1
|
Pellegrini H, Sharpe EH, Liu G, Nishiuchi E, Doerr N, Kipp KR, Chin T, Schimmel MF, Weimbs T. Cleavage fragments of the C-terminal tail of polycystin-1 are regulated by oxidative stress and induce mitochondrial dysfunction. J Biol Chem 2023; 299:105158. [PMID: 37579949 PMCID: PMC10502374 DOI: 10.1016/j.jbc.2023.105158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.
Collapse
Affiliation(s)
- Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Elizabeth H Sharpe
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Guangyi Liu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA; Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Eiko Nishiuchi
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Nicholas Doerr
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Kevin R Kipp
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Tiffany Chin
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Margaret F Schimmel
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
2
|
Wang Q, Zou B, Wei X, Lin H, Pang C, Wang L, Zhong J, Chen H, Gao X, Li M, Ong ACM, Yue Z, Sun L. Identification of renal cyst cells of type I Nephronophthisis by single-nucleus RNA sequencing. Front Cell Dev Biol 2023; 11:1192935. [PMID: 37583898 PMCID: PMC10423821 DOI: 10.3389/fcell.2023.1192935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Nephronophthisis (NPH) is the most common genetic cause of end-stage renal disease (ESRD) in childhood, and NPHP1 is the major pathogenic gene. Cyst formation at the corticomedullary junction is a pathological feature of NPH, but the mechanism underlying cystogenesis is not well understood. The isolation and identification of cystic cell subpopulation could help to identify their origins and provide vital clues to the mechanisms underlying cystogenesis in NPH. Methods: Single-nucleus RNA sequencing (snRNA-seq) was performed to produce an atlas of NPHP1 renal cells. Kidney samples were collected from WT (Nphp1 +/+) mice and NPHP1 (Nphp1 del2-20/del2-20) model mice. Results: A comprehensive atlas of the renal cellular landscape in NPHP1 was generated, consisting of 14 basic renal cell types as well as a subpopulation of DCT cells that was overrepresented in NPHP1 kidneys compared to WT kidneys. GO analysis revealed significant downregulation of genes associated with tubular development and kidney morphogenesis in this subpopulation. Furthermore, the reconstruction of differentiation trajectories of individual cells within this subpopulation confirmed that a specific group of cells in NPHP1 mice become arrested at an early stage of differentiation and proliferate to form cysts. We demonstrate that Niban1 is a specific molecular marker of cystic cells in both mice and human NPHP1. Conclusion: In summary, we report a novel subpopulation of DCT cells, marked by Niban1, that are classified as cystic cells in the NPHP1 mice kidney. These results offer fresh insights into the cellular and molecular basis of cystogenesis in NPH.
Collapse
Affiliation(s)
- Qianying Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baojuan Zou
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrong Lin
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changmiao Pang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinglin Zhong
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Albert C. M. Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Zhihui Yue
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Szaraz D, Danek Z, Lipovy B, Krivanek J, Buchtova M, Moldovan Putnova B, Putnova I, Stembirek J, Andrasina T, Divacka P, Izakovicova Holla L, Borilova Linhartova P. Primary cilia and hypoxia-associated signaling in developmental odontogenic cysts in relation to autosomal dominant polycystic kidney disease - A novel insight. Heliyon 2023; 9:e17130. [PMID: 37389068 PMCID: PMC10300219 DOI: 10.1016/j.heliyon.2023.e17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
Developmental cysts are pathological epithelial-lined cavities arising in various organs as a result of systemic or hereditary diseases. Molecular mechanisms involved in the formation of developmental odontogenic cysts (OCs) are not fully understood yet; the cystogenesis of renal cysts originating from the autosomal dominant polycystic kidney disease (ADPKD) has been, however, explored in much greater detail. This narrative review aimed i) to summarize molecular and cellular processes involved in the formation and growth of developmental OCs, especially dentigerous cysts (DCs) and odontogenic keratocysts (OKCs), ii) to find if there are any similarities in their cystogenesis to ADPKD cysts, and, based on that, iii) to suggest potential factors, candidate molecules, and mechanisms that could be involved in the DC formation, thus proposing further research directions. Here we suggest a possible association of developmental OCs with primary cilia disruption and with hypoxia, which have been previously linked with cyst formation in ADPKD patients. This is illustrated on the imagery of tissues from an ADPKD patient (renal cyst) and from developmental OCs, supporting the similarities in cell proliferation, apoptosis, and primary cilia distribution in DC/OKC/ADPKD tissues. Based on all that, we propose a novel hypothesis of OCs formation suggesting a crucial role of mutations associated with the signaling pathways of primary cilia (in particular, Sonic Hedgehog). These can lead to excessive proliferation and formation of cell agglomerates, which is followed by hypoxia-driven apoptosis in the centers of such agglomerates (controlled by molecules such as Hypoxia-inducible factor-1 alpha), leading to cavity formation and, finally, the OCs development. Based on this, we propose future perspectives in the investigation of OC pathogenesis.
Collapse
Affiliation(s)
- David Szaraz
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdenek Danek
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Bretislav Lipovy
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Burns and Plastic Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Barbora Moldovan Putnova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences, Palackého tř. 1946/1, 61242 Brno-Královo Pole, Czech Republic
| | - Iveta Putnova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 61242 Brno-Královo Pole, Czech Republic
| | - Jan Stembirek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Clinic of Maxillofacial Surgery, University Hospital Ostrava, 17. Listopadu 1790/5, 70800 Ostrava-Poruba, Czech Republic
| | - Tomas Andrasina
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Petra Divacka
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Internal Medicine and Gastroenterology, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic
| | - Petra Borilova Linhartova
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
- Clinic of Stomatology, Institution Shared with St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
4
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, et alVitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Show More Authors] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Agborbesong E, Li LX, Li L, Li X. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Front Mol Biosci 2022; 9:922428. [PMID: 35847973 PMCID: PMC9277309 DOI: 10.3389/fmolb.2022.922428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, which is caused by mutations in the PKD1 and PKD2 genes, characterizing by progressive growth of multiple cysts in the kidneys, eventually leading to end-stage kidney disease (ESKD) and requiring renal replacement therapy. In addition, studies indicate that disease progression is as a result of a combination of factors. Understanding the molecular mechanisms, therefore, should facilitate the development of precise therapeutic strategies for ADPKD treatment. The roles of epigenetic modulation, interstitial inflammation, and regulated cell death have recently become the focuses in ADPKD. Different epigenetic regulators, and the presence of inflammatory markers detectable even before cyst growth, have been linked to cyst progression. Moreover, the infiltration of inflammatory cells, such as macrophages and T cells, have been associated with cyst growth and deteriorating renal function in humans and PKD animal models. There is evidence supporting a direct role of the PKD gene mutations to the regulation of epigenetic mechanisms and inflammatory response in ADPKD. In addition, the role of regulated cell death, including apoptosis, autophagy and ferroptosis, have been investigated in ADPKD. However, there is no consensus whether cell death promotes or delays cyst growth in ADPKD. It is therefore necessary to develop an interactive picture between PKD gene mutations, the epigenome, inflammation, and cell death to understand why inherited PKD gene mutations in patients may result in the dysregulation of these processes that increase the progression of renal cyst formation.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Zhang X, Li LX, Ding H, Torres VE, Yu C, Li X. Ferroptosis Promotes Cyst Growth in Autosomal Dominant Polycystic Kidney Disease Mouse Models. J Am Soc Nephrol 2021; 32:2759-2776. [PMID: 34716241 PMCID: PMC8806097 DOI: 10.1681/asn.2021040460] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disease, is regulated by different forms of cell death, including apoptosis and autophagy. However, the role in ADPKD of ferroptosis, a recently discovered form of cell death mediated by iron and lipid metabolism, remains elusive. METHODS To determine a pathophysiologic role of ferroptosis in ADPKD, we investigated whether the absence of Pkd1 (encoding polycystin-1) affected the expression of key factors involved in the process of ferroptosis, using Western blot and qRT-PCR analysis in Pkd1 mutant renal cells and tissues. We also examined whether treatment with erastin, a ferroptosis inducer, and ferrostain-1, a ferroptosis inhibitor, affected cyst growth in Pkd1 mutant mouse models. RESULTS We found that kidney cells and tissues lacking Pkd1 exhibit extensive metabolic abnormalities, including reduced expression of the system Xc- amino acid antiporter (critical for import of cystine), of iron exporter (ferroportin), and of GPX4 (a key and negative regulator of ferroptosis). The abnormalities also include increased expression of iron importers (TfR1, DMT1) and HO-1, which in turn result in high iron levels, low GSH and GPX4 activity, increased lipid peroxidation, and propensity to ferroptosis. We further found that erastin increased, and ferrostatin-1 inhibited ferroptotic cell death and proliferation of Pkd1-deficient cells in kidneys from Pkd1 mutant mice. A lipid peroxidation product increased in Pkd1-deficient cells, 4HNE, promoted the proliferation of survived Pkd1 mutant cells via activation of Akt, S6, Stat3, and Rb during the ferroptotic process, contributing to cyst growth. CONCLUSION These findings indicate that ferroptosis contributes to ADPKD progression and management of ferroptosis may be a novel strategy for ADPKD treatment.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Hao Ding
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Kamianowska M, Szczepański M, Krukowska A, Kamianowska A, Wasilewska A. Urinary Levels of Cathepsin B in Preterm Newborns. J Clin Med 2021; 10:4254. [PMID: 34575364 PMCID: PMC8465835 DOI: 10.3390/jcm10184254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Increased investment in perinatal health in developing countries has improved the survival of preterm newborns, but their significant multiorgan immaturity is associated with short and long-term adverse consequences. Cathepsin B, as a protease with angiogenic properties, may be related to the process of nephrogenesis. A total of 88 neonates (60 premature children, 28 healthy term children) were included in this prospective study. We collected urine samples on the first or second day of life. In order to determine the concentration of cathepsin B in the urine, the commercially available enzyme immunoassay was used. The urinary concentrations of cathepsin B normalized with the urinary concentrations of creatinine (cathepsin B/Cr.) in newborns born at 30-34, 35-36, and 37-41 (the control group) weeks of pregnancy were (median, Q1-Q3) 4.00 (2.82-5.12), 3.07 (1.95-3.90), and 2.51 (2.00-3.48) ng/mg Cr, respectively. Statistically significant differences were found between the group of newborns born at 30-34 weeks of pregnancy and the control group (p < 0.01), and between early and late preterm babies (PTB) (p < 0.05). The group of children born at 35-36 weeks of pregnancy and the control group did not differ significantly. This result suggests that the elevated urinary cathepsin B/Cr. level may be the result of the kidneys' immaturity in preterm newborns.
Collapse
Affiliation(s)
- Monika Kamianowska
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, 15-276 Białystok, Poland; (M.S.); (A.K.)
| | - Marek Szczepański
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, 15-276 Białystok, Poland; (M.S.); (A.K.)
| | - Anna Krukowska
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, 15-276 Białystok, Poland; (M.S.); (A.K.)
| | - Aleksandra Kamianowska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-276 Białystok, Poland; (A.K.); (A.W.)
| | - Anna Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-276 Białystok, Poland; (A.K.); (A.W.)
| |
Collapse
|
8
|
Safi W, Kraus A, Grampp S, Schödel J, Buchholz B. Macrophage migration inhibitory factor is regulated by HIF-1α and cAMP and promotes renal cyst cell proliferation in a macrophage-independent manner. J Mol Med (Berl) 2020; 98:1547-1559. [PMID: 32885302 PMCID: PMC7591438 DOI: 10.1007/s00109-020-01964-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Progressive cyst growth leads to decline of renal function in polycystic kidney disease. Macrophage migration inhibitory factor (MIF) was found to be upregulated in cyst-lining cells in a mouse model of polycystic kidney disease and to promote cyst growth. In addition, MIF can be secreted by tubular cells and may contribute to cyst growth in an autocrine manner. However, the underlying mechanisms leading to induction of MIF in cyst-lining cells remained elusive. Here, we demonstrate that hypoxia-inducible transcription factor (HIF) 1α upregulates MIF in cyst-lining cells in a tubule-specific PKD1 knockout mouse. Pharmacological stabilization of HIF-1α resulted in significant increase of MIF in cyst epithelial cells whereas tubule-specific knockout of HIF-1α prevented MIF upregulation. Identical regulation could be found for ABCA1, which has been shown to act as a transport protein for MIF. Furthermore, we show that MIF and ABCA1 are direct target genes of HIF-1α in human primary tubular cells. Next to HIF-1α and hypoxia, we found MIF being additionally regulated by cAMP which is a strong promotor of cyst growth. In line with these findings, HIF-1α- and cAMP-dependent in vitro cyst growth could be decreased by the MIF-inhibitor ISO-1 which resulted in reduced cyst cell proliferation. In conclusion, HIF-1α and cAMP regulate MIF in primary tubular cells and cyst-lining epithelial cells, and MIF promotes cyst growth in the absence of macrophages. In line with these findings, the MIF inhibitor ISO-1 attenuates HIF-1α- and cAMP-dependent in vitro cyst enlargement. KEY MESSAGES: • MIF is upregulated in cyst-lining cells in a polycystic kidney disease mouse model. • MIF upregulation is mediated by hypoxia-inducible transcription factor (HIF) 1α. • ABCA1, transport protein for MIF, is also regulated by HIF-1α in vitro and in vivo. • MIF is additionally regulated by cAMP, a strong promotor of cyst growth. • MIF-inhibitor ISO-1 reduces HIF-1α- and cAMP-dependent cyst growth.
Collapse
Affiliation(s)
- Wajima Safi
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany.
| |
Collapse
|
9
|
Nowak KL, Edelstein CL. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal 2019; 68:109518. [PMID: 31881325 DOI: 10.1016/j.cellsig.2019.109518] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Apoptosis in the cystic epithelium is observed in most rodent models of polycystic kidney disease (PKD) and in human autosomal dominant PKD (ADPKD). Apoptosis inhibition decreases cyst growth, whereas induction of apoptosis in the kidney of Bcl-2 deficient mice increases proliferation of the tubular epithelium and subsequent cyst formation. However, alternative evidence indicates that both induction of apoptosis as well as increased overall rates of apoptosis are associated with decreased cyst growth. Autophagic flux is suppressed in cell, zebra fish and mouse models of PKD and suppressed autophagy is known to be associated with increased apoptosis. There may be a link between apoptosis and autophagy in PKD. The mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2) and caspase pathways that are known to be dysregulated in PKD, are also known to regulate both autophagy and apoptosis. Induction of autophagy in cell and zebrafish models of PKD results in suppression of apoptosis and reduced cyst growth supporting the hypothesis autophagy induction may have a therapeutic role in decreasing cyst growth, perhaps by decreasing apoptosis and proliferation in PKD. Future research is needed to evaluate the effects of direct autophagy inducers on apoptosis in rodent PKD models, as well as the cause and effect relationship between autophagy, apoptosis and cyst growth in PKD.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Chang MY, C M Ong A. Targeting new cellular disease pathways in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2019; 33:1310-1316. [PMID: 28992279 DOI: 10.1093/ndt/gfx262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage renal failure. Understanding the molecular and cellular pathogenesis of ADPKD could help to identify new targets for treatment. The classic cellular cystic phenotype includes changes in proliferation, apoptosis, fluid secretion, extracellular matrix and cilia function. However, recent research, suggests that the cellular cystic phenotype could be broader and that changes, such as altered metabolism, autophagy, inflammation, oxidative stress and epigenetic modification, could play important roles in the processes of cyst initiation, cyst growth or disease progression. Here we review these newer cellular pathways, describe evidence for their possible links to cystic pathogenesis or different stages of disease and discuss the options for developing novel treatments.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK.,Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
11
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
12
|
Holditch SJ, Brown CN, Atwood DJ, Lombardi AM, Nguyen KN, Toll HW, Hopp K, Edelstein CL. A study of sirolimus and mTOR kinase inhibitor in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2019; 317:F187-F196. [PMID: 31042058 DOI: 10.1152/ajprenal.00051.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (PKD) is characterized by cyst formation and growth, which are partially driven by abnormal proliferation of tubular cells. Proproliferative mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2) are activated in the kidneys of mice with PKD. Sirolimus indirectly inhibits mTORC1. Novel mTOR kinase inhibitors directly inhibit mTOR kinase, resulting in the inhibition of mTORC1 and mTORC2. The aim of the present study was to determine the effects of sirolimus versus the mTOR kinase inhibitor torin2 on cyst growth and kidney function in the Pkd1 p.R3277C (Pkd1RC/RC) mouse model, a hypomorphic Pkd1 model orthologous to the human condition, and to determine the effects of sirolimus versus torin2 on mTORC1 and mTORC2 signaling in PKD1-/- cells and in the kidneys of Pkd1RC/RC mice. In vitro, both inhibitors reduced mTORC1 and mTORC2 phosphorylated substrates and negatively impacted cellular metabolic activity, as measured by MTT assay. Pkd1RC/RC mice were treated with sirolimus or torin2 from 50 to 120 days of age. Torin2 was as effective as sirolimus in decreasing cyst growth and improving loss of kidney function. Both sirolimus and torin2 decreased phosphorylated S6 protein, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1, phosphorylated Akt, and proliferation in Pkd1RC/RC kidneys. In conclusion, torin2 and sirolimus were equally effective in decreasing cyst burden and improving kidney function and mediated comparable effects on mTORC1 and mTORC2 signaling and proliferation in the Pkd1RC/RC kidney.
Collapse
Affiliation(s)
- Sara J Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Daniel J Atwood
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Andrew M Lombardi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Khoa N Nguyen
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Harrison W Toll
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| |
Collapse
|
13
|
Malekshahabi T, Khoshdel Rad N, Serra AL, Moghadasali R. Autosomal dominant polycystic kidney disease: Disrupted pathways and potential therapeutic interventions. J Cell Physiol 2019; 234:12451-12470. [PMID: 30644092 DOI: 10.1002/jcp.28094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic inherited renal cystic disease that occurs in different races worldwide. It is characterized by the development of a multitude of renal cysts, which leads to massive enlargement of the kidney and often to renal failure in adulthood. ADPKD is caused by a mutation in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Recent studies showed that cyst formation and growth result from deregulation of multiple cellular pathways like proliferation, apoptosis, metabolic processes, cell polarity, and immune defense. In ADPKD, intracellular cyclic adenosine monophosphate (cAMP) promotes cyst enlargement by stimulating cell proliferation and transepithelial fluid secretion. Several interventions affecting many of these defective signaling pathways have been effective in animal models and some are currently being tested in clinical trials. Moreover, the stem cell therapy can improve nephropathies and according to studies were done in this field, can be considered as a hopeful therapeutic approach in future for PKD. This study provides an in-depth review of the relevant molecular pathways associated with the pathogenesis of ADPKD and their implications in development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Talieh Malekshahabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Andreas L Serra
- Department of Internal Medicine and Nephrology, Klinik Hirslanden, Zurich, Switzerland
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Jiang L, Fang P, Septer S, Apte U, Pritchard MT. Inhibition of Mast Cell Degranulation With Cromolyn Sodium Exhibits Organ-Specific Effects in Polycystic Kidney (PCK) Rats. Int J Toxicol 2018; 37:308-326. [PMID: 29862868 PMCID: PMC6027616 DOI: 10.1177/1091581818777754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a monogenic disease characterized by development of hepatorenal cysts, pericystic fibrosis, and inflammation. Previous studies show that mast cell (MC) mediators such as histamine induce proliferation of cholangiocytes. We observed robust MC accumulation around liver cysts, but not kidney cysts, in polycystic kidney (PCK) rats (an animal model of ARPKD). Therefore, we hypothesized that MCs contribute to hepatic cyst growth in ARPKD. To test this hypothesis, we treated PCK rats with 1 of 2 different MC stabilizers, cromolyn sodium (CS) or ketotifen, or saline. The CS treatment decreased MC degranulation in the liver and reduced serum tryptase (an MC granule component). Interestingly, we observed an increase in liver to body weight ratio after CS treatment paralleled by a significant increase in individual cyst size. Hepatic fibrosis was not affected by CS treatment. The CS treatment increased hepatic cyst wall epithelial cell (CWEC) proliferation and decreased cell death. Ketotifen treatment also increased hepatic cyst size. In vitro, CS treatment did not affect proliferation of isolated hepatic CWECs from PCK rats. In contrast, CS decreased kidney to body weight ratio paralleled by a significant decrease in individual cyst size. The percentage of kidney to body weight ratio was strongly correlated with serum renin (an MC granule component). Ketotifen did not affect kidney cyst growth. Collectively, these data suggest that CS affects hepatic and renal cyst growth differently in PCK rats. Moreover, CS may be beneficial to renal cystic disease but may exacerbate hepatic cyst growth in ARPKD.
Collapse
Affiliation(s)
- Lu Jiang
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pingping Fang
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Septer
- 2 Department of Pediatric Gastroenterology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Udayan Apte
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- 3 Liver Center, University of Kansas Medical Center, Kansas City, KS, USA
- 4 The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T Pritchard
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- 3 Liver Center, University of Kansas Medical Center, Kansas City, KS, USA
- 4 The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
15
|
Kim S, Jung ES, Lee J, Heo NJ, Na KY, Han JS. Effects of colchicine on renal fibrosis and apoptosis in obstructed kidneys. Korean J Intern Med 2018; 33:568-576. [PMID: 28298077 PMCID: PMC5943651 DOI: 10.3904/kjim.2016.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Colchicine is an established drug for microtubule stabilization that may reduce tissue injury. No data were available that its effects may depend on the dosage of colchicine. We investigated the anti-fibrotic and apoptotic effects of various dose of colchicine in a unilateral ureteral obstruction (UUO) model. METHODS Thirty-six Sprague-Dawley rats were randomly assigned into six groups. Two sham groups were divided into a vehicle-treated or colchicine-treated group (100 μg/kg/day). Four UUO groups were treated with either vehicle or three different doses of colchicine for 7 days (30, 60, and 100 μg/kg/day, intraperitoneally). All of the animals were sacrificed on day 7. RESULTS Colchicine treatment diminished acetylated α-tubulin and tumor growth factor-β immunoreactivities in the cortical area of the 7-day obstructed kidneys, which was in dose dependent manner. Colchicine attenuated tubulointerstitial damage and apoptosis in both cortical and medullary area, and beneficial effects of colchicine therapy were dramatically shown at the higher dosage of colchicine. The expression levels of cleaved caspase-3, ED-1, and fibronectin were decreased in UUO animals. CONCLUSIONS We found that the proper dosage of colchicine may have anti-fibrotic and anti-apoptotic effects in obstructed kidneys. For clinical applications, an optimal dose of colchicine should be evaluated to maximize the prevention of renal disease progression.
Collapse
Affiliation(s)
- Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Sook Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - Nam Ju Heo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin Suk Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Correspondence to Jin Suk Han, M.D. Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-2392 Fax: +82-2-741-4876 E-mail:
| |
Collapse
|
16
|
Yang M, Zhuang YY, Wang WW, Zhu HP, Zhang YJ, Zheng SL, Yang YR, Chen BC, Xia P, Zhang Y. Role of Sirolimus in renal tubular apoptosis in response to unilateral ureteral obstruction. Int J Med Sci 2018; 15:1433-1442. [PMID: 30443162 PMCID: PMC6216060 DOI: 10.7150/ijms.26954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023] Open
Abstract
Renal tubule cell apoptosis plays a pivotal role in the progression of chronic renal diseases. The previous study indicates that Sirolimus is effective on unilateral ureteral obstruction (UUO)-induced renal fibrosis. However, the role of Sirolimus in renal tubular apoptosis induced by UUO has not yet been addressed. The aim of this study was to determine the role of Sirolimus in renal tubular apoptosis induced by UUO. Male Sprague-Dawley rats were divided into three groups, sham-operated rats, and after which unilateral ureteral obstruction (UUO) was performed: non-treated and sirolimus-treated (1mg/kg). After 4, 7 and 14 d, animals were sacrificed and blood, kidney tissue samples were collected for analyses. Histologic changes and interstitial collagen were determined microscopically following HE and Masson's trichrome staining. The expression of PCNA was investigated using immunohistochemistry and the expression of Bcl-2, Bax, caspase-9, and caspase-3 were investigated using Western blot in each group. Tubular apoptotic cell deaths were assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Sirolimus administration resulted in a significant reduction in tubulointerstitial fibrosis scores. After UUO, there was an increase in tubular and interstitial apoptosis in untreated controls as compared to Sirolimus treatment rats (P<0.05). In addition, the expression of PCNA, Bcl-2, Bax, caspase-9, and caspase-3 in obstructed kidney was characterized by immunohistochemistry and Western blot analyses demonstrating that sirolimus treatment significantly reduced PCNA, Bax, caspase-9 and cleaved caspase-3 expression compared to those observed in controls (P<0.05), whereas, Bcl-2 in the obstructed kidney were decreased in untreated controls compared to Sirolimus treatment rats subjected to the same time course of obstruction (P<0.05). We demonstrated a marked renoprotective effect of sirolimus by inhibition of UUO-induced renal tubular apoptosis in vivo.
Collapse
Affiliation(s)
- Mei Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yang-Yang Zhuang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Wei-Wei Wang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Hai-Ping Zhu
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yan-Jie Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Sao-Ling Zheng
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yi-Rrong Yang
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Bi-Cheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325015, China
| | - Peng Xia
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yan Zhang
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| |
Collapse
|
17
|
Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A, Moles A, Pavone LM. The Multifaceted Role of the Lysosomal Protease Cathepsins in Kidney Disease. Front Cell Dev Biol 2017; 5:114. [PMID: 29312937 PMCID: PMC5742100 DOI: 10.3389/fcell.2017.00114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Kidney disease is worldwide the 12th leading cause of death affecting 8–16% of the entire population. Kidney disease encompasses acute (short-lasting episode) and chronic (developing over years) pathologies both leading to renal failure. Since specific treatments for acute or chronic kidney disease are limited, more than 2 million people a year require dialysis or kidney transplantation. Several recent evidences identified lysosomal proteases cathepsins as key players in kidney pathophysiology. Cathepsins, originally found in the lysosomes, exert important functions also in the cytosol and nucleus of cells as well as in the extracellular space, thus participating in a wide range of physiological and pathological processes. Based on their catalytic active site residue, the 15 human cathepsins identified up to now are classified in three different families: serine (cathepsins A and G), aspartate (cathepsins D and E), or cysteine (cathepsins B, C, F, H, K, L, O, S, V, X, and W) proteases. Specifically in the kidney, cathepsins B, D, L and S have been shown to regulate extracellular matrix homeostasis, autophagy, apoptosis, glomerular permeability, endothelial function, and inflammation. Dysregulation of their expression/activity has been associated to the onset and progression of kidney disease. This review summarizes most of the recent findings that highlight the critical role of cathepsins in kidney disease development and progression. A better understanding of the signaling pathways governed by cathepsins in kidney physiopathology may yield novel selective biomarkers or therapeutic targets for developing specific treatments against kidney disease.
Collapse
Affiliation(s)
- Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Anne Pizard
- Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Anna Moles
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
19
|
da Costa NMM, de Siqueira AS, Ribeiro ALR, da Silva Kataoka MS, Jaeger RG, de Alves-Júnior SM, Smith AM, de Jesus Viana Pinheiro J. Role of HIF-1α and CASPASE-3 in cystogenesis of odontogenic cysts and tumors. Clin Oral Investig 2017; 22:141-149. [PMID: 28238093 DOI: 10.1007/s00784-017-2090-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Odontogenic cysts and tumors are the most relevant lesions that affect the gnathic bones. These lesions have in common the formation of cystic areas and this common feature may suggest involvement of similar mechanisms. The hypoxia inducible factor 1 alpha (HIF-1α), a responsive protein to hypoxia and caspase-3, an irreversible apoptosis marker, may contribute to cyst formation. Thus, this study aimed to investigate the immunoexpression of these proteins in odontogenic cysts and tumors. MATERIAL AND METHODS Twenty cases of ameloblastoma, keratocystic odontogenic tumor (KOT) (n = 20), radicular cyst (RC) (n = 18), dentigerous cyst (DC) (n = 11), calcifying cystic odontogenic tumor (n = 8), and dental follicle (DF) (n = 10) were used to investigate HIF-1α and caspase-3 expression in sequential serial cuts by immunohistochemistry. RESULTS HIF-1α was overexpressed in RC, DC, and ameloblastoma when compared with DF. The basal and sometimes the lower suprabasal layer showed no or very low expression in DC, KOT, and ameloblastoma, the last also showing strong expression in solid epithelial areas and initial cystic formation regions. Caspase-3 was found to be overexpressed in all lesions, with the highest expression in odontogenic cysts compared to tumors. HIF-1α and caspase-3 were localized in similar areas of the same lesions, especially in the epithelium surrounding cystic formations. CONCLUSIONS This study showed distinct immunoexpression of HIF-1α and caspase-3 in odontogenic cyst and tumors, with higher expression observed in odontogenic cysts. CLINICAL RELEVANCE These findings suggest a possible correlation between hypoxia, apoptosis, and cystogenesis, leading to understand the mechanisms responsible to cystic formation in odontogenic lesions.
Collapse
Affiliation(s)
- Natacha M M da Costa
- Cell Culture Laboratory, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, PA, 66075110, Brazil
| | - Adriane S de Siqueira
- School of Dentistry, Universidade Positivo, Av. Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR, 80740-050, Brazil
| | - André L R Ribeiro
- Department of Oral and Maxillofacial Surgery, University Center of Para-CESUPA, Belem, Brazil
| | - Maria S da Silva Kataoka
- Cell Culture Laboratory, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, PA, 66075110, Brazil
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Ed. Biomédicas 1, São Paulo, SP, 05508-000, Brazil
| | - Sérgio M de Alves-Júnior
- Cell Culture Laboratory, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, PA, 66075110, Brazil
| | - Andrew M Smith
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK.,The Rayne Building, Centre for Molecular Medicine, 5 University Street, London, WC1E 6JF, UK
| | - João de Jesus Viana Pinheiro
- Cell Culture Laboratory, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, PA, 66075110, Brazil.
| |
Collapse
|
20
|
Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. Oncotarget 2017; 7:17479-91. [PMID: 27014913 PMCID: PMC4951227 DOI: 10.18632/oncotarget.8243] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Aldosterone (Aldo) is an independent risk factor for chronic kidney disease (CKD), and although Aldo directly induces renal tubular cell injury, the underlying mechanisms remain unclear. NLRP3 inflammasome and mitochondrial reactive oxygen species (ROS) have recently been implicated in various kinds of CKD. The present study hypothesized that mitochondrial ROS and NLRP3 inflammasome mediated Aldo–induced tubular cell injury. The NLRP3 inflammasome is induced by Aldo in a dose- and time-dependent manner, as evidenced by increased NLRP3, ASC, caspase-1, and downstream cytokines, such as interleukin (IL)-1β and IL-18. The activation of the NLRP3 inflammasome was significantly prevented by the selective mineralocorticoid receptor (MR) antagonist eplerenone (EPL) (P < 0.01). Mice harboring genetic knock-out of NLRP3 (NLRP3−/−) showed decreased maturation of renal IL-1β and IL-18, reduced renal tubular apoptosis, and improved renal epithelial cell phenotypic alternation, and attenuated renal function in response to Aldo-infusion. In addition, mitochondrial ROS was also increased in Aldo-stimulated HK-2 cells, as assessed by MitoSOXTM red reagent. Mito-Tempo, the mitochondria-targeted antioxidant, significantly decreased HK-2 cell apoptosis, oxidative stress, and the activation of NLRP3 inflammasome. We conclude that Aldo induces renal tubular cell injury via MR dependent, mitochondrial ROS-mediated NLRP3 inflammasome activation.
Collapse
|
21
|
Overexpression of exogenous kidney-specific Ngal attenuates progressive cyst development and prolongs lifespan in a murine model of polycystic kidney disease. Kidney Int 2017; 91:412-422. [DOI: 10.1016/j.kint.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
|
22
|
Liu J, Wang W, Liu M, Su L, Zhou H, Xia Y, Ran J, Lin HY, Yang B. Repulsive guidance molecule b inhibits renal cyst development through the bone morphogenetic protein signaling pathway. Cell Signal 2016; 28:1842-1851. [DOI: 10.1016/j.cellsig.2016.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023]
|
23
|
Rogers KA, Moreno SE, Smith LA, Husson H, Bukanov NO, Ledbetter SR, Budman Y, Lu Y, Wang B, Ibraghimov-Beskrovnaya O, Natoli TA. Differences in the timing and magnitude of Pkd1 gene deletion determine the severity of polycystic kidney disease in an orthologous mouse model of ADPKD. Physiol Rep 2016; 4:4/12/e12846. [PMID: 27356569 PMCID: PMC4926022 DOI: 10.14814/phy2.12846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Development of a disease‐modifying therapy to treat autosomal dominant polycystic kidney disease (ADPKD) requires well‐characterized preclinical models that accurately reflect the pathology and biochemical changes associated with the disease. Using a Pkd1 conditional knockout mouse, we demonstrate that subtly altering the timing and extent of Pkd1 deletion can have a significant impact on the origin and severity of kidney cyst formation. Pkd1 deletion on postnatal day 1 or 2 results in cysts arising from both the cortical and medullary regions, whereas deletion on postnatal days 3–8 results in primarily medullary cyst formation. Altering the extent of Pkd1 deletion by modulating the tamoxifen dose produces dose‐dependent changes in the severity, but not origin, of cystogenesis. Limited Pkd1 deletion produces progressive kidney cystogenesis, accompanied by interstitial fibrosis and loss of kidney function. Cyst growth occurs in two phases: an early, rapid growth phase, followed by a later, slow growth period. Analysis of biochemical pathway changes in cystic kidneys reveals dysregulation of the cell cycle, increased proliferation and apoptosis, activation of Mek‐Erk, Akt‐mTOR, and Wnt‐β‐catenin signaling pathways, and altered glycosphingolipid metabolism that resemble the biochemical changes occurring in human ADPKD kidneys. These pathways are normally active in neonatal mouse kidneys until repressed around 3 weeks of age; however, they remain active following Pkd1 deletion. Together, this work describes the key parameters to accurately model the pathological and biochemical changes associated with ADPKD in a conditional mouse model.
Collapse
Affiliation(s)
- Kelly A Rogers
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Sarah E Moreno
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Laurie A Smith
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Hervé Husson
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Nikolay O Bukanov
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Steven R Ledbetter
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Yeva Budman
- Department of Analytical Research and Development, Sanofi Corporation, Waltham, Massachusetts
| | - Yuefeng Lu
- Department of Biostatistics and Programming, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Bing Wang
- Department of Analytical Research and Development, Sanofi Corporation, Waltham, Massachusetts
| | | | - Thomas A Natoli
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| |
Collapse
|
24
|
Lakhia R, Hajarnis S, Williams D, Aboudehen K, Yheskel M, Xing C, Hatley ME, Torres VE, Wallace DP, Patel V. MicroRNA-21 Aggravates Cyst Growth in a Model of Polycystic Kidney Disease. J Am Soc Nephrol 2016; 27:2319-30. [PMID: 26677864 PMCID: PMC4978047 DOI: 10.1681/asn.2015060634] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), one of the most common monogenetic disorders, is characterized by kidney failure caused by bilateral renal cyst growth. MicroRNAs (miRs) have been implicated in numerous diseases, but the role of these noncoding RNAs in ADPKD pathogenesis is still poorly defined. Here, we investigated the role of miR-21, an oncogenic miR, in kidney cyst growth. We found that transcriptional activation of miR-21 is a common feature of murine PKD. Furthermore, compared with renal tubules from kidney samples of normal controls, cysts in kidney samples from patients with ADPKD had increased levels of miR-21. cAMP signaling, a key pathogenic pathway in PKD, transactivated miR-21 promoter in kidney cells and promoted miR-21 expression in cystic kidneys of mice. Genetic deletion of miR-21 attenuated cyst burden, reduced kidney injury, and improved survival of an orthologous model of ADPKD. RNA sequencing analysis and additional in vivo assays showed that miR-21 inhibits apoptosis of cyst epithelial cells, likely through direct repression of its target gene programmed cell death 4 Thus, miR-21 functions downstream of the cAMP pathway and promotes disease progression in experimental PKD. Our results suggest that inhibiting miR-21 is a potential new therapeutic approach to slow cyst growth in PKD.
Collapse
Affiliation(s)
| | | | | | - Karam Aboudehen
- Department of Internal Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark E Hatley
- Department of Oncology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Vicente E Torres
- Departments of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Darren P Wallace
- Department of Internal Medicine and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | |
Collapse
|
25
|
Protection From Apoptotic Cell Death During Cold Storage Followed by Rewarming in 13-Lined Ground Squirrel Tubular Cells: The Role of Prosurvival Factors X-Linked Inhibitor of Apoptosis and PhosphoAkt. Transplantation 2016; 100:538-45. [PMID: 26457601 DOI: 10.1097/tp.0000000000000937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hibernators, such as the 13-lined ground squirrel, endure severe hypothermia during torpor followed by periodic rewarming (REW) during interbout arousal (IBA), proapoptotic conditions that are lethal to nonhibernating mammals. We have previously shown that 13-lined ground squirrel tubular cells are protected from apoptotic cell death during IBA. To understand the mechanism of protection, we developed an in vitro model of prolonged cold storage (CS) followed by REW, which is akin to the in vivo changes of hypothermia followed by REW observed during IBA. We hypothesized that renal tubular epithelial cells (RTECs) isolated from hibernating ground squirrels would be protected against apoptosis during CS/REW versus nonhibernating mouse RTECs. METHODS Isolated hibernating ground squirrel and mouse RTECs were subjected to CS at 4°C for 24 hours followed by REW to 37°C for 24 hours (CS/REW). RESULTS Ground squirrel RTECs had significantly less apoptosis compared to mouse RTECs when subjected to CS/REW. Next, we hypothesized that the mechanism of protection was related to the antiapoptotic proteins X-linked inhibitor of apoptosis (XIAP), phospho-Akt (pAkt), and phospho-BAD. There was a significantly increased pAkt and pBAD expression in ground squirrel versus mouse RTECs subjected to CS/REW. The XIAP expression was maintained in ground squirrel RTECs but was significantly decreased in mouse RTECs after CS/REW. Ground squirrel RTECs in which gene expression of Akt1 and XIAP was silenced lost their protection and demonstrated increased apoptosis and cleaved caspase-3 expression after CS/REW. CONCLUSIONS Our findings suggest that ground squirrel RTECs are protected against apoptosis during prolonged CS/REW by the "prosurvival" factors XIAP and pAkt.
Collapse
|
26
|
Venugopal J, Blanco G. Ouabain Enhances ADPKD Cell Apoptosis via the Intrinsic Pathway. Front Physiol 2016; 7:107. [PMID: 27047392 PMCID: PMC4805603 DOI: 10.3389/fphys.2016.00107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Progression of autosomal dominant polycystic kidney disease (ADPKD) is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3 nM) also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells). This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key “executioner” caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells). Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression.
Collapse
Affiliation(s)
- Jessica Venugopal
- Department of Molecular and Integrative Physiology and The Kidney Institute, University of Kansas Medical Center Kansas City, KS, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology and The Kidney Institute, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
27
|
Validation of Effective Therapeutic Targets for ADPKD Using Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 933:71-84. [DOI: 10.1007/978-981-10-2041-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Bhaskar LVKS, Elumalai R, Periasamy S. Pathways, perspectives and pursuits in polycystic kidney disease. J Nephropharmacol 2015; 5:41-48. [PMID: 28197498 PMCID: PMC5297506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/25/2015] [Indexed: 11/01/2022] Open
Abstract
Polycystic kidney disease (PKD) is characterized by the growth of numerous cysts in the kidneys. When cysts form in the kidneys, they are filled with fluid. PKD cysts can profoundly enlarge the kidneys while replacing much of the normal structure, resulting in reduced kidney function and leading to kidney failure. Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease that occurs in one out of 1000 humans. PKD and its causes are being dissected through studies of human populations and through the use of animal models. Mouse models in particular have made a substantial contribution to our understanding of the gene pathways involved in the pathogenesis and the nature of signaling molecules that act in a tissue-specific manner at critical stages of cyst development. PKD has a number of characteristics that make it uniquely challenging for the development of therapies to slowdown disease progression. This review provides current understanding of the etiopathology, pathways involved and therapeutic targets of PKDs.
Collapse
|
29
|
Forschbach V, Goppelt-Struebe M, Kunzelmann K, Schreiber R, Piedagnel R, Kraus A, Eckardt KU, Buchholz B. Anoctamin 6 is localized in the primary cilium of renal tubular cells and is involved in apoptosis-dependent cyst lumen formation. Cell Death Dis 2015; 6:e1899. [PMID: 26448322 PMCID: PMC4632301 DOI: 10.1038/cddis.2015.273] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/11/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Primary cilia are antenna-like structures projected from the apical surface of various mammalian cells including renal tubular cells. Functional or structural defects of the cilium lead to systemic disorders comprising polycystic kidneys as a key feature. Here we show that anoctamin 6 (ANO6), a member of the anoctamin chloride channel family, is localized in the primary cilium of renal epithelial cells in vitro and in vivo. ANO6 was not essential for cilia formation and had no effect on in vitro cyst expansion. However, knockdown of ANO6 impaired cyst lumen formation of MDCK cells in three-dimensional culture. In the absence of ANO6, apoptosis was reduced and epithelial cells were incompletely removed from the center of cell aggregates, which form in the early phase of cystogenesis. In line with these data, we show that ANO6 is highly expressed in apoptotic cyst epithelial cells of human polycystic kidneys. These data identify ANO6 as a cilium-associated protein and suggest its functional relevance in cyst formation.
Collapse
Affiliation(s)
- V Forschbach
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - M Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - K Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - R Schreiber
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - R Piedagnel
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155, F-75005 Paris, France
- INSERM, UMR_S 1155, F-75005 Paris, France
| | - A Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - K-U Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - B Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| |
Collapse
|
30
|
Seeger-Nukpezah T, Geynisman DM, Nikonova AS, Benzing T, Golemis EA. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol 2015; 11:515-34. [PMID: 25870008 PMCID: PMC5902186 DOI: 10.1038/nrneph.2015.46] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Centre for Integrated Oncology, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Daniel M Geynisman
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anna S Nikonova
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Centre for Molecular Medicine Cologne, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Erica A Golemis
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
31
|
Ravichandran K, Zafar I, Ozkok A, Edelstein CL. An mTOR kinase inhibitor slows disease progression in a rat model of polycystic kidney disease. Nephrol Dial Transplant 2014; 30:45-53. [PMID: 25239638 DOI: 10.1093/ndt/gfu296] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The mTOR pathway, which consists of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), is activated in polycystic kidney disease (PKD) kidneys. Sirolimus and everolimus indirectly bind and inhibit mTORC1. A novel group of drugs, the mTOR kinase inhibitors, directly bind to mTOR kinase, thus inhibiting both mTORC1 and 2. The aim of the study was to determine the therapeutic effect of an mTOR kinase inhibitor, PP242, in the Han:SPRD rat (Cy/+) model of PKD. METHODS Male rats were treated with PP242 5 mg/kg/day IP or vehicle for 5 weeks. RESULTS PP242 significantly reduced the kidney enlargement, the cyst density and the blood urea nitrogen in Cy/+ rats. On immunoblot of kidneys, PP242 resulted in a decrease in pS6, a marker of mTORC1 signaling and pAkt(Ser473), a marker of mTORC2 signaling. mTORC plays an important role in regulating cytokine production. There was an increase in IL-1, IL-6, CXCL1 and TNF-α in Cy/+ rat kidneys that was unaffected by PP242. Apoptosis or proliferation is known to play a causal role in cyst growth. PP242 had no effect on caspase-3 activity, TUNEL positive or active caspase-3-positive tubular cells in Cy/+ kidneys. PP242 reduced the number of proliferating cells per cyst and per non-cystic tubule in Cy/+ rats. CONCLUSIONS In a rat model of autosomal dominant polycystic kidney disease, PP242 treatment (i) decreases proliferation in cystic and non-cystic tubules; (ii) inhibits renal enlargement and cystogenesis and (iii) significantly reduces the loss of kidney function.
Collapse
Affiliation(s)
- Kameswaran Ravichandran
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Iram Zafar
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Abdullah Ozkok
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| |
Collapse
|
32
|
Gattone VH, Bacallao RL. Dichloroacetate treatment accelerates the development of pathology in rodent autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol 2014; 307:F1144-8. [PMID: 25234313 DOI: 10.1152/ajprenal.00009.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dichloroacetate (DCA) is a toxicant by-product from the chlorination disinfection process for municipal water. The levels would not affect people with normal renal and liver function. However, people with impaired renal or liver function may have an increased susceptibility to DCA toxicity as those are the organs affected by DCA. People (and rodents) with polycystic kidney disease (PKD) are polyuric, drink more fluids, and have both renal and liver pathology. In PKD, renal tubules and biliary epithelial cells proliferate to form cysts, which can eventually cause renal and/or liver dysfunction. Therefore, PKD may be a predisposing condition with an increased sensitivity to DCA toxicity. PCK rats are an orthologous model of human autosomal recessive PKD and were treated with 75 mg/l DCA in their drinking water. Male and female PCK and male Sprague-Dawley rats were treated from 4 to 8 wk of age, after which the severity of the renal and liver pathology induced by DCA were assessed. Only male PCK rats were adversely affected by DCA treatment, with an increase in the severity of renal cystic disease evinced by an increase in cystic enlargement and proteinuria. In conclusion, the chlorination byproduct DCA may adversely affect those with a preexisting renal disease, especially those who are polydipsic, like those with PKD.
Collapse
Affiliation(s)
- Vincent H Gattone
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine-Nephrology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Robert L Bacallao
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine-Nephrology, Indiana University School of Medicine, Indianapolis, Indiana; and Richard Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
33
|
Inoue T, Kusano T, Tomori K, Nakamoto H, Suzuki H, Okada H. Effects of cell-type-specific expression of a pan-caspase inhibitor on renal fibrogenesis. Clin Exp Nephrol 2014; 19:350-8. [PMID: 25070875 DOI: 10.1007/s10157-014-1011-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/07/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND The caspase family of enzymes is grouped into two major sub-families, namely apoptotic and inflammatory caspases, which play central roles in the induction of apoptosis, regulation of inflammation and immunity, and cellular differentiation. METHODS The role of caspase activation in tubular epithelium and interstitial cells of 3 lines of transgenic mice with obstructed nephropathy was examined: p35 mice bearing the pan-caspase inhibitor protein expressed by the p35 gene separated from the universal CAG promoter by a floxed STOP sequence were crossed with γGT.Cre and FSP1.Cre mice that express Cre recombinase in the cortical tubular epithelium and FSP1(+) interstitial cells, respectively. The γGT.Cre;p35, FSP1.Cre;p35 and p35 control mice were then challenged with unilateral ureter obstruction (UUO). RESULTS Proinflammatory parameters such as protein levels of active IL-1β subunit and mRNA levels of TNF-α and NOD-like receptor pyrin domain containing-3, and profibrogenic parameters such as interstitial matrix deposition and mRNA levels of fibronectin EIIIA isoform and α1 chain of procollagen type I in the kidneys were significantly increased at 7 days in the FSP1.Cre;p35- and p35-UUO mice, but not in the γGT.Cre;p35-UUO mice. These changes paralleled the numbers of apoptotic nuclei in tubules, but not in interstitial cells, and the protein levels of active caspase-3 subunit in the kidneys of FSP1.Cre;p35-, p35- and γGT.Cre;p35-UUO mice. CONCLUSION This study provides evidence of the critical role of caspase activation in the tubular epithelium, but not in FSP1(+) interstitial cells, in apoptosis and inflammasome induction, leading to proinflammatory and profibrogenic processes in fibrous kidneys with UUO.
Collapse
Affiliation(s)
- Tsutomu Inoue
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Irumagun, Saitama, 350-0451, Japan
- Division of Project Research, Saitama Medical University Research Center of Genomic Medicine, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Takeru Kusano
- Division of Project Research, Saitama Medical University Research Center of Genomic Medicine, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
- Department of General Internal Medicine, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Irumagun, Saitama, 350-0451, Japan
| | - Kouji Tomori
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Irumagun, Saitama, 350-0451, Japan
| | - Hidetomo Nakamoto
- Department of General Internal Medicine, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Irumagun, Saitama, 350-0451, Japan
| | - Hiromichi Suzuki
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Irumagun, Saitama, 350-0451, Japan
- Division of Project Research, Saitama Medical University Research Center of Genomic Medicine, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Hirokazu Okada
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Irumagun, Saitama, 350-0451, Japan.
- Division of Project Research, Saitama Medical University Research Center of Genomic Medicine, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
- Department of General Internal Medicine, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Irumagun, Saitama, 350-0451, Japan.
| |
Collapse
|
34
|
Ravichandran K, Zafar I, He Z, Doctor RB, Moldovan R, Mullick AE, Edelstein CL. An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2. Hum Mol Genet 2014; 23:4919-31. [PMID: 24847003 DOI: 10.1093/hmg/ddu208] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease in the USA. In human ADPKD studies, sirolimus, a mammalian target of rapamycin complex 1 (mTORC1) inhibitor, had little therapeutic effect. While sirolimus robustly inhibits mTORC1, it has a minimal effect on mTOR complex 2 (mTORC2). Polycystic kidneys of Pkd2WS25/- mice, an orthologous model of human ADPKD caused by a mutation in the Pkd2 gene, had an early increase in pS6 (marker of mTORC1) and pAktSer(473) (marker of mTORC2). To investigate the effect of combined mTORC1 and 2 inhibition, Pkd2WS25/- mice were treated with an mTOR anti-sense oligonucleotide (ASO) that blocks mTOR expression thus inhibiting both mTORC1 and 2. The mTOR ASO resulted in a significant decrease in mTOR protein, pS6 and pAktSer(473). Pkd2WS25/- mice treated with the ASO had a normalization of kidney weights and kidney function and a marked decrease in cyst volume. The mTOR ASO resulted in a significant decrease in proliferation and apoptosis of tubular epithelial cells. To demonstrate the role of mTORC2 on cyst growth, Rictor, the functional component of mTORC2, was silenced in Madin-Darby canine kidney cell cysts grown in 3D cultures. Silencing Rictor significantly decreased cyst volume and expression of pAktSer(473). The decreased cyst size in the Rictor silenced cells was reversed by introduction of a constitutively active Akt1. In vitro, combined mTORC1 and 2 inhibition reduced cyst growth more than inhibition of mTORC1 or 2 alone. In conclusion, combined mTORC1 and 2 inhibition has therapeutic potential in ADPKD.
Collapse
Affiliation(s)
| | - Iram Zafar
- Division of Renal Diseases and Hypertension
| | - Zhibin He
- Division of Renal Diseases and Hypertension
| | | | - Radu Moldovan
- Advanced Light Microscopy Core Facility, University of Colorado at Denver, Aurora, CO, USA
| | | | | |
Collapse
|
35
|
Abstract
Autosomal-dominant polycystic kidney disease is the most common form of polycystic kidney disease in adults and is caused by a mutation in the polycystic kidney disease 1 or 2 genes, which encode, respectively, polycystin-1 and polycystin-2. Autophagy is present in polycystic kidneys in rat and mouse models of polycystic kidney disease. Autophagy has yet to be shown in human polycystic kidney disease kidneys. The mechanism of cyst growth has been studied extensively in vitro and in vivo. Multiple molecules and signaling pathways have been implicated in cyst growth including mammalian target of rapamycin, the renin-angiotensin-aldosterone system, vasopressin and cyclic adenosine monophosphate, epidermal growth factor and insulin-like growth factor tyrosine kinases, vascular endothelial growth factor, extracellular signal-related kinase, tumor necrosis factor-α, cyclin-dependent kinases, caspases and apoptosis, and cyclic adenosine monophosphate-activated protein kinases. Many of the agents that inhibit these signaling pathways and slow cyst growth are also autophagy inducers such as mammalian target of rapamycin inhibitors, cyclin-dependent kinase inhibitors, caspase inhibitors, tyrosine kinase inhibitors, metformin, curcumin, and triptolide. There are reasons to believe that suppression of autophagy may play a role in cyst formation and growth. This review presents the hypothesis that suppression of autophagy may play a role in cyst formation and growth, based on the following: (1) many of the agents that protect against polycystic kidney disease also induce autophagy, (2) suppression of autophagy in polycystic kidney disease 1 knockout cells, (3) a defect in autophagy in congenital polycystic kidney mice with polycystic kidney disease, (4) how suppressed autophagy may relate to apoptosis in polycystic kidney disease, and (5) conditions with defective cilia, the ciliopathies, are associated with decreased autophagy.
Collapse
Affiliation(s)
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO.
| |
Collapse
|
36
|
Peterson KM, Franchi F, Loeffler DL, Psaltis PJ, Harris PC, Lerman LO, Lerman A, Rodriguez-Porcel M. Endothelial dysfunction occurs prior to clinical evidence of polycystic kidney disease. Am J Nephrol 2013; 38:233-40. [PMID: 24008943 DOI: 10.1159/000354236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Polycystic kidney disease (PKD), a monogenic disease with an autosomal dominant or an autosomal recessive form of inheritance (ARPKD), is the most common genetic cause of renal dysfunction and end-stage renal failure. In addition to the development of cysts, the autosomal form of PKD is associated with vascular endothelial dysfunction, a marker of vascular disease. Whether vascular endothelial dysfunction is also present in ARPKD, and its relationship with renal dysfunction remain to be determined. METHODS ARPKD rats (PCK model) and controls were studied at 6 and 10 weeks of age, and mean arterial pressure and renal function were measured. Aortic endothelial function was assessed using organ chamber techniques. Aortic endothelial cells (ECs) were isolated, characterized and their function studied. RESULTS Compared to controls, ARPKD animals had a decrease in the vasorelaxation to endothelium-dependent vasodilators, even prior to changes in mean arterial pressure or renal function. The abnormal vasoreactivity was corrected with L-arginine (a precursor of nitric oxide, NO), while the expression of endothelial NO synthase (eNOS) was unchanged. Furthermore, isolated ECs from 6-week-old ARPKD animals showed increased oxidative stress, with preserved eNOS expression and abnormal patterns of migration and angiogenic capacity (measured by the scratch and tube formation assays, respectively). CONCLUSION ARPKD leads to impairments in aortic vascular function and ECs at an early stage, which can have significant functional consequences, potentially representing a novel therapeutic target in this disease.
Collapse
Affiliation(s)
- Karen M Peterson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minn., USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Polycystic kidney disease (PKD) is a common hereditary disorder which is characterized by fluid-filled cysts in the kidney. Mutation in either PKD1, encoding polycystin-1 (PC1), or PKD2, encoding polycystin-2 (PC2), are causative genes of PKD. Recent studies indicate that renal cilia, known as mechanosensors, detecting flow stimulation through renal tubules, have a critical function in maintaining homeostasis of renal epithelial cells. Because most proteins related to PKD are localized to renal cilia or have a function in ciliogenesis. PC1/PC2 heterodimer is localized to the cilia, playing a role in calcium channels. Also, disruptions of ciliary proteins, except for PC1 and PC2, could be involved in the induction of polycystic kidney disease. Based on these findings, various PKD mice models were produced to understand the roles of primary cilia defects in renal cyst formation. In this review, we will describe the general role of cilia in renal epithelial cells, and the relationship between ciliary defects and PKD. We also discuss mouse models of PKD related to ciliary defects based on recent studies. [BMB Reports 2013; 46(2): 73-79]
Collapse
Affiliation(s)
- Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Korea
| | | |
Collapse
|
38
|
Sakai N, Tager AM. Lysophosphatidic acid (LPA) signaling through LPA1 in organ fibrosis: A pathway with pleiotropic pro-fibrotic effects. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
39
|
Li QW, Lu XY, You Y, Sun H, Liu XY, Ai JZ, Tan RZ, Chen TL, Chen MZ, Wang HL, Wei YQ, Zhou Q. Comparative proteomic analysis suggests that mitochondria are involved in autosomal recessive polycystic kidney disease. Proteomics 2012; 12:2556-70. [PMID: 22718539 DOI: 10.1002/pmic.201100590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), characterized by ectatic collecting duct, is an infantile form of PKD occurring in 1 in 20 000 births. Despite having been studied for many years, little is known about the underlying mechanisms. In the current study, we employed, for the first time, a MS-based comparative proteomics approach to investigate the differently expressed proteins between kidney tissue samples of four ARPKD and five control individuals. Thirty two differently expressed proteins were identified and six of the identified protein encoding genes performed on an independent group (three ARPKD subjects, four control subjects) were verified by semi-quantitative RT-PCR, and part of them were further validated by Western blot and immunohistochemistry. Moreover, similar alteration tendency was detected after downregulation of PKHD1 by small interfering RNA in HEK293T cell. Interestingly, most of the identified proteins are associated with mitochondria. This implies that mitochondria may be implicated in ARPKD. Furthermore, the String software was utilized to investigate the biological association network, which is based on known and predicted protein interactions. In conclusion, our findings depicted a global understanding of ARPKD progression and provided a promising resource of targeting protein, and shed some light further investigation of ARPKD.
Collapse
Affiliation(s)
- Qing-Wei Li
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mekahli D, Parys JB, Bultynck G, Missiaen L, De Smedt H. Polycystins and cellular Ca2+ signaling. Cell Mol Life Sci 2012; 70:2697-712. [PMID: 23076254 PMCID: PMC3708286 DOI: 10.1007/s00018-012-1188-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
The cystic phenotype in autosomal dominant polycystic kidney disease is characterized by a profound dysfunction of many cellular signaling patterns, ultimately leading to an increase in both cell proliferation and apoptotic cell death. Disturbance of normal cellular Ca2+ signaling seems to be a primary event and is clearly involved in many pathways that may lead to both types of cellular responses. In this review, we summarize the current knowledge about the molecular and functional interactions between polycystins and multiple components of the cellular Ca2+-signaling machinery. In addition, we discuss the relevant downstream responses of the changed Ca2+ signaling that ultimately lead to increased proliferation and increased apoptosis as observed in many cystic cell types.
Collapse
Affiliation(s)
- D. Mekahli
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| | - G. Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| | - L. Missiaen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| | - H. De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
41
|
Bukanov NO, Moreno SE, Natoli TA, Rogers KA, Smith LA, Ledbetter SR, Oumata N, Galons H, Meijer L, Ibraghimov-Beskrovnaya O. CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD. Cell Cycle 2012; 11:4040-6. [PMID: 23032260 PMCID: PMC3507499 DOI: 10.4161/cc.22375] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.
Collapse
|
42
|
Inoue T, Suzuki H, Okada H. Targeted expression of a pan-caspase inhibitor in tubular epithelium attenuates interstitial inflammation and fibrogenesis in nephritic but not nephrotic mice. Kidney Int 2012; 82:980-9. [PMID: 22785176 DOI: 10.1038/ki.2012.243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The caspase family of enzymes participates in apoptotic and proinflammatory reactions in any cell. Here we studied the role of caspase activation in the tubular epithelium of diseased kidneys using mice transgenic for the baculovirus pan-caspase inhibitor p35 gene held in a nonexpressed state (control mice) but target-expressed in the renal proximal tubule cells when crossed with mice expressing Cre recombinase under the control of the γ-glutamyltransferase promoter. Proinflammatory and profibrogenic parameters such as the number of monocytes and fibroblasts in the kidneys were significantly increased at 28 days in the control mice, but not in the renal tubule-targeted mice expressing p35 in a nephrotoxic serum nephritis model of disease. These cellular changes paralleled the number of apoptotic tubular cells and protein levels of active caspase-3 in the kidneys at 7 and 28 days of both the control and proximal tubule-targeted mice. Surprisingly, all of these parameters were not significantly affected at 7 and 28 days by targeted p35 expression in tubular epithelium when compared with nontargeted control mice in a model of adriamycin nephrosis. Thus, our study shows the critical role of caspase activation in the tubular epithelium in apoptosis along with proinflammatory and profibrogenic processes in nephrotoxic serum nephritis but not adriamycin nephrosis.
Collapse
Affiliation(s)
- Tsutomu Inoue
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | | | | |
Collapse
|
43
|
Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, Ravichandran K, Susztak K, Yoshida S, Dong Z. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 2012; 8:1009-31. [PMID: 22692002 PMCID: PMC3429540 DOI: 10.4161/auto.19821] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy.
Collapse
Affiliation(s)
- Tobias B Huber
- Renal Division, University Hospital Freiburg; Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Natoli TA, Husson H, Rogers KA, Smith LA, Wang B, Budman Y, Bukanov NO, Ledbetter SR, Klinger KW, Leonard JP, Ibraghimov-Beskrovnaya O. Loss of GM3 synthase gene, but not sphingosine kinase 1, is protective against murine nephronophthisis-related polycystic kidney disease. Hum Mol Genet 2012; 21:3397-407. [PMID: 22563011 PMCID: PMC3392114 DOI: 10.1093/hmg/dds172] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic forms of polycystic kidney diseases (PKDs), including nephronophthisis, are characterized by formation of fluid-filled cysts in the kidneys and progression to end-stage renal disease. No therapies are currently available to treat cystic diseases, making it imperative to dissect molecular mechanisms in search of therapeutic targets. Accumulating evidence suggests a pathogenic role for glucosylceramide (GlcCer) in multiple forms of PKD. It is not known, however, whether other structural glycosphingolipids (GSLs) or bioactive signaling sphingolipids (SLs) modulate cystogenesis. Therefore, we set out to address the role of a specific GSL (ganglioside GM3) and signaling SL (sphingosine-1-phosphate, S1P) in PKD progression, using the jck mouse model of nephronopthisis. To define the role of GM3 accumulation in cystogenesis, we crossed jck mice with mice carrying a targeted mutation in the GM3 synthase (St3gal5) gene. GM3-deficient jck mice displayed milder PKD, revealing a pivotal role for ganglioside GM3. Mechanistic changes in regulation of the cell-cycle machinery and Akt-mTOR signaling were consistent with reduced cystogenesis. Dramatic overexpression of sphingosine kinase 1 (Sphk1) mRNA in jck kidneys suggested a pathogenic role for S1P. Surprisingly, genetic loss of Sphk1 exacerbated cystogenesis and was associated with increased levels of GlcCer and GM3. On the other hand, increasing S1P accumulation through pharmacologic inhibition of S1P lyase had no effect on the progression of cystogenesis or kidney GSL levels. Together, these data suggest that genes involved in the SL metabolism may be modifiers of cystogenesis, and suggest GM3 synthase as a new anti-cystic therapeutic target.
Collapse
Affiliation(s)
- Thomas A Natoli
- Department of Cell Biology, Genzyme Corporation, Framingham, MA 01701, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gesing A, Masternak MM, Wang F, Karbownik-Lewinska M, Bartke A. Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney-potential mechanism of lifespan extension. AGE (DORDRECHT, NETHERLANDS) 2012; 34:295-304. [PMID: 21431351 PMCID: PMC3312636 DOI: 10.1007/s11357-011-9232-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/02/2011] [Indexed: 05/30/2023]
Abstract
Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute to the regulation of longevity in GHRKO mice. Alterations in apoptosis-related genes expression in the kidneys also may potentially lead to lifespan extension. In this context, we decided to examine the renal expression of the following genes: caspase-3, caspase-9, caspase-8, bax, bad, bcl-2, Smac/DIABLO, Apaf-1, p53, and cytochrome c1 (cyc1) in male GHRKO and N mice subjected to VFR or sham surgery, at approximately 6 months of age. The kidneys were collected 2 months after VFR. As a result, caspase-3, caspase-9, and bax expressions were decreased in KO mice as compared to N animals. Expressions of Smac/DIABLO, caspase-8, bcl-2, bad, and p53 did not differ between KOs and N mice. VFR did not change the expression of the examined genes in KO or N mice. In conclusion, endocrine abnormalities in GHRKO mice result in decreased expression of pro-apoptotic genes and VFR did not alter the examined genes expression in N and KO mice. These data are consistent with a model in which alterations of GH signaling and/or insulin sensitivity lead to increased lifespan mediated by decreased renal expression of pro-apoptotic genes.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, IL 62702-4910, USA.
| | | | | | | | | |
Collapse
|
46
|
Peyronnet R, Sharif-Naeini R, Folgering JHA, Arhatte M, Jodar M, El Boustany C, Gallian C, Tauc M, Duranton C, Rubera I, Lesage F, Pei Y, Peters DJM, Somlo S, Sachs F, Patel A, Honoré E, Duprat F. Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels. Cell Rep 2012; 1:241-50. [PMID: 22832196 DOI: 10.1016/j.celrep.2012.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/27/2011] [Accepted: 01/30/2012] [Indexed: 12/31/2022] Open
Abstract
How renal epithelial cells respond to increased pressure and the link with kidney disease states remain poorly understood. Pkd1 knockout or expression of a PC2 pathogenic mutant, mimicking the autosomal dominant polycystic kidney disease, dramatically enhances mechanical stress-induced tubular apoptotic cell death. We show the presence of a stretch-activated K(+) channel dependent on the TREK-2 K(2P) subunit in proximal convoluted tubule epithelial cells. Our findings further demonstrate that polycystins protect renal epithelial cells against apoptosis in response to mechanical stress, and this function is mediated through the opening of stretch-activated K(2P) channels. Thus, to our knowledge, we establish for the first time, both in vitro and in vivo, a functional relationship between mechanotransduction and mechanoprotection. We propose that this mechanism is at play in other important pathologies associated with apoptosis and in which pressure or flow stimulation is altered, including heart failure or atherosclerosis.
Collapse
Affiliation(s)
- Rémi Peyronnet
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chang MY, Ong ACM. Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects. Nephron Clin Pract 2011; 120:c25-34; discussion c35. [PMID: 22205396 DOI: 10.1159/000334166] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, accounting for up to 10% of patients on renal replacement therapy. There are presently no proven treatments for ADPKD and an effective disease-modifying drug would have significant implications for patients and their families. Since the identification of PKD1 and PKD2, there has been an explosion in knowledge identifying new disease mechanisms and testing new drugs. Currently, the three major treatment strategies are to: (1) reduce cAMP levels; (2) inhibit cell proliferation, and (3) reduce fluid secretion. Several compounds shown to be effective in preclinical models have already undergone clinical trials and more are planned. In addition, a whole raft of other compounds have been developed from preclinical studies. The purpose of this paper is to evaluate the results of recent published trials, review current trials and highlight the most promising compounds in the pipeline. There appears to be no shortage of potential candidates, but several key issues need to be addressed to facilitate clinical translation.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | |
Collapse
|
48
|
Anderson S, Oyama TT, Lindsley JN, Schutzer WE, Beard DR, Gattone VH, Komers R. 2-Hydroxyestradiol slows progression of experimental polycystic kidney disease. Am J Physiol Renal Physiol 2011; 302:F636-45. [PMID: 22160773 DOI: 10.1152/ajprenal.00265.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Male gender is a risk factor for progression of polycystic kidney disease (PKD). 17β-Estradiol (E2) protects experimentally, but clinical use is limited by adverse effects. Novel E2 metabolites provide many benefits of E2 without stimulating the estrogen receptor, and thus may be safer. We hypothesized that E2 metabolites are protective in a model of PKD. Studies were performed in male control Han:SPRD rats, and in cystic males treated with orchiectomy, 2-methoxyestradiol, 2-hydroxyestradiol (2-OHE), or vehicle, from age 3 to 12 wk. Cystic rats exhibited renal functional impairment (∼50% decrease in glomerular filtration and renal plasma flow rates, P < 0.05) and substantial cyst development (20.5 ± 2.0% of cortex area). 2-OHE was the most effective in limiting cysts (6.0 ± 0.7% of cortex area, P < 0.05 vs. vehicle-treated cystic rats) and preserving function, in association with suppression of proliferation, apoptosis, and angiogenesis markers. Downregulation of p21 expression and increased expression of Akt, the mammalian target of rapamycin (mTOR), and some of its downstream effectors were significantly reversed by 2-OHE. Thus, 2-OHE limits disease progression in a cystic rodent model. Mechanisms include reduced renal cell proliferation, apoptosis, and angiogenesis. These effects may be mediated, at least in part, by preservation of p21 and suppression of Akt and mTOR. Estradiol metabolites may represent a novel, safe intervention to slow progression of PKD.
Collapse
Affiliation(s)
- Sharon Anderson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Buchholz B, Klanke B, Schley G, Bollag G, Tsai J, Kroening S, Yoshihara D, Wallace DP, Kraenzlin B, Gretz N, Hirth P, Eckardt KU, Bernhardt WM. The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrol Dial Transplant 2011; 26:3458-65. [PMID: 21804086 DOI: 10.1093/ndt/gfr432] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of renal failure. Aberrant epithelial cell proliferation is a major cause of progressive cyst enlargement in ADPKD. Since activation of the Ras/Raf signaling system has been detected in cyst-lining epithelia, inhibition of Raf kinase has been proposed as an approach to retard the progression of ADPKD. Methods and results. PLX5568, a novel selective small molecule inhibitor of Raf kinases, attenuated proliferation of human ADPKD cyst epithelial cells. It reduced in vitro cyst growth of Madin-Darby Canine Kidney cells and of human ADPKD cells within a collagen gel. In male cy/+ rats with polycystic kidneys, PLX5568 inhibited renal cyst growth along with a significant reduction in the number of proliferating cell nuclear antigen- and phosphorylated extracellular signal-regulated kinase-positive cyst-lining epithelial cells. Furthermore, treated animals showed increased capacity to concentrate urine. However, PLX5568 did not lead to a consistent improvement of renal function. Moreover, although relative cyst volume was decreased, total kidney-to-body weight ratio was not significantly reduced by PLX5568. Further analyses revealed a 2-fold increase of renal and hepatic fibrosis in animals treated with PLX5568. CONCLUSIONS PLX5568 attenuated cyst enlargement in vitro and in a rat model of ADPKD without improving kidney function, presumably due to increased renal fibrosis. These data suggest that effective therapies for the treatment of ADPKD will need to target fibrosis as well as the growth of cysts.
Collapse
Affiliation(s)
- Bjoern Buchholz
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Belibi F, Zafar I, Ravichandran K, Segvic AB, Jani A, Ljubanovic DG, Edelstein CL. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD). Am J Physiol Renal Physiol 2011; 300:F1235-43. [PMID: 21270095 PMCID: PMC3094047 DOI: 10.1152/ajprenal.00348.2010] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 01/24/2011] [Indexed: 01/05/2023] Open
Abstract
Cyst expansion in polycystic kidney disease (PKD) results in localized hypoxia in the kidney that may activate hypoxia-inducible factor-1α (HIF-1α). HIF-1α and autophagy, a form of programmed cell repair, are induced by hypoxia. The purposes were to determine HIF-1α expression and autophagy in rat and mouse models of PKD. HIF-1α was detected by electrochemiluminescence. Autophagy was visualized by electron microscopy (EM). LC3 and beclin-1, markers of autophagy, were detected by immunoblotting. Eight-week-old male heterozygous (Cy/+) and 4-wk-old homozygous (Cy/Cy) Han:SPRD rats, 4-wk-old cpk mice, and 112-day-old Pkd2WS25/- mice with a mutation in the Pkd2 gene were studied. HIF-1α was significantly increased in massive Cy/Cy and cpk kidneys and not smaller Cy/+ and Pkd2WS25/- kidneys. On EM, features of autophagy were seen in wild-type (+/+), Cy/+, and cpk kidneys: autophagosomes, mitophagy, and autolysosomes. Specifically, autophagosomes were found on EM in the tubular cells lining the cysts in cpk mice. The increase in LC3-II, a marker of autophagosome production and beclin, a regulator of autophagy, in Cy/Cy and cpk kidneys, followed the same pattern of increase as HIF-1α. To determine the role of HIF-1α in cyst formation and/or growth, Cy/+ rats, Cy/Cy rats, and cpk mice were treated with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). 2ME2 had no significant effect on kidney volume or cyst volume density. In summary, HIF-1α is highly expressed in the late stages of PKD and is associated with an increase in LC3-II and beclin-1. The first demonstration of autophagosomes in PKD kidneys is reported. Inhibition of HIF-1α did not have a therapeutic effect.
Collapse
Affiliation(s)
- Franck Belibi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver and Health Sciences Center, Aurora, 80262, USA
| | | | | | | | | | | | | |
Collapse
|