1
|
Yamamoto M, Ohtake S, Shinozawa A, Shirota M, Mitsui Y, Kitashiba H. Analysis of randomly mutated AlSRKb genes reveals that most loss-of-function mutations cause defects in plasma membrane localization. THE NEW PHYTOLOGIST 2024; 244:1644-1657. [PMID: 39279039 DOI: 10.1111/nph.20111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024]
Abstract
Only very limited information is available on why some nonsynonymous variants severely alter gene function while others have no effect. To identify the characteristic features of mutations that strongly influence gene function, this study focused on SRK which encodes a highly polymorphic receptor kinase expressed in stigma papillary cells that underlies a female determinant of self-incompatibility in Brassicaceae. A set of 300 Arabidopsis thaliana transformants expressing mutated SRKb from A. lyrata was constructed using error-prone PCR and the genotype and self-incompatibility phenotype of each transformant were determined. Almost all the transformants showing the self-incompatibility defect contained mutations in AlSRKb that altered localization to the plasma membrane. The observed mutations occurred in amino acid residues that were highly conserved across S haplotypes and whose predicted locations were in the interior of the protein. Our findings suggested that mutations causing the self-incompatibility defect were more likely to result from changes to AlSRKb biosynthesis than from loss of AlSRKb function. In addition, we examined whether the RandomForest and Extreme Gradient Boosting methods could predict the self-incompatibility phenotypes of SRK mutants.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Shotaro Ohtake
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Matsuyuki Shirota
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Mitsui
- Graduate School of Agricultural Science, Tokyo University of Agriculture, 1237 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
2
|
Xue J, Du Q, Yang F, Chen LY. The emerging role of cysteine-rich peptides in pollen-pistil interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6228-6243. [PMID: 39126383 DOI: 10.1093/jxb/erae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Unlike early land plants, flowering plants have evolved a pollen tube that transports a pair of non-motile sperm cells to the female gametophyte. This process, known as siphonogamy, was first observed in gymnosperms and later became prevalent in angiosperms. However, the precise molecular mechanisms underlying the male-female interactions remain enigmatic. From the landing of the pollen grain on the stigma to gamete fusion, the male part needs to pass various tests: how does the stigma distinguish between compatible and incompatible pollen? what mechanisms guide the pollen tube towards the ovule? what factors trigger pollen tube rupture? how is polyspermy prevented? and how does the sperm cell ultimately reach the egg? Successful male-female communication is essential for surmounting these challenges, with cysteine-rich peptides (CRPs) playing a pivotal role in this dialogue. In this review, we summarize the characteristics of four distinct classes of CRPs, systematically review recent progress in the role of CRPs in four crucial stages of pollination and fertilization, consider potential applications of this knowledge in crop breeding, and conclude by suggesting avenues for future research.
Collapse
Affiliation(s)
- Jiao Xue
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Du
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangfang Yang
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Yu Chen
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Beronilla PKS, Goring DR. Investigating a role for PUB17 and PUB16 in the self-incompatibility signaling pathway in transgenic Arabidopsis thaliana. PLANT DIRECT 2024; 8:e622. [PMID: 39044900 PMCID: PMC11263811 DOI: 10.1002/pld3.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
In Brassicaceae self-incompatibility (SI), self-pollen rejection is initiated by the S-haplotype specific interactions between the pollen S cysteine-rich/S-locus protein 11 (SCR/SP11) ligands and the stigma S receptor kinases (SRK). In Brassica SI, a member of the Plant U-Box (PUB) E3 ubiquitin ligases, ARM-repeat containing 1 (ARC1), is then activated by SRK in this stigma and cellular events downstream of this cause SI pollen rejection by inhibiting pollen hydration and pollen tube growth. During the transition to selfing, Arabidopsis thaliana lost the SI components, SCR, SRK, and ARC1. However, this trait can be reintroduced into A. thaliana by adding back functional copies of these genes from closely related SI species. Both SCR and SRK are required for this, though the degree of SI pollen rejection varies between A. thaliana accessions, and ARC1 is not always needed to produce a strong SI response. For the A. thaliana C24 accession, only transforming with Arabidopsis lyrata SCR and SRK confers a strong SI trait (SI-C24), and so here, we investigated if ARC1-related PUBs were involved in the SI pathway in the transgenic A. thaliana SI-C24 line. Two close ARC1 homologs, PUB17 and PUB16, were selected, and (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology was used to generate pub17 and pub16 mutations in the C24 accession. These mutants were then crossed into the transgenic A. thaliana SI-C24 line and their potential impact on SI pollen rejection was investigated. Overall, we did not observe any significant differences in SI responses to implicate PUB17 and PUB16 functioning in the transgenic A. thaliana SI-C24 stigma to reject SI pollen.
Collapse
Affiliation(s)
| | - Daphne R. Goring
- Department of Cell & Systems BiologyUniversity of TorontoTorontoCanada
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoCanada
| |
Collapse
|
4
|
Liu B, Li M, Qiu J, Xue J, Liu W, Cheng Q, Zhao H, Xue Y, Nasrallah ME, Nasrallah JB, Liu P. A pollen selection system links self and interspecific incompatibility in the Brassicaceae. Nat Ecol Evol 2024; 8:1129-1139. [PMID: 38637692 DOI: 10.1038/s41559-024-02399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengya Li
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jianfang Qiu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jing Xue
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenhong Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qingqing Cheng
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hainan Zhao
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yongbiao Xue
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mikhail E Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Pei Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Yamamoto M, Ohtake S, Shinosawa A, Shirota M, Mitsui Y, Kitashiba H. Self-incompatibility phenotypes of SRK mutants can be predicted with high accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588956. [PMID: 38645205 PMCID: PMC11030437 DOI: 10.1101/2024.04.10.588956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Only very limited information is available on why some non-synonymous variants severely alter gene function while others have no effect. To identify the characteristic features of mutations that strongly influence gene function, this study focused on S-locus receptor kinase, SRK, which encodes a highly polymorphic receptor kinase expressed in stigma papillary cells that underlies a female determinant of self-incompatibility in Brassicaceae. A set of 299 Arabidopsis thaliana transformants expressing mutated SRKb from A. lyrata was constructed and analyzed to determine the genotype and self-incompatibility phenotype of each transformant. Almost all the transformants showing the self-incompatibility defect contained mutations in AlSRKb that altered localization to the plasma membrane. The observed mutations occurred in amino acid residues that were highly conserved across S haplotypes and whose predicted locations were in the interior of the protein. These mutations were likely to underlie the self-incompatibility defect as they caused significant changes to amino acid properties. Such findings suggested that mutations causing the self-incompatibility defect were more likely to result from changes to AlSRKb biosynthesis than from loss of function. In addition, this study showed the RandomForest and Extreme Gradient Boosting methods could predict self-incompatibility phenotypes of SRK mutants with high accuracy.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shotaro Ohtake
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Akihisa Shinosawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Matsuyuki Shirota
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuki Mitsui
- Graduate School of Agricultural Science, Tokyo University of Agriculture, 1237 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
6
|
Ma Y, Yan G, Zhang J, Xiong J, Miao W. Cip1, a CDK regulator, determines heterothallic mating or homothallic selfing in a protist. Proc Natl Acad Sci U S A 2024; 121:e2315531121. [PMID: 38498704 PMCID: PMC10990102 DOI: 10.1073/pnas.2315531121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Mating type (sex) plays a crucial role in regulating sexual reproduction in most extant eukaryotes. One of the functions of mating types is ensuring self-incompatibility to some extent, thereby promoting genetic diversity. However, heterothallic mating is not always the best mating strategy. For example, in low-density populations or specific environments, such as parasitic ones, species may need to increase the ratio of potential mating partners. Consequently, many species allow homothallic selfing (i.e., self-fertility or intraclonal mating). Throughout the extensive evolutionary history of species, changes in environmental conditions have influenced mating strategies back and forth. However, the mechanisms through which mating-type recognition regulates sexual reproduction and the dynamics of mating strategy throughout evolution remain poorly understood. In this study, we show that the Cip1 protein is responsible for coupling sexual reproduction initiation to mating-type recognition in the protozoal eukaryote Tetrahymena thermophila. Deletion of the Cip1 protein leads to the loss of the selfing-avoidance function of mating-type recognition, resulting in selfing without mating-type recognition. Further experiments revealed that Cip1 is a regulatory subunit of the Cdk19-Cyc9 complex, which controls the initiation of sexual reproduction. These results reveal a mechanism that regulates the choice between mating and selfing. This mechanism also contributes to the debate about the ancestral state of sexual reproduction.
Collapse
Affiliation(s)
- Yang Ma
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Guanxiong Yan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Jing Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan430072, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Key laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing210000, China
- Institute of Hydrobiology, Hubei Hongshan Laboratory, Wuhan430000, China
| |
Collapse
|
7
|
MURASE K, TAKAYAMA S, ISOGAI A. Molecular mechanisms of self-incompatibility in Brassicaceae and Solanaceae. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:264-280. [PMID: 38599847 PMCID: PMC11170026 DOI: 10.2183/pjab.100.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 04/12/2024]
Abstract
Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. SI is controlled by a single S-locus with multiple haplotypes (S-haplotypes). When the pistil and pollen share the same S-haplotype, the pollen is recognized as self and rejected by the pistil. This review introduces our research on Brassicaceae and Solanaceae SI systems to identify the S-determinants encoded at the S-locus and uncover the mechanisms of self/nonself-discrimination and pollen rejection. The recognition mechanisms of SI systems differ between these families. A self-recognition system is adopted by Brassicaceae, whereas a collaborative nonself-recognition system is used by Solanaceae. Work by our group and subsequent studies indicate that plants have evolved diverse SI systems.
Collapse
Affiliation(s)
- Kohji MURASE
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan
| | - Seiji TAKAYAMA
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira ISOGAI
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
8
|
Nasrallah JB. Stop and go signals at the stigma-pollen interface of the Brassicaceae. PLANT PHYSIOLOGY 2023; 193:927-948. [PMID: 37423711 PMCID: PMC10517188 DOI: 10.1093/plphys/kiad301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Affiliation(s)
- June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Kolesnikova UK, Scott AD, Van de Velde JD, Burns R, Tikhomirov NP, Pfordt U, Clarke AC, Yant L, Seregin AP, Vekemans X, Laurent S, Novikova PY. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes. Mol Biol Evol 2023; 40:msad122. [PMID: 37432770 PMCID: PMC10335350 DOI: 10.1093/molbev/msad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.
Collapse
Affiliation(s)
- Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jozefien D Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nikita P Tikhomirov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Ursula Pfordt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrew C Clarke
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey P Seregin
- Herbarium (MW), Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Xavier Vekemans
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille, France
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
10
|
Li Y, Mamonova E, Köhler N, van Kleunen M, Stift M. Breakdown of self-incompatibility due to genetic interaction between a specific S-allele and an unlinked modifier. Nat Commun 2023; 14:3420. [PMID: 37296115 PMCID: PMC10256779 DOI: 10.1038/s41467-023-38802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Breakdown of self-incompatibility has frequently been attributed to loss-of-function mutations of alleles at the locus responsible for recognition of self-pollen (i.e. the S-locus). However, other potential causes have rarely been tested. Here, we show that self-compatibility of S1S1-homozygotes in selfing populations of the otherwise self-incompatible Arabidopsis lyrata is not due to S-locus mutation. Between-breeding-system cross-progeny are self-compatible if they combine S1 from the self-compatible cross-partner with recessive S1 from the self-incompatible cross-partner, but self-incompatible with dominant S-alleles. Because S1S1 homozygotes in outcrossing populations are self-incompatible, mutation of S1 cannot explain self-compatibility in S1S1 cross-progeny. This supports the hypothesis that an S1-specific modifier unlinked to the S-locus causes self-compatibility by functionally disrupting S1. Self-compatibility in S19S19 homozygotes may also be caused by an S19-specific modifier, but we cannot rule out a loss-of-function mutation of S19. Taken together, our findings indicate that breakdown of self-incompatibility is possible without disruptive mutations at the S-locus.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| | - Ekaterina Mamonova
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Nadja Köhler
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| |
Collapse
|
11
|
Goring DR, Bosch M, Franklin-Tong VE. Contrasting self-recognition rejection systems for self-incompatibility in Brassica and Papaver. Curr Biol 2023; 33:R530-R542. [PMID: 37279687 DOI: 10.1016/j.cub.2023.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-incompatibility (SI) plays a pivotal role in whether self-pollen is accepted or rejected. Most SI systems employ two tightly linked loci encoding highly polymorphic pollen (male) and pistil (female) S-determinants that control whether self-pollination is successful or not. In recent years our knowledge of the signalling networks and cellular mechanisms involved has improved considerably, providing an important contribution to our understanding of the diverse mechanisms used by plant cells to recognise each other and elicit responses. Here, we compare and contrast two important SI systems employed in the Brassicaceae and Papaveraceae. Both use 'self-recognition' systems, but their genetic control and S-determinants are quite different. We describe the current knowledge about the receptors and ligands, and the downstream signals and responses utilized to prevent self-seed set. What emerges is a common theme involving the initiation of destructive pathways that block the key processes that are required for compatible pollen-pistil interactions.
Collapse
Affiliation(s)
- Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, Wales, UK
| | | |
Collapse
|
12
|
Dorsey OC, Rosenthal GG. A taste for the familiar: explaining the inbreeding paradox. Trends Ecol Evol 2023; 38:132-142. [PMID: 36241551 DOI: 10.1016/j.tree.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
The negative consequences of inbreeding have led animal biologists to assume that mate choice is generally biased against relatives. However, inbreeding avoidance is highly variable and by no means the rule across animal taxa. Even when inbreeding is costly, there are numerous examples of animals failing to avoid inbreeding or even preferring to mate with close kin. We argue that selective and mechanistic constraints interact to limit the evolution of inbreeding avoidance, notably when there is a risk of mating with heterospecifics and losing fitness through hybridization. Further, balancing inbreeding avoidance with conspecific mate preference may drive the evolution of multivariate sexual communication. Studying different social and sexual decisions within the same species can illuminate trade-offs among mate-choice mechanisms.
Collapse
Affiliation(s)
- Owen C Dorsey
- Program in Ecology and Evolutionary Biology and Department of Biology, Texas A&M University, TX, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca", Calnali, Hidalgo, Mexico.
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", Calnali, Hidalgo, Mexico; Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
13
|
Almeida SC, Neiva J, Sousa F, Martins N, Cox CJ, Melo-Ferreira J, Guiry MD, Serrão EA, Pearson GA. A low-latitude species pump: Peripheral isolation, parapatric speciation and mating-system evolution converge in a marine radiation. Mol Ecol 2022; 31:4797-4817. [PMID: 35869812 DOI: 10.1111/mec.16623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
Geologically recent radiations can shed light on speciation processes, but incomplete lineage sorting and introgressive gene flow render accurate evolutionary reconstruction and interpretation challenging. Independently evolving metapopulations of low dispersal taxa may provide an additional level of phylogeographic information, given sufficiently broad sampling and genome-wide sequencing. Evolution in the marine brown algal genus Fucus in the south-eastern North Atlantic was shaped by Quaternary climate-driven range shifts. Over this timescale, divergence and speciation occurred against a background of expansion-contraction cycles from multiple refugia, together with mating-system shifts from outcrossing (dioecy) to selfing hermaphroditism. We tested the hypothesis that peripheral isolation of range edge (dioecious) F. vesiculosus led to parapatric speciation and radiation of hermaphrodite lineages. Species tree methods using 876 single-copy nuclear genes and extensive geographic coverage produced conflicting topologies with respect to geographic clades of F. vesiculosus. All methods, however, revealed a new and early diverging hermaphrodite species, Fucus macroguiryi sp. nov. Both the multispecies coalescent and polymorphism-aware models (in contrast to concatenation) support sequential paraphyly in F. vesiculosus resulting from distinct evolutionary processes. Our results support (1) peripheral isolation of the southern F. vesiculosus clade prior to parapatric speciation and radiation of hermaphrodite lineages-a "low-latitude species pump". (2) Directional introgressive gene flow into F. vesiculosus around the present-day secondary contact zone (sympatric-allopatric boundary) between dioecious/hermaphrodite lineages as hermaphrodites expanded northwards, supported by concordance analysis and statistical tests of introgression. (3) Species boundaries in the extensive sympatric range are probably maintained by reproductive system (selfing in hermaphrodites) and reinforcement.
Collapse
Affiliation(s)
- Susana C Almeida
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João Neiva
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Filipe Sousa
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Neusa Martins
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Cymon J Cox
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - José Melo-Ferreira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Michael D Guiry
- AlgaeBase, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Ester A Serrão
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Gareth A Pearson
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
14
|
Yamamoto M, Kitashiba H, Nishio T. Generation of Arabidopsis thaliana transformants showing the self-recognition activity of Brassica rapa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:496-507. [PMID: 35560670 DOI: 10.1111/tpj.15811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Self-incompatibility in the Brassicaceae family is governed by SRK and SCR, which are two highly polymorphic genes located at the S-locus. Previously, the Arabidopsis lyrata SRK and SCR genes were introduced into Arabidopsis thaliana to generate self-incompatible lines. However, there are no reports showing that Brassica SRK and SCR genes confer self-incompatibility in A. thaliana. Doing so would further advance the mechanistic understanding of self-incompatibility in Brassicaceae. Therefore, we attempted to generate A. thaliana transformants showing the self-recognition activity of Brassica rapa by introducing BrSCR along with a chimeric BrSRK (BrSRK chimera, in which the kinase domain of BrSRK was replaced with that of AlSKR-b). We found that the BrSRK chimera and BrSCR of B. rapa S-9 and S-46 haplotypes, but not those of S-29, S-44, and S-60 haplotypes, conferred self-recognition activity in A. thaliana. Analyses of A. thaliana transformants expressing mutant variants of the BrSRK-9 chimera and BrSCR-9 revealed that mutations at the amino acid residues involved in BrSRK9-BrSCR9 interaction caused defects in the self-incompatibility response. The method developed in this study for generating self-incompatible A. thaliana transformants showing B. rapa self-recognition activity will be useful for analysis of self-recognition mechanisms in Brassicaceae.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
15
|
Abhinandan K, Sankaranarayanan S, Macgregor S, Goring DR, Samuel MA. Cell-cell signaling during the Brassicaceae self-incompatibility response. TRENDS IN PLANT SCIENCE 2022; 27:472-487. [PMID: 34848142 DOI: 10.1016/j.tplants.2021.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Self-incompatibility (SI) is a mechanism that many plant families employ to prevent self-fertilization. In the Brassicaceae, the S-haplotype-specific interaction of the pollen-borne ligand, and a stigma-specific receptor protein kinase triggers a signaling cascade that culminates in the rejection of self-pollen. While the upstream molecular components at the receptor level of the signaling pathway have been extensively studied, the intracellular responses beyond receptor activation were not as well understood. Recent research has uncovered several key molecules and signaling events that operate in concert for the manifestation of the self-incompatible responses in Brassicaceae stigmas. Here, we review the recent discoveries in both the compatible and self-incompatible pathways and provide new perspectives on the early stages of Brassicaceae pollen-pistil interactions.
Collapse
Affiliation(s)
- Kumar Abhinandan
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada; 20/20 Seed Labs Inc., Nisku, Alberta T9E 7N5, Canada
| | | | - Stuart Macgregor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Marcus A Samuel
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
16
|
Macgregor SR, Lee HK, Nelles H, Johnson DC, Zhang T, Ma C, Goring DR. Autophagy is required for self-incompatible pollen rejection in two transgenic Arabidopsis thaliana accessions. PLANT PHYSIOLOGY 2022; 188:2073-2084. [PMID: 35078230 PMCID: PMC8969033 DOI: 10.1093/plphys/kiac026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 05/16/2023]
Abstract
Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein 11/S locus cysteine-rich protein and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we detected the presence of autophagic bodies with self-incompatible (SI) pollinations in Arabidopsis lyrata and transgenic Arabidopsis thaliana lines, but whether autophagy was essential for self-pollen rejection was unknown. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) and ATG5 genes into two different transgenic SI A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and Arabidopsis halleri self-incompatibility genes, we demonstrated that disrupting autophagy weakened their SI responses in the stigma. When the atg7 or atg5 mutations were present, an increased number of SI pollen was found to hydrate and form pollen tubes that successfully fertilized the SI pistils. Additionally, we confirmed the presence of GFP-ATG8a-labeled autophagosomes in the stigmatic papillae following SI pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the intracellular mechanisms employed in the transgenic A. thaliana stigmas to reject self-pollen.
Collapse
Affiliation(s)
- Stuart R Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | | | - Hayley Nelles
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Daniel C Johnson
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
17
|
Arceo-Gómez G. Spatial variation in the intensity of interactions via heterospecific pollen transfer may contribute to local and global patterns of plant diversity. ANNALS OF BOTANY 2021; 128:383-394. [PMID: 34226913 PMCID: PMC8414913 DOI: 10.1093/aob/mcab082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Studies that aim to understand the processes that generate and organize plant diversity in nature have a long history in ecology. Among these, the study of plant-plant interactions that take place indirectly via pollinator choice and floral visitation has been paramount. Current evidence, however, indicates that plants can interact more directly via heterospecific pollen (HP) transfer and that these interactions are ubiquitous and can have strong fitness effects. The intensity of HP interactions can also vary spatially, with important implications for floral evolution and community assembly. SCOPE Interest in understanding the role of heterospecific pollen transfer in the diversification and organization of plant communities is rapidly rising. The existence of spatial variation in the intensity of species interactions and their role in shaping patterns of diversity is also well recognized. However, after 40 years of research, the importance of spatial variation in HP transfer intensity and effects remains poorly known, and thus we have ignored its potential in shaping patterns of diversity at local and global scales. Here, I develop a conceptual framework and summarize existing evidence for the ecological and evolutionary consequences of spatial variation in HP transfer interactions and outline future directions in this field. CONCLUSIONS The drivers of variation in HP transfer discussed here illustrate the high potential for geographic variation in HP intensity and its effects, as well as in the evolutionary responses to HP receipt. So far, the study of pollinator-mediated plant-plant interactions has been almost entirely dominated by studies of pre-pollination interactions even though their outcomes can be influenced by plant-plant interactions that take place on the stigma. It is hence critical that we fully evaluate the consequences and context-dependency of HP transfer interactions in order to gain a more complete understanding of the role that plant-pollinator interactions play in generating and organizing plant biodiversity.
Collapse
Affiliation(s)
- Gerardo Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
18
|
Vergès V, Dutilleul C, Godin B, Collet B, Lecureuil A, Rajjou L, Guimaraes C, Pinault M, Chevalier S, Giglioli-Guivarc’h N, Ducos E. Protein Farnesylation Takes Part in Arabidopsis Seed Development. FRONTIERS IN PLANT SCIENCE 2021; 12:620325. [PMID: 33584774 PMCID: PMC7876099 DOI: 10.3389/fpls.2021.620325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/25/2023]
Abstract
Protein farnesylation is a post-translational modification regulated by the ERA1 (Enhanced Response to ABA 1) gene encoding the β-subunit of the protein farnesyltransferase in Arabidopsis. The era1 mutants have been described for over two decades and exhibit severe pleiotropic phenotypes, affecting vegetative and flower development. We further investigated the development and quality of era1 seeds. While the era1 ovary contains numerous ovules, the plant produces fewer seeds but larger and heavier, with higher protein contents and a modified fatty acid distribution. Furthermore, era1 pollen grains show lower germination rates and, at flower opening, the pistils are immature and the ovules require one additional day to complete the embryo sac. Hand pollinated flowers confirmed that pollination is a major obstacle to era1 seed phenotypes, and a near wild-type seed morphology was thus restored. Still, era1 seeds conserved peculiar storage protein contents and altered fatty acid distributions. The multiplicity of era1 phenotypes reflects the diversity of proteins targeted by the farnesyltransferase. Our work highlights the involvement of protein farnesylation in seed development and in the control of traits of agronomic interest.
Collapse
Affiliation(s)
- Valentin Vergès
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Christelle Dutilleul
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alain Lecureuil
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Cyrille Guimaraes
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Michelle Pinault
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Stéphane Chevalier
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | | | - Eric Ducos
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| |
Collapse
|
19
|
Kenney P, Sankaranarayanan S, Balogh M, Indriolo E. Expression of Brassica napus GLO1 is sufficient to breakdown artificial self-incompatibility in Arabidopsis thaliana. PLANT REPRODUCTION 2020; 33:159-171. [PMID: 32862319 DOI: 10.1007/s00497-020-00392-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Members of the Brassicaceae family have the ability to regulate pollination events occurring on the stigma surface. In Brassica species, self-pollination leads to an allele-specific interaction between the pollen small cysteine-rich peptide ligand (SCR/SP11) and the stigmatic S-receptor kinase (SRK) that activates the E3 ubiquitin ligase ARC1 (Armadillo repeat-containing 1), resulting in proteasomal degradation of various compatibility factors including glyoxalase I (GLO1) which is necessary for successful pollination. In Brassica napus, the suppression of GLO1 was sufficient to reduce compatibility, and overexpression of GLO1 in self-incompatible Brassica napus stigmas resulted in partial breakdown of the self-incompatibility response. Here, we verified if BnGLO1 could function as a compatibility factor in the artificial self-incompatibility system of Arabidopsis thaliana expressing AlSCRb, AlSRKb and AlARC1 proteins from A. lyrata. Overexpression of BnGLO1 is sufficient to breakdown self-incompatibility response in A. thaliana stigmas. Therefore, GLO1 has an indisputable role as a compatibility factor in the stigma in regulating pollen attachment and pollen tube growth. Lastly, this study demonstrates the usefulness of an artificial self-incompatibility system in A. thaliana for interspecific self-incompatibility studies.
Collapse
Affiliation(s)
- Patrick Kenney
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
- Division of Plant Sciences, University of Missouri, Waters Hall 1112 University Ave, Columbia, MO, 65201, USA
| | | | - Michael Balogh
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
| | - Emily Indriolo
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA.
| |
Collapse
|
20
|
Wang X, Ren M, Liu D, Zhang D, Zhang C, Lang Z, Macho AP, Zhang M, Zhu JK. Large-scale identification of expression quantitative trait loci in Arabidopsis reveals novel candidate regulators of immune responses and other processes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1469-1484. [PMID: 32246811 DOI: 10.1111/jipb.12930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 05/17/2023]
Abstract
The extensive phenotypic diversity within natural populations of Arabidopsis is associated with differences in gene expression. Transcript levels can be considered as inheritable quantitative traits, and used to map expression quantitative trait loci (eQTL) in genome-wide association studies (GWASs). In order to identify putative genetic determinants for variations in gene expression, we used publicly available genomic and transcript variation data from 665 Arabidopsis accessions and applied the single nucleotide polymorphism-set (Sequence) Kernel Association Test (SKAT) method for the identification of eQTL. Moreover, we used the penalized orthogonal-components regression (POCRE) method to increase the power of statistical tests. Then, gene annotations were used as test units to identify genes that are associated with natural variations in transcript accumulation, which correspond to candidate regulators, some of which may have a broad impact on gene expression. Besides increasing the chances to identify real associations, the analysis using POCRE and SKAT significantly reduced the computational cost required to analyze large datasets. As a proof of concept, we used this approach to identify eQTL that represent novel candidate regulators of immune responses. The versatility of this approach allows its application to any process that is subjected to natural variation among Arabidopsis accessions.
Collapse
Affiliation(s)
- Xingang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Min Ren
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Danni Liu
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Dabao Zhang
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Cuijun Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Shanghai, 200032, China
| | - Zhaobo Lang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Shanghai, 200032, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Shanghai, 200032, China
| | - Min Zhang
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Shanghai, 200032, China
| |
Collapse
|
21
|
Suwabe K, Nagasaka K, Windari EA, Hoshiai C, Ota T, Takada M, Kitazumi A, Masuko-Suzuki H, Kagaya Y, Yano K, Tsuchimatsu T, Shimizu KK, Takayama S, Suzuki G, Watanabe M. Double-Locking Mechanism of Self-Compatibility in Arabidopsis thaliana: The Synergistic Effect of Transcriptional Depression and Disruption of Coding Region in the Male Specificity Gene. FRONTIERS IN PLANT SCIENCE 2020; 11:576140. [PMID: 33042191 PMCID: PMC7517786 DOI: 10.3389/fpls.2020.576140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Self-compatibility in Arabidopsis thaliana represents the relatively recent disruption of ancestral obligate cross pollination, recognized as one of the prevalent evolutionary pathways in flowering plants, as noted by Darwin. Our previous study found that inversion of the male specificity gene (SP11/SCR) disrupted self-incompatibility, which was restored by overexpressing the SCR with the reversed inversion. However, SCR in A. thaliana has other mutations aside from the pivotal inversion, in both promoter and coding regions, with probable effects on transcriptional regulation. To examine the functional consequences of these mutations, we conducted reciprocal introductions of native promoters and downstream sequences from orthologous loci of self-compatible A. thaliana and self-incompatible A. halleri. Use of this inter-species pair enabled us to expand the scope of the analysis to transcriptional regulation and deletion in the intron, in addition to inversion in the native genomic background. Initial analysis revealed that A. thaliana has a significantly lower basal expression level of SCR transcripts in the critical reproductive stage compared to that of A. halleri, suggesting that the promoter was attenuated in inducing transcription in A. thaliana. However, in reciprocal transgenic experiments, this A. thaliana promoter was able to restore partial function if coupled with the functional A. halleri coding sequence, despite extensive alterations due to the self-compatible mode of reproduction in A. thaliana. This represents a synergistic effect of the promoter and the inversion resulting in fixation of self-compatibility, primarily enforced by disruption of SCR. Our findings elucidate the functional and evolutionary context of the historical transition in A. thaliana thus contributing to the understanding of the molecular events leading to development of self-compatibility.
Collapse
Affiliation(s)
- Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kaori Nagasaka
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | | | - Takuma Ota
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Maho Takada
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, TX, United States
| | | | - Yasuaki Kagaya
- Life Science Research Center, Mie University, Tsu, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, Kawasaki, Japan
| | | | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Studies, Yokohama City University, Yokohama, Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Durand E, Chantreau M, Le Veve A, Stetsenko R, Dubin M, Genete M, Llaurens V, Poux C, Roux C, Billiard S, Vekemans X, Castric V. Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evol Appl 2020; 13:1279-1297. [PMID: 32684959 PMCID: PMC7359833 DOI: 10.1111/eva.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae. Here, we review recent advances in these two fronts and illustrate how the joint availability of detailed characterization of genotype-to-phenotype and phenotype-to-fitness maps on a single genetic system (plant self-incompatibility) provides the opportunity to understand the evolutionary process in a unique perspective, bringing novel insight on general questions about the emergence, maintenance, and diversification of a complex genetic system.
Collapse
Affiliation(s)
| | | | - Audrey Le Veve
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | - Manu Dubin
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Mathieu Genete
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRS, Sorbonne Université, EPHE, Université des Antilles CP 5057 rue Cuvier, 75005 ParisFrance
| | - Céline Poux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Camille Roux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | | | | |
Collapse
|
23
|
Rozier F, Riglet L, Kodera C, Bayle V, Durand E, Schnabel J, Gaude T, Fobis-Loisy I. Live-cell imaging of early events following pollen perception in self-incompatible Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2513-2526. [PMID: 31943064 PMCID: PMC7210763 DOI: 10.1093/jxb/eraa008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/13/2020] [Indexed: 05/07/2023]
Abstract
Early events occurring at the surface of the female organ are critical for plant reproduction, especially in species with a dry stigma. After landing on the stigmatic papilla cells, the pollen hydrates and germinates a tube, which penetrates the cell wall and grows towards the ovules to convey the male gametes to the embryo sac. In self-incompatible species within the Brassicaceae, these processes are blocked when the stigma encounters an incompatible pollen. Based on the generation of self-incompatible Arabidopsis lines and by setting up a live imaging system, we showed that control of pollen hydration has a central role in pollen selectivity. The faster the pollen pumps water from the papilla during an initial period of 10 min, the faster it germinates. Furthermore, we found that the self-incompatibility barriers act to block the proper hydration of incompatible pollen and, when hydration is promoted by high humidity, an additional control prevents pollen tube penetration into the stigmatic wall. In papilla cells, actin bundles focalize at the contact site with the compatible pollen but not with the incompatible pollen, raising the possibility that stigmatic cells react to the mechanical pressure applied by the invading growing tube.
Collapse
Affiliation(s)
- Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Lucie Riglet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Chie Kodera
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Eléonore Durand
- CNRS, UMR 8198 Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d’Ascq, France
| | - Jonathan Schnabel
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Isabelle Fobis-Loisy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
24
|
Li C, Mesgaran MB, Ades PK, Cousens RD. Inheritance of breeding system in Cakile (Brassicaceae) following hybridization: implications for plant invasions. ANNALS OF BOTANY 2020; 125:639-650. [PMID: 31802117 PMCID: PMC7102952 DOI: 10.1093/aob/mcz198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Hybridization is commonly assumed to aid invasions through adaptive introgression. In contrast, a recent theoretical model predicted that there can be non-adaptive demographic advantages from hybridization and that the population consequences will depend on the breeding systems of the species and the extent to which subsequent generations are able to interbreed and reproduce. We examined cross-fertilization success and inheritance of breeding systems of two species in order to better assess the plausibility of the theoretical predictions. METHODS Reciprocal artificial crosses were made to produce F1, F2 and backcrosses between Cakile maritima (self-incompatible, SI) and Cakile edentula (self-compatible, SC) (Brassicaceae). Flowers were emasculated prior to anther dehiscence and pollen was introduced from donor plants to the recipient's stigma. Breeding system, pollen viability, pollen germination, pollen tube growth and reproductive output were then determined. The results were used to replace the assumptions made in the original population model and new simulations were made. KEY RESULTS The success rate with the SI species as the pollen recipient was lower than when it was the pollen donor, in quantitative agreement with the 'SI × SC rule' of unilateral incompatibility. Similar outcomes were found in subsequent generations where fertile hybrids were produced but lower success rates were observed in crosses of SI pollen donors with SC pollen recipients. Much lower proportions of SC hybrids were produced than expected from a single Mendelian allele. When incorporated into a population model, these results predicted an even faster rate of replacement of the SC species by the SI species than previously reported. CONCLUSIONS Our study of these two species provides even clearer support for the feasibility of the non-adaptive hybridization hypothesis, whereby the colonization of an SI species can be assisted by transient hybridization with a congener. It also provides novel insight into reproductive biology beyond the F1 generation.
Collapse
Affiliation(s)
- Chengjun Li
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mohsen B Mesgaran
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter K Ades
- School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Roger D Cousens
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Parallel evolution of dominant pistil-side self-incompatibility suppressors in Arabidopsis. Nat Commun 2020; 11:1404. [PMID: 32179752 PMCID: PMC7075917 DOI: 10.1038/s41467-020-15212-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/24/2020] [Indexed: 01/09/2023] Open
Abstract
Selfing is a frequent evolutionary trend in angiosperms, and is a suitable model for studying the recurrent patterns underlying adaptive evolution. Many plants avoid self-fertilization by physiological processes referred to as self-incompatibility (SI). In the Brassicaceae, direct and specific interactions between the male ligand SP11/SCR and the female receptor kinase SRK are required for the SI response. Although Arabidopsis thaliana acquired autogamy through loss of these genes, molecular evolution contributed to the spread of self-compatibility alleles requires further investigation. We show here that in this species, dominant SRK silencing genes have evolved at least twice. Different inverted repeat sequences were found in the relic SRK region of the Col-0 and C24 strains. Both types of inverted repeats suppress the functional SRK sequence in a dominant fashion with different target specificities. It is possible that these dominant suppressors of SI contributed to the rapid fixation of self-compatibility in A. thaliana. In Brassicaceae, interaction between the pollen-derived peptide ligand SP11 and the pistil-expressed receptor kinase SRK leads to self-incompatibility. Here the authors provide evidence that in Arabidopsis dominant self-compatibility inducers evolved at least twice via insertion of inverted repeats in the SRK locus.
Collapse
|
26
|
Chen M, Fan W, Hao B, Zhang W, Yan M, Zhao Y, Liang Y, Liu G, Lu Y, Zhang G, Zhao Z, Hu Y, Yang S. EbARC1, an E3 Ubiquitin Ligase Gene in Erigeron breviscapus, Confers Self-Incompatibility in Transgenic Arabidopsis thaliana. Int J Mol Sci 2020; 21:E1458. [PMID: 32093420 PMCID: PMC7073078 DOI: 10.3390/ijms21041458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 11/19/2022] Open
Abstract
Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties.
Collapse
Affiliation(s)
- Mo Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Fan
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Bing Hao
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Wei Zhang
- College of Life Science and Technology, Honghe University, Mengzi 661100, China;
| | - Mi Yan
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yan Zhao
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yanli Liang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Guanze Liu
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yingchun Lu
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Guanghui Zhang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Zheng Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China;
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| |
Collapse
|
27
|
Mattila TM, Laenen B, Slotte T. Population Genomics of Transitions to Selfing in Brassicaceae Model Systems. Methods Mol Biol 2020; 2090:269-287. [PMID: 31975171 DOI: 10.1007/978-1-0716-0199-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many plants harbor complex mechanisms that promote outcrossing and efficient pollen transfer. These include floral adaptations as well as genetic mechanisms, such as molecular self-incompatibility (SI) systems. The maintenance of such systems over long evolutionary timescales suggests that outcrossing is favorable over a broad range of conditions. Conversely, SI has repeatedly been lost, often in association with transitions to self-fertilization (selfing). This transition is favored when the short-term advantages of selfing outweigh the costs, primarily inbreeding depression. The transition to selfing is expected to have major effects on population genetic variation and adaptive potential, as well as on genome evolution. In the Brassicaceae, many studies on the population genetic, gene regulatory, and genomic effects of selfing have centered on the model plant Arabidopsis thaliana and the crucifer genus Capsella. The accumulation of population genomics datasets have allowed detailed investigation of where, when and how the transition to selfing occurred. Future studies will take advantage of the development of population genetics theory on the impact of selfing, especially regarding positive selection. Furthermore, investigation of systems including recent transitions to selfing, mixed mating populations and/or multiple independent replicates of the same transition will facilitate dissecting the effects of mating system variation from processes driven by demography.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
28
|
Huang J, Su S, Dai H, Liu C, Wei X, Zhao Y, Wang Z, Zhang X, Yuan Y, Yu X, Zhang C, Li Y, Zeng W, Wu HM, Cheung AY, Wang S, Duan Q. Programmed Cell Death in Stigmatic Papilla Cells Is Associated With Senescence-Induced Self-Incompatibility Breakdown in Chinese Cabbage and Radish. FRONTIERS IN PLANT SCIENCE 2020; 11:586901. [PMID: 33365040 PMCID: PMC7750362 DOI: 10.3389/fpls.2020.586901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/02/2020] [Indexed: 05/02/2023]
Abstract
Self-incompatibility (SI) is a genetic mechanism flowering plants adopted to reject self-pollen and promote outcrossing. In the Brassicaceae family plants, the stigma tissue plays a key role in self-pollen recognition and rejection. We reported earlier in Chinese cabbage (Brassica rapa) that stigma tissue showed upregulated ethylene responses and programmed cell death (PCD) upon compatible pollination, but not in SI responses. Here, we show that SI is significantly compromised or completely lost in senescent flowers and young flowers of senescent plants. Senescence upregulates senescence-associated genes in B. rapa. Suppressing their expression in young stigmas by antisense oligodeoxyribonucleotide abolishes compatible pollination-triggered PCD and inhibits the growth of compatible pollen tubes. Furthermore, ethylene biosynthesis genes and response genes are upregulated in senescent stigmas, and increasing the level of ethylene or inhibiting its response increases or decreases the expression of senescence-associated genes, respectively. Our results show that senescence causes PCD in stigmatic papilla cells and is associated with the breakdown of SI in Chinese cabbage and in radish.
Collapse
Affiliation(s)
- Jiabao Huang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Shiqi Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Huamin Dai
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Chen Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaolin Yu
- Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Changwei Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ying Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weiqing Zeng
- Trait Discovery, Corteva Agriscience, Johnston, IA, United States
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Shufen Wang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Shufen Wang,
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiaohong Duan,
| |
Collapse
|
29
|
Zhang T, Zhou G, Goring DR, Liang X, Macgregor S, Dai C, Wen J, Yi B, Shen J, Tu J, Fu T, Ma C. Generation of Transgenic Self-Incompatible Arabidopsis thaliana Shows a Genus-Specific Preference for Self-Incompatibility Genes. PLANTS 2019; 8:plants8120570. [PMID: 31817214 PMCID: PMC6963867 DOI: 10.3390/plants8120570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Brassicaceae species employ both self-compatibility and self-incompatibility systems to regulate post-pollination events. Arabidopsis halleri is strictly self-incompatible, while the closely related Arabidopsis thaliana has transitioned to self-compatibility with the loss of functional S-locus genes during evolution. The downstream signaling protein, ARC1, is also required for the self-incompatibility response in some Arabidopsis and Brassica species, and its gene is deleted in the A. thaliana genome. In this study, we attempted to reconstitute the SCR-SRK-ARC1 signaling pathway to restore self-incompatibility in A. thaliana using genes from A. halleri and B. napus, respectively. Several of the transgenic A. thaliana lines expressing the A. halleriSCR13-SRK13-ARC1 transgenes displayed self-incompatibility, while all the transgenic A. thaliana lines expressing the B. napusSCR1-SRK1-ARC1 transgenes failed to show any self-pollen rejection. Furthermore, our results showed that the intensity of the self-incompatibility response in transgenic A. thaliana plants was not associated with the expression levels of the transgenes. Thus, this suggests that there are differences between the Arabidopsis and Brassica self-incompatibility signaling pathways, which perhaps points to the existence of other factors downstream of B. napusSRK that are absent in Arabidopsis species.
Collapse
Affiliation(s)
- Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Guilong Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Daphne R. Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Centre for Genome Analysis & Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Stuart Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-18-07
| |
Collapse
|
30
|
Yamamoto M, Nishimura K, Kitashiba H, Sakamoto W, Nishio T. High temperature causes breakdown of S haplotype-dependent stigmatic self-incompatibility in self-incompatible Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5745-5751. [PMID: 31328225 PMCID: PMC6812698 DOI: 10.1093/jxb/erz343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/16/2019] [Indexed: 05/24/2023]
Abstract
Commercial seeds of Brassicaceae vegetable crops are mostly F1 hybrids, the production of which depends on self-incompatibility during pollination. Self-incompatibility is known to be weakened by exposure to elevated temperatures, which may compromise future breeding and seed production. In the Brassicaceae, self-incompatibility is controlled by two genes, SRK and SCR, which function as female and male determinants of recognition specificity, respectively. However, the molecular mechanisms underlying the breakdown of self-incompatibility under high temperature are poorly understood. In this study, we examined the self-incompatibility phenotypes of self-incompatible Arabidopsis thaliana SRK-SCR transformants under normal (23 °C) and elevated (29 °C) temperatures. Exposure to elevated temperature caused defects in the stigmatic, but not the pollen, self-incompatibility response. In addition, differences in the response to elevated temperature were observed among different S haplotypes. Subcellular localization revealed that high temperature disrupted the targeting of SRK to the plasma membrane. SRK localization in plants transformed with different S haplotypes corresponded to their self-incompatibility phenotypes, further indicating that defects in SRK localization were responsible for the breakdown in the self-incompatibility response at high temperature. Our results provide new insights into the causes of instability in self-incompatibility phenotypes.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kenji Nishimura
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
31
|
Backes A, Mäder G, Turchetto C, Segatto AL, Fregonezi JN, Bonatto SL, Freitas LB. How diverse can rare species be on the margins of genera distribution? AOB PLANTS 2019; 11:plz037. [PMID: 31391895 PMCID: PMC6677564 DOI: 10.1093/aobpla/plz037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Different genetic patterns have been demonstrated for narrowly distributed taxa, many of them linking rarity to evolutionary history. Quite a few species in young genera are endemics and have several populations that present low variability, sometimes attributed to geographical isolation or dispersion processes. Assessing the genetic diversity and structure of such species may be important for protecting them and understanding their diversification history. In this study, we used microsatellite markers and plastid sequences to characterize the levels of genetic variation and population structure of two endemic and restricted species that grow in isolated areas on the margin of the distribution of their respective genera. Plastid and nuclear diversities were very low and weakly structured in their populations. Evolutionary scenarios for both species are compatible with open-field expansions during the Pleistocene interglacial periods and genetic variability supports founder effects to explain diversification. At present, both species are suffering from habitat loss and changes in the environment can lead these species towards extinction.
Collapse
Affiliation(s)
- Alice Backes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Lúcia Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson N Fregonezi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sandro L Bonatto
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
Shi S, Gao Q, Zuo T, Lei Z, Pu Q, Wang Y, Liu G, He X, Ren X, Zhu L. Identification and characterization of BoPUB3: a novel interaction protein with S-locus receptor kinase in Brassica oleracea L. Acta Biochim Biophys Sin (Shanghai) 2019; 51:723-733. [PMID: 31168565 DOI: 10.1093/abbs/gmz057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
Armadillo repeat containing 1 (ARC1) is phosphorylated by S-locus receptor kinase (SRK) and functions as a positive regulator in self-incompatibility response of Brassica. However, ARC1 only causes partial breakdown of the self-incompatibility response, and other SRK downstream factors may also participate in the self-incompatibility signaling pathway. In the present study, to search for SRK downstream targets, a plant U-box protein 3 (BoPUB3) was identified from the stigma of Brassica oleracea L. BoPUB3 was highly expressed in the stigma, and its expression was increased with the stigma development and reached to the highest level in the mature-stage stigma. BoPUB3, a 76.8-kDa protein with 697 amino acids, is a member of the PUB-ARM family and contains three domain characteristics of BoARC1, including a U-box N-terminal domain, a U-box motif, and a C-terminal arm repeat domain. The phylogenic tree showed that BoPUB3 was close to BoARC1. The synteny analysis revealed that B. oleracea chromosomal region containing BoPUB3 had high synteny with the Arabidopsis thaliana chromosomal region containing AtPUB3 (At3G54790). In addition, the subcellular localization analysis showed that BoPUB3 primarily localized in the plasma membrane and also in the cytoplasm. The combination of the yeast two-hybrid and in vitro binding assay showed that both BoPUB3 and BoARC1 could interact with SRK kinase domain, and SRK showed much higher level of β-galactosidase activity in its interaction with BoPUB3 than with BoARC1. These results implied that BoPUB3 is a novel interactor with SRK, which lays a basis for further research on whether PUB3 participates in the self-incompatibility signaling pathway.
Collapse
Affiliation(s)
- Songmei Shi
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Qiguo Gao
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Tonghong Zuo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhenze Lei
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Quanming Pu
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Yukui Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Guixi Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xinhua He
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Xuesong Ren
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Liquan Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Nasrallah JB. Self-incompatibility in the Brassicaceae: Regulation and mechanism of self-recognition. Curr Top Dev Biol 2019; 131:435-452. [DOI: 10.1016/bs.ctdb.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
34
|
Sehgal N, Singh S. Progress on deciphering the molecular aspects of cell-to-cell communication in Brassica self-incompatibility response. 3 Biotech 2018; 8:347. [PMID: 30073132 PMCID: PMC6066494 DOI: 10.1007/s13205-018-1372-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022] Open
Abstract
The sporophytic system of self-incompatibility is a widespread genetic phenomenon in plant species, promoting out-breeding and maintaining genetic diversity. This phenomenon is of commercial importance in hybrid breeding of Brassicaceae crops and is controlled by single S locus with multiple S haplotypes. The molecular genetic studies of Brassica 'S' locus has revealed the presence of three tightly linked loci viz. S-receptor kinase (SRK), S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11), and S-locus glycoprotein (SLG). On self-pollination, the allele-specific ligand-receptor interaction activates signal transduction in stigma papilla cells and leads to rejection of pollen tube on stigmatic surface. In addition, arm-repeat-containing protein 1 (ARC1), M-locus protein kinase (MLPK), kinase-associated protein phosphatase (KAPP), exocyst complex subunit (Exo70A1) etc. has been identified in Brassica crops and plays a key role in self-incompatibility signaling pathway. Furthermore, the cytoplasmic calcium (Ca2+) influx in papilla cells also mediates self-incompatibility response in Brassicaceae, but how this cytoplasmic Ca2+ influx triggers signal transduction to inhibit pollen hydration is still obscure. There are many other signaling components which are not well characterized yet. Much progress has been made in elucidating the downstream multiple pathways of Brassica self-incompatibility response. Hence, in this review, we have made an effort to describe the recent advances made on understanding the molecular aspects of genetic mechanism of self-incompatibility in Brassicaceae.
Collapse
Affiliation(s)
- Nidhi Sehgal
- Department of Vegetable Science, CCS Haryana Agricultural University, Hisar, 125 004 India
| | - Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| |
Collapse
|
35
|
Activation of Self-Incompatibility Signaling in Transgenic Arabidopsis thaliana Is Independent of AP2-Based Clathrin-Mediated Endocytosis. G3-GENES GENOMES GENETICS 2018; 8:2231-2239. [PMID: 29720392 PMCID: PMC6027874 DOI: 10.1534/g3.118.200231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Internalization of plasma membrane (PM)-localized ligand-activated receptor kinases and their trafficking to sorting endosomes have traditionally been viewed as functioning primarily in the down-regulation of receptor signaling, but are now considered to be also essential for signaling by some receptors. A major mechanism for internalization of PM proteins is clathrin-mediated endocytosis (CME). CME is mediated by the Adaptor Protein Complex 2 (AP2), which is involved in interaction of the AP2 μ-adaptin subunit with a tyrosine-based Yxxϕ motif located in the cytoplasmic domain of the cargo protein. In this study, we investigated the role of AP2-mediated CME for signaling by the S-locus receptor kinase (SRK), a protein localized in the PM of stigma epidermal cells, which, together with its pollen coat-localized S-locus cysteine-rich (SCR) ligand, functions in the self-incompatibility (SI) response of the Brassicaceae. Using Arabidopsis thaliana plants that were made self-incompatible by transformation with an A. lyrata-derived SRK/SCR gene pair, we tested the effect on SI of site-directed mutations in each of the two Yxxϕ motifs in SRK and of a CRISPR/Cas9-induced null mutation in the AP2 μ-adaptin gene AP2M. Both in vitro SRK kinase activity and the in planta SI response were abolished by substitution of tyrosine in one of the two Yxxϕ motifs, but were unaffected by elimination of either the second Yxxϕ motif or AP2M function. Thus, AP2-mediated CME is considered to be unnecessary for SRK signaling in the SI response.
Collapse
|
36
|
Jany E, Nelles H, Goring DR. The Molecular and Cellular Regulation of Brassicaceae Self-Incompatibility and Self-Pollen Rejection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:1-35. [PMID: 30712670 DOI: 10.1016/bs.ircmb.2018.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In flowering plants, sexual reproduction is actively regulated by cell-cell communication between the male pollen and female pistil, and many species possess self-incompatibility systems for the selective rejection of self-pollen to maintain genetic diversity. The Brassicaceae self-incompatibility pathway acts early on when pollen grains have landed on the stigmatic papillae at the top of the pistil. Extensive studies have revealed that self-pollen rejection in the Brassicaceae is initiated by an S-haplotype-specific interaction between two polymorphic proteins: the pollen S-locus protein 11/S cysteine-rich (SP11/SCR) ligand and the stigma S receptor kinase (SRK). While the different S-haplotypes are typically codominant, there are several examples of dominant-recessive interactions, and a small RNA-based regulation of SP11/SCR expression has been uncovered as a mechanism behind these genetic interactions. Recent research has also added to our understanding of various cellular components in the pathway leading from the SP11/SCR-SRK interaction, including two signaling proteins, the M-locus protein kinase (MLPK) and the ARM-repeat containing 1 (ARC1) E3 ligase, as well as calcium fluxes and induction of autophagy in the stigmatic papillae. Finally, a better understanding of the compatible pollen responses that are targeted by the self-incompatibility pathway is starting to emerge, and this will allow us to more fully understand how the Brassicaceae self-incompatibility pathway causes self-pollen rejection. Here, we provide an overview of the field, highlighting recent contributions to our understanding of Brassicaceae self-incompatibility, and draw comparisons to a recently discovered unilateral incompatibility system.
Collapse
Affiliation(s)
- Eli Jany
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hayley Nelles
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada; Centre for Genome Analysis & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Bachmann JA, Tedder A, Laenen B, Steige KA, Slotte T. Targeted Long-Read Sequencing of a Locus Under Long-Term Balancing Selection in Capsella. G3 (BETHESDA, MD.) 2018; 8:1327-1333. [PMID: 29476024 PMCID: PMC5873921 DOI: 10.1534/g3.117.300467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022]
Abstract
Rapid advances in short-read DNA sequencing technologies have revolutionized population genomic studies, but there are genomic regions where this technology reaches its limits. Limitations mostly arise due to the difficulties in assembly or alignment to genomic regions of high sequence divergence and high repeat content, which are typical characteristics for loci under strong long-term balancing selection. Studying genetic diversity at such loci therefore remains challenging. Here, we investigate the feasibility and error rates associated with targeted long-read sequencing of a locus under balancing selection. For this purpose, we generated bacterial artificial chromosomes (BACs) containing the Brassicaceae S-locus, a region under strong negative frequency-dependent selection which has previously proven difficult to assemble in its entirety using short reads. We sequence S-locus BACs with single-molecule long-read sequencing technology and conduct de novo assembly of these S-locus haplotypes. By comparing repeated assemblies resulting from independent long-read sequencing runs on the same BAC clone we do not detect any structural errors, suggesting that reliable assemblies are generated, but we estimate an indel error rate of 5.7×10-5 A similar error rate was estimated based on comparison of Illumina short-read sequences and BAC assemblies. Our results show that, until de novo assembly of multiple individuals using long-read sequencing becomes feasible, targeted long-read sequencing of loci under balancing selection is a viable option with low error rates for single nucleotide polymorphisms or structural variation. We further find that short-read sequencing is a valuable complement, allowing correction of the relatively high rate of indel errors that result from this approach.
Collapse
Affiliation(s)
- Jörg A Bachmann
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Andrew Tedder
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
38
|
Tsuchimatsu T, Goubet PM, Gallina S, Holl AC, Fobis-Loisy I, Bergès H, Marande W, Prat E, Meng D, Long Q, Platzer A, Nordborg M, Vekemans X, Castric V. Patterns of Polymorphism at the Self-Incompatibility Locus in 1,083 Arabidopsis thaliana Genomes. Mol Biol Evol 2018; 34:1878-1889. [PMID: 28379456 PMCID: PMC5850868 DOI: 10.1093/molbev/msx122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation. Here, we took advantage of recently published genomic resequencing data in 1,083 Arabidopsis thaliana accessions that we combined with BAC sequencing to obtain polymorphism information for the whole S-locus region at a species-wide scale. The accessions differed by several major rearrangements including large deletions and interhaplogroup recombinations, forming a set of haplogroups that are widely distributed throughout the native range and largely overlap geographically. “Relict” A. thaliana accessions that directly derive from glacial refugia are polymorphic at the S-locus, suggesting that the three haplogroups were already present when glacial refugia from the last Ice Age became isolated. Interhaplogroup recombinant haplotypes were highly frequent, and detailed analysis of recombination breakpoints suggested multiple independent origins. These findings suggest that the complete loss of SI in A. thaliana involved independent self-compatible mutants that arose prior to the last Ice Age, and experienced further rearrangements during postglacial colonization.
Collapse
Affiliation(s)
- Takashi Tsuchimatsu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.,Department of Biology, Chiba University, Inage-ku, Chiba, Japan
| | | | - Sophie Gallina
- Université de Lille CNRS, UMR 8198-Evo-Eco-Paleo, Lille, France
| | | | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Univ. Lyon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - William Marande
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Dazhe Meng
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Quan Long
- Department of Biochemistry and Molecular Biology & Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander Platzer
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Xavier Vekemans
- Université de Lille CNRS, UMR 8198-Evo-Eco-Paleo, Lille, France
| | - Vincent Castric
- Université de Lille CNRS, UMR 8198-Evo-Eco-Paleo, Lille, France
| |
Collapse
|
39
|
Pan C, Ye L, Zheng Y, Wang Y, Yang D, Liu X, Chen L, Zhang Y, Fei Z, Lu G. Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics 2017; 18:843. [PMID: 29096602 PMCID: PMC5668977 DOI: 10.1186/s12864-017-4238-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Background Autogamy in cultivated tomato varieties is a derived trait from wild type tomato plants, which are mostly allogamous. However, environmental stresses can cause morphological defects in tomato flowers and hinder autogamy. Under elevated temperatures, tomato plants usually exhibit the phenotype of stigma exsertion, with severely hindered self-pollination and fruit setting, whereas the inherent mechanism of stigma exsertion have been hitherto unknown. Numerous small RNAs (sRNAs) have been shown to play significant roles in plant development and stress responses, however, none of them have been studied with respect to stamen and pistil development under high-temperature conditions. We investigated the associations between stigma exsertion and small RNAs using high-throughput sequencing technology and molecular biology approaches. Results Sixteen sRNA libraries of Micro-Tom were constructed from plants stamen and pistil samples and sequenced after 2 d and 12 d of exposure to heat stress, respectively, from which a total of 110 known and 84 novel miRNAs were identified. Under heat stress conditions, 34 known and 35 novel miRNAs were differentially expressed in stamens, and 20 known and 10 novel miRNAs were differentially expressed in pistils. GO and KEGG pathway analysis showed that the predicted target genes of differentially expressed miRNAs were significantly enriched in metabolic pathways in both stamen and pistil libraries. Potential miRNA-target cleavage cascades that correlated with the regulation of stigma exsertion under heat stress conditions were found and validated through qRT-PCR and RLM-5′ RACE. Conclusion Overall, a global spectrum of known and novel miRNAs involved in tomato stigma exsertion and induced by high temperatures were identified using high-throughput sequencing and molecular biology approaches, laying a foundation for revealing the miRNA-mediated regulatory network involved in the development of tomato stamens and pistils under high-temperature conditions. Electronic supplementary material The online version of this article (10.1186/s12864-017-4238-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changtian Pan
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Lei Ye
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Yan Wang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Dandan Yang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Xue Liu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Lifei Chen
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Youwei Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.,USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China. .,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310085, China.
| |
Collapse
|
40
|
Nasrallah JB. Plant mating systems: self-incompatibility and evolutionary transitions to self-fertility in the mustard family. Curr Opin Genet Dev 2017; 47:54-60. [PMID: 28915488 DOI: 10.1016/j.gde.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Flowering plants have evolved diverse mechanisms that promote outcrossing. The most widespread of these outbreeding devices are self-incompatibility systems, the highly selective prefertilization mating barriers that prevent self-fertilization by disrupting pollen-pistil interactions. Despite the advantages of outcrossing, loss of self-incompatibility has occurred repeatedly in many plant families. In the mustard family, the highly polymorphic receptors and ligands that mediate the recognition and inhibition of self-pollen in self-incompatibility have been characterized and the 3D structure of the receptor-ligand complex has been solved. Sequence analyses and empirical studies in self-incompatible and self-compatible species are elucidating the genetic basis of switches from the outcrossing to selfing modes of mating and beginning to provide clues to the diversification of the self recognition repertoire.
Collapse
Affiliation(s)
- June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
41
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
42
|
Doucet J, Lee HK, Goring DR. Pollen Acceptance or Rejection: A Tale of Two Pathways. TRENDS IN PLANT SCIENCE 2016; 21:1058-1067. [PMID: 27773670 DOI: 10.1016/j.tplants.2016.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
While the molecular and cellular basis of self-incompatibility leading to self-pollen rejection in the Brassicaceae has been extensively studied, relatively little attention has been paid to compatible pollen recognition and the corresponding cellular responses in the stigmatic papillae. This is now changing because research has started to uncover steps in the Brassicaceae 'basal compatible pollen response pathway' in the stigma leading to pollen hydration and germination. Furthermore, recent studies suggest that self-incompatible pollen activates both the basal compatible pathway and the self-incompatibility pathway in the stigma, with the self-incompatibility response ultimately prevailing to reject self-pollen. We review here recent discoveries in both pathways and discuss how compatible pollen is accepted by the stigma versus the rejection of self-incompatible pollen.
Collapse
Affiliation(s)
- Jennifer Doucet
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Hyun Kyung Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto M5S 3B2, Canada.
| |
Collapse
|
43
|
Gao Q, Shi S, Liu Y, Pu Q, Liu X, Zhang Y, Zhu L. Identification of a novel MLPK homologous gene MLPKn1 and its expression analysis in Brassica oleracea. PLANT REPRODUCTION 2016; 29:239-250. [PMID: 27342989 DOI: 10.1007/s00497-016-0287-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
M locus protein kinase, one of the SRK-interacting proteins, is a necessary positive regulator for the self-incompatibility response in Brassica. In B. rapa, MLPK is expressed as two different transcripts, MLPKf1 and MLPKf2, and either isoform can complement the mlpk/mlpk mutation. The AtAPK1B gene has been considered to be the ortholog of BrMLPK, and AtAPK1B has no role in self-incompatibility (SI) response in A. thaliana SRK-SCR plants. Until now, what causes the MLPK and APK1B function difference during SI response in Brassica and A. thaliana SRKb-SCRb plants has remained unknown. Here, in addition to the reported MLPKf1/2, we identified the new MLPKf1 homologous gene MLPKn1 from B. oleracea. BoMLPKn1 and BoMLPKf1 shared nucleotide sequence identity as high as 84.3 %, and the most striking difference consisted in two fragment insertions in BoMLPKn1. BoMLPKn1 and BoMLPKf1 had a similar gene structure; both their deduced amino acid sequences contained a typical plant myristoylation consensus sequence and a Ser/Thr protein kinase domain. BoMLPKn1 was widely expressed in petal, sepal, anther, stigma and leaf. Genome-wide survey revealed that the B. oleracea genome contained three MLPK homologous genes: BoMLPKf1/2, BoMLPKn1 and Bol008343n. The B. rapa genome also contained three MLPK homologous genes, BrMLPKf1/2, BraMLPKn1 and Bra040929. Phylogenetic analysis revealed that BoMLPKf1/2 and BrMLPKf1/2 were phylogenetically more distant from AtAPK1A than Bol008343n, Bra040929, BraMLPKn1 and BoMLPKn1, Synteny analysis revealed that the B. oleracea chromosomal region containing BoMLPKn1 displayed high synteny with the A. thaliana chromosomal region containing APK1B, whereas the B. rapa chromosomal region containing BraMLPKn1 showed high synteny with the A. thaliana chromosomal region containing APK1B. Together, these results revealed that BoMLPKn1/BraMLPKn1, and not the formerly reported BoMLPKf1/2 (BrMLPKf1/2), was the orthologous genes of AtAPK1B, and no ortholog of BoMLPKf1/2 (BrMLPKf1/2) was found in the A. thaliana genome. We speculated that Brassica MLPKf1/2 might have emerged after speciation of Brassica and A. thailiana, and that it was recruited to the SRK-triggered SI signaling cascade in Brassica.
Collapse
Affiliation(s)
- Qiguo Gao
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| | - Songmei Shi
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yudong Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Quanming Pu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xiaohuan Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ying Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Liquan Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
44
|
Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions. G3-GENES GENOMES GENETICS 2016; 6:2319-28. [PMID: 27226169 PMCID: PMC4978887 DOI: 10.1534/g3.116.030874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An increased knowledge of the genetic regulation of expression in Arabidopsis thaliana is likely to provide important insights about the basis of the plant’s extensive phenotypic variation. Here, we reanalyzed two publicly available datasets with genome-wide data on genetic and transcript variation in large collections of natural A. thaliana accessions. Transcripts from more than half of all genes were detected in the leaves of all accessions, and from nearly all annotated genes in at least one accession. Thousands of genes had high transcript levels in some accessions, but no transcripts at all in others, and this pattern was correlated with the genome-wide genotype. In total, 2669 eQTL were mapped in the largest population, and 717 of them were replicated in the other population. A total of 646 cis-eQTL-regulated genes that lacked detectable transcripts in some accessions was found, and for 159 of these we identified one, or several, common structural variants in the populations that were shown to be likely contributors to the lack of detectable RNA transcripts for these genes. This study thus provides new insights into the overall genetic regulation of global gene expression diversity in the leaf of natural A. thaliana accessions. Further, it also shows that strong cis-acting polymorphisms, many of which are likely to be structural variations, make important contributions to the transcriptional variation in the worldwide A. thaliana population.
Collapse
|
45
|
Correa R, Baum DA. Evolutionary transgenomics: prospects and challenges. FRONTIERS IN PLANT SCIENCE 2015; 6:858. [PMID: 26579137 PMCID: PMC4620933 DOI: 10.3389/fpls.2015.00858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/28/2015] [Indexed: 05/27/2023]
Abstract
Many advances in our understanding of the genetic basis of species differences have arisen from transformation experiments, which allow us to study the effect of genes from one species (the donor) when placed in the genetic background of another species (the recipient). Such interspecies transformation experiments are usually focused on candidate genes - genes that, based on work in model systems, are suspected to be responsible for certain phenotypic differences between the donor and recipient species. We suggest that the high efficiency of transformation in a few plant species, most notably Arabidopsis thaliana, combined with the small size of typical plant genes and their cis-regulatory regions allow implementation of a screening strategy that does not depend upon a priori candidate gene identification. This approach, transgenomics, entails moving many large genomic inserts of a donor species into the wild type background of a recipient species and then screening for dominant phenotypic effects. As a proof of concept, we recently conducted a transgenomic screen that analyzed more than 1100 random, large genomic inserts of the Alabama gladecress Leavenworthia alabamica for dominant phenotypic effects in the A. thaliana background. This screen identified one insert that shortens fruit and decreases A. thaliana fertility. In this paper we discuss the principles of transgenomic screens and suggest methods to help minimize the frequencies of false positive and false negative results. We argue that, because transgenomics avoids committing in advance to candidate genes it has the potential to help us identify truly novel genes or cryptic functions of known genes. Given the valuable knowledge that is likely to be gained, we believe the time is ripe for the plant evolutionary community to invest in transgenomic screens, at least in the mustard family Brassicaceae where many species are amenable to efficient transformation.
Collapse
Affiliation(s)
- Raul Correa
- Department of Molecular and Human Genetics, Baylor College of MedicineHouston, TX, USA
| | - David A. Baum
- Department of Botany, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
46
|
Tantikanjana T, Nasrallah JB. Ligand-Mediated cis-Inhibition of Receptor Signaling in the Self-Incompatibility Response of the Brassicaceae. PLANT PHYSIOLOGY 2015; 169:1141-54. [PMID: 26269543 PMCID: PMC4587449 DOI: 10.1104/pp.15.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/11/2015] [Indexed: 05/02/2023]
Abstract
The inhibition of self-pollination in self-incompatible Brassicaceae is based on allele-specific trans-activation of the highly polymorphic S-locus receptor kinase (SRK), which is displayed at the surface of stigma epidermal cells, by its even more polymorphic pollen coat-localized ligand, the S-locus cysteine-rich (SCR) protein. In an attempt to achieve constitutive activation of SRK and thus facilitate analysis of self-incompatibility (SI) signaling, we coexpressed an Arabidopsis lyrata SCR variant with its cognate SRK receptor in the stigma epidermal cells of Arabidopsis (Arabidopsis thaliana) plants belonging to the C24 accession, in which expression of SRK and SCR had been shown to exhibit a robust SI response. Contrary to expectation, however, coexpression of SRK and SCR was found to inhibit SRK-mediated signaling and to disrupt the SI response. This phenomenon, called cis-inhibition, is well documented in metazoans but has not as yet been reported for plant receptor kinases. We demonstrate that cis-inhibition of SRK, like its trans-activation, is based on allele-specific interaction between receptor and ligand. We also show that stigma-expressed SCR causes entrapment of its SRK receptor in the endoplasmic reticulum, thus disrupting the proper targeting of SRK to the plasma membrane, where the receptor would be available for productive interaction with its pollen coat-derived SCR ligand. Although based on an artificial cis-inhibition system, the results suggest novel strategies of pollination control for the generation of hybrid cultivars and large-scale seed production from hybrid plants in Brassicaceae seed crops and, more generally, for inhibiting cell surface receptor function and manipulating signaling pathways in plants.
Collapse
Affiliation(s)
- Titima Tantikanjana
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14953
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14953
| |
Collapse
|
47
|
Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H, Igarashi M, Kaothien-Nakayama P, Entani T, Kanatani A, Takehisa M, Tanaka M, Komatsu K, Shiba H, Nagai T, Miyawaki A, Isogai A, Takayama S. Calcium signalling mediates self-incompatibility response in the Brassicaceae. NATURE PLANTS 2015; 1:15128. [PMID: 27250681 DOI: 10.1038/nplants.2015.128] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 08/04/2015] [Indexed: 05/27/2023]
Abstract
Self-incompatibility in the Brassicaceae is controlled by multiple haplotypes encoding the pollen ligand (S-locus protein 11, SP11, also known as S-locus cysteine-rich protein, SCR) and its stigmatic receptor (S-receptor kinase, SRK). A haplotype-specific interaction between SP11/SCR and SRK triggers the self-incompatibility response that leads to self-pollen rejection, but the signalling pathway remains largely unknown. Here we show that Ca(2+) influx into stigma papilla cells mediates self-incompatibility signalling. Using self-incompatible Arabidopsis thaliana expressing SP11/SCR and SRK, we found that self-pollination specifically induced an increase in cytoplasmic Ca(2+) ([Ca(2+)]cyt) in papilla cells. Direct application of SP11/SCR to the papilla cell protoplasts induced Ca(2+) increase, which was inhibited by D-(-)-2-amino-5-phosphonopentanoic acid (AP-5), a glutamate receptor channel blocker. An artificial increase in [Ca(2+)]cyt in papilla cells arrested wild-type (WT) pollen hydration. Treatment of papilla cells with AP-5 interfered with self-incompatibility, and Ca(2+) increase on the self-incompatibility response was reduced in the glutamate receptor-like channel (GLR) gene mutants. These results suggest that Ca(2+) influx mediated by GLR is the essential self-incompatibility response leading to self-pollen rejection.
Collapse
Affiliation(s)
- Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kanae Ito
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Sota Fujii
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Mitsuru Kakita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hiroko Asano-Shimosato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Motoko Igarashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Pulla Kaothien-Nakayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Tetsuyuki Entani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Asaka Kanatani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Masashi Takehisa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Masaki Tanaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kunihiko Komatsu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hiroshi Shiba
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Atsushi Miyawaki
- Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
| | - Akira Isogai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
48
|
Abstract
SRK (S-locus receptor kinase) is the receptor that allows stigma epidermal cells to discriminate between genetically related ('self') and genetically unrelated ('non-self') pollen in the self-incompatibility response of the Brassicaceae. SRK and its ligand, the pollen coat-localized SCR (S-locus cysteine-rich protein), are highly polymorphic, and their allele-specific interaction explains specificity in the self-incompatibility response. The present article reviews current knowledge of the role of SRK in the recognition and response phases of self-incompatibility, and highlights the new insights provided by analysis of a transgenic self-incompatible Arabidopsis thaliana model.
Collapse
|
49
|
Rea AC, Nasrallah JB. In vivo imaging of the S-locus receptor kinase, the female specificity determinant of self-incompatibility, in transgenic self-incompatible Arabidopsis thaliana. ANNALS OF BOTANY 2015; 115:789-805. [PMID: 25714818 PMCID: PMC4373290 DOI: 10.1093/aob/mcv008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/09/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The S-locus receptor kinase (SRK), which is expressed in stigma epidermal cells, is responsible for the recognition and inhibition of 'self' pollen in the self-incompatibility (SI) response of the Brassicaceae. The allele-specific interaction of SRK with its cognate pollen coat-localized ligand, the S-locus cysteine-rich (SCR) protein, is thought to trigger a signalling cascade within the stigma epidermal cell that leads to the arrest of 'self' pollen at the stigma surface. In addition to the full-length signalling SRK receptor, stigma epidermal cells express two other SRK protein species that lack the kinase domain and whose role in the SI response is not understood: a soluble version of the SRK ectodomain designated eSRK and a membrane-tethered form designated tSRK. The goal of this study was to describe the sub-cellular distribution of the various SRK protein species in stigma epidermal cells as a prelude to visualizing receptor dynamics in response to SCR binding. METHODS The Arabidopsis lyrata SRKb variant was tagged with the Citrine variant of yellow fluorescent protein (cYFP) and expressed in A. thaliana plants of the C24 accession, which had been shown to exhibit a robust SI response upon transformation with the SRKb-SCRb gene pair. The transgenes used in this study were designed for differential production and visualization of the three SRK protein species in stigma epidermal cells. Transgenic stigmas were analysed by pollination assays and confocal microscopy. KEY RESULTS AND CONCLUSIONS Pollination assays demonstrated that the cYFP-tagged SRK proteins are functional and that the eSRK is not required for SI. Confocal microscopic analysis of cYFP-tagged SRK proteins in live stigma epidermal cells revealed the differential sub-cellular localization of the three SRK protein species but showed no evidence for redistribution of these proteins subsequent to incompatible pollination.
Collapse
Affiliation(s)
- Anne C Rea
- Section of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14850, USA
| | - June B Nasrallah
- Section of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
50
|
Durand E, Méheust R, Soucaze M, Goubet PM, Gallina S, Poux C, Fobis-Loisy I, Guillon E, Gaude T, Sarazin A, Figeac M, Prat E, Marande W, Bergès H, Vekemans X, Billiard S, Castric V. Dominance hierarchy arising from the evolution of a complex small RNA regulatory network. Science 2014; 346:1200-5. [PMID: 25477454 DOI: 10.1126/science.1259442] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevention of fertilization through self-pollination (or pollination by a close relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility locus (S locus). The many alleles at this locus exhibit a dominance hierarchy that determines which of the two allelic specificities of a heterozygous genotype is expressed at the phenotypic level. Here, we uncover the evolution of how at least 17 small RNA (sRNA)-producing loci and their multiple target sites collectively control the dominance hierarchy among alleles within the gene controlling the pollen S-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of sRNA-target interactions by jointly acting on sRNA genes and their target sites, which has resulted in a complex system of regulation among alleles.
Collapse
Affiliation(s)
- Eléonore Durand
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Raphaël Méheust
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Marion Soucaze
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Pauline M Goubet
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Sophie Gallina
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Céline Poux
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, F-69364 Lyon, Cedex 07, France
| | - Eline Guillon
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, F-69364 Lyon, Cedex 07, France
| | - Thierry Gaude
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, F-69364 Lyon, Cedex 07, France
| | - Alexis Sarazin
- Department of Biology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | - Martin Figeac
- UDSL Université Lille 2 Droit et Santé, and Plate-forme de génomique fonctionnelle et structurale IFR-114, F-59000 Lille, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - William Marande
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Xavier Vekemans
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Sylvain Billiard
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Vincent Castric
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France.
| |
Collapse
|