1
|
Wang Y, Lv T, Fan T, Zhou Y, Tian CE. Research progress on delayed flowering under short-day condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2025; 16:1523788. [PMID: 40123949 PMCID: PMC11926150 DOI: 10.3389/fpls.2025.1523788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Flowering represents a pivotal phase in the reproductive and survival processes of plants, with the photoperiod serving as a pivotal regulator of plant-flowering timing. An investigation of the mechanism of flowering inhibition in the model plant Arabidopsis thaliana under short-day (SD) conditions will facilitate a comprehensive approach to crop breeding for flowering time, reducing or removing flowering inhibition, for example, can extend the range of adaptation of soybean to high-latitude environments. In A. thaliana, CONSTANS (CO) is the most important component for promoting flowering under long-day (LD) conditions. However, CO inhibited flowering under the SD conditions. Furthermore, the current studies revealed that A. thaliana delayed flowering through multiple pathways that inhibit the transcription and sensitivity of FLOWERING LOCUS T (FT) and suppresses the response to, or synthesis of, gibberellins (GA) at different times, for potential crop breeding resources that can be explored in both aspects. However, the underlying mechanism remains poorly understood. In this review, we summarized the current understanding of delayed flowering under SD conditions and discussed future directions for related topics.
Collapse
Affiliation(s)
| | | | | | | | - Chang-en Tian
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of
Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
2
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
3
|
Shen Y, Ma Y, Li D, Kang M, Pei Y, Zhang R, Tao W, Huang S, Song W, Li Y, Huang W, Wang D, Chen Y. Biological and genomic analysis of a symbiotic nitrogen fixation defective mutant in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2023; 14:1209664. [PMID: 37457346 PMCID: PMC10345209 DOI: 10.3389/fpls.2023.1209664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Medicago truncatula has been selected as one of the model legume species for gene functional studies. To elucidate the functions of the very large number of genes present in plant genomes, genetic mutant resources are very useful and necessary tools. Fast Neutron (FN) mutagenesis is effective in inducing deletion mutations in genomes of diverse species. Through this method, we have generated a large mutant resource in M. truncatula. This mutant resources have been used to screen for different mutant using a forward genetics methods. We have isolated and identified a large amount of symbiotic nitrogen fixation (SNF) deficiency mutants. Here, we describe the detail procedures that are being used to characterize symbiotic mutants in M. truncatula. In recent years, whole genome sequencing has been used to speed up and scale up the deletion identification in the mutant. Using this method, we have successfully isolated a SNF defective mutant FN007 and identified that it has a large segment deletion on chromosome 3. The causal deletion in the mutant was confirmed by tail PCR amplication and sequencing. Our results illustrate the utility of whole genome sequencing analysis in the characterization of FN induced deletion mutants for gene discovery and functional studies in the M. truncatula. It is expected to improve our understanding of molecular mechanisms underlying symbiotic nitrogen fixation in legume plants to a great extent.
Collapse
|
4
|
Harel-Beja R, Ophir R, Sherman A, Eshed R, Rozen A, Trainin T, Doron-Faigenboim A, Tal O, Bar-Yaakov I, Holland D. The Pomegranate Deciduous Trait Is Genetically Controlled by a PgPolyQ- MADS Gene. FRONTIERS IN PLANT SCIENCE 2022; 13:870207. [PMID: 35574086 PMCID: PMC9100744 DOI: 10.3389/fpls.2022.870207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
The pomegranate (Punica granatum L.) is a deciduous fruit tree that grows worldwide. However, there are variants, which stay green in mild winter conditions and are determined evergreen. The evergreen trait is of commercial and scientific importance as it extends the period of fruit production and provides opportunity to identify genetic functions that are involved in sensing environmental cues. Several different evergreen pomegranate accessions from different genetic sources grow in the Israeli pomegranate collection. The leaves of deciduous pomegranates begin to lose chlorophyll during mid of September, while evergreen accessions continue to generate new buds. When winter temperature decreases 10°C, evergreen variants cease growing, but as soon as temperatures arise budding starts, weeks before the response of the deciduous varieties. In order to understand the genetic components that control the evergreen/deciduous phenotype, several segregating populations were constructed, and high-resolution genetic maps were assembled. Analysis of three segregating populations showed that the evergreen/deciduous trait in pomegranate is controlled by one major gene that mapped to linkage group 3. Fine mapping with advanced F3 and F4 populations and data from the pomegranate genome sequences revealed that a gene encoding for a putative and unique MADS transcription factor (PgPolyQ-MADS) is responsible for the evergreen trait. Ectopic expression of PgPolyQ-MADS in Arabidopsis generated small plants and early flowering. The deduced protein of PgPolyQ-MADS includes eight glutamines (polyQ) at the N-terminus. Three-dimensional protein model suggests that the polyQ domain structure might be involved in DNA binding of PgMADS. Interestingly, all the evergreen pomegranate varieties contain a mutation within the polyQ that cause a stop codon at the N terminal. The polyQ domain of PgPolyQ-MADS resembles that of the ELF3 prion-like domain recently reported to act as a thermo-sensor in Arabidopsis, suggesting that similar function could be attributed to PgPolyQ-MADS protein in control of dormancy. The study of the evergreen trait broadens our understanding of the molecular mechanism related to response to environmental cues. This enables the development of new cultivars that are better adapted to a wide range of climatic conditions.
Collapse
Affiliation(s)
- Rotem Harel-Beja
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ravit Eshed
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ada Rozen
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Taly Trainin
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ofir Tal
- Institute of Plant Sciences, Newe Ya’ar Research Center, The Agricultural Research Organization - The Volcani Center, Ramat Yishai, Israel
| | - Irit Bar-Yaakov
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Doron Holland
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| |
Collapse
|
5
|
Zhao N, Su XM, Liu ZW, Zhou JX, Su YN, Cai XW, Chen L, Wu Z, He XJ. The RNA recognition motif-containing protein UBA2c prevents early flowering by promoting transcription of the flowering repressor FLM in Arabidopsis. THE NEW PHYTOLOGIST 2022; 233:751-765. [PMID: 34724229 DOI: 10.1111/nph.17836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
FLOWERING LOCUS M (FLM) is a well-known MADS-box transcription factor that is required for preventing early flowering under low temperatures in Arabidopsis thaliana. Alternative splicing of FLM is involved in the regulation of temperature-responsive flowering. However, how the basic transcript level of FLM is regulated is largely unknown. Here, we conducted forward genetic screening and identified a previously uncharacterized flowering repressor gene, UBA2c. Genetic analyses indicated that UBA2c represses flowering at least by promoting FLM transcription. We further demonstrated that UBA2c directly binds to FLM chromatin and facilitates FLM transcription by inhibiting histone H3K27 trimethylation, a histone marker related to transcriptional repression. UBA2c encodes a protein containing two putative RNA recognition motifs (RRMs) and one prion-like domain (PrLD). We found that UBA2c forms speckles in the nucleus and that both the RRMs and PrLD are required not only for forming the nuclear speckles but also for the biological function of UBA2c. These results identify a previously unknown flowering repressor and provide insights into the regulation of flowering time.
Collapse
Affiliation(s)
- Nan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ling Chen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Transposition and duplication of MADS-domain transcription factor genes in annual and perennial Arabis species modulates flowering. Proc Natl Acad Sci U S A 2021; 118:2109204118. [PMID: 34548402 PMCID: PMC8488671 DOI: 10.1073/pnas.2109204118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Annual and perennial species differ in their timing and intensity of flowering, but the underlying mechanisms are poorly understood. We hybridized closely related annual and perennial plants and used genetics, transgenesis, and genomics to characterize differences in the activity and function of their flowering-time genes. We identify a gene encoding a transcription factor that moved between chromosomes and is retained in the annual but absent from the perennial. This gene strongly delays flowering, and we propose that it has been retained in the annual to compensate for reduced activity of closely related genes. This study highlights the value of using direct hybridization between closely related plant species to characterize functional differences in fast-evolving reproductive traits. The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina. These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.
Collapse
|
7
|
Dai GY, Chen DK, Sun YP, Liang WY, Liu Y, Huang LQ, Li YK, He JF, Yao N. The Arabidopsis KH-domain protein FLOWERING LOCUS Y delays flowering by upregulating FLOWERING LOCUS C family members. PLANT CELL REPORTS 2020; 39:1705-1717. [PMID: 32948902 DOI: 10.1007/s00299-020-02598-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
We identified FLY as a previously uncharacterized RNA-binding-family protein that controls flowering time by positively regulating the expression of FLC clade members. The ability of flowering plants to adjust the timing of the floral transition based on endogenous and environmental signals contributes to their adaptive success. In Arabidopsis thaliana, the MADS-domain protein FLOWERING LOCUS C (FLC) and the FLC clade members FLOWERING LOCUS M/MADS AFFECTING FLOWERING1 (FLM/MAF1), MAF2, MAF3, MAF4, and MAF5 form nuclear complexes that repress flowering under noninductive conditions. However, how FLM/MAF genes are regulated requires further study. Using a genetic strategy, we showed that the previously uncharacterized K-homology (KH) domain protein FLOWERING LOCUS Y (FLY) modulates flowering time. The fly-1 knockout mutant and FLY artificial microRNA knockdown line flowered earlier than the wild type under long- and short-day conditions. The knockout fly-1 allele, a SALK T-DNA insertion mutant, contains an ~ 110-kb genomic deletion induced by T-DNA integration. FLC clade members were downregulated in the fly-1 mutants and FLY artificial microRNA knockdown line, whereas the level of the FLC antisense transcript COOLAIR was similar to that of the wild type. Our results identify FLY as a regulator that affects flowering time through upregulation of FLC clade members.
Collapse
Affiliation(s)
- Guang-Yi Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yun-Peng Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wei-Yi Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jia-Fan He
- School of Agriculture, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
8
|
Molecular variation in a functionally divergent homolog of FCA regulates flowering time in Arabidopsis thaliana. Nat Commun 2020; 11:5830. [PMID: 33203912 PMCID: PMC7673134 DOI: 10.1038/s41467-020-19666-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022] Open
Abstract
The identification and functional characterization of natural variants in plants are essential for understanding phenotypic adaptation. Here we identify a molecular variation in At2g47310 that contributes to the natural variation in flowering time in Arabidopsis thaliana accessions. This gene, which we term SISTER of FCA (SSF), functions in an antagonistic manner to its close homolog FCA. Genome-wide association analysis screens two major haplotypes of SSF associated with the natural variation in FLC expression, and a single polymorphism, SSF-N414D, is identified as a main contributor. The SSF414N protein variant interacts more strongly with CUL1, a component of the E3 ubiquitination complex, than the SSF414D form, mediating differences in SSF protein degradation and FLC expression. FCA and SSF appear to have arisen through gene duplication after dicot-monocot divergence, with the SSF-N414D polymorphism emerging relatively recently within A. thaliana. This work provides a good example for deciphering the functional importance of natural polymorphisms in different organisms. Natural variation represents valuable source for gene discovery. Here, the authors show that a homolog of Flowering Control Locus A (FCA) functions in an antagonistic manner to FCA in regulating Arabidopsis flowering time through interacting with CUL1-E3 and modulating FLC expression.
Collapse
|
9
|
Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 2020; 584:602-607. [PMID: 32641831 DOI: 10.1038/s41586-020-2467-6] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/16/2020] [Indexed: 12/22/2022]
Abstract
Species often include multiple ecotypes that are adapted to different environments1. However, it is unclear how ecotypes arise and how their distinctive combinations of adaptive alleles are maintained despite hybridization with non-adapted populations2-4. Here, by resequencing 1,506 wild sunflowers from 3 species (Helianthus annuus, Helianthus petiolaris and Helianthus argophyllus), we identify 37 large (1-100 Mbp in size), non-recombining haplotype blocks that are associated with numerous ecologically relevant traits, as well as soil and climate characteristics. Limited recombination in these haplotype blocks keeps adaptive alleles together, and these regions differentiate sunflower ecotypes. For example, haplotype blocks control a 77-day difference in flowering between ecotypes of the silverleaf sunflower H. argophyllus (probably through deletion of a homologue of FLOWERING LOCUS T (FT)), and are associated with seed size, flowering time and soil fertility in dune-adapted sunflowers. These haplotypes are highly divergent, frequently associated with structural variants and often appear to represent introgressions from other-possibly now-extinct-congeners. These results highlight a pervasive role of structural variation in ecotypic adaptation.
Collapse
|
10
|
Wang F, Yano K, Nagamatsu S, Inari-Ikeda M, Koketsu E, Hirano K, Aya K, Matsuoka M. Genome-wide expression quantitative trait locus studies facilitate isolation of causal genes controlling panicle structure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:266-278. [PMID: 32072700 DOI: 10.1111/tpj.14726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/03/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The morphology of rice (Oryza sativa L.) panicles is an important determinant of grain yield, and elucidation of the genetic control of panicle structure is very important for fulfilling the demand for high yield in breeding programs. In a quantitative trait locus (QTL) study using 82 backcross inbred lines (BILs) derived from Koshihikari and Habataki, 68 QTLs for 25 panicle morphological traits were identified. Gene expression profiling from inflorescence meristems of BILs was obtained. A combination of phenotypic QTL (pQTL) and expression QTL (eQTL) analysis revealed co-localization between pQTLs and eQTLs, consistent with significant correlations between phenotypic traits and gene expression levels. By combining pQTL and eQTL data, two genes were identified as controlling panicle structure: OsMADS18 modulates the average length of the primary rachis and OsFTL1 has pleiotropic effects on the total number of secondary rachides, number of grains per panicle, plant height and the length of flag leaves. Phenotypes were confirmed in RNA interference knocked-down plants and overexpressor lines. The combination of pQTL and eQTL analysis could facilitate identification of genes involved in rice panicle formation.
Collapse
Affiliation(s)
- Fanmiao Wang
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kenji Yano
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- RIKEN Center for Advanced Intelligence Project, Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Shiro Nagamatsu
- Fukuoka Agriculture and Forestry Research Center, 587 Yoshiki, Chikushino, Fukuoka, 818-8549, Japan
| | - Mayuko Inari-Ikeda
- Department of Nutrition, School of Health and Nutrition, Tokai Gakuen University, 2-901 Nakahira, Tenpaku, Nagoya Aichi, 468-8514, Japan
| | - Eriko Koketsu
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
11
|
Miryeganeh M. Synchronization of senescence and desynchronization of flowering in Arabidopsis thaliana. AOB PLANTS 2020; 12:plaa018. [PMID: 32577195 PMCID: PMC7299267 DOI: 10.1093/aobpla/plaa018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In a recent publication, we proposed that adjusting lifespan in order to synchronize senescence is important for timing of reproduction, and we quantified the synchrony of reproductive timing relative to germination timing. Here, in a second sequential seeding experiment (SSE), the germination timing of Arabidopsis thaliana accessions was manipulated and plants were then grown under two different temperature regimes. Life stage traits of plants in each temperature regime were analysed and it was evaluated whether the cohorts were grouped according to age and/or environmental conditions. While flowering-related traits showed desynchrony among cohorts, striking synchrony in the timing of senescence among cohorts for each group was found. A quantitative trait locus (QTL) analysis using a genotyped population of 'Cvi/Ler' recombinant inbred lines (RILs) was then conducted. Novel and known loci were assigned to flowering and senescence timing. However, senescence synchrony resulted in low variation in senescence time and weak QTL detection for flowering termination. Overlapping flowering and senescence genes with loci affecting either of those traits were found and suggest a potential interdependency of reproductive traits.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Japan
| |
Collapse
|
12
|
Zmienko A, Marszalek-Zenczak M, Wojciechowski P, Samelak-Czajka A, Luczak M, Kozlowski P, Karlowski WM, Figlerowicz M. AthCNV: A Map of DNA Copy Number Variations in the Arabidopsis Genome. THE PLANT CELL 2020; 32:1797-1819. [PMID: 32265262 PMCID: PMC7268809 DOI: 10.1105/tpc.19.00640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis (Arabidopsis thaliana) accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions. The CNVs fully overlap with 18.3% of protein-coding genes, with enrichment for evolutionarily young genes and genes involved in stress and defense. By combining analysis of both genes and transposable elements (TEs) affected by CNVs, we revealed that the variation statuses of genes and TEs are tightly linked and jointly contribute to the unequal distribution of these elements in the genome. We also determined the gene copy numbers in a set of 1060 accessions and experimentally validated the accuracy of our predictions by multiplex ligation-dependent probe amplification assays. We then successfully used the CNVs as markers to analyze population structure and migration patterns. Finally, we examined the impact of gene dosage variation triggered by a CNV spanning the SEC10 gene on SEC10 expression at both the transcript and protein levels. The catalog of CNVs, CNV-overlapping genes, and their genotypes in a top model dicot will stimulate the exploration of the genetic basis of phenotypic variation.
Collapse
Affiliation(s)
- Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
13
|
Kulkarni SR, Jones DM, Vandepoele K. Enhanced Maps of Transcription Factor Binding Sites Improve Regulatory Networks Learned from Accessible Chromatin Data. PLANT PHYSIOLOGY 2019; 181:412-425. [PMID: 31345953 PMCID: PMC6776849 DOI: 10.1104/pp.19.00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/12/2019] [Indexed: 05/05/2023]
Abstract
Determining where transcription factors (TFs) bind in genomes provides insight into which transcriptional programs are active across organs, tissue types, and environmental conditions. Recent advances in high-throughput profiling of regulatory DNA have yielded large amounts of information about chromatin accessibility. Interpreting the functional significance of these data sets requires knowledge of which regulators are likely to bind these regions. This can be achieved by using information about TF-binding preferences, or motifs, to identify TF-binding events that are likely to be functional. Although different approaches exist to map motifs to DNA sequences, a systematic evaluation of these tools in plants is missing. Here, we compare four motif-mapping tools widely used in the Arabidopsis (Arabidopsis thaliana) research community and evaluate their performance using chromatin immunoprecipitation data sets for 40 TFs. Downstream gene regulatory network (GRN) reconstruction was found to be sensitive to the motif mapper used. We further show that the low recall of Find Individual Motif Occurrences, one of the most frequently used motif-mapping tools, can be overcome by using an Ensemble approach, which combines results from different mapping tools. Several examples are provided demonstrating how the Ensemble approach extends our view on transcriptional control for TFs active in different biological processes. Finally, a protocol is presented to effectively derive more complete cell type-specific GRNs through the integrative analysis of open chromatin regions, known binding site information, and expression data sets. This approach will pave the way to increase our understanding of GRNs in different cellular conditions.
Collapse
Affiliation(s)
- Shubhada R Kulkarni
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - D Marc Jones
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
14
|
Seymour DK, Chae E, Arioz BI, Koenig D, Weigel D. Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity (Edinb) 2019; 122:294-304. [PMID: 29955170 PMCID: PMC6169738 DOI: 10.1038/s41437-018-0107-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
The equal probability of transmission of alleles from either parent during sexual reproduction is a central tenet of genetics and evolutionary biology. Yet, there are many cases where this rule is violated. The preferential transmission of alleles or genotypes is termed transmission ratio distortion (TRD). Examples of TRD have been identified in many species, implying that they are universal, but the resolution of species-wide studies of TRD are limited. We have performed a species-wide screen for TRD in over 500 segregating F2 populations of Arabidopsis thaliana using pooled reduced-representation genome sequencing. TRD was evident in up to a quarter of surveyed populations. Most populations exhibited distortion at only one genomic region, with some regions being repeatedly affected in multiple populations. Our results begin to elucidate the species-level architecture of biased transmission of genetic material in A. thaliana, and serve as a springboard for future studies into the biological basis of TRD in this species.
Collapse
Affiliation(s)
- Danelle K Seymour
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Burak I Arioz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
15
|
Nibau C, Gallemí M, Dadarou D, Doonan JH, Cavallari N. Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2. FRONTIERS IN PLANT SCIENCE 2019; 10:1680. [PMID: 32038671 PMCID: PMC6987439 DOI: 10.3389/fpls.2019.01680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/29/2019] [Indexed: 05/05/2023]
Abstract
The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-β and FLM-δ are the most representative. While FLM-β codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-β and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-β expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: Nicola Cavallari, ; Candida Nibau,
| | - Marçal Gallemí
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Despoina Dadarou
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John H. Doonan
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nicola Cavallari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nicola Cavallari, ; Candida Nibau,
| |
Collapse
|
16
|
Monroe JG, Powell T, Price N, Mullen JL, Howard A, Evans K, Lovell JT, McKay JK. Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function. eLife 2018; 7:41038. [PMID: 30520727 PMCID: PMC6326724 DOI: 10.7554/elife.41038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022] Open
Abstract
Interdisciplinary syntheses are needed to scale up discovery of the environmental drivers and molecular basis of adaptation in nature. Here we integrated novel approaches using whole genome sequences, satellite remote sensing, and transgenic experiments to study natural loss-of-function alleles associated with drought histories in wild Arabidopsis thaliana. The genes we identified exhibit population genetic signatures of parallel molecular evolution, selection for loss-of-function, and shared associations with flowering time phenotypes in directions consistent with longstanding adaptive hypotheses seven times more often than expected by chance. We then confirmed predicted phenotypes experimentally in transgenic knockout lines. These findings reveal the importance of drought timing to explain the evolution of alternative drought tolerance strategies and further challenge popular assumptions about the adaptive value of genetic loss-of-function in nature. These results also motivate improved species-wide sequencing efforts to better identify loss-of-function variants and inspire new opportunities for engineering climate resilience in crops. Water shortages caused by droughts lead to crop losses that affect billions of people around the world each year. By discovering how wild plants adapt to drought, it may be possible to identify traits and genes that help to improve the growth of crop plants when water is scarce. It has been suggested that plants have adapted to droughts by flowering at times of the year when droughts are less likely to occur. For example, if droughts are more likely to happen in spring, the plants may delay flowering until the summer. Arabidopsis thaliana is a small plant that is found across Eurasia, Africa and North America, including in areas that are prone to drought at different times of the year. Individual plants of the same species may carry different versions of the same gene (known as alleles). Some of these alleles may not work properly and are referred to as loss-of-function alleles. Monroe et al. investigated whether A. thaliana plants carry any loss-of-function alleles that are associated with droughts happening in the spring or summer, and whether they are linked to when those plants will flower. Monroe et al. analyzed satellite images collected over the last 30 years to measure when droughts have occurred. Next, they searched genome sequences of Arabidopsis thaliana for alleles that might help the plants to adapt to droughts in the spring or summer. Combining the two approaches revealed that loss-of-function alleles associated with spring droughts were strongly predicted to be associated with the plants flowering later in the year. Similarly, loss-of-function alleles associated with summer droughts were predicted to be associated with the plants flowering earlier in the year. These findings support the idea that plants can adapt to drought by changing when they produce flowers, and suggest that loss-of-function alleles play a major role in this process. New techniques for editing genes mean it is easier than ever to generate new loss-of-function alleles in specific genes. Therefore, the results presented by Monroe et al. may help researchers to develop new varieties of crop plants that are better adapted to droughts.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, United States
| | - Tyler Powell
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States.,Department of Biology, Colorado State University, Fort Collins, United States
| | - Nicholas Price
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
| | - Jack L Mullen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
| | - Anne Howard
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
| | - Kyle Evans
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - John K McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, United States
| |
Collapse
|
17
|
Susila H, Nasim Z, Ahn JH. Ambient Temperature-Responsive Mechanisms Coordinate Regulation of Flowering Time. Int J Mol Sci 2018; 19:ijms19103196. [PMID: 30332820 PMCID: PMC6214042 DOI: 10.3390/ijms19103196] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/23/2022] Open
Abstract
In plants, environmental conditions such as temperature affect survival, growth, and fitness, particularly during key stages such as seedling growth and reproduction. To survive and thrive in changing conditions, plants have evolved adaptive responses that tightly regulate developmental processes such as hypocotyl elongation and flowering time in response to environmental temperature changes. Increases in temperature, coupled with increasing fluctuations in local climate and weather, severely affect our agricultural systems; therefore, understanding the mechanisms by which plants perceive and respond to temperature is critical for agricultural sustainability. In this review, we summarize recent findings on the molecular mechanisms of ambient temperature perception as well as possible temperature sensing components in plants. Based on recent publications, we highlight several temperature response mechanisms, including the deposition and eviction of histone variants, DNA methylation, alternative splicing, protein degradation, and protein localization. We discuss roles of each proposed temperature-sensing mechanism that affects plant development, with an emphasis on flowering time. Studies of plant ambient temperature responses are advancing rapidly, and this review provides insights for future research aimed at understanding the mechanisms of temperature perception and responses in plants.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| |
Collapse
|
18
|
Theißen G, Rümpler F, Gramzow L. Array of MADS-Box Genes: Facilitator for Rapid Adaptation? TRENDS IN PLANT SCIENCE 2018; 23:563-576. [PMID: 29802068 DOI: 10.1016/j.tplants.2018.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 05/18/2023]
Abstract
In a world of global warming, the question emerges whether all plants have suitable mechanisms to keep pace with the rapidly changing environment. Most previous studies have focused on either the ability of plants to rapidly acclimatize via physiological and developmental plasticity, or long-term adaptation over thousands of years. However, we wonder whether plants can also adapt to changes in the environment within only a few generations. We hypothesize that rapidly evolving clusters of tandemly duplicated developmental control genes represent a source for fast adaptation. Specifically, we propose that a tandem cluster of FLC-like MADS-box genes involved in the transition to flowering in Arabidopsis functions as a facilitator for rapid adaptation to changes in ambient temperature.
Collapse
Affiliation(s)
- Günter Theißen
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany.
| | - Florian Rümpler
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany
| | - Lydia Gramzow
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
19
|
Chen Y, Wang X, Lu S, Wang H, Li S, Chen R. An Array-based Comparative Genomic Hybridization Platform for Efficient Detection of Copy Number Variations in Fast Neutron-induced Medicago truncatula Mutants. J Vis Exp 2017. [PMID: 29155794 DOI: 10.3791/56470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutants are invaluable genetic resources for gene function studies. To generate mutant collections, three types of mutagens can be utilized, including biological such as T-DNA or transposon, chemical such as ethyl methanesulfonate (EMS), or physical such as ionization radiation. The type of mutation observed varies depending on the mutagen used. For ionization radiation induced mutants, mutations include deletion, duplication, or rearrangement. While T-DNA or transposon-based mutagenesis is limited to species that are susceptible to transformation, chemical or physical mutagenesis can be applied to a broad range of species. However, the characterization of mutations derived from chemical or physical mutagenesis traditionally relies on a map-based cloning approach, which is labor intensive and time consuming. Here, we show that a high-density genome array-based comparative genomic hybridization (aCGH) platform can be applied to efficiently detect and characterize copy number variations (CNVs) in mutants derived from fast neutron bombardment (FNB) mutagenesis in Medicago truncatula, a legume species. Whole genome sequence analysis shows that there are more than 50,000 genes or gene models in M. truncatula. At present, FNB-induced mutants in M. truncatula are derived from more than 150,000 M1 lines, representing invaluable genetic resources for functional studies of genes in the genome. The aCGH platform described here is an efficient tool for characterizing FNB-induced mutants in M. truncatula.
Collapse
Affiliation(s)
- Yuhui Chen
- Laboratory of Plant Genetics and Development, Noble Research Institute
| | - Xianfu Wang
- Genetics Laboratory, University of Oklahoma Health Science Center
| | - Shunfei Lu
- Medicine and Health School, Li Shui University
| | - Hongcheng Wang
- Genetics Laboratory, University of Oklahoma Health Science Center
| | - Shibo Li
- Genetics Laboratory, University of Oklahoma Health Science Center
| | - Rujin Chen
- Laboratory of Plant Genetics and Development, Noble Research Institute;
| |
Collapse
|
20
|
Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. PLANT CELL REPORTS 2017; 36:1187-1213. [PMID: 28352970 DOI: 10.1007/s00299-017-2127-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
Advancement in the field of genetics and genomics after the discovery of Mendel's laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers' field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Rabat, Morocco
| |
Collapse
|
21
|
Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao GY, Li JM. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 2017. [PMID: 28630475 DOI: 10.1038/s41598-017-04028-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.
Collapse
Affiliation(s)
- Fa Cui
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiao-Li Fan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chun-Hua Zhao
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
| | - Li-Juan Yang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453000, China
| | - Rui-Qing Pan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mei Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xue-Qiang Zhao
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Ping Tong
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Xia Zhang
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
| | - Ji-Zeng Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Yao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun-Ming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
22
|
Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 2017. [PMID: 28630475 PMCID: PMC5476560 DOI: 10.1038/s41598-017-04028-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.
Collapse
|
23
|
Lutz U, Nussbaumer T, Spannagl M, Diener J, Mayer KF, Schwechheimer C. Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis. eLife 2017; 6. [PMID: 28294941 PMCID: PMC5388537 DOI: 10.7554/elife.22114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
Cool ambient temperatures are major cues determining flowering time in spring. The mechanisms promoting or delaying flowering in response to ambient temperature changes are only beginning to be understood. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) regulates flowering in the ambient temperature range and FLM is transcribed and alternatively spliced in a temperature-dependent manner. We identify polymorphic promoter and intronic sequences required for FLM expression and splicing. In transgenic experiments covering 69% of the available sequence variation in two distinct sites, we show that variation in the abundance of the FLM-ß splice form strictly correlate (R2 = 0.94) with flowering time over an extended vegetative period. The FLM polymorphisms lead to changes in FLM expression (PRO2+) but may also affect FLM intron 1 splicing (INT6+). This information could serve to buffer the anticipated negative effects on agricultural systems and flowering that may occur during climate change. DOI:http://dx.doi.org/10.7554/eLife.22114.001
Collapse
Affiliation(s)
- Ulrich Lutz
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Thomas Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Julia Diener
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Klaus Fx Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
24
|
Deng X, Cao X. Roles of pre-mRNA splicing and polyadenylation in plant development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:45-53. [PMID: 27866125 DOI: 10.1016/j.pbi.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Plants possess amazing plasticity of growth and development, allowing them to adjust continuously and rapidly to changes in the environment. Over the past two decades, numerous molecular studies have illuminated the role of transcriptional regulation in plant development and environmental responses. However, emerging studies in Arabidopsis have uncovered an unexpectedly widespread role for post-transcriptional regulation in development and responses to environmental changes. In this review, we summarize recent discoveries detailing the contribution of two post-transcriptional mechanisms, pre-mRNA splicing and polyadenylation, to the regulation of plant development, with an emphasis on the control of flowering time. We also discuss future directions in the field and new technological approaches.
Collapse
Affiliation(s)
- Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
25
|
Yu Y, Liu J, Li F, Zhang X, Zhang C, Xiang J. Gene set based association analyses for the WSSV resistance of Pacific white shrimp Litopenaeus vannamei. Sci Rep 2017; 7:40549. [PMID: 28094323 PMCID: PMC5240139 DOI: 10.1038/srep40549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022] Open
Abstract
White Spot Syndrome Virus (WSSV) is regarded as a virus with the strongest pathogenicity to shrimp. For the threshold trait such as disease resistance, marker assisted selection (MAS) was considered to be a more effective approach. In the present study, association analyses of single nucleotide polymorphisms (SNPs) located in a set of immune related genes were conducted to identify markers associated with WSSV resistance. SNPs were detected by bioinformatics analysis on RNA sequencing data generated by Illimina sequencing platform and Roche 454 sequencing technology. A total of 681 SNPs located in the exons of immune related genes were selected as candidate SNPs. Among these SNPs, 77 loci were genotyped in WSSV susceptible group and resistant group. Association analysis was performed based on logistic regression method under an additive and dominance model in GenABEL package. As a result, five SNPs showed associations with WSSV resistance at a significant level of 0.05. Besides, SNP-SNP interaction analysis was conducted. The combination of SNP loci in TRAF6, Cu/Zn SOD and nLvALF2 exhibited a significant effect on the WSSV resistance of shrimp. Gene expression analysis revealed that these SNPs might influence the expression of these immune-related genes. This study provides a useful method for performing MAS in shrimp.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jingwen Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chengsong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
26
|
Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar B. A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny. PLoS One 2016; 11:e0164321. [PMID: 27711162 PMCID: PMC5053417 DOI: 10.1371/journal.pone.0164321] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/22/2016] [Indexed: 11/23/2022] Open
Abstract
Arabidopsis thaliana is the most important model organism for fundamental plant biology. The genome diversity of different accessions of this species has been intensively studied, for example in the 1001 genome project which led to the identification of many small nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels). In addition, presence/absence variation (PAV), copy number variation (CNV) and mobile genetic elements contribute to genomic differences between A. thaliana accessions. To address larger genome rearrangements between the A. thaliana reference accession Columbia-0 (Col-0) and another accession of about average distance to Col-0, we created a de novo next generation sequencing (NGS)-based assembly from the accession Niederzenz-1 (Nd-1). The result was evaluated with respect to assembly strategy and synteny to Col-0. We provide a high quality genome sequence of the A. thaliana accession (Nd-1, LXSY01000000). The assembly displays an N50 of 0.590 Mbp and covers 99% of the Col-0 reference sequence. Scaffolds from the de novo assembly were positioned on the basis of sequence similarity to the reference. Errors in this automatic scaffold anchoring were manually corrected based on analyzing reciprocal best BLAST hits (RBHs) of genes. Comparison of the final Nd-1 assembly to the reference revealed duplications and deletions (PAV). We identified 826 insertions and 746 deletions in Nd-1. Randomly selected candidates of PAV were experimentally validated. Our Nd-1 de novo assembly allowed reliable identification of larger genic and intergenic variants, which was difficult or error-prone by short read mapping approaches alone. While overall sequence similarity as well as synteny is very high, we detected short and larger (affecting more than 100 bp) differences between Col-0 and Nd-1 based on bi-directional comparisons. The de novo assembly provided here and additional assemblies that will certainly be published in the future will allow to describe the pan-genome of A. thaliana.
Collapse
Affiliation(s)
- Boas Pucker
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniela Holtgräwe
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Rosleff Sörensen
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Ralf Stracke
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Prisca Viehöver
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
27
|
Ranjan A, Budke JM, Rowland SD, Chitwood DH, Kumar R, Carriedo L, Ichihashi Y, Zumstein K, Maloof JN, Sinha NR. eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato. PLANT PHYSIOLOGY 2016; 172:328-40. [PMID: 27418589 PMCID: PMC5074602 DOI: 10.1104/pp.16.00289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/11/2016] [Indexed: 05/18/2023]
Abstract
Variation in gene expression, in addition to sequence polymorphisms, is known to influence developmental, physiological, and metabolic traits in plants. Genetic mapping populations have facilitated identification of expression quantitative trait loci (eQTL), the genetic determinants of variation in gene expression patterns. We used an introgression population developed from the wild desert-adapted Solanum pennellii and domesticated tomato (Solanum lycopersicum) to identify the genetic basis of transcript level variation. We established the effect of each introgression on the transcriptome and identified approximately 7,200 eQTL regulating the steady-state transcript levels of 5,300 genes. Barnes-Hut t-distributed stochastic neighbor embedding clustering identified 42 modules revealing novel associations between transcript level patterns and biological processes. The results showed a complex genetic architecture of global transcript abundance pattern in tomato. Several genetic hot spots regulating a large number of transcript level patterns relating to diverse biological processes such as plant defense and photosynthesis were identified. Important eQTL regulating transcript level patterns were related to leaf number and complexity as well as hypocotyl length. Genes associated with leaf development showed an inverse correlation with photosynthetic gene expression, but eQTL regulating genes associated with leaf development and photosynthesis were dispersed across the genome. This comprehensive eQTL analysis details the influence of these loci on plant phenotypes and will be a valuable community resource for investigations on the genetic effects of eQTL on phenotypic traits in tomato.
Collapse
Affiliation(s)
- Aashish Ranjan
- Department of Plant Biology, University of California, Davis, California 95616
| | - Jessica M Budke
- Department of Plant Biology, University of California, Davis, California 95616
| | - Steven D Rowland
- Department of Plant Biology, University of California, Davis, California 95616
| | - Daniel H Chitwood
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ravi Kumar
- Department of Plant Biology, University of California, Davis, California 95616
| | - Leonela Carriedo
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Kristina Zumstein
- Department of Plant Biology, University of California, Davis, California 95616
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, California 95616
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
28
|
Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions. G3-GENES GENOMES GENETICS 2016; 6:2319-28. [PMID: 27226169 PMCID: PMC4978887 DOI: 10.1534/g3.116.030874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An increased knowledge of the genetic regulation of expression in Arabidopsis thaliana is likely to provide important insights about the basis of the plant’s extensive phenotypic variation. Here, we reanalyzed two publicly available datasets with genome-wide data on genetic and transcript variation in large collections of natural A. thaliana accessions. Transcripts from more than half of all genes were detected in the leaves of all accessions, and from nearly all annotated genes in at least one accession. Thousands of genes had high transcript levels in some accessions, but no transcripts at all in others, and this pattern was correlated with the genome-wide genotype. In total, 2669 eQTL were mapped in the largest population, and 717 of them were replicated in the other population. A total of 646 cis-eQTL-regulated genes that lacked detectable transcripts in some accessions was found, and for 159 of these we identified one, or several, common structural variants in the populations that were shown to be likely contributors to the lack of detectable RNA transcripts for these genes. This study thus provides new insights into the overall genetic regulation of global gene expression diversity in the leaf of natural A. thaliana accessions. Further, it also shows that strong cis-acting polymorphisms, many of which are likely to be structural variations, make important contributions to the transcriptional variation in the worldwide A. thaliana population.
Collapse
|
29
|
Sureshkumar S, Dent C, Seleznev A, Tasset C, Balasubramanian S. Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis. NATURE PLANTS 2016; 2:16055. [PMID: 27243649 DOI: 10.1038/nplants.2016.55] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/18/2016] [Indexed: 05/19/2023]
Abstract
Increasing global temperatures have an impact on flowering, and the underlying mechanisms are just beginning to be unravelled(1,2). Elevated temperatures can induce flowering, and different mechanisms that involve either activation or de-repression of FLOWERING LOCUS T (FT) by transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or the FLOWERING LOCUS M (FLM)-SHORT VEGETATIVE PHASE (SVP) complex, respectively, have been suggested to be involved(3-6). Thermosensitivity in flowering has been mapped to FLM(5), which encodes a floral repressor(7,8). FLM undergoes alternative splicing(8) and it has been suggested that temperature-dependent alternative splicing leads to differential accumulation of the FLM-β and FLM-δ transcripts, encoding proteins with antagonistic effects, and that their ratio determines floral transition(4). Here we show that high temperatures downregulate FLM expression by alternative splicing coupled with nonsense-mediated mRNA decay (AS-NMD). We identify thermosensitive splice sites in FLM and show that the primary effect of temperature is explained by an increase in NMD target transcripts. We also show that flm is epistatic to pif4, which suggests that most of the PIF4 effects are FLM dependent. Our findings suggest a model in which the loss of the floral repressor FLM occurs through mRNA degradation in response to elevated temperatures, signifying a role for AS-NMD in conferring environmental responses in plants.
Collapse
Affiliation(s)
- Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton Campus, Victoria 3800, Australia
| | - Craig Dent
- School of Biological Sciences, Monash University, Clayton Campus, Victoria 3800, Australia
| | - Andrei Seleznev
- School of Biological Sciences, Monash University, Clayton Campus, Victoria 3800, Australia
| | - Celine Tasset
- School of Biological Sciences, Monash University, Clayton Campus, Victoria 3800, Australia
| | | |
Collapse
|
30
|
Qu C, Zhao H, Fu F, Zhang K, Yuan J, Liu L, Wang R, Xu X, Lu K, Li JN. Molecular Mapping and QTL for Expression Profiles of Flavonoid Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1691. [PMID: 27881992 PMCID: PMC5102069 DOI: 10.3389/fpls.2016.01691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/26/2016] [Indexed: 05/18/2023]
Abstract
Flavonoids are secondary metabolites that are extensively distributed in the plant kingdom and contribute to seed coat color formation in rapeseed. To decipher the genetic networks underlying flavonoid biosynthesis in rapeseed, we constructed a high-density genetic linkage map with 1089 polymorphic loci (including 464 SSR loci, 97 RAPD loci, 451 SRAP loci, and 75 IBP loci) using recombinant inbred lines (RILs). The map consists of 19 linkage groups and covers 2775 cM of the B. napus genome with an average distance of 2.54 cM between adjacent markers. We then performed expression quantitative trait locus (eQTL) analysis to detect transcript-level variation of 18 flavonoid biosynthesis pathway genes in the seeds of the 94 RILs. In total, 72 eQTLs were detected and found to be distributed among 15 different linkage groups that account for 4.11% to 52.70% of the phenotypic variance atrributed to each eQTL. Using a genetical genomics approach, four eQTL hotspots together harboring 28 eQTLs associated with 18 genes were found on chromosomes A03, A09, and C08 and had high levels of synteny with genome sequences of A. thaliana and Brassica species. Associated with the trans-eQTL hotspots on chromosomes A03, A09, and C08 were 5, 17, and 1 genes encoding transcription factors, suggesting that these genes have essential roles in the flavonoid biosynthesis pathway. Importantly, bZIP25, which is expressed specifically in seeds, MYC1, which controls flavonoid biosynthesis, and the R2R3-type gene MYB51, which is involved in the synthesis of secondary metabolites, were associated with the eQTL hotspots, and these genes might thus be involved in different flavonoid biosynthesis pathways in rapeseed. Hence, further studies of the functions of these genes will provide insight into the regulatory mechanism underlying flavonoid biosynthesis, and lay the foundation for elaborating the molecular mechanism of seed coat color formation in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue UniversityWest Lafayette, IN, USA
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Jianglian Yuan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
- *Correspondence: Kun Lu
| | - Jia-Na Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
- Jia-na Li
| |
Collapse
|
31
|
Microarray-based large scale detection of single feature polymorphism in Gossypium hirsutum L. J Genet 2015; 94:669-76. [PMID: 26690522 DOI: 10.1007/s12041-015-0584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microarrays offer an opportunity to explore the functional sequence polymorphism among different cultivars of many crop plants. The Affymetrix microarray expression data of five genotypes of Gossypium hirsutum L. at six different fibre developmental stages was used to identify single feature polymorphisms (SFPs). The background corrected and quantile-normalized log2 intensity values of all probes of triplicate data of each cotton variety were subjected to SFPs call by using SAM procedure in R language software. We detected a total of 37,473 SFPs among six pair genotype combinations of two superior (JKC777 and JKC725) and three inferior (JKC703, JKC737 and JKC783) using the expression data. The 224 SFPs covering 51 genes were randomly selected from the dataset of all six fibre developmental stages of JKC777 and JKC703 for validation by sequencing on a capillary sequencer. Of these 224 SFPs, 132 were found to be polymorphic and 92 monomorphic which indicate that the SFP prediction from the expression data in the present study confirmed a ~58.92% of true SFPs. We further identified that most of the SFPs are associated with genes involved in fatty acid, flavonoid, auxin biosynthesis etc. indicating that these pathways significantly involved in fibre development.
Collapse
|
32
|
Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken. G3-GENES GENOMES GENETICS 2015; 6:311-9. [PMID: 26637433 PMCID: PMC4751551 DOI: 10.1534/g3.115.024299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait–gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species.
Collapse
|
33
|
Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. PLoS Genet 2015; 11:e1005588. [PMID: 26492483 PMCID: PMC4619661 DOI: 10.1371/journal.pgen.1005588] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/16/2015] [Indexed: 12/27/2022] Open
Abstract
Plants integrate seasonal cues such as temperature and day length to optimally adjust their flowering time to the environment. Compared to the control of flowering before and after winter by the vernalization and day length pathways, mechanisms that delay or promote flowering during a transient cool or warm period, especially during spring, are less well understood. Due to global warming, understanding this ambient temperature pathway has gained increasing importance. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) is a critical flowering regulator of the ambient temperature pathway. FLM is alternatively spliced in a temperature-dependent manner and the two predominant splice variants, FLM-ß and FLM-δ, can repress and activate flowering in the genetic background of the A. thaliana reference accession Columbia-0. The relevance of this regulatory mechanism for the environmental adaptation across the entire range of the species is, however, unknown. Here, we identify insertion polymorphisms in the first intron of FLM as causative for accelerated flowering in many natural A. thaliana accessions, especially in cool (15°C) temperatures. We present evidence for a potential adaptive role of this structural variation and link it specifically to changes in the abundance of FLM-ß. Our results may allow predicting flowering in response to ambient temperatures in the Brassicaceae.
Collapse
|
34
|
El-Soda M, Kruijer W, Malosetti M, Koornneef M, Aarts MGM. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. PLANT, CELL & ENVIRONMENT 2015; 38:585-99. [PMID: 25074022 DOI: 10.1111/pce.12418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 05/21/2023]
Abstract
Drought stress was imposed on two sets of Arabidopsis thaliana genotypes grown in sand under short-day conditions and analysed for several shoot and root growth traits. The response to drought was assessed for quantitative trait locus (QTL) mapping in a genetically diverse set of Arabidopsis accessions using genome-wide association (GWA) mapping, and conventional linkage analysis of a recombinant inbred line (RIL) population. Results showed significant genotype by environment interaction (G×E) for all traits in response to different watering regimes. For the RIL population, the observed G×E was reflected in 17 QTL by environment interactions (Q×E), while 17 additional QTLs were mapped not showing Q×E. GWA mapping identified 58 single nucleotide polymorphism (SNPs) associated with loci displaying Q×E and an additional 16 SNPs associated with loci not showing Q×E. Many candidate genes potentially underlying these loci were suggested. The genes for RPS3C and YLS7 were found to contain conserved amino acid differences when comparing Arabidopsis accessions with strongly contrasting drought response phenotypes, further supporting their candidacy. One of these candidate genes co-located with a QTL mapped in the RIL population.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Wageningen, 6708PB, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Upadhyaya HD, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1271-90. [PMID: 25504138 PMCID: PMC4339591 DOI: 10.1093/jxb/eru478] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
36
|
Capovilla G, Schmid M, Posé D. Control of flowering by ambient temperature. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:59-69. [PMID: 25326628 DOI: 10.1093/jxb/eru416] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The timing of flowering is a crucial decision in the life cycle of plants since favourable conditions are needed to maximize reproductive success and, hence, the survival of the species. It is therefore not surprising that plants constantly monitor endogenous and environmental signals, such as day length (photoperiod) and temperature, to adjust the timing of the floral transition. Temperature in particular has been shown to have a tremendous effect on the timing of flowering: the effect of prolonged periods of cold, called the vernalization response, has been extensively studied and the underlying epigenetic mechanisms are reasonably well understood in Arabidopsis thaliana. In contrast, the effect of moderate changes in ambient growth temperature on the progression of flowering, the thermosensory pathway, is only starting to be understood on the molecular level. Several genes and molecular mechanisms underlying the thermosensory pathway have already been identified and characterized in detail. At a time when global temperature is rising due to climate change, this knowledge will be pivotal to ensure crop production in the future.
Collapse
Affiliation(s)
- Giovanna Capovilla
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstr. 35, D-72076 Tübingen, Germany
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstr. 35, D-72076 Tübingen, Germany
| | - David Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
37
|
Suter L, Rüegg M, Zemp N, Hennig L, Widmer A. Gene regulatory variation mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1928-42. [PMID: 25339407 PMCID: PMC4256870 DOI: 10.1104/pp.114.247346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Steep environmental gradients provide ideal settings for studies of potentially adaptive phenotypic and genetic variation in plants. The accurate timing of flowering is crucial for reproductive success and is regulated by several pathways, including the vernalization pathway. Among the numerous genes known to enable flowering in response to vernalization, the most prominent is FLOWERING LOCUS C (FLC). FLC and other genes of the vernalization pathway vary extensively among natural populations and are thus candidates for the adaptation of flowering time to environmental gradients such as altitude. We used 15 natural Arabidopsis (Arabidopsis thaliana) genotypes originating from an altitudinal gradient (800-2,700 m above sea level) in the Swiss Alps to test whether flowering time correlated with altitude under different vernalization scenarios. Additionally, we measured the expression of 12 genes of the vernalization pathway and its downstream targets. Flowering time correlated with altitude in a nonlinear manner for vernalized plants. Flowering time could be explained by the expression and regulation of the vernalization pathway, most notably by AGAMOUS LIKE19 (AGL19), FLOWERING LOCUS T (FT), and FLC. The expression of AGL19, FT, and VERNALIZATION INSENSITIVE3 was associated with altitude, and the regulation of MADS AFFECTING FLOWERING2 (MAF2) and MAF3 differed between low- and high-altitude genotypes. In conclusion, we found clinal variation across an altitudinal gradient both in flowering time and the expression and regulation of genes in the flowering time control network, often independent of FLC, suggesting that the timing of flowering may contribute to altitudinal adaptation.
Collapse
Affiliation(s)
- Léonie Suter
- Eidgenössisch Technische Hochschule Zürich, Institute of Integrative Biology, 8092 Zurich, Switzerland (L.S., M.R., N.Z., A.W.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden (L.H.)
| | - Marlene Rüegg
- Eidgenössisch Technische Hochschule Zürich, Institute of Integrative Biology, 8092 Zurich, Switzerland (L.S., M.R., N.Z., A.W.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden (L.H.)
| | - Niklaus Zemp
- Eidgenössisch Technische Hochschule Zürich, Institute of Integrative Biology, 8092 Zurich, Switzerland (L.S., M.R., N.Z., A.W.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden (L.H.)
| | - Lars Hennig
- Eidgenössisch Technische Hochschule Zürich, Institute of Integrative Biology, 8092 Zurich, Switzerland (L.S., M.R., N.Z., A.W.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden (L.H.)
| | - Alex Widmer
- Eidgenössisch Technische Hochschule Zürich, Institute of Integrative Biology, 8092 Zurich, Switzerland (L.S., M.R., N.Z., A.W.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden (L.H.)
| |
Collapse
|
38
|
Siwinska J, Kadzinski L, Banasiuk R, Gwizdek-Wisniewska A, Olry A, Banecki B, Lojkowska E, Ihnatowicz A. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana. BMC PLANT BIOLOGY 2014; 14:280. [PMID: 25326030 PMCID: PMC4252993 DOI: 10.1186/s12870-014-0280-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/09/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Scopoletin and its glucoside scopolin are important secondary metabolites synthesized in plants as a defense mechanism against various environmental stresses. They belong to coumarins, a class of phytochemicals with significant biological activities that is widely used in medical application and cosmetics industry. Although numerous studies showed that a variety of coumarins occurs naturally in several plant species, the details of coumarins biosynthesis and its regulation is not well understood. It was shown previously that coumarins (predominantly scopolin and scopoletin) occur in Arabidopsis thaliana (Arabidopsis) roots, but until now nothing is known about natural variation of their accumulation in this model plant. Therefore, the genetic architecture of coumarins biosynthesis in Arabidopsis has not been studied before. RESULTS Here, the variation in scopolin and scopoletin content was assessed by comparing seven Arabidopsis accessions. Subsequently, a quantitative trait locus (QTL) mapping was performed with an Advanced Intercross Recombinant Inbred Lines (AI-RILs) mapping population EstC (Est-1 × Col). In order to reveal the genetic basis of both scopolin and scopoletin biosynthesis, two sets of methanol extracts were made from Arabidopsis roots and one set was additionally subjected to enzymatic hydrolysis prior to quantification done by high-performance liquid chromatography (HPLC). We identified one QTL for scopolin and five QTLs for scopoletin accumulation. The identified QTLs explained 13.86% and 37.60% of the observed phenotypic variation in scopolin and scopoletin content, respectively. In silico analysis of genes located in the associated QTL intervals identified a number of possible candidate genes involved in coumarins biosynthesis. CONCLUSIONS Together, our results demonstrate for the first time that Arabidopsis is an excellent model for studying the genetic and molecular basis of natural variation in coumarins biosynthesis in plants. It additionally provides a basis for fine mapping and cloning of the genes involved in scopolin and scopoletin biosynthesis. Importantly, we have identified new loci for this biosynthetic process.
Collapse
Affiliation(s)
- Joanna Siwinska
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Leszek Kadzinski
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Rafal Banasiuk
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Anna Gwizdek-Wisniewska
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Alexandre Olry
- />Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, Vandœuvre-lès-Nancy, 54505 France
- />INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, Vandœuvre-lès-Nancy, 54505 France
| | - Bogdan Banecki
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Ewa Lojkowska
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Anna Ihnatowicz
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| |
Collapse
|
39
|
Verhage L, Angenent GC, Immink RGH. Research on floral timing by ambient temperature comes into blossom. TRENDS IN PLANT SCIENCE 2014; 19:583-91. [PMID: 24780095 DOI: 10.1016/j.tplants.2014.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 05/20/2023]
Abstract
The floral transition is an essential process in the life cycle of flower-bearing plants, because their reproductive success depends on it. To determine the right moment of flowering, plants respond to many environmental signals, including day length, light quality, and temperature. Small changes in ambient temperature also affect the flowering process, although our knowledge of the genetic and molecular mechanisms underlying this flowering pathway is limited. However, recent advances in Arabidopsis (Arabidopsis thaliana) have uncovered multiple molecular mechanisms controlling ambient temperature regulation of flowering, which modulate both repressing and activating factors of flowering time. At a time when temperatures are rising worldwide, understanding how plants integrate ambient temperature signals can be crucial for crop production.
Collapse
Affiliation(s)
- Leonie Verhage
- Plant Research International, Bioscience, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Plant Research International, Bioscience, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Richard G H Immink
- Plant Research International, Bioscience, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
40
|
Hu JY, Zhou Y, He F, Dong X, Liu LY, Coupland G, Turck F, de Meaux J. miR824-Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in Arabidopsis. THE PLANT CELL 2014; 26:2024-2037. [PMID: 24876250 PMCID: PMC4079366 DOI: 10.1105/tpc.114.124685] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/22/2014] [Accepted: 05/05/2014] [Indexed: 05/18/2023]
Abstract
The timing of flowering is pivotal for maximizing reproductive success under fluctuating environmental conditions. Flowering time is tightly controlled by complex genetic networks that integrate endogenous and exogenous cues, such as light, temperature, photoperiod, and hormones. Here, we show that AGAMOUS-LIKE16 (AGL16) and its negative regulator microRNA824 (miR824) control flowering time in Arabidopsis thaliana. Knockout of AGL16 effectively accelerates flowering in nonvernalized Col-FRI, in which the floral inhibitor FLOWERING LOCUS C (FLC) is strongly expressed, but shows no effect if plants are vernalized or grown in short days. Alteration of AGL16 expression levels by manipulating miR824 abundance influences the timing of flowering quantitatively, depending on the expression level and number of functional FLC alleles. The effect of AGL16 is fully dependent on the presence of FLOWERING LOCUS T (FT). Further experiments show that AGL16 can interact directly with SHORT VEGETATIVE PHASE and indirectly with FLC, two proteins that form a complex to repress expression of FT. Our data reveal that miR824 and AGL16 modulate the extent of flowering time repression in a long-day photoperiod.
Collapse
Affiliation(s)
- Jin-Yong Hu
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yue Zhou
- Department of Plant Development, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Fei He
- Molecular Evolutionary Biology, Institute for Evolution and Biodiversity, Westfalische Wilhelms-Universitat, 48149 Munster, Germany
| | - Xue Dong
- Department of Plant Development, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Liang-Yu Liu
- Department of Plant Development, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - George Coupland
- Department of Plant Development, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Franziska Turck
- Department of Plant Development, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Juliette de Meaux
- Molecular Evolutionary Biology, Institute for Evolution and Biodiversity, Westfalische Wilhelms-Universitat, 48149 Munster, Germany
| |
Collapse
|
41
|
Affiliation(s)
- Ove Nilsson
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| |
Collapse
|
42
|
Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RGH, Schmid M. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 2013; 503:414-7. [DOI: 10.1038/nature12633] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
|
43
|
Lee JH, Ryu HS, Chung KS, Pose D, Kim S, Schmid M, Ahn JH. Regulation of Temperature-Responsive Flowering by MADS-Box Transcription Factor Repressors. Science 2013; 342:628-32. [DOI: 10.1126/science.1241097] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Fournier-Level A, Wilczek AM, Cooper MD, Roe JL, Anderson J, Eaton D, Moyers BT, Petipas RH, Schaeffer RN, Pieper B, Reymond M, Koornneef M, Welch SM, Remington DL, Schmitt J. Paths to selection on life history loci in different natural environments across the native range of Arabidopsis thaliana. Mol Ecol 2013; 22:3552-66. [PMID: 23506537 DOI: 10.1111/mec.12285] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/17/2012] [Accepted: 01/29/2013] [Indexed: 01/17/2023]
Abstract
Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment-specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2-5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.
Collapse
|
45
|
Grillo MA, Li C, Hammond M, Wang L, Schemske DW. Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 197:1321-1331. [PMID: 23311994 DOI: 10.1111/nph.12109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/15/2012] [Indexed: 05/18/2023]
Abstract
To gain an understanding of the genetic basis of adaptation, we conducted quantitative trait locus (QTL) mapping for flowering time variation between two winter annual populations of Arabidopsis thaliana that are locally adapted and display distinct flowering times. QTL mapping was performed with large (n = 384) F(2) populations with and without vernalization, in order to reveal both the genetic basis of a vernalization requirement and that of variation in flowering time given vernalization. In the nonvernalization treatment, none of the Sweden parents flowered, whereas all of the Italy parents and 42% of the F(2)s flowered. We identified three QTLs for flowering without vernalization, with much of the variation being attributed to a QTL co-localizing with FLOWERING LOCUS C (FLC). In the vernalization treatment, all parents and F(2)s flowered, and six QTLs of small to moderate effect were revealed, with underlying candidate genes that are members of the vernalization pathway. We found no evidence for a role of FRIGIDA in the regulation of flowering times. These results contribute to a growing body of evidence aimed at the identification of ecologically relevant genetic variation for flowering time in Arabidopsis, and set the stage for functional studies to determine the link between flowering time loci and fitness.
Collapse
Affiliation(s)
- Michael A Grillo
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Changbao Li
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Mark Hammond
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lijuan Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Douglas W Schemske
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
46
|
Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background. PLoS Genet 2013; 9:e1003289. [PMID: 23382706 PMCID: PMC3561112 DOI: 10.1371/journal.pgen.1003289] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/15/2012] [Indexed: 01/17/2023] Open
Abstract
The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1). We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP). Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time. In many plant species, the timing of flowering initiation shows abundant quantitative variation among natural varieties, which reflects the importance of this trait for adaptation to different environments. Currently, a major goal in plant biology is to determine the molecular and evolutionary bases of this natural genetic variation. In this study we demonstrate that the central flowering regulator SHORT VEGETATIVE PHASE (SVP), encoding a MADS transcription factor, is involved in the flowering natural variation of the model organism Arabidopsis thaliana. In particular, we prove that a structural change caused by a single amino acid substitution generates a SVP early flowering allele that is distributed only in Asia. Furthermore, genetic interactions have been shown to be a component of the natural variation for many important adaptive traits. However, very few studies, either in animals or plants, have systematically addressed the extent of genetic interactions among specific alleles responsible for the natural variation of complex traits. Our study shows that the flowering effects of SVP natural alleles depend significantly on the genetic background; and, subsequently, we demonstrate the relevance of epistasis for the evolution of this crucial transcription factor and flowering time.
Collapse
Affiliation(s)
- Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José M. Martínez-Zapater
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Capron A, Chang XF, Hall H, Ellis B, Beatson RP, Berleth T. Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:185-97. [PMID: 23136168 PMCID: PMC3528028 DOI: 10.1093/jxb/ers319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fibre properties and the biochemical composition of cell walls are important traits in many applications. For example, the lengths of fibres define the strength and quality of paper, and lignin content is a critical parameter for the use of biomass in biofuel production. Identifying genes controlling these traits is comparatively difficult in woody species, because of long generation times and limited amenability to high-resolution genetic mapping. To address this problem, this study mapped quantitative trait loci (QTLs) defining fibre length and lignin content in the Arabidopsis recombinant inbred line population Col-4 × Ler-0. Adapting high-throughput phenotyping techniques for both traits for measurements in Arabidopsis inflorescence stems identified significant QTLs for fibre length on chromosomes 2 and 5, as well as one significant QTL affecting lignin content on chromosome 2. For fibre length, total variation within the population was 208% higher than between parental lines and the identified QTLs explained 50.58% of the observed variation. For lignin content, the values were 261 and 26.51%, respectively. Bioinformatics analysis of the associated intervals identified a number of candidate genes for fibre length and lignin content. This study demonstrates that molecular mapping of QTLs pertaining to wood and fibre properties is possible in Arabidopsis, which substantially broadens the use of Arabidopsis as a model species for the functional characterization of plant genes.
Collapse
Affiliation(s)
- Arnaud Capron
- University of Toronto-CSB, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Xue Feng Chang
- British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, Canada, V5G 3H2
| | - Hardy Hall
- University of British Columbia – Michael Smith Laboratories, #301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brian Ellis
- University of British Columbia – Michael Smith Laboratories, #301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Rodger P. Beatson
- British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, Canada, V5G 3H2
| | - Thomas Berleth
- University of Toronto-CSB, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
48
|
Wollenberg AC, Amasino RM. Natural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2012; 35:2181-91. [PMID: 22639792 DOI: 10.1111/j.1365-3040.2012.02548.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vernalization is an acceleration of flowering in response to chilling, and is normally studied in the laboratory at near-freezing (2-4 °C) temperatures. Many vernalization-requiring species, such as Arabidopsis thaliana, are found in a range of habitats with varying winter temperatures. Natural variation in the temperature range that elicits a vernalization response in Arabidopsis has not been fully explored. We characterized the effect of intermediate temperatures (7-19 °C) on 15 accessions and the well-studied reference line Col-FRI. Although progressively warmer temperatures are gradually less effective at activating expression of the vernalization-specific gene VERNALIZATION-INSENSITIVE 3 (VIN3) and in accelerating flowering, there is substantial natural variation in the upper threshold (T(max) ) of the flowering-time response. VIN3 is required for the T(max) (13 °C) response of Col-FRI. Surprisingly, even 16 °C treatment caused induction of VIN3 in six tested lines, despite the ineffectiveness of this temperature in accelerating flowering for two of them. Finally, we present evidence that mild acceleration of flowering by 19 °C exposure may counterbalance the flowering time delay caused by non-inductive photoperiods in at least one accession, creating an appearance of photoperiod insensitivity.
Collapse
Affiliation(s)
- Amanda C Wollenberg
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | |
Collapse
|
49
|
Cosson P, Schurdi-Levraud V, Le QH, Sicard O, Caballero M, Roux F, Le Gall O, Candresse T, Revers F. The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. PLoS One 2012; 7:e39169. [PMID: 22723957 PMCID: PMC3377653 DOI: 10.1371/journal.pone.0039169] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/16/2012] [Indexed: 11/19/2022] Open
Abstract
Background The non conventional RTM (Restricted Tobacco etch virus Movement) resistance which restricts long distance movement of some plant viruses in Arabidopsis thaliana is still poorly understood. Though at least three RTM genes have been identified, their precise role(s) in the process as well as whether other genes are involved needs to be elucidated. Methodology/Principal Findings In this study, the natural variation of the RTM genes was analysed at the amino acid level in relation with their functionality to restrict the long distance movement of Lettuce mosaic potyvirus (LMV). We identified non-functional RTM alleles in LMV-susceptible Arabidopsis accessions as well as some of the mutations leading to the non-functionality of the RTM proteins. Our data also indicate that more than 40% of the resistant accessions to LMV are controlled by the RTM genes. In addition, two new RTM loci were genetically identified. Conclusions/Significance Our results show that the RTM resistance seems to be a complex biological process which would involves at least five different proteins. The next challenges will be to understand how the different RTM protein domains are involved in the resistance mechanism and to characterise the new RTM genes for a better understanding of the blocking of the long distance transport of plant viruses.
Collapse
Affiliation(s)
- Patrick Cosson
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Valérie Schurdi-Levraud
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Quang Hien Le
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Ophélie Sicard
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Mélodie Caballero
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Fabrice Roux
- FRE CNRS 3268 – Laboratoire de Génétique et Evolution des Populations Végétales, Université des Sciences et Technologies de Lille 1, Villeneuve d’Ascq, France
| | - Olivier Le Gall
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Thierry Candresse
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Frédéric Revers
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- * E-mail:
| |
Collapse
|
50
|
Olsen KM, Kooyers NJ, Small LL. Recurrent gene deletions and the evolution of adaptive cyanogenesis polymorphisms in white clover (Trifolium repens L.). Mol Ecol 2012; 22:724-38. [PMID: 22694056 DOI: 10.1111/j.1365-294x.2012.05667.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the molecular evolution of genes that underlie intraspecific polymorphisms can provide insights into the process of adaptive evolution. For adaptive polymorphisms characterized by gene presence/absence (P/A) variation, underlying loci commonly show signatures of long-term balancing selection, with gene-presence and gene-absence alleles maintained as two divergent lineages. We examined the molecular evolution of two unlinked P/A polymorphisms that underlie a well-documented adaptive polymorphism for cyanogenesis (hydrogen cyanide release with tissue damage) in white clover. Both cyanogenic and acyanogenic plants occur in this species, and the ecological forces that maintain this chemical defence polymorphism have been studied for several decades. Using a sample of 65 plants, we investigated the molecular evolution of sequences flanking the two underlying cyanogenesis genes: Ac/ac (controlling the presence/absence of cyanogenic glucosides) and Li/li (controlling the presence/absence of their hydrolysing enzyme, linamarase). A combination of genome walking, PCR assays, DNA sequence analysis and Southern blotting was used to test whether these adaptive P/A polymorphisms show evidence of long-term balancing selection, or whether gene-absence alleles have evolved repeatedly through independent deletion events. For both loci, we detect no signatures of balancing selection in the closest flanking genomic sequences. Instead, we find evidence for variation in the size of the deletions characterizing gene-absence alleles. These observations strongly suggest that both of these polymorphisms have been evolving through recurrent gene deletions over time. We discuss the genetic mechanisms that could account for this surprising pattern and the implications of these findings for mechanisms of rapid adaptive evolution in white clover.
Collapse
Affiliation(s)
- Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130-4899, USA.
| | | | | |
Collapse
|