellular activation and proliferation. Overexpression of CBP/PAG suppressed the growth of Jurkat cells by recruiting c-Src and its negative regulator, C-terminal Src kinase (CSK), to lipid rafts. The negative regulation of CBP/PAG was enhanced in the presence of anti-cluster of differentiation (CD)59 monoclonal antibodies. In addition, a significant association was revealed between the location of CBP/PAG and CD59, which were co-expressed in the same region of the cell membrane, implicating a potential overlap of the elicited signaling pathways. These results indicate that CBP/PAG functions as a negative regulator of cell signal transduction and suggest that CD59 may strengthen the role of negative feedback regulation.
Collapse
Affiliation(s)
- Bei-Bei Cong
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mei-Hua Gao
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bing Li
- Department of Genetics, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bing Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Li-Na Wang
- Department of Blood Transfusion, Shandong Qilu Hospital, Qingdao, Shandong 266071, P.R. China
| | - Shu-Chao Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hua-Qiao Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhong Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Shu-Yi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
15
|
Nygaard HB. Targeting Fyn Kinase in Alzheimer's Disease. Biol Psychiatry 2018; 83:369-376. [PMID: 28709498 PMCID: PMC5729051 DOI: 10.1016/j.biopsych.2017.06.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 01/06/2023]
Abstract
The past decade has brought tremendous progress in unraveling the pathophysiology of Alzheimer's disease (AD). While increasingly sophisticated immunotherapy targeting soluble and aggregated brain amyloid-beta (Aβ) continues to dominate clinical research in AD, a deeper understanding of Aβ physiology has led to the recognition of distinct neuronal signaling pathways linking Aβ to synaptotoxicity and neurodegeneration and to new targets for therapeutic intervention. Identifying specific signaling pathways involving Aβ has allowed for the development of more precise therapeutic interventions targeting the most relevant molecular mechanisms leading to AD. In this review, I highlight the discovery of cellular prion protein as a high-affinity receptor for Aβ oligomers, and the downstream signaling pathway elucidated to date, converging on nonreceptor tyrosine kinase Fyn. I discuss preclinical studies targeting Fyn as a therapeutic intervention in AD and our recent experience with the safety, tolerability, and cerebrospinal fluid penetration of the Src family kinase inhibitor saracatinib in patients with AD. Fyn is an attractive target for AD therapeutics, not only based on its activation by Aβ via cellular prion protein but also due to its known interaction with tau, uniquely linking the two key pathologies in AD. Fyn is also a challenging target, with broad expression throughout the body and significant homology with other members of the Src family kinases, which may lead to unintended off-target effects. A phase 2a proof-of-concept clinical trial in patients with AD is currently under way, providing critical first data on the potential effectiveness of targeting Fyn in AD.
Collapse
Affiliation(s)
- Haakon B. Nygaard
- Assistant Professor of Medicine (Neurology), University of British Columbia, Department of Medicine, Division of Neurology, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
16
|
OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci U S A 2018; 115:E1530-E1539. [PMID: 29378952 PMCID: PMC5816172 DOI: 10.1073/pnas.1716095115] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular oligomer regulating the activation of caspase-1 for the processing and secretion of IL-1β and IL-18. Although there is growing evidence to substantiate inflammasome inhibition as a therapeutic option for the treatment of inflammatory diseases, to date, there are no approved humans agents. OLT1177, a β-sulfonyl nitrile molecule, shown to be safe in humans, is a selective inhibitor of the NLRP3 inflammasome, with unique properties to reverse the metabolic costs of inflammation and to treat IL-1β– and IL-18–mediated diseases. Activation of the NLRP3 inflammasome induces maturation of IL-1β and IL-18, both validated targets for treating acute and chronic inflammatory diseases. Here, we demonstrate that OLT1177, an orally active β-sulfonyl nitrile molecule, inhibits activation of the NLRP3 inflammasome. In vitro, nanomolar concentrations of OLT1177 reduced IL-1β and IL-18 release following canonical and noncanonical NLRP3 inflammasome activation. The molecule showed no effect on the NLRC4 and AIM2 inflammasomes, suggesting specificity for NLRP3. In LPS-stimulated human blood-derived macrophages, OLT1177 decreased IL-1β levels by 60% and IL-18 by 70% at concentrations 100-fold lower in vitro than plasma concentrations safely reached in humans. OLT1177 also reduced IL-1β release and caspase-1 activity in freshly obtained human blood neutrophils. In monocytes isolated from patients with cryopyrin-associated periodic syndrome (CAPS), OLT1177 inhibited LPS-induced IL-1β release by 84% and 36%. Immunoprecipitation and FRET analysis demonstrated that OLT1177 prevented NLRP3-ASC, as well as NLRP3-caspase-1 interaction, thus inhibiting NLRP3 inflammasome oligomerization. In a cell-free assay, OLT1177 reduced ATPase activity of recombinant NLRP3, suggesting direct targeting of NLRP3. Mechanistically, OLT1177 did not affect potassium efflux, gene expression, or synthesis of the IL-1β precursor. Steady-state levels of phosphorylated NF-κB and IkB kinase were significantly lowered in spleen cells from OLT1177-treated mice. We observed reduced IL-1β content in tissue homogenates, limited oxidative stress, and increased muscle oxidative metabolism in OLT1177-treated mice challenged with LPS. Healthy humans receiving 1,000 mg of OLT1177 daily for 8 d exhibited neither adverse effects nor biochemical or hematological changes.
Collapse
|
17
|
Rajasekaran K, Riese MJ, Rao S, Wang L, Thakar MS, Sentman CL, Malarkannan S. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Front Immunol 2016; 7:176. [PMID: 27242783 PMCID: PMC4863891 DOI: 10.3389/fimmu.2016.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute , Milwaukee, WI , USA
| | - Matthew J Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity at the Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, Zhang C, Sheng C, Leng Q, Rudd CE, Wei B, Wang H. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med 2016; 7:754-69. [PMID: 25851535 PMCID: PMC4459816 DOI: 10.15252/emmm.201404578] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PD-1 negatively regulates CD8(+) cytotoxic T lymphocytes (CTL) cytotoxicity and anti-tumor immunity. However, it is not fully understood how PD-1 expression on CD8(+) CTL is regulated during anti-tumor immunotherapy. In this study, we have identified that the ADAP-SKAP55 signaling module reduced CD8(+) CTL cytotoxicity and enhanced PD-1 expression in a Fyn-, Ca(2+)-, and NFATc1-dependent manner. In DC vaccine-based tumor prevention and therapeutic models, knockout of SKAP55 or ADAP showed a heightened protection from tumor formation or metastases in mice and reduced PD-1 expression in CD8(+) effector cells. Interestingly, CTLA-4 levels and the percentages of tumor infiltrating CD4(+)Foxp3(+) Tregs remained unchanged. Furthermore, adoptive transfer of SKAP55-deficient or ADAP-deficient CD8(+) CTLs significantly blocked tumor growth and increased anti-tumor immunity. Pretreatment of wild-type CD8(+) CTLs with the NFATc1 inhibitor CsA could also downregulate PD-1 expression and enhance anti-tumor therapeutic efficacy. Together, we propose that targeting the unrecognized ADAP-SKAP55-NFATc1-PD-1 pathway might increase efficacy of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Chunyang Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Weiyun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Jun Xiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Normal University, Shanghai, China
| | - Shaozhuo Jiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Xue
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chun Sheng
- Shanghai Normal University, Shanghai, China
| | - Qibin Leng
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | | | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Elias D, Ditzel HJ. Fyn is an important molecule in cancer pathogenesis and drug resistance. Pharmacol Res 2015; 100:250-4. [DOI: 10.1016/j.phrs.2015.08.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
|
20
|
Intracellular cytoplasm-specific delivery of SH3 and SH2 domains of SLAP inhibits TcR-mediated signaling. Biochem Biophys Res Commun 2015; 460:603-8. [PMID: 25800872 DOI: 10.1016/j.bbrc.2015.03.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/13/2015] [Indexed: 11/21/2022]
Abstract
Signaling events triggered by T cell receptor (TcR) stimulation are important targets for the development of common therapeutics for various autoimmune diseases. SLAP is a negative regulator of TcR-mediated signaling cascade via targeting TcR zeta chain for degradation through recruiting the ubiquitin ligase c-Cbl. In this study, we generated a transducible form of SH3 and SH2 domains of SLAP (ctSLAPΔC) which can be specifically targeted to the cytoplasm of a cell. ctSLAPΔC inhibited tyrosine phosphorylation of signaling mediators such as ZAP-70 and LAT involved in T cell activation, and effectively suppressed transcriptional activity of NFAT and NFκB upon TcR stimulation. The transduced ctSLAPΔC in T cells blocked the secretion of T cell-specific cytokines such as IL-2, IFNγ, IL-17A, and IL-4 and induced the expression of CD69 and CD25 on effector T cells without influencing the cell viability. Inhibition of TcR-mediated signaling via SLAP blocked the differentiation of naïve T cells into Th1, Th2 or Treg cells with different sensitivity, suggesting that qualitative and quantitative intensity of TcR-mediated signaling in the context of polarizing cytokines environment may be a critical factor to determine the differentiation fate of naïve T cells. These results suggest that cytoplasm-specific transduction of the SH3 and SH2 domains of SLAP has a therapeutic potential of being an immunosuppressive reagent for the treatment of various autoimmune diseases.
Collapse
|
21
|
Ballek O, Valečka J, Manning J, Filipp D. The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model. Immunol Cell Biol 2014; 93:384-95. [PMID: 25420722 DOI: 10.1038/icb.2014.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022]
Abstract
The initiation of T-cell receptor (TCR) signaling, based on the cobinding of TCR and CD4-Lck heterodimer to a peptide-major histocompatibility complex II on antigen presenting cells, represents a classical model of T-cell signaling. What is less clear however, is the mechanism which translates TCR engagement to the phosphorylation of immunoreceptor tyrosine-based activation motifs on CD3 chains and how this event is coupled to the delivery of Lck function. Recently proposed 'standby model of Lck' posits that resting T-cells contain an abundant pool of constitutively active Lck (pY394(Lck)) required for TCR triggering, and this amount, upon TCR engagement, remains constant. Here, we show that although maintenance of the limited pool of pY394(Lck) is necessary for the generation of TCR proximal signals in a time-restricted fashion, the total amount of this pool, ~2%, is much smaller than previously reported (~40%). We provide evidence that this dramatic discrepancy in the content of pY394(Lck)is likely the consequence of spontaneous phosphorylation of Lck that occurred after cell solubilization. Additional discrepancies can be accounted for by the sensitivity of different pY394(Lck)-specific antibodies and the type of detergents used. These data suggest that reagents and conditions used for the quantification of signaling parameters must be carefully validated and interpreted. Thus, the limited size of pY394(Lck) pool in primary T-cells invites a discussion regarding the adjustment of the quantitative parameters of the standby model of Lck and reevaluation of the mechanism by which this pool contributes to the generation of proximal TCR signaling.
Collapse
Affiliation(s)
- Ondřej Ballek
- 1] Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic [2] Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Valečka
- 1] Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic [2] Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| |
Collapse
|
22
|
Chen J, Elfiky A, Han M, Chen C, Saif MW. The Role of Src in Colon Cancer and Its Therapeutic Implications. Clin Colorectal Cancer 2014; 13:5-13. [DOI: 10.1016/j.clcc.2013.10.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
|
23
|
Winkler CW, Foster SC, Matsumoto SG, Preston MA, Xing R, Bebo BF, Banine F, Berny-Lang MA, Itakura A, McCarty OJT, Sherman LS. Hyaluronan anchored to activated CD44 on central nervous system vascular endothelial cells promotes lymphocyte extravasation in experimental autoimmune encephalomyelitis. J Biol Chem 2012; 287:33237-51. [PMID: 22865853 DOI: 10.1074/jbc.m112.356287] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The extravasation of lymphocytes across central nervous system (CNS) vascular endothelium is a key step in inflammatory demyelinating diseases including multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The glycosaminoglycan hyaluronan (HA) and its receptor, CD44, have been implicated in this process but their precise roles are unclear. We find that CD44(-/-) mice have a delayed onset of EAE compared with wild type animals. Using an in vitro lymphocyte rolling assay, we find that fewer slow rolling (<1 μm/s) wild type (WT) activated lymphocytes interact with CD44(-/-) brain vascular endothelial cells (ECs) than with WT ECs. We also find that CD44(-/-) ECs fail to anchor HA to their surfaces, and that slow rolling lymphocyte interactions with WT ECs are inhibited when the ECs are treated with a pegylated form of the PH20 hyaluronidase (PEG-PH20). Subcutaneous injection of PEG-PH20 delays the onset of EAE symptoms by ~1 day and transiently ameliorates symptoms for 2 days following disease onset. These improved symptoms correspond histologically to degradation of HA in the lumen of CNS blood vessels, decreased demyelination, and impaired CD4(+) T-cell extravasation. Collectively these data suggest that HA tethered to CD44 on CNS ECs is critical for the extravasation of activated T cells into the CNS providing new insight into the mechanisms promoting inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Clayton W Winkler
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
25
|
Jelić D, Tatić I, Trzun M, Hrvačić B, Brajša K, Verbanac D, Tomašković M, Čulić O, Antolović R, Glojnarić I, Weygand-Đurašević I, Vladimir-Knežević S, Mildner B. Porphyrins as new endogenous anti-inflammatory agents. Eur J Pharmacol 2012; 691:251-60. [PMID: 22687816 DOI: 10.1016/j.ejphar.2012.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
A series of porphyrins, tetrapyrrole natural organic compounds, are evaluated here as endogenous anti-inflammatory agents. They directly inhibit the activity of Fyn, a non-receptor Src-family tyrosine kinase, triggering anti-inflammatory events associated with down-regulation of T-cell receptor signal transduction, leading to inhibition of tumor necrosis factor alpha (TNF-α) production. This is one of the major pro-inflammatory cytokines, associated with diseases such as diabetes, tumorigenesis, rheumatoid arthritis, and inflammatory bowel disease. Porphyrins, as a chemical class, inhibited Fyn kinase activity in a non-competitive, linear-mixed fashion. In cell-based in vitro experiments on polymorphonuclear cells, porphyrins inhibited TNF-α cytokine production, T-cell proliferation, and the generation of free radicals in the oxidative burst, in a concentration-related manner. In vivo, lipopolysaccharide-induced TNF-α production in mice was inhibited by several of the porphyrins. These findings may be very important for the overall understanding of the role(s) of porphyrins in inflammation and their possible application as new anti-inflammatory agents.
Collapse
Affiliation(s)
- Dubravko Jelić
- GlaxoSmithKline Research Centre Zagreb, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ballek O, Broučková A, Manning J, Filipp D. A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts. Immunol Lett 2012; 142:64-74. [PMID: 22281390 DOI: 10.1016/j.imlet.2012.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Lck is the principal signal-generating tyrosine kinase of the T cell activation mechanism. We have previously demonstrated that induced Lck activation outside of lipid rafts (LR) results in the rapid translocation of a fraction of Lck to LR. While this translocation predicates the subsequent production of IL-2, the mechanism underpinning this process is unknown. Here, we describe the main attributes of this translocating pool of Lck. Using fractionation of Brij58 lysates, derived from primary naive non-activated CD4(+) T cells, we show that a significant portion of Lck is associated with high molecular weight complexes representing a special type of detergent-resistant membranes (DRMs) of relatively high density and sensitivity to laurylmaltoside, thus called heavy DRMs. TcR/CD4 coaggregation-mediated activation resulted in the redistribution of more than 50% of heavy DRM-associated Lck to LR in a microtubular network-dependent fashion. Remarkably, in non-activated CD4(+) T-cells, only heavy DRM-associated Lck is phosphorylated on its activatory tyrosine 394 and this pool of Lck is found to be membrane confined with CD45 phosphatase. These data are the first to illustrate a lipid microdomain-based mechanism concentrating the preactivated pool of cellular Lck and supporting its high stoichiometry of colocalization with CD45 in CD4(+) T cells. They also provide a new structural framework to assess the mechanism underpinning the compartmentalization of critical signaling elements and regulation of spatio-temporal delivery of Lck function during the T cell proximal signaling.
Collapse
Affiliation(s)
- Ondřej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | | | | | | |
Collapse
|
27
|
Christo SN, Sarvestani G, Griesser SS, Coad BR, Griesser HJ, Vasilev K, Brown MP, Diener KR, Hayball JD. Individual and Population Quantitative Analyses of Calcium Flux in T-Cells Activated on Functionalized Material Surfaces. Aust J Chem 2012. [DOI: 10.1071/ch11311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a novel method for activating T-cells on material surfaces that enable individual and population-based analyses of intracellular calcium flux, as a quantitative measure of T-cell receptor engagement. Functionalized material surfaces were created using a plasma-polymerized foundation layer to immobilize stimulatory T-cell ligands, which could induce T-cell receptor-dependent calcium flux in naive T-cells. Real-time confocal microscopic detection and quantification of calcium flux using paired fluorescent ratiometric probes facilitated the tracking and analysis of response profiles of individual T-cells, as well as population analyses using a combination of individual T-cell events. This type of combined analysis cannot be achieved using traditional population-based flow cytometric approaches, and thus provides a logical step towards developing the capacity to assess the magnitude and quality of inherently heterogeneous effector T-cell responses to antigenic challenge.
Collapse
|
28
|
Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, Galic S, Tremblay ML, Russell SM, Godfrey DI, Tiganis T. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest 2011; 121:4758-74. [PMID: 22080863 PMCID: PMC3226006 DOI: 10.1172/jci59492] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022] Open
Abstract
Many autoimmune diseases exhibit familial aggregation, indicating that they have genetic determinants. Single nucleotide polymorphisms in PTPN2, which encodes T cell protein tyrosine phosphatase (TCPTP), have been linked with the development of several autoimmune diseases, including type 1 diabetes and Crohn's disease. In this study, we have identified TCPTP as a key negative regulator of TCR signaling, which might explain the association of PTPN2 SNPs with autoimmune disease. We found that TCPTP dephosphorylates and inactivates Src family kinases to regulate T cell responses. Using T cell-specific TCPTP-deficient mice, we established that TCPTP attenuates T cell activation and proliferation in vitro and blunts antigen-induced responses in vivo. TCPTP deficiency lowered the in vivo threshold for TCR-dependent CD8(+) T cell proliferation. Consistent with this, T cell-specific TCPTP-deficient mice developed widespread inflammation and autoimmunity that was transferable to wild-type recipient mice by CD8(+) T cells alone. This autoimmunity was associated with increased serum levels of proinflammatory cytokines and anti-nuclear antibodies, T cell infiltrates in non-lymphoid tissues, and liver disease. These data indicate that TCPTP is a critical negative regulator of TCR signaling that sets the threshold for TCR-induced naive T cell responses to prevent autoimmune and inflammatory disorders arising.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Autoimmune Diseases/enzymology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- Immune Tolerance/immunology
- Inflammation/blood
- Inflammation/genetics
- Inflammation/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/physiology
- Radiation Chimera
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- Thymocytes/pathology
- ZAP-70 Protein-Tyrosine Kinase/physiology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Florian Wiede
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Benjamin J. Shields
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sock Hui Chew
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Konstantinos Kyparissoudis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Catherine van Vliet
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sandra Galic
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Michel L. Tremblay
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah M. Russell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Dale I. Godfrey
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
29
|
Cannons JL, Wu JZ, Gomez-Rodriguez J, Zhang J, Dong B, Liu Y, Shaw S, Siminovitch KA, Schwartzberg PL. Biochemical and genetic evidence for a SAP-PKC-theta interaction contributing to IL-4 regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2819-27. [PMID: 20668219 PMCID: PMC3422635 DOI: 10.4049/jimmunol.0902182] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling lymphocytic activation molecule-associated protein (SAP), an adaptor molecule that recruits Fyn to the signaling lymphocytic activation molecule (SLAM) family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4(+) T cells from SAP-deficient mice have defective TCR-induced and follicular Th cell IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4(+) T cells exhibit decreased protein kinase C (PKC)-theta recruitment upon TCR stimulation. We demonstrate in this paper using GST pulldowns and coimmunoprecipitation studies that SAP constitutively associates with PKC- in T cells. SAP-PKC-theta interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP's interactions with PKC-theta occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-theta recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-theta, like SAP, was required for SLAM-mediated increases in IL-4 production, and, conversely, membrane-targeted PKC-theta mutants rescued IL-4 expression in SAP(-/-) CD4(+) T cells, providing genetic evidence that PKC-theta is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barbu EA, Zhang J, Siraganian RP. The limited contribution of Fyn and Gab2 to the high affinity IgE receptor signaling in mast cells. J Biol Chem 2010; 285:15761-8. [PMID: 20335178 DOI: 10.1074/jbc.m110.109413] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Several studies with mast cells from knock-out mice have suggested that the tyrosine kinase Fyn and its downstream substrate Gab2 may play a role in high affinity IgE receptor (FcepsilonRI)-mediated mast cell activation. To better understand the role of these two molecules and of Syk, we transiently transfected mast cells with small interference RNA (siRNA) targeted to Fyn, Gab2, or Syk to specifically decrease their expression. The siRNA suppression of Gab2 but not Fyn reduced activation of the phosphoinositide-3-kinase (PI3K) pathway as demonstrated by the change in phosphorylation of Akt; this indicates that Gab2 but not Fyn regulates this pathway. The decreased expression of Gab2 and Fyn had minor effects on degranulation. There were also some minor changes in activation of the NFAT or NFkappaB transcription factors in cells with reduced expression of Fyn or Gab2. Decreased Gab2 but not Fyn reduced the FcepsilonRI-induced activation of the Erk, Jnk, and p38 MAP kinases and the release of TNF-alpha. In contrast, decreased expression of Syk dramatically reduced FcepsilonRI-induced degranulation, activation of NFAT and NFkappaB. Therefore, the reduction in expression of these proteins in mast cells indicates that Syk is the major regulator of FcepsilonRI-mediated reactions, whereas Fyn has minor if any effects and Gab2 regulates primarily late events including MAP kinase activation and release of cytokines.
Collapse
Affiliation(s)
- Emilia Alina Barbu
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
31
|
Mamchak AA, Thien CBF, Dagger SA, Lyandres J, Jiang S, Langdon WY, DeFranco AL. Unaltered negative selection and Treg development of self-reactive thymocytes in TCR transgenic Fyn-deficient mice. Eur J Immunol 2010; 40:539-47. [PMID: 19904769 DOI: 10.1002/eji.200939645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tyrosine kinase Fyn has been implicated as playing an important role in the generation of both stimulatory and inhibitory signaling events induced by TCR engagement. To assess the role of Fyn for antigen-driven negative selection and Treg development, which are both dependent on the strength and nature of TCR signaling, we generated mice that co-express the transgenes for OVA and the OT-II TCR, which recognizes a peptide from OVA. In mice expressing both transgenes, negative selection, Treg development in the thymus, and the number of Treg in the periphery were each unaffected by ablation of Fyn. Moreover, fyn(-/-) Treg were functional, as assessed in vitro. We further tested the role of Fyn for the adaptor function of c-Cbl, using mice containing a point mutation in c-Cbl that abolishes its E3 ubiquitin ligase function but maintains its adaptor function. The functional and signaling properties of this mutant c-Cbl were unaltered in fyn(-/-) thymocytes. Combined, these data indicate that Fyn was not required for the induction of central tolerance by negative selection, the adaptor protein role of c-Cbl, or the normal development and function of Treg.
Collapse
Affiliation(s)
- Alusha A Mamchak
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Sugimoto A, Suzuki M, Otani T, Okochi A, Takeuchi M, Yamasaki F, Nakamura S, Kibata M. HOZOTs, novel human regulatory T-cell lines, exhibit helper or suppressor activities depending on dendritic cell or anti-CD3 stimulation. Exp Hematol 2009; 37:1454-63. [PMID: 19819295 DOI: 10.1016/j.exphem.2009.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/15/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE HOZOT cell lines (HOZOTs) are a new type of regulatory T cells established from human umbilical cord blood without using cytokines. In addition to their unique FOXP3(+)CD4(+)CD8(+)CD25(+) phenotype, HOZOTs are bifunctional and can exert either suppressor or cytotoxic activities. To further characterize HOZOTs, we cocultured HOZOTs with responder T cells under different stimulation conditions and found another function of HOZOTs. MATERIALS AND METHODS Naïve CD4(+)T cells as responder cells were stimulated with dendritic cells or plate bound anti-CD3 antibody. As effector cells, HOZOTs were added to this culture and proliferation of the responder cells were monitored by (3)H-thymidine incorporation or carboxyfluorescein succinimidyl ester dilution method. To investigate the molecular mechanisms, antibodies specific for interleukin (IL)-2/IL-2R or cell surface molecules were used for blocking experiments. RESULTS The proliferation of naïve CD4(+)T cells was suppressed by one HOZOT line, HOZOT-4, when the responder cells were stimulated with dendritic cells. However, responder cell proliferation was augmented by HOZOT-4 when these cells were stimulated with anti-CD3 antibody. This opposing function to responder cells was unique to HOZOTs because naturally occurring regulatory T cells suppressed proliferation of both dendritic cell- and anti-CD3-antibody-stimulated cells. IL-2 was not involved in the mechanism of the helper activity of HOZOT-4 as blocking antibodies for IL-2 and IL-2R did not abrogate the helper activity. Moreover, this helper activity could not be reduced by blocking costimulatory pathways such as CD28/B7, CD4/human leukocyte antigen-DR, and intercellular adhesion molecule-1/lymphocyte function-associated antigen-1. CONCLUSION We demonstrated a new function of HOZOTs as helper T cells in addition to suppressor and cytotoxic activities, characterizing HOZOTs as multifunctional T cells.
Collapse
Affiliation(s)
- Akira Sugimoto
- Cell Biology Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Fujisaki, Okayama 702-8006, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Laird RM, Hayes SM. Profiling of the early transcriptional response of murine gammadelta T cells following TCR stimulation. Mol Immunol 2009; 46:2429-38. [PMID: 19439358 DOI: 10.1016/j.molimm.2009.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/28/2009] [Indexed: 10/20/2022]
Abstract
Gammadelta T cells represent one of the three lineages of lymphocytes, along with alphabeta T cells and B cells, which express antigen receptors. Since their discovery over two decades ago, considerable effort has been made to understand their antigen specificity and their contribution to the immune response. From these studies, we have learned that gammadelta T cells recognize a different set of antigens than alphabeta T cells, acquire effector functions faster than alphabeta T cells, regulate the response of other immune cells during infection, and play distinct roles in immunity. The molecular basis for how gammadelta T cells manifest their unique functions, however, remains unknown. To address this, we profiled the genes upregulated soon after TCR stimulation in order to identify which gene networks associated with T cell effector function are induced in gammadelta T cells. Interestingly, most of the genes in this transcriptional profile were not unique to activated gammadelta T cells, as they were also expressed in activated alphabeta T cells. However, many of the genes within this profile were upregulated with faster kinetics and/or greater magnitude in activated gammadelta T cells than in activated alphabeta T cells. In addition, we found that the genes in the transcriptional profile of activated wild-type gammadelta T cells can be used as a standard to screen activated gammadelta T cells from mice with potential signaling defects for alterations in gammadelta TCR signal transduction. Thus, by defining the early transcriptional response of activated wild-type gammadelta T cells and by comparing their transcriptional profile to that of activated wild-type alphabeta T cells as well as to that of activated gammadelta T cells from signaling defective mice, we are able to gain important insights into the molecular basis for gammadelta T cell function.
Collapse
Affiliation(s)
- Renee M Laird
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 E Adams Street, 2220 Weiskotten Hall, Syracuse, NY 13210, USA
| | | |
Collapse
|
34
|
Dasatinib inhibits recombinant viral antigen-specific murine CD4+ and CD8+ T-cell responses and NK-cell cytolytic activity in vitro and in vivo. Exp Hematol 2008; 37:256-65. [PMID: 19056158 DOI: 10.1016/j.exphem.2008.09.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/25/2008] [Accepted: 09/29/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Dasatinib (BMS-354825) is a small molecule Src/Abl tyrosine kinase inhibitor approved for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Members of the Src family of kinases are involved in the induction of innate and adaptive immunity. The purpose of this study was to evaluate the inhibitory action of dasatinib on antigen-specific CD8(+) and CD4(+) T-cell function, as well as natural killer (NK) cell cytotoxicity. MATERIALS AND METHODS To assess dasatinib-mediated inhibition of antigen-specific T-cell proliferation, transgenic CD4(+) and CD8(+) T cells specific for ovalbumin were utilized. Endogenous CD4(+) and CD8(+) T-cell responses were determined following immunization of dasatinib-treated or control mice with a nonreplicating recombinant virus. Clearance of the RMA-S cells, a major histocompatibility complex (MHC) class I-deficient thymoma sensitive to NK-cell lysis, was analyzed in mice undergoing dasatinib treatment. RESULTS Dasatinib inhibited antigen-specific proliferation of murine CD4(+) and CD8(+) transgenic T cells in vitro and in vivo. Endogenous antigen-specific helper T-cell recall responses and induction of T-cell-mediated cytotoxicity following immunization with a nonreplicating recombinant virus were also inhibited. So to was the ability of NK cells to eliminate MHC class I-deficient cells in vivo. CONCLUSIONS These findings suggest that dasatinib has the potential to modulate the host immune response at clinical doses and highlights scope for off target applications, e.g., therapeutic immunosuppression in the context of autoimmune pathogenesis and allogeneic tissue transplantation.
Collapse
|
35
|
Mamchak AA, Sullivan BM, Hou B, Lee LM, Gilden JK, Krummel MF, Locksley RM, DeFranco AL. Normal development and activation but altered cytokine production of Fyn-deficient CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:5374-85. [PMID: 18832694 DOI: 10.4049/jimmunol.181.8.5374] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Src family kinase Fyn is expressed in T cells and has been shown to phosphorylate proteins involved in TCR signaling, cytoskeletal reorganization, and IL-4 production. Fyn-deficient mice have greatly decreased numbers of NKT cells and have thymocytes and T cells with compromised responses following Ab crosslinking of their TCRs. Herein we have addressed the role of Fyn in peptide/MHC class II-induced CD4(+) T cell responses. In Fyn-deficient mice, CD4(+) T cells expressing the DO11.10 TCR transgene developed normally, and the number and phenotype of naive and regulatory DO11.10(+)CD4(+) T cells in the periphery were comparable with their wild-type counterparts. Conjugation with chicken OVA peptide 323-339-loaded APCs, and the subsequent proliferation in vitro or in vivo of DO11.10(+) Fyn-deficient CD4(+) T cells, was virtually indistinguishable from the response of DO11.10(+) wild-type CD4(+) T cells. Proliferation of Fyn-deficient T cells was not more dependent on costimulation through CD28. Additionally, we have found that differentiation, in vitro or in vivo, of transgenic CD4(+) Fyn-deficient T cells into IL-4-secreting effector cells was unimpaired, and under certain conditions DO11.10(+) Fyn-deficient CD4(+) T cells were more potent cytokine-producing cells than DO11.10(+) wild-type CD4(+) T cells. These data demonstrate that ablation of Fyn expression does not alter most Ag-driven CD4(+) T cell responses, with the exception of cytokine production, which under some circumstances is enhanced in Fyn-deficient CD4(+) T cells.
Collapse
Affiliation(s)
- Alusha A Mamchak
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Song J, So T, Croft M. Activation of NF-kappaB1 by OX40 contributes to antigen-driven T cell expansion and survival. THE JOURNAL OF IMMUNOLOGY 2008; 180:7240-8. [PMID: 18490723 DOI: 10.4049/jimmunol.180.11.7240] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The costimulatory molecule OX40 (CD134) is required in many instances for effective T cell-mediated immunity, controlling proliferation, and survival of T cells after encountering specific Ag. We previously found that the functional targets of OX40 are survivin and aurora B that regulate proliferation and Bcl-2 antiapoptotic family members that regulate survival. However, the intracellular pathways from OX40 that mediate these effects are unclear. In this study, we show that OX40 signaling can target the canonical NF-kappaB (NF-kappaB1) pathway in peripheral Ag-responding CD4 T cells. Phosphorylation of IkappaBalpha, nuclear translocation of NF-kappaB1/p50 and RelA, and NF-kappaB1 activity, are impaired in OX40-deficient T cells. Retroviral transduction of active IkappaB kinase that constitutively activates NF-kappaB1 rescues the poor expansion and survival of OX40-deficient T cells, directly correlating with increased expression and activity of survivin, aurora B, and Bcl-2 family members. Moreover, active IkappaB kinase expression alone is sufficient to restore the defective expansion and survival of OX40-deficient T cells in vivo when responding to Ag. Thus, OX40 signals regulate T cell number and viability through the NF-kappaB1 pathway that controls expression and activity of intracellular targets for proliferation and survival.
Collapse
Affiliation(s)
- Jianxun Song
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
37
|
Wang H, Kess D, Lindqvist AKB, Peters T, Sindrilaru A, Wlaschek M, Blakytny R, Holmdahl R, Scharffetter-Kochanek K. A 9-centimorgan interval of chromosome 10 controls the T cell-dependent psoriasiform skin disease and arthritis in a murine psoriasis model. THE JOURNAL OF IMMUNOLOGY 2008; 180:5520-9. [PMID: 18390736 DOI: 10.4049/jimmunol.180.8.5520] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Psoriasis is a complex genetic disease of unresolved pathogenesis with both heritable and environmental factors contributing to onset and severity. In addition to a disfiguring skin inflammation, approximately 10-40% of psoriasis patients suffer from destructive joint involvement. Previously, we reported that the CD18 hypomorphic PL/J mouse carrying a mutation resulting in reduced expression of the common chain of beta(2) integrins (CD11/CD18) spontaneously develops a skin disease that closely resembles human psoriasis. In contrast, the same mutation on C57BL/6J background did not demonstrate this phenotype. By a genome-wide linkage analysis, two major loci were identified as contributing to the development of psoriasiform dermatitis under the condition of low CD18 expression. Using a congenic approach, we now demonstrate that the introduction of a 9-centimorgan fragment of chromosome 10 derived from the PL/J strain into the disease-resistant CD18 hypomorphic C57BL/6J was promoting the development of psoriasiform skin disease and notably also arthritis. We therefore designated this locus psoriasiform skin disease-associated locus 1 (PSD1). High numbers of CD4(+) T cells and TNF-alpha producing macrophages were detected both in inflamed skin and joints in these congenic mice, with a complete resolution upon TNF-alpha inhibitor therapy or depletion of CD4(+) T cells. For the first time, we have identified a distinct genetic element that contributes to the T cell-dependent development of both psoriasiform skin disease and associated arthritis. This congenic model will be suitable to further investigations of genetic and molecular pathways that cause psoriasiform dermatitis and arthritis, and it may also be relevant for other autoimmune diseases.
Collapse
Affiliation(s)
- Honglin Wang
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clin Immunol 2008; 127:330-9. [DOI: 10.1016/j.clim.2008.02.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/05/2008] [Accepted: 02/12/2008] [Indexed: 11/18/2022]
|
39
|
Filby A, Seddon B, Kleczkowska J, Salmond R, Tomlinson P, Smida M, Lindquist JA, Schraven B, Zamoyska R. Fyn Regulates the Duration of TCR Engagement Needed for Commitment to Effector Function. THE JOURNAL OF IMMUNOLOGY 2007; 179:4635-44. [PMID: 17878361 DOI: 10.4049/jimmunol.179.7.4635] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In naive T cells, engagement of the TCR with agonist peptide:MHC molecules leads to phosphorylation of key intracellular signaling intermediates within seconds and this peaks within minutes. However, the cell does not commit to proliferation and IL-2 cytokine production unless receptor contact is sustained for several hours. The biochemical basis for this transition to full activation may underlie how T cells receive survival signals while maintaining tolerance, and is currently not well understood. We show here that for CD8 T cells commitment to proliferation and cytokine production requires sustained activation of the Src family kinase Lck and is opposed by the action of Fyn. Thus, in the absence of Fyn, commitment to activation occurs more rapidly, the cells produce more IL-2, and undergo more rounds of division. Our data demonstrate a role for Fyn in modulating the response to Ag in primary T cells.
Collapse
Affiliation(s)
- Andrew Filby
- Division of Molecular Immunology, Medical Research Council, National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B. A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 2007; 3:e163. [PMID: 17722974 PMCID: PMC1950951 DOI: 10.1371/journal.pcbi.0030163] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/05/2007] [Indexed: 12/15/2022] Open
Abstract
Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.
Collapse
Affiliation(s)
- Julio Saez-Rodriguez
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Luca Simeoni
- Institute of Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Rebecca Hemenway
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Ursula Bommhardt
- Institute of Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Boerge Arndt
- Institute of Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Utz-Uwe Haus
- Institute for Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Robert Weismantel
- Institute for Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Ernst D Gilles
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * To whom correspondence should be addressed. E-mail: inquiries regarding the mathematical methodology should be addressed to Steffen Klamt, , and regarding the biological and experimental data to Burkhart Schraven,
| | - Burkhart Schraven
- Institute of Immunology, Otto-von-Guericke University, Magdeburg, Germany
- * To whom correspondence should be addressed. E-mail: inquiries regarding the mathematical methodology should be addressed to Steffen Klamt, , and regarding the biological and experimental data to Burkhart Schraven,
| |
Collapse
|
41
|
Li Y, Chan EY, Katze MG. Functional genomics analyses of differential macaque peripheral blood mononuclear cell infections by human immunodeficiency virus-1 and simian immunodeficiency virus. Virology 2007; 366:137-49. [PMID: 17507074 PMCID: PMC2082051 DOI: 10.1016/j.virol.2007.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/23/2007] [Accepted: 04/05/2007] [Indexed: 11/28/2022]
Abstract
The pathogenicity of the primate lentiviruses, human, and simian immunodeficiency viruses, is host-specific. Previous studies indicated that the highly pathogenic human lentivirus HIV-1 has markedly reduced pathogenicity compared to the pathogenic simian lentivirus SIV in pigtail macaques (Macaca nemestrina). We therefore hypothesized that the pigtail macaque peripheral blood mononuclear cells (mPBMCs) would respond differently to infections of HIV-1 and pathogenic SIV. To elucidate the cellular responses to the infections of HIV-1 and SIV, we infected mPBMC with these two viruses. Like infections in vivo, HIV-1 and SIV demonstrated distinct replication kinetics in mPBMCs, with HIV-1 replicating at significantly lower levels. Similarly, gene expression profiling facilitated by macaque-specific oligonucleotide microarrays also revealed distinct expression patterns of genes between the HIV-1- and SIV-infected mPBMCs; in particular, genes associated with the antigen presentation, T cell receptor, ERK/MAPK signaling, Wnt/beta-catenin signaling, and natural killer cell signaling pathways were differentially regulated between these two viruses. Most interestingly, despite the lower levels of replication, HIV-1 triggered a more robust regulation of immune response genes early after infection; the converse was true in SIV-infected mPBMCs. Our results therefore suggest that macaques may be controlling the infection of HIV-1 at an early stage through coordinated regulation of host defense pathways.
Collapse
Affiliation(s)
- Yu Li
- Department of Microbiology and Washington National Primate Research Center, University of Washington, Box 358070, Seattle, WA 98195-8070, USA
| | | | | |
Collapse
|
42
|
Lovatt M, Filby A, Parravicini V, Werlen G, Palmer E, Zamoyska R. Lck regulates the threshold of activation in primary T cells, while both Lck and Fyn contribute to the magnitude of the extracellular signal-related kinase response. Mol Cell Biol 2006; 26:8655-65. [PMID: 16966372 PMCID: PMC1636771 DOI: 10.1128/mcb.00168-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 02/28/2006] [Accepted: 08/24/2006] [Indexed: 11/20/2022] Open
Abstract
The src family kinases p56lck (Lck) and p59fyn (Fyn) are the most proximal signaling molecules to be activated downstream of the T-cell receptor. Using an inducible transgenic model, we can regulate the expression of Lck in primary T cells and ask how the signaling cascade and differentiation potential are affected by the absence or the presence of reduced levels of Lck. We show that in naïve T cells, Lck controls the threshold of activation by preferentially regulating multiple signaling pathways that result in the mobilization of Ca2+ through activation of phospholipase C-gamma and protein kinase C as well as activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. Fyn is also able to stimulate the ERK/MAPK pathway in primary T cells but has little influence on the mobilization of Ca2+. Only Lck efficiently stimulates production of diacylglycerol and therefore RasGRP1 recruitment to the plasma membrane and phosphorylation of Shc, suggesting that Fyn activates ERK via a different upstream signaling route. Finally, we show that signals through Lck are essential for the development of T-cell-effector potential, particularly for effective cytokine transcription.
Collapse
Affiliation(s)
- Matthew Lovatt
- Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Tewari K, Walent J, Svaren J, Zamoyska R, Suresh M. Differential requirement for Lck during primary and memory CD8+ T cell responses. Proc Natl Acad Sci U S A 2006; 103:16388-93. [PMID: 17060632 PMCID: PMC1637592 DOI: 10.1073/pnas.0602565103] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Indexed: 11/18/2022] Open
Abstract
T cell receptor (TCR) signaling mediates cell fate decisions throughout the life of a T cell. The earliest biochemical events during antigen-stimulated TCR signaling include activation of the Src-family protein tyrosine kinase, p56(Lck) (Lck), which is an integral component of the TCR signaling complex by its association with the cytoplasmic tails of CD8 or CD4. CD8 and Lck are obligatory during thymic selection of CD8+ T cells. What remain unknown are when and with what stringency Lck is required for effective TCR-mediated activation and function throughout the life of a mature CD8+ T cell. Using mice that express an inducible Lck transgene in T cells, we have investigated the temporal importance of Lck-mediated TCR signaling in antigen-specific CD8+ T cell responses during acute viral infections. We show that Lck deficiency induced in naive mice abrogated the antigen-specific activation and clonal expansion of CD8+ T cells during a primary response to acute viral infections. Moreover, the magnitude of primary CD8 T cell expansion depended on the duration of Lck-dependent TCR signaling. Quite unexpectedly, however, Lck was dispensable for enhanced functional avidity, maintenance, and reactivation of memory CD8+ T cells in vitro and in vivo. These observations suggest that the TCR signaling apparatus is rewired from an Lck-dependent state in naive CD8+ T cells to an Lck-independent state in memory CD8+ T cells. Less stringent requirements for antigen-specific TCR signaling to activate memory CD8+ T cells could, in part, account for their unique hyperreactivity to antigen, which contributes to accelerated immune control during secondary infections.
Collapse
Affiliation(s)
| | - Jane Walent
- Departments of *Pathobiological Sciences and
| | - John Svaren
- Comparative Biosciences, University of Wisconsin, Madison, WI 53706; and
| | - Rose Zamoyska
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - M. Suresh
- Departments of *Pathobiological Sciences and
| |
Collapse
|
44
|
Giallourakis C, Cao Z, Green T, Wachtel H, Xie X, Lopez-Illasaca M, Daly M, Rioux J, Xavier R. A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands. Genes Dev 2006; 16:1056-72. [PMID: 16825666 PMCID: PMC1524865 DOI: 10.1101/gr.5285206] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 05/08/2006] [Indexed: 11/24/2022]
Abstract
PDZ domain-containing proteins and their interaction partners are mutated in numerous human diseases and function in complexes regulating epithelial polarity, ion channels, cochlear hair cell development, vesicular sorting, and neuronal synaptic communication. Among several properties of a collection of documented PDZ domain-ligand interactions, we discovered embedded in a large-scale expression data set the existence of a significant level of co-regulation between PDZ domain-encoding genes and these ligands. From this observation, we show how integration of expression data, a comparative genomics catalog of 899 mammalian genes with conserved PDZ-binding motifs, phylogenetic analysis, and literature mining can be utilized to infer PDZ complexes. Using molecular studies we map novel interaction partners for the PDZ proteins DLG1 and CARD11. These results provide insight into the diverse roles of PDZ-ligand complexes in cellular signaling and provide a computational framework for the genome-wide evaluation of PDZ complexes.
Collapse
Affiliation(s)
- Cosmas Giallourakis
- Massachusetts General Hospital, Gastrointestinal Unit, Harvard University Medical School, Boston, Massachusetts 02114, USA
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Zhifang Cao
- Massachusetts General Hospital, Center for Computational and Integrative Biology, Harvard University Medical School, Boston, Massachusetts 02114, USA
- Massachusetts General Hospital, Gastrointestinal Unit, Harvard University Medical School, Boston, Massachusetts 02114, USA
| | - Todd Green
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Heather Wachtel
- Massachusetts General Hospital, Center for Computational and Integrative Biology, Harvard University Medical School, Boston, Massachusetts 02114, USA
- Massachusetts General Hospital, Gastrointestinal Unit, Harvard University Medical School, Boston, Massachusetts 02114, USA
| | - Xiaohui Xie
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Marco Lopez-Illasaca
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | - Mark Daly
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - John Rioux
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Ramnik Xavier
- Massachusetts General Hospital, Center for Computational and Integrative Biology, Harvard University Medical School, Boston, Massachusetts 02114, USA
- Massachusetts General Hospital, Gastrointestinal Unit, Harvard University Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
45
|
Martín-Cófreces NB, Sancho D, Fernández E, Vicente-Manzanares M, Gordón-Alonso M, Montoya MC, Michel F, Acuto O, Alarcón B, Sánchez-Madrid F. Role of Fyn in the rearrangement of tubulin cytoskeleton induced through TCR. THE JOURNAL OF IMMUNOLOGY 2006; 176:4201-7. [PMID: 16547257 DOI: 10.4049/jimmunol.176.7.4201] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The translocation of the microtubule-organizing center (MTOC), its associated signaling complex, and the secretory apparatus is the most characteristic early event that involves the tubulin cytoskeleton of T or NK cells after their interaction with APC or target cells. Our results show that Fyn kinase activity is essential for MTOC reorientation in an Ag-dependent system. Moreover, T cells from Fyn-deficient mice are unable to rearrange their tubulin cytoskeleton in response to anti-CD3-coated beads. Analysis of conjugates of T cells from transgenic OT-I mice with dendritic cells revealed that an antagonist peptide induces translocation of the MTOC, and that this process is impaired in T cells from Fyn(-/-) OT-I mice. In addition, Fyn deficiency significantly affects the MTOC relocation mediated by agonist peptide stimulation. These results reveal Fyn to be a key regulator of tubulin cytoskeleton reorganization in T cells.
Collapse
Affiliation(s)
- Noa B Martín-Cófreces
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In this issue of Chemistry and Biology, Li and Lawrence report an iterative synthesis/selection process to identify chemically modified peptide ligands possessing high affinity and selectivity for the SH3 domain of Fyn, a member of the Src kinase family.
Collapse
Affiliation(s)
- John P Mayer
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| | | |
Collapse
|
47
|
Gray PM, Arimilli S, Palmer EM, Parks GD, Alexander-Miller MA. Altered function in CD8+ T cells following paramyxovirus infection of the respiratory tract. J Virol 2005; 79:3339-49. [PMID: 15731228 PMCID: PMC1075682 DOI: 10.1128/jvi.79.6.3339-3349.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many respiratory pathogens, CD8+ T cells have been shown to play a critical role in clearance. However, there are still many unanswered questions with regard to the factors that promote the most efficacious immune response and the potential for immunoregulation of effector cells at the local site of infection. We have used infection of the respiratory tract with the model paramyxovirus simian virus 5 (SV5) to study CD8+ T-cell responses in the lung. For the present study, we report that over time a population of nonresponsive, virus-specific CD8+ T cells emerged in the lung, culminating in a lack of function in approximately 85% of cells specific for the immunodominant epitope from the viral matrix (M) protein by day 40 postinfection. Concurrent with the induction of nonresponsiveness, virus-specific cells that retained function at later times postinfection exhibited an increased requirement for CD8 engagement. This change was coupled with a nearly complete loss of functional phosphoprotein-specific cells, a response previously shown to be almost exclusively CD8 independent. These studies add to the growing evidence for immune dysregulation following viral infection of the respiratory tract.
Collapse
Affiliation(s)
- Peter M Gray
- Department of Microbiology & Immunology, Room 5108, Gray Building, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|