1
|
Altadill M, Álvarez I, Ataya M, Heredia G, Alari‐Pahissa E, Muntasell A, Llano M, Fuchs J, Vilches C, Hengel H, Halenius A, López‐Botet M. Human Cytomegalovirus Antigen Presentation by HLA-G in Infected Cells. HLA 2025; 105:e70089. [PMID: 40347012 PMCID: PMC12065092 DOI: 10.1111/tan.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 05/12/2025]
Abstract
HLA-E and -G class Ib molecules were considered unrelated to viral antigen presentation. HLA-E binds nonamers from the leader sequences of other HLA-I molecules and the human cytomegalovirus (HCMV) UL40 protein, interacting with CD94/NKG2 NK cell receptors. Yet, evidence that HLA-E may present some pathogen-derived peptides to CD8+ T lymphocytes has been reported. By contrast, HLA-G binds a broad spectrum of endogenous sequences but its role in antigen presentation is unknown. An experimental approach was set up to search for HCMV antigens displayed by HLA-G in infected cells. Among the analysed peptidome, 22 sequences corresponding to 16 HCMV molecules were identified; 17 peptides were confirmed to interact in vitro with HLA-G of which 10 displayed characteristic anchor residues. As compared to the response in short-term (6 h) assays to immunodominant IE-1 and pp65 antigens, none of the HLA-G-binding peptides stimulated cytokine production by CD8+ T cells from HCMV-seropositive blood donors (n = 15). Following a 14-day peptide stimulation of PBMC and expansion with IL-2, CD8+ T cells specifically responding to a subset of these viral antigens were detected in some individuals, yet were not restricted by HLA-G in functional assays. A subset of viral peptides did bind to both HLA-G and -E but were not recognised by CD94/NKG2 NK cell receptors. Our results provide the first evidence that HLA-G may display potentially immunogenic viral peptides in HCMV-infected cells, yet do not support their ability to promote HLA-G-restricted CD8+ T cell responses nor to modulate NK cell functions.
Collapse
Affiliation(s)
- Mireia Altadill
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Iñaki Álvarez
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
| | - Michelle Ataya
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Gemma Heredia
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | | | - Aura Muntasell
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Manuel Llano
- Biological Sciences DepartmentThe University of Texas at El PasoEl PasoUSA
| | - Jonas Fuchs
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Carlos Vilches
- Immunogenetics and Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
- Organización Nacional de Trasplantes, Ministerio de SanidadMadridSpain
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Anne Halenius
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Miguel López‐Botet
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| |
Collapse
|
2
|
Arnaiz-Villena A, Suarez-Trujillo F, Ruiz-del-Valle V, Juarez I, Vaquero-Yuste C, Martin-Villa JM, Lledo T. The MHC (Major Histocmpatibility Complex) Exceptional Molecules of Birds and Their Relationship to Diseases. Int J Mol Sci 2025; 26:3767. [PMID: 40332403 PMCID: PMC12028091 DOI: 10.3390/ijms26083767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
There are about 5000 species of Passeriformes birds, which are half of the extant ones. Their class I MHC molecules are found to be different from all other studied vertebrates, including other bird species; i.e., amino acid residues 10 and 96 are not the seven canonic residues extant in all other vertebrate molecules. Thus, the canonic residues in MHC class I vertebrate molecules are reduced to five. These differences have physical effects in MHC (Major Histocompatibility Complex) class I alpha chain interaction with beta-2-microglobulin but have yet unknown functional effects. Also, introns show specific Passeriformes distinction both in size and invariance. The studies reviewed in this paper on MHC structure have been done in wild birds that cover most of the world's passerine habitats. In this context, we are going to expose the most commonly occurring bird diseases with the caveat that MHC and disease linkage pathogenesis is not resolved. In addition, this field is poorly studied in birds; however, common bird diseases like malaria and Marek's disease are linked to MHC. On the other hand, the main established function of MHC molecules is presenting microbial and other antigens to T cells in order to start immune responses, and they also may modulate the immune system through NK receptors and other receptors (non-classical class I MHC molecules). Also, structural and polymorphic differences between classical class I molecules and non-classical class I molecules are at present not clear, and their definition is blurred. These passerine exceptional MHC class I molecules may influence linkage to diseases, transplantation, and other MHC presentation and self-protection functions. Further studies in more Passeriformes species are ongoing and needed.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Silver SE, Howells AR, Arhontoulis DC, Randolph LN, Hyams NA, Barrs RW, Li M, Kerr CM, Robino RA, Morningstar JE, Bain JD, Floy ME, Norris RA, Bao X, Ruddy JM, Palecek SP, Ferreira LMR, Lian XL, Mei Y. Hypoimmunogenic hPSC-derived cardiac organoids for immune evasion and heart repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648007. [PMID: 40291708 PMCID: PMC12027337 DOI: 10.1101/2025.04.09.648007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Human pluripotent stem cell (hPSC)-derived cardiac therapies hold great promise for heart regeneration but face major translational barriers due to allogeneic immune rejection. Here, we engineered hypoimmunogenic hPSCs using a two-step CRISPR-Cas9 strategy: (1) B2M knockout, eliminating HLA class I surface expression, and (2) knock-in of HLA-E or HLA-G trimer constructs in the AAVS1 safe harbor locus to confer robust immune evasion. Hypoimmunogenic hPSCs maintained pluripotency, efficiently differentiated into cardiac cell types that resisted both T and NK cell-mediated cytotoxicity in vitro , and self-assembled into engineered cardiac organoids. Comprehensive analyses of the hypoimmunogenic cells and organoids revealed preservation of transcriptomic, structural, and functional properties with minimal off-target effects from gene editing. In vivo , hypoimmunogenic cardiac organoids restored contractile function in infarcted rat hearts and demonstrated superior graft retention and immune evasion in humanized mice compared to wild-type counterparts. These findings establish the therapeutic potential of hypoimmunogenic hPSC-CMs in the cardiac organoid platform, laying the foundation for off-the-shelf cardiac cell therapies to treat cardiovascular disease, the leading cause of death worldwide.
Collapse
|
4
|
Liu Z, Zhang J, Li L, Zhang T, Huang L, Yin Q. Shoutai Pill Enhances Endometrial Receptivity in Controlled Ovarian Hyperstimulation Mice by Improving the In-Vivo Immune Environment. Comb Chem High Throughput Screen 2025; 28:711-723. [PMID: 37929727 DOI: 10.2174/0113862073274708231028185333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The Shoutai pill (STP) is a classic formulation in traditional Chinese medicine. Preliminary experimental observations from our study suggest that it is effective in enhancing endometrial receptivity. However, the underlying mechanisms by which STP influences endometrial receptivity remain to be elucidated. OBJECTIVE The objective of this study is to investigate the effects and mechanisms of the STP formulation in enhancing endometrial receptivity in controlled ovarian hyperstimulation (COH) model mice. METHODS The network pharmacology analysis identified target proteins associated with the reduction of endometrial receptivity by STP. The COH mouse model was established using the GnRHa+PMSG+HCG protocol. The levels of MHC-1 and MHC-2 in mouse serum were measured using the ELISA method, while the levels of IL-1β, IL-4, IL-10, IP-10, IL-1a, IL-2, IL-17, TNF-a, and IFN-y were measured using liquid chip technology. RESULTS STP exhibited a significant improvement in the immune environment of COH model mice. The major active components of STP were identified as beta-sitosterol and quercetin, among others. Furthermore, AKT1, VEGFA, and several immune factors, such as TNF, IFN, IL- 1β, and IL-10, were identified as key targets for regulating endometrial receptivity. STP enhanced the expression of IL-10, IL-4, and IP-10 in the mice while reducing the expression levels of IL-2, IL-17, TNF-α, and IFN-γ in COH mice. These effects led to the modulation of early high expression of IL-1β and an improvement in endometrial receptivity. CONCLUSION This study demonstrates that STP can modulate in-vivo immune factors throughout the COH process, subsequently restoring the immune equilibrium within the endometrium, thereby enhancing the endometrial receptivity in the COH model mice.
Collapse
Affiliation(s)
- Ziping Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| | - Jizhong Zhang
- Southwest University for Nationalities, Chengdu Sichuan, China
| | - Liming Li
- 3Sichuan Academy of Traditional Chinese Medicine Science, Chengdu Sichuan China
| | - Tiane Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| | - Li Huang
- Sichuan Academy of Traditional Chinese Medicine Science, Chengdu Sichuan China
| | - Qiaozhi Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| |
Collapse
|
5
|
Benitez Fuentes JD, Bartolome Arcilla J, Mohamed Mohamed K, Lopez de Sa A, de Luna Aguilar A, Guevara-Hoyer K, Ballestin Martinez P, Lazaro Sanchez AD, Carosella ED, Ocaña A, Sánchez-Ramon S. Targeting of Non-Classical Human Leukocyte Antigens as Novel Therapeutic Strategies in Cancer. Cancers (Basel) 2024; 16:4266. [PMID: 39766165 PMCID: PMC11675049 DOI: 10.3390/cancers16244266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Human leukocyte antigens (HLAs) are essential regulators of immune responses against cancer, with classical HLAs well-documented for their role in tumor recognition and immune surveillance. In recent years, non-classical HLAs-including HLA-E, HLA-F, HLA-G, and HLA-H-have emerged as critical players in the immune landscape of cancer due to their diverse and less conventional functions in immune modulation. These molecules exhibit unique mechanisms that enable tumors to escape immune detection, promote tumor progression, and contribute to therapeutic resistance. This review provides a comprehensive examination of the current understanding of non-classical HLAs in solid cancers, focusing on their specific roles in shaping the tumor microenvironment and influencing immune responses. By analyzing how HLA-E, HLA-F, HLA-G, and HLA-H modulate interactions with immune cells, such as T cells, natural killer cells, and antigen-presenting cells, we highlight key pathways through which these molecules contribute to immune evasion and metastasis. Additionally, we review promising therapeutic strategies aimed at targeting non-classical HLAs, including emerging immunotherapies that could potentially enhance cancer treatment outcomes by reversing immune suppression within tumors. Understanding the influence of these non-classical HLAs in solid cancers may offer new insights into cancer immunology and may lead to the development of innovative and more effective immunotherapeutic approaches. This review underscores the importance of non-classical HLAs as potential therapeutic targets, providing a necessary foundation for future studies in the evolving field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Jorge Bartolome Arcilla
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Kauzar Mohamed Mohamed
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
| | - Alfonso Lopez de Sa
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
| | - Alicia de Luna Aguilar
- Department of Medical Oncology, Hospital General Universitario Morales Meseguer, 30008 Murcia, Spain;
| | - Kissy Guevara-Hoyer
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Pablo Ballestin Martinez
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Department of Medical Oncology, Hospital 12 de Octubre, 28041 Madrid, Spain
| | | | - Edgardo D. Carosella
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, 75010 Paris, France;
- U976 HIPI Unit, IRSL, Université Paris, 75006 Paris, France
| | - Alberto Ocaña
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramon
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
6
|
Dieckmann L, Lahti-Pulkkinen M, Cruceanu C, Räikkönen K, Binder EB, Czamara D. Quantitative trait locus mapping in placenta: A comparative study of chorionic villus and birth placenta. HGG ADVANCES 2024; 5:100326. [PMID: 38993113 PMCID: PMC11365441 DOI: 10.1016/j.xhgg.2024.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
The placenta, a pivotal player in the prenatal environment, holds crucial insights into early developmental pathways and future health outcomes. In this study, we explored genetic molecular regulation in chorionic villus samples (CVS) from the first trimester and placenta tissue at birth. We assessed quantitative trait locus (QTL) mapping on DNA methylation and gene expression data in a Finnish cohort of 574 individuals. We found more QTLs in birth placenta than in first-trimester placenta. Nevertheless, a substantial amount of associations overlapped in their effects and showed consistent direction in both tissues, with increasing molecular genetic effects from early pregnancy to birth placenta. The identified QTLs in birth placenta were most enriched in genes with placenta-specific expression. Conducting a phenome-wide-association study (PheWAS) on the associated SNPs, we observed numerous overlaps with genome-wide association study (GWAS) hits (spanning 57 distinct traits and 23 SNPs), with notable enrichments for immunological, skeletal, and respiratory traits. The QTL-SNP rs1737028 (chr6:29737993) presented with the highest number of GWAS hits. This SNP was related to HLA-G expression via DNA methylation and was associated with various immune, respiratory, and psychiatric traits. Our findings implicate increasing genetic molecular regulation during the course of pregnancy and support the involvement of placenta gene regulation, particularly in immunological traits. This study presents a framework for understanding placenta-specific gene regulation during pregnancy and its connection to health-related traits.
Collapse
Affiliation(s)
- Linda Dieckmann
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry, 80804 Munich, Germany
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Cristiana Cruceanu
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
7
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. Construction of an antidepressant priority list based on functional, environmental, and health risks using an interpretable mixup-transformer deep learning model. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134651. [PMID: 38843640 DOI: 10.1016/j.jhazmat.2024.134651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024]
Abstract
As emerging pollutants, antidepressants (AD) must be urgently investigated for risk identification and assessment. This study constructed a comprehensive-effect risk-priority screening system (ADRank) for ADs by characterizing AD functionality, occurrence, persistence, bioaccumulation and toxicity based on the integrated assignment method. A classification model for ADs was constructed using an improved mixup-transformer deep learning method, and its classification accuracy was compared with those of other models. The accuracy of the proposed model improved by up to 23.25 % compared with the random forest model, and the reliability was 80 % more than that of the TOPSIS method. A priority screening candidate list was proposed to screen 33 high-priority ADs. Finally, SHapley Additive explanation (SHAP) visualization, molecular dynamics, and amino acid analysis were performed to analyze the correlation between AD structure and toxic receptor binding characteristics and reveal the differences in AD risk priority. ADs with more intramolecular hydrogen bonds, higher hydrophobicity, and electronegativity had a more significant risk. Van der Waals and electrostatic interactions were the primary influencing factors, and significant differences in the types and proportions of the main amino acids in the interaction between ADs and receptors were observed. The results of the study provide constructive schemes and insights for AD priority screening and risk management.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Saresella M, Marventano I, Piancone F, Bolognesi E, Hernis A, Zanzottera M, La Rosa F, Agliardi C, Giraldo S, Chiappedi M, Guerini FR, Clerici M. Alterations of natural killer cells activatory molecules phenotype and function in mothers of ASD children: a pilot study. Front Immunol 2023; 14:1190925. [PMID: 37545517 PMCID: PMC10398568 DOI: 10.3389/fimmu.2023.1190925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD) is accompanied by complex immune alterations and inflammation, and the possible role played by Natural Killer (NK) in such alterations is only barely understood. Methods To address this question we analysed activating and inhibitory NK receptors, as well as NK cells phenotype and function in a group of mothers of children who developed ASD (ASD-MO; N=24) comparing results to those obtained in mothers of healthy children who did not develop (HC-MO; N=25). Results Results showed that in ASD-MO compared to HC-MO: 1) NK cells expressing the inhibitory receptor ILT2 are significantly decreased; 2) the activating HLA-G14bp+ polymorphism is more frequently observed and is correlated with the decrease of ILT2-expressing cells; 3) the CD56bright and CD56dim NK subsets are increased; 4) IFNγ and TNF production is reduced; and 5) perforin- and granzymes-releasing NK cells are increased even in unstimulated conditions and could not be upregulated by mitogenic stimulation. Discussion Results herein reinforce the hypothesis that ASD relatives present traits similar to, but not as severe as the defining features of ASD (Autism endophenotype) and identify a role for NK cells impairment in generating the inflammatory milieu that is observed in ASD.
Collapse
Affiliation(s)
| | | | | | | | - Ambra Hernis
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | | | | | | | | | - Matteo Chiappedi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
9
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Alves CC, Arns T, Oliveira ML, Moreau P, Antunes DA, Castelli EC, Mendes-Junior CT, Giuliatti S, Donadi EA. Computational and atomistic studies applied to the understanding of the structural and behavioral features of the immune checkpoint HLA-G molecule and gene. Hum Immunol 2023:S0198-8859(23)00004-6. [PMID: 36710086 DOI: 10.1016/j.humimm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with β2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.
Collapse
Affiliation(s)
- Cinthia C Alves
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Thaís Arns
- Luxembourg Centre for Systems Biomedicine, Luxembourg
| | - Maria L Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Philippe Moreau
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris-Cité, Paris, France
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, USA
| | - Erick C Castelli
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Eduardo A Donadi
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Hu Y, Lu X, Qiu W, Liu H, Wang Q, Chen Y, Liu W, Feng F, Sun H. The Role of Leukocyte Immunoglobulin-Like Receptors Focusing on the Therapeutic Implications of the Subfamily B2. Curr Drug Targets 2022; 23:1430-1452. [PMID: 36017847 DOI: 10.2174/1389450123666220822201605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The leukocyte immunoglobulin (Ig)-like receptors (LILRs) are constituted by five inhibitory subpopulations (LILRB1-5) and six stimulatory subpopulations (LILRA1-6). The LILR populations substantially reside in immune cells, especially myeloid cells, functioning as a regulator in immunosuppressive and immunostimulatory responses, during which the nonclassical major histocompatibility complex (MHC) class I molecules are widely involved. In addition, LILRs are also distributed in certain tumor cells, implicated in the malignancy progression. Collectively, the suppressive Ig-like LILRB2 is relatively well-studied to date. Herein, we summarized the whole family of LILRs and their biologic function in various diseases upon ligation to the critical ligands, therefore providing more information on their potential roles in these pathological processes and giving the clinical significance of strategies targeting LILRs.
Collapse
Affiliation(s)
- Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Weimin Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghua Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
12
|
Yang Y, Wang W, Weng J, Li H, Ma Y, Liu L, Ma W. Advances in the study of HLA class Ib in maternal-fetal immune tolerance. Front Immunol 2022; 13:976289. [PMID: 36105800 PMCID: PMC9465335 DOI: 10.3389/fimmu.2022.976289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022] Open
Abstract
The HLA class Ib molecule is an alloantigen that causes transplant rejection on behalf of individual human and plays an important role in maternal-fetal immune tolerance. Early studies on HLA class Ib focused on the mechanism of HLA-G-induced immune escape, but in recent years, studies on the mechanism of HLA-G have deepened and gradually explored the mechanism of HLA-E and HLA-F, which are also HLA class Ib molecules. In the maternal-fetal interface, trophoblast cells express HLA class Ib molecules to protect the fetus from maternal immune cells by binding to inhibitory receptors of decidual immune cells (DICs) and shifting Th1/Th2 balance toward Th2 bias. Further studies on the molecular mechanism of HLA class Ib molecules provide a reference for its application in the field of clinical assisted reproduction.
Collapse
Affiliation(s)
- Yiran Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wanning Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing Weng, ; Lingyan Liu,
| | - Huifang Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yanmin Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing Weng, ; Lingyan Liu,
| | - Wei Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
14
|
Arnaiz-Villena A, Suarez-Trujillo F, Juarez I, Rodríguez-Sainz C, Palacio-Gruber J, Vaquero-Yuste C, Molina-Alejandre M, Fernández-Cruz E, Martin-Villa JM. Evolution and molecular interactions of major histocompatibility complex (MHC)-G, -E and -F genes. Cell Mol Life Sci 2022; 79:464. [PMID: 35925520 PMCID: PMC9352621 DOI: 10.1007/s00018-022-04491-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Classical HLA (Human Leukocyte Antigen) is the Major Histocompatibility Complex (MHC) in man. HLA genes and disease association has been studied at least since 1967 and no firm pathogenic mechanisms have been established yet. HLA-G immune modulation gene (and also -E and -F) are starting the same arduous way: statistics and allele association are the trending subjects with the same few results obtained by HLA classical genes, i.e., no pathogenesis may be discovered after many years of a great amount of researchers' effort. Thus, we believe that it is necessary to follow different research methodologies: (1) to approach this problem, based on how evolution has worked maintaining together a cluster of immune-related genes (the MHC) in a relatively short chromosome area since amniotes to human at least, i.e., immune regulatory genes (MHC-G, -E and -F), adaptive immune classical class I and II genes, non-adaptive immune genes like (C2, C4 and Bf) (2); in addition to using new in vitro models which explain pathogenetics of HLA and disease associations. In fact, this evolution may be quite reliably studied during about 40 million years by analyzing the evolution of MHC-G, -E, -F, and their receptors (KIR-killer-cell immunoglobulin-like receptor, NKG2-natural killer group 2-, or TCR-T-cell receptor-among others) in the primate evolutionary lineage, where orthology of these molecules is apparently established, although cladistic studies show that MHC-G and MHC-B genes are the ancestral class I genes, and that New World apes MHC-G is paralogous and not orthologous to all other apes and man MHC-G genes. In the present review, we outline past and possible future research topics: co-evolution of adaptive MHC classical (class I and II), non-adaptive (i.e., complement) and modulation (i.e., non-classical class I) immune genes may imply that the study of full or part of MHC haplotypes involving several loci/alleles instead of single alleles is important for uncovering HLA and disease pathogenesis. It would mainly apply to starting research on HLA-G extended haplotypes and disease association and not only using single HLA-G genetic markers.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Carmen Rodríguez-Sainz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Fernández-Cruz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Manuel Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
15
|
Suzuki S, Morishima S, Murata M, Tanaka M, Shigenari A, Ito S, Kanga U, Kulski JK, Morishima Y, Shiina T. Sequence Variations Within HLA-G and HLA-F Genomic Segments at the Human Leukocyte Antigen Telomeric End Associated With Acute Graft-Versus-Host Disease in Unrelated Bone Marrow Transplantation. Front Immunol 2022; 13:938206. [PMID: 35935961 PMCID: PMC9351719 DOI: 10.3389/fimmu.2022.938206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is defined as a syndrome of an immunological response of graft to the host that occurs early after allogeneic hematopoietic stem cell transplantation (HCT). This disease is frequently observed even in HCT matched for human leukocyte antigen (HLA) alleles at multiple gene loci. Although the HLA region represents complex and diverse genomic characteristics, detailed association analysis is required for the identification of uncharacterized variants that are strongly associated with aGVHD. We genotyped three loci, OR2H2, HLA-F-AS1, and HLA-G, that are located in the 460 kb of HLA telomeric region and statistically analyzed the genotypes including HLA-DPB1 with clinical and transplantation outcomes using 338 unrelated bone marrow transplantation (UR-BMT) patient–donor pairs who were matched for HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 (HLA-10/10). Multivariate analyses demonstrated that HLA-F-AS1 and HLA-DPB1 mismatches were associated with grade II–IV aGVHD (hazard ratio (HR), 1.76; 95% CI, 1.07–2.88; p = 0.026; and HR, 1.59; CI, 1.02–2.49; p = 0.042, respectively). There was no confounding between HLA-F-AS1 and HLA-DPB1 (p = 0.512), suggesting that the HLA-F-AS1 mismatch has a strong effect on aGVHD independently of HLA-DPB1. Moreover, a stratified analysis suggested possible associations of HLA-F-AS1, HLA-DPB1, and/or HLA-G mismatches with grade II–IV aGVHD and the more severe grade III–IV aGVHD. These findings provide new insights into understanding the molecular mechanism of aGVHD caused by HLA-matched UR-BMT.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Sayaka Ito
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Uma Kanga
- Clinical Immunogenetics Laboratory, Centre for Excellence in Molecular Medicine, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, The University of Western Australia Medical School, Crawley, WA, Australia
| | - Yasuo Morishima
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Hematology and Oncology, Nakagami Hospital, Okinawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Takashi Shiina,
| |
Collapse
|
16
|
Liu S, Bos NA, Verschuuren EAM, van Baarle D, Westra J. Biological Characteristics of HLA-G and Its Role in Solid Organ Transplantation. Front Immunol 2022; 13:902093. [PMID: 35769475 PMCID: PMC9234285 DOI: 10.3389/fimmu.2022.902093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Organ transplantation is a lifesaving option for patients with advanced diseases. Rejection is regarded as one of the most severe risk factors post-transplantation. A molecule that contributes to immune tolerance and resisting rejection is human leukocyte antigen (HLA)-G, which belongs to the non-classical major histocompatibility complex class (MHC) I family. HLA-G was originally found to play a role during pregnancy to maintain immune tolerance between mother and child. It is expressed in the placenta and detected in several body fluids as soluble factor as well as different membrane isoforms on cells. Recent findings on HLA-G show that it can also play multifaceted roles during transplantation. This review will explain the general characteristics and biological function of HLA-G and summarize the views supporting the tolerogenic and other roles of HLA-G to better understand its role in solid organ transplantation (SOT) and its complications. Finally, we will discuss potential future research on the role of HLA-G in prevention, diagnosis, and treatment in SOT.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johanna Westra,
| |
Collapse
|
17
|
Detection of all isoforms of human leukocyte antigen G in maternal serum could be clinically applied for prediction of preeclampsa. Pregnancy Hypertens 2022; 29:7-13. [DOI: 10.1016/j.preghy.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
18
|
Saresella M, Trabattoni D, Marventano I, Piancone F, La Rosa F, Caronni A, Lax A, Bianchi L, Banfi P, Navarro J, Bolognesi E, Zanzottera M, Guerini FR, Clerici M. NK Cell Subpopulations and Receptor Expression in Recovering SARS-CoV-2 Infection. Mol Neurobiol 2021; 58:6111-6120. [PMID: 34453271 PMCID: PMC8397607 DOI: 10.1007/s12035-021-02517-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic of coronavirus disease (COVID-19). Whereas in most cases COVID-19 is asymptomatic or pauci-symptomatic, extremely severe clinical forms are observed. In this case, complex immune dysregulations and an excessive inflammatory response are reported and are the main cause of morbidity and mortality. Natural killer cells are key players in the control of viral infection, and their activity is regulated by a tight balance between activating and inhibitory receptors; an alteration of NK activity was suggested to be associated with the development of severe forms of COVID-19. In this study, we analyzed peripheral NK cell subpopulations and the expression of activating and inhibitory receptors in 30 patients suffering from neurological conditions who recovered from mild, moderate, or severe SARS-CoV-2 infection, comparing the results to those of 10 SARS-CoV-2-uninfected patients. Results showed that an expansion of NK subset with lower cytolytic activity and an augmented expression of the 2DL1 inhibitory receptor, particularly when in association with the C2 ligand (KIR2DL1-C2), characterized the immunological scenario of severe COVID-19 infection. An increase of NK expressing the ILT2 inhibitory receptor was instead seen in patients recovering from mild or moderate infection compared to controls. Results herein suggest that the KIR2DL1-C2 NK inhibitory complex is a risk factor toward the development of severe form of COVID-19. Our results confirm that a complex alteration of NK activity is present in COVID-19 infection and offer a molecular explanation for this observation.
Collapse
Affiliation(s)
- Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy.
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco,", University of Milan, Milan, Italy
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Francesca La Rosa
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Antonio Caronni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Agata Lax
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Luca Bianchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Paolo Banfi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Elisabetta Bolognesi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Milena Zanzottera
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Attia JVD, Dessens CE, van de Water R, Houvast RD, Kuppen PJK, Krijgsman D. The Molecular and Functional Characteristics of HLA-G and the Interaction with Its Receptors: Where to Intervene for Cancer Immunotherapy? Int J Mol Sci 2020; 21:ijms21228678. [PMID: 33213057 PMCID: PMC7698525 DOI: 10.3390/ijms21228678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) mediates maternal-fetal immune tolerance. It is also considered an immune checkpoint in cancer since it may mediate immune evasion and thus promote tumor growth. HLA-G is, therefore, a potential target for immunotherapy. However, existing monoclonal antibodies directed against HLA-G lack sufficient specificity and are not suitable for immune checkpoint inhibition in a clinical setting. For this reason, it is essential that alternative approaches are explored to block the interaction between HLA-G and its receptors. In this review, we discuss the structure and peptide presentation of HLA-G, and its interaction with the receptors Ig-like transcript (ILT) 2, ILT4, and Killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4). Based on our findings, we propose three alternative strategies to block the interaction between HLA-G and its receptors in cancer immunotherapy: (1) prevention of HLA-G dimerization, (2) targeting the peptide-binding groove of HLA-G, and (3) targeting the HLA-G receptors. These strategies should be an important focus of future studies that aim to develop immune checkpoint inhibitors to block the interaction between HLA-G and its receptors for the treatment of cancer.
Collapse
|
20
|
Arns T, Antunes DA, Abella JR, Rigo MM, Kavraki LE, Giuliatti S, Donadi EA. Structural Modeling and Molecular Dynamics of the Immune Checkpoint Molecule HLA-G. Front Immunol 2020; 11:575076. [PMID: 33240264 PMCID: PMC7677236 DOI: 10.3389/fimmu.2020.575076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/13/2020] [Indexed: 02/01/2023] Open
Abstract
HLA-G is considered to be an immune checkpoint molecule, a function that is closely linked to the structure and dynamics of the different HLA-G isoforms. Unfortunately, little is known about the structure and dynamics of these isoforms. For instance, there are only seven crystal structures of HLA-G molecules, being all related to a single isoform, and in some cases lacking important residues associated to the interaction with leukocyte receptors. In addition, they lack information on the dynamics of both membrane-bound HLA-G forms, and soluble forms. We took advantage of in silico strategies to disclose the dynamic behavior of selected HLA-G forms, including the membrane-bound HLA-G1 molecule, soluble HLA-G1 dimer, and HLA-G5 isoform. Both the membrane-bound HLA-G1 molecule and the soluble HLA-G1 dimer were quite stable. Residues involved in the interaction with ILT2 and ILT4 receptors (α3 domain) were very close to the lipid bilayer in the complete HLA-G1 molecule, which might limit accessibility. On the other hand, these residues can be completely exposed in the soluble HLA-G1 dimer, due to the free rotation of the disulfide bridge (Cys42/Cys42). In fact, we speculate that this free rotation of each protomer (i.e., the chains composing the dimer) could enable alternative binding modes for ILT2/ILT4 receptors, which in turn could be associated with greater affinity of the soluble HLA-G1 dimer. Structural analysis of the HLA-G5 isoform demonstrated higher stability for the complex containing the peptide and coupled β2-microglobulin, while structures lacking such domains were significantly unstable. This study reports for the first time structural conformations for the HLA-G5 isoform and the dynamic behavior of HLA-G1 molecules under simulated biological conditions. All modeled structures were made available through GitHub (https://github.com/KavrakiLab/), enabling their use as templates for modeling other alleles and isoforms, as well as for other computational analyses to investigate key molecular interactions.
Collapse
Affiliation(s)
- Thais Arns
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dinler A. Antunes
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Jayvee R. Abella
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Maurício M. Rigo
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo A. Donadi
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Bai Y, Liang J, Liu W, Wang F, Li C. Possible roles of HLA-G regulating immune cells in pregnancy and endometrial diseases via KIR2DL4. J Reprod Immunol 2020; 142:103176. [DOI: 10.1016/j.jri.2020.103176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
|
22
|
Loustau M, Anna F, Dréan R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G Neo-Expression on Tumors. Front Immunol 2020; 11:1685. [PMID: 32922387 PMCID: PMC7456902 DOI: 10.3389/fimmu.2020.01685] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-G is known to modulate the immune system activity in tissues where physiological immune-tolerance is necessary (i.e., maternal-fetal interface, thymus, and cornea). However, the frequent neo-expression of HLA-G in many cancer types has been previously and extensively described and is correlated with a bad prognosis. Despite being an MHC class I molecule, HLA-G is highly present in tumor context and shows unique characteristics of tissue restriction of a Tumor Associated Antigen (TAA), and potent immunosuppressive activity of an Immune CheckPoint (ICP). Consequently, HLA-G appears to be an excellent molecular target for immunotherapy. Although the relevance of HLA-G in cancer incidence and development has been proven in numerous tumors, its neo-expression pattern is still difficult to determine. Indeed, the estimation of HLA-G's actual expression in tumor tissue is limited, particularly concerning the presence and percentage of the new non-canonical isoforms, for which detection antibodies are scarce or inexistent. Here, we summarize the current knowledge about HLA-G neo-expression and implication in various tumor types, pointing out the need for the development of new tools to analyze in-depth the HLA-G neo-expression patterns, opening the way for the generation of new monoclonal antibodies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - François Anna
- Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Institut Pasteur & CNRS URA 3015, Paris, France
| | - Raphaelle Dréan
- Invectys, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, Paris, France
| | | | | | | |
Collapse
|
23
|
Krijgsman D, Roelands J, Hendrickx W, Bedognetti D, Kuppen PJK. HLA-G: A New Immune Checkpoint in Cancer? Int J Mol Sci 2020; 21:ijms21124528. [PMID: 32630545 PMCID: PMC7350262 DOI: 10.3390/ijms21124528] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Human leukocyte antigen G (HLA-G), known as a central protein in providing immune tolerance to the fetus in pregnant women, is also studied for a possible role in tumor development. Many studies have claimed HLA-G as a new immune checkpoint in cancer. Therefore, HLA-G and its receptors might be targets for immune checkpoint blockade in cancer immunotherapy. In order to substantiate that HLA-G is indeed an immune checkpoint in cancer, two important questions need to be answered: (1) To what extent is HLA-G expressed in the tumor by cancer cells? and (2) What is the function of HLA-G in cancer immune evasion? In this review, we discuss these questions. We agree that HLA-G is a potentially new immune checkpoint in cancer, but additional evidence is required to show the extent of intra-tumor and inter-tumor expression. These studies should focus on tumor expression patterns of the seven different HLA-G isoforms and of the receptors for HLA-G. Furthermore, specific roles for the different HLA-G isoforms should be established.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (J.R.)
| | - Jessica Roelands
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (J.R.)
- Cancer Research Department, Research Branch, Sidra Medicine, Doha P.O. Box 26999, Qatar; (W.H.); (D.B.)
| | - Wouter Hendrickx
- Cancer Research Department, Research Branch, Sidra Medicine, Doha P.O. Box 26999, Qatar; (W.H.); (D.B.)
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicine, Doha P.O. Box 26999, Qatar; (W.H.); (D.B.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (J.R.)
- Correspondence: ; Tel.: +31-71-5264569
| |
Collapse
|
24
|
Scarabel L, Garziera M, Fortuna S, Asaro F, Toffoli G, Geremia S. Soluble HLA-G expression levels and HLA-G/irinotecan association in metastatic colorectal cancer treated with irinotecan-based strategy. Sci Rep 2020; 10:8773. [PMID: 32471996 PMCID: PMC7260212 DOI: 10.1038/s41598-020-65424-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
We here explore the soluble Human Leukocyte Antigen-G (sHLA-G) expression level as clinical biomarker in metastatic colorectal cancer (mCRC). To this aim the sHLA-G protein was measured in plasma samples of 40 patients with mCRC treated with the FOLFIRI (irinotecan (CPT-11) plus 5-fluorouracil (5-FU) and leucovorin (LV)) regimen. The results suggest a link between HLA-G levels and irinotecan (CPT-11) pharmacokinetic, leading to hypothesize a molecular interaction between sHLA-G and CPT-11. This interaction was confirmed experimentally by fluorescence spectroscopy. HLA-G is known to exist in a number of polymorphs that affect both the protein expression levels and its peptide-binding cleft. The interaction between HLA-G polymorphs and CPT-11 was explored by means of computational modelling, confirming the hypothesis that CPT-11 could actually target the peptide binding cleft of the most common HLA-G polymorphs.
Collapse
Affiliation(s)
- Lucia Scarabel
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Marica Garziera
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
25
|
Grant EJ, Nguyen AT, Lobos CA, Szeto C, Chatzileontiadou DSM, Gras S. The unconventional role of HLA-E: The road less traveled. Mol Immunol 2020; 120:101-112. [PMID: 32113130 DOI: 10.1016/j.molimm.2020.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Histocompatibility Leukocyte Antigens, or HLAs, are one of the most polymorphic molecules in humans. This high degree of polymorphism endows HLA molecules with the ability to present a vast array of peptides, an essential trait for responding to ever-evolving pathogens. Unlike classical HLA molecules (HLA-Ia), some non-classical HLA-Ib molecules, including HLA-E, are almost monomorphic. Several studies show HLA-E can present self-peptides originating from the leader sequence of other HLA molecules, which signals to our immune system that the cell is healthy. Therefore, it was traditionally thought that the chief role of HLA-E in the body was in immune surveillance. However, there is emerging evidence that HLA-E is also able to present pathogen-derived peptides to the adaptive immune system, namely T cells, in a manner that is similar to classical HLA-Ia molecules. Here we describe the early findings of this less conventional role of HLA-E in the adaptive immune system and its importance for immunity.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christian A Lobos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
26
|
Kuroki K, Matsubara H, Kanda R, Miyashita N, Shiroishi M, Fukunaga Y, Kamishikiryo J, Fukunaga A, Fukuhara H, Hirose K, Hunt JS, Sugita Y, Kita S, Ose T, Maenaka K. Structural and Functional Basis for LILRB Immune Checkpoint Receptor Recognition of HLA-G Isoforms. THE JOURNAL OF IMMUNOLOGY 2019; 203:3386-3394. [PMID: 31694909 DOI: 10.4049/jimmunol.1900562] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/05/2019] [Indexed: 01/30/2023]
Abstract
Human leukocyte Ig-like receptors (LILR) LILRB1 and LILRB2 are immune checkpoint receptors that regulate a wide range of physiological responses by binding to diverse ligands, including HLA-G. HLA-G is exclusively expressed in the placenta, some immunoregulatory cells, and tumors and has several unique isoforms. However, the recognition of HLA-G isoforms by LILRs is poorly understood. In this study, we characterized LILR binding to the β2-microglobulin (β2m)-free HLA-G1 isoform, which is synthesized by placental trophoblast cells and tends to dimerize and multimerize. The multimerized β2m-free HLA-G1 dimer lacked detectable affinity for LILRB1, but bound strongly to LILRB2. We also determined the crystal structure of the LILRB1 and HLA-G1 complex, which adopted the typical structure of a classical HLA class I complex. LILRB1 exhibits flexible binding modes with the α3 domain, but maintains tight contacts with β2m, thus accounting for β2m-dependent binding. Notably, both LILRB1 and B2 are oriented at suitable angles to permit efficient signaling upon complex formation with HLA-G1 dimers. These structural and functional features of ligand recognition by LILRs provide novel insights into their important roles in the biological regulations.
Collapse
Affiliation(s)
- Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Haruki Matsubara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryo Kanda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Naoyuki Miyashita
- RIKEN, Kobe 650-0047, Japan.,Department of Computational Systems Biology, Kindai University, Kinokawa 649-6493, Japan
| | - Mitsunori Shiroishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuko Fukunaga
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Jun Kamishikiryo
- Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Japan; and
| | - Atsushi Fukunaga
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideo Fukuhara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kaoru Hirose
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Joan S Hunt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | | | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan;
| |
Collapse
|
27
|
Toni Ho GG, Heinen F, Stieglitz F, Blasczyk R, Bade-Döding C. Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. Immunogenetics 2019. [DOI: 10.5772/intechopen.80731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
29
|
Application of the immunoregulatory receptor LILRB1 as a crystallisation chaperone for human class I MHC complexes. J Immunol Methods 2018; 464:47-56. [PMID: 30365927 DOI: 10.1016/j.jim.2018.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
X-ray crystallographic studies of class I peptide-MHC molecules (pMHC) continue to provide important insights into immune recognition, however their success depends on generation of diffraction-quality crystals, which remains a significant challenge. While protein engineering techniques such as surface-entropy reduction and lysine methylation have proven utility in facilitating and/or improving protein crystallisation, they risk affecting the conformation and biochemistry of the class I MHC antigen binding groove. An attractive alternative is the use of noncovalent crystallisation chaperones, however these have not been developed for pMHC. Here we describe a method for promoting class I pMHC crystallisation, by exploiting its natural ligand interaction with the immunoregulatory receptor LILRB1 as a novel crystallisation chaperone. First, focussing on a model HIV-1-derived HLA-A2-restricted peptide, we determined a 2.4 Å HLA-A2/LILRB1 structure, which validated that co-crystallisation with LILRB1 does not alter conformation of the antigenic peptide. We then demonstrated that addition of LILRB1 enhanced the crystallisation of multiple peptide-HLA-A2 complexes, and identified a generic condition for initial co-crystallisation. LILRB1 chaperone-based crystallisation enabled structure determination for HLA-A2 complexes previously intransigent to crystallisation, including both conventional and post-translationally-modified peptides, of diverse lengths. Since both the LILRB1 recognition interface on the HLA-A2 α3 domain molecule and HLA-A2-mediated crystal contacts are predominantly conserved across class I MHC molecules, the approach we outline could prove applicable to a diverse range of class I pMHC. LILRB1 chaperone-mediated crystallisation should expedite molecular insights into the immunobiology of diverse immune-related diseases and immunotherapeutic strategies, particularly involving class I pMHC complexes that are challenging to crystallise.
Collapse
|
30
|
Celik AA, Simper GS, Huyton T, Blasczyk R, Bade-Döding C. HLA-G mediated immune regulation is impaired by a single amino acid exchange in the alpha 2 domain. Hum Immunol 2018; 79:453-462. [DOI: 10.1016/j.humimm.2018.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
|
31
|
HLA-G peptide preferences change in transformed cells: impact on the binding motif. Immunogenetics 2018; 70:485-494. [PMID: 29602958 PMCID: PMC6061458 DOI: 10.1007/s00251-018-1058-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 12/23/2022]
Abstract
HLA-G is known for its strictly restricted tissue distribution. HLA-G expression could be detected in immune privileged organs and many tumor entities such as leukemia, multiple myeloma, and non-Hodgkin and Hodgkin’s lymphoma. This functional variability from mediation of immune tolerance to facilitation of tumor immune evasion strategies might translate to a differential NK cell inhibition between immune-privileged organs and tumor cells. The biophysical invariability of the HLA-G heavy chain and its contrary diversity in immunity implicates a strong influence of the bound peptides on the pHLA-G structure. The aim was to determine if HLA-G displays a tissue-specific peptide repertoire. Therefore, using soluble sHLA-G technology, we analyzed the K562 and HDLM-2 peptide repertoires. Although both cell lines possess a comparable proteome and recruit HLA-G-restricted peptides through the same peptide-loading pathway, the peptide features appear to be cell specific. HDLM-2 derived HLA-G peptides are anchored by an Arg at p1 and K562-derived peptides are anchored by a Lys. At p2, no anchor motif could be determined while peptides were anchored at pΩ with a Leu and showed an auxiliary anchor motif Pro at p3. To appreciate if the peptide anchor alterations are due to a cell-specific differential peptidome, we performed analysis of peptide availability within the different cell types. Yet, the comparison of the cell-specific proteome and HLA-G-restricted ligandome clearly demonstrates a tissue-specific peptide selection by HLA-G molecules. This exclusive and unexpected observation suggests an exquisite immune function of HLA-G.
Collapse
|
32
|
Yu K, Davidson CL, Wójtowicz A, Lisboa L, Wang T, Airo AM, Villard J, Buratto J, Sandalova T, Achour A, Humar A, Boggian K, Cusini A, van Delden C, Egli A, Manuel O, Mueller N, Bochud PY, Burshtyn DN. LILRB1 polymorphisms influence posttransplant HCMV susceptibility and ligand interactions. J Clin Invest 2018. [PMID: 29528338 DOI: 10.1172/jci96174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UL18 is a human CMV (HCMV) MHC class I (MHCI) homolog that efficiently inhibits leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1)+ NK cells. We found an association of LILRB1 polymorphisms in the regulatory regions and ligand-binding domains with control of HCMV in transplant patients. Naturally occurring LILRB1 variants expressed in model NK cells showed functional differences with UL18 and classical MHCI, but not with HLA-G. The altered functional recognition was recapitulated in binding assays with the binding domains of LILRB1. Each of 4 nonsynonymous substitutions in the first 2 LILRB1 immunoglobulin domains contributed to binding with UL18, classical MHCI, and HLA-G. One of the polymorphisms controlled addition of an N-linked glycan, and that mutation of the glycosylation site altered binding to all ligands tested, including enhancing binding to UL18. Together, these findings indicate that specific LILRB1 alleles that allow for superior immune evasion by HCMV are restricted by mutations that limit LILRB1 expression selectively on NK cells. The polymorphisms also maintained an appropriate interaction with HLA-G, fitting with a principal role of LILRB1 in fetal tolerance.
Collapse
Affiliation(s)
- Kang Yu
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Chelsea L Davidson
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Agnieszka Wójtowicz
- Infectious Diseases Service, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luiz Lisboa
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ting Wang
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Adriana M Airo
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jean Villard
- Immunology and Transplant Unit, Service of Nephrology, Geneva University Hospital, Geneva, Switzerland
| | - Jeremie Buratto
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Atul Humar
- Multi-Organ Transplant Program, University of Toronto, Toronto, Ontario, Canada
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Alexia Cusini
- Department of Infectious Diseases and Hospital Epidemiology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Adrian Egli
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Deborah N Burshtyn
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Abstract
Evidence is mounting that the major histocompatibility complex (MHC) molecule HLA-F (human leukocyte antigen F) regulates the immune system in pregnancy, infection, and autoimmunity by signaling through NK cell receptors (NKRs). We present structural, biochemical, and evolutionary analyses demonstrating that HLA-F presents peptides of unconventional length dictated by a newly arisen mutation (R62W) that has produced an open-ended groove accommodating particularly long peptides. Compared to empty HLA-F open conformers (OCs), HLA-F tetramers bound with human-derived peptides differentially stained leukocytes, suggesting peptide-dependent engagement. Our in vitro studies confirm that NKRs differentiate between peptide-bound and peptide-free HLA-F. The complex structure of peptide-loaded β2m-HLA-F bound to the inhibitory LIR1 revealed similarities to high-affinity recognition of the viral MHC-I mimic UL18 and a docking strategy that relies on contacts with HLA-F as well as β2m, thus precluding binding to HLA-F OCs. These findings provide a biochemical framework to understand how HLA-F could regulate immunity via interactions with NKRs.
Collapse
|
35
|
Kelly A, Trowsdale J. Introduction: MHC/KIR and governance of specificity. Immunogenetics 2017; 69:481-488. [PMID: 28695288 PMCID: PMC5537316 DOI: 10.1007/s00251-017-0986-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/02/2022]
Abstract
The MHC controls specificity, to ensure that appropriate immune responses are mounted to invading pathogens whilst maintaining tolerance to the host. It encodes molecules that act as sentinels, providing a snapshot of the health of the interior and exterior of the cell for immune surveillance. To maintain the ability to respond appropriately to any disease requires a delicate balance of expression and function, and many subtleties of the system have been described at the gene, individual and population level. The main players are the highly polymorphic classical MHC class I and class II molecules, as well as some non-classical loci of both types. Transporter associated with antigen processing (TAP) peptide transporters, proteasome components and Tapasin, encoded within the MHC, are also involved in selection of peptide for presentation. The plethora of mechanisms microorganisms use to subvert immune recognition, through blocking these antigen processing and presentation pathways, attests to the importance of HLA in resistance to infection. There is continued interest in MHC genetics in its own right, as well as in relation to KIR, to transplantation, infection, autoimmunity and reproduction. Also of topical interest, cancer immunotherapy through checkpoint inhibition depends on highly specific recognition of cancer peptide antigen and continued expression of HLA molecules. Here, we briefly introduce some background to the MHC/KIR axis in man. This special issue of immunogenetics expands on these topics, in humans and other model species.
Collapse
Affiliation(s)
- Adrian Kelly
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK.
| |
Collapse
|
36
|
Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: At the Interface of Maternal-Fetal Tolerance. Trends Immunol 2017; 38:272-286. [PMID: 28279591 DOI: 10.1016/j.it.2017.01.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
During pregnancy, semiallogeneic fetal extravillous trophoblasts (EVT) invade the uterine mucosa without being rejected by the maternal immune system. Several mechanisms were initially proposed by Peter Medawar half a century ago to explain this apparent violation of the laws of transplantation. Then, three decades ago, an unusual human leukocyte antigen (HLA) molecule was identified: HLA-G. Uniquely expressed in EVT, HLA-G has since become the center of the present understanding of fetus-induced immune tolerance. Despite slow progress in the field, the last few years have seen an explosion in our knowledge of HLA-G biology. Here, we critically review new insights into the mechanisms controlling the expression and function of HLA-G at the maternal-fetal interface, and discuss their relevance for fetal tolerance.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
37
|
Sullivan LC, Berry R, Sosnin N, Widjaja JML, Deuss FA, Balaji GR, LaGruta NL, Mirams M, Trapani JA, Rossjohn J, Brooks AG, Andrews DM. Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C. J Biol Chem 2016; 291:18740-52. [PMID: 27385590 DOI: 10.1074/jbc.m116.737130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 01/15/2023] Open
Abstract
Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 μm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 μm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated β2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C β4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules.
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard Berry
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Natasha Sosnin
- the Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia, The Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Parkville, Australia
| | - Jacqueline M L Widjaja
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Felix A Deuss
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Gautham R Balaji
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L LaGruta
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia, the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Michiko Mirams
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph A Trapani
- the Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia, The Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Parkville, Australia
| | - Jamie Rossjohn
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom, and
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia,
| | - Daniel M Andrews
- the Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
38
|
Wang WY, Tian W. Identification of a new HLA-G allele, HLA-G*01:19, by cloning and phasing. Int J Immunogenet 2016; 43:242-3. [PMID: 27277539 DOI: 10.1111/iji.12274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 05/05/2016] [Indexed: 11/26/2022]
Abstract
A new HLA-G allelic variant, HLA-G*01:19, was identified in a southern Chinese Han population by polymerase chain reaction-sequence-based typing (PCR-SBT), cloning and phasing. HLA-G*01:19 differs from HLA-G*01:04:01 by a nonsynonymous cytosine at position 99 in exon 2, resulting in amino acid change from valine to leucine at codon 34 of the mature HLA-G molecule.
Collapse
Affiliation(s)
- W Y Wang
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - W Tian
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,Laboratory of Cellular and Molecular Biology, College of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Moffett A, Colucci F. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol Rev 2016; 267:283-97. [PMID: 26284484 DOI: 10.1111/imr.12323] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allogeneic individuals co-exist during pregnancy in eutherian mammals. Maternal and fetal cells intermingle at the site of placental attachment in the uterus, where the arteries are remodeled to supply the fetus with oxygen and nutrients. This access by placental cells to the maternal supply line determines the growth and birth weight of the baby and is subject to stabilizing selection. Invading placental trophoblast cells express human leukocyte antigen class I ligands (HLA-E, HLA-G, and HLA-C) for receptors on maternal uterine natural killer (NK) and myelomonocytic cells, CD94/NKG2, leukocyte immunoglobulin-like receptor (LILR), and killer immunoglobulin receptor (KIR). Of these, only the KIR/HLA-C system is highly polymorphic. Different combinations of maternal KIR and fetal HLA-C variants are correlated with low birth weight and pre-eclampsia or high birth weight and obstructed labor, the two extremes of the obstetric dilemma. This situation has arisen because of the evolution of bipedalism and subsequently, in the last million years, larger brains. At this point, the human system began to reach a balance between KIR A and KIR B haplotypes and C1 and C2 epitopes of HLA-C alleles that reflects a functional compromise between the competing demands of immunity and reproduction.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.,Department of Obstetrics & Gynaecology, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Di Cristofaro J, Reynaud-Gaubert M, Carlini F, Roubertoux P, Loundou A, Basire A, Frassati C, Thomas P, Gomez C, Picard C. HLA-G*01:04∼UTR3 Recipient Correlates With Lower Survival and Higher Frequency of Chronic Rejection After Lung Transplantation. Am J Transplant 2015; 15:2413-20. [PMID: 25989360 DOI: 10.1111/ajt.13305] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 01/25/2023]
Abstract
Lung transplantation (LTx) is a valid therapeutic option for selected patients with end-stage lung disease. Soluble HLA-G (sHLA-G) has been associated with increased graft survival and decreased rejection episodes in solid organ transplantation. HLA-G haplotypes named UTRs, defined by SNPs from both the 5'URR and 3'UTR, have been reported to reliably predict sHLA-G level. The aim of this retrospective study was to determine the impact of HLA-G alleles and UTR polymorphism from LTx recipients on anti-HLA allo-immunization risk, overall survival and chronic rejection (CLAD). HLA-G SNPs were genotyped in 124 recipients who underwent LTx from 1996 to 2010 in Marseille, 123 healthy individuals and 26 cystic fibrosis patients not requiring LTx. sHLA-G levels were measured for 38 LTx patients at D0, M3 and M12 and for 123 healthy donors. HLA-G*01:06∼UTR2 was associated with a worse evolution of cystic fibrosis (p = 0.005) but not of long-term survival post-LTx. HLA-G*01:04∼UTR3 haplotype was associated with lower levels of sHLA-G at D0 and M3 (p = 0.03), impaired long-term survival (p = 0.001), increased CLAD occurrence (p = 0.03) and the production of de novo donor-specific antibodies (DSA) at M3 (p = 0.01). This study is the first to show the deleterious association of different HLA-G alleles and UTRs in LTx.
Collapse
Affiliation(s)
- J Di Cristofaro
- Aix-Marseille Université, CNRS, EFS, ADES UMR 7268, Marseille, France
| | - M Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord Faculté de Médecine, URMITE - CNRS-UMR 6236, Aix Marseille Université, Marseille, France
| | - F Carlini
- Aix-Marseille Université, CNRS, EFS, ADES UMR 7268, Marseille, France
| | - P Roubertoux
- Inserm U491, Génétique Médicale et Développement, Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - A Loundou
- Department of Public Health -EA 3279 Research Unit, University Hospital Marseille, Aix-Marseille University, Marseille, France
| | - A Basire
- Immunogenetics laboratory, EFS-Alpes Méditerranée, Marseille, France
| | - C Frassati
- Immunogenetics laboratory, EFS-Alpes Méditerranée, Marseille, France
| | - P Thomas
- Service de Chirurgie Thoracique, Hôpital Nord, Marseille, France
| | - C Gomez
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord Faculté de Médecine, URMITE - CNRS-UMR 6236, Aix Marseille Université, Marseille, France
| | - C Picard
- Aix-Marseille Université, CNRS, EFS, ADES UMR 7268, Marseille, France.,Immunogenetics laboratory, EFS-Alpes Méditerranée, Marseille, France
| |
Collapse
|
41
|
Andersson E, Poschke I, Villabona L, Carlson JW, Lundqvist A, Kiessling R, Seliger B, Masucci GV. Non-classical HLA-class I expression in serous ovarian carcinoma: Correlation with the HLA-genotype, tumor infiltrating immune cells and prognosis. Oncoimmunology 2015; 5:e1052213. [PMID: 26942060 PMCID: PMC4760332 DOI: 10.1080/2162402x.2015.1052213] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
In our previous studies, we have shown that patients with serous ovarian carcinoma in advanced surgical stage disease have a particularly poor prognosis if they carry the HLA-A*02 genotype. This represent a stronger prognostic factor than loss or downregulation of the MHC class I heavy chain (HC) on tumor cells. In this study, we investigated the expression of the non-classical, immune tolerogenic HLA -G and -E on the tumor cells along with the infiltration of immune cells in the tumor microenvironment. FFPE primary tumors from 72 patients with advanced stages of serous adenocarcinoma and metastatic cells present in ascites fluid from 8 additional patients were included in this study. Both expression of HLA-G and aberrant expression of HLA-E were correlated to a significant worse prognosis in patients with HLA-A*02, but not with different HLA genotypes. Focal cell expression of HLA-G correlated to a site-specific downregulation of classical MHC class I HC products and aberrant HLA-E expression, showing a poor survival. HLA-G was more frequently expressed in metastatic cells than in primary tumor lesions and the expression of HLA-G inversely correlated with the frequency of tumor infiltrating immune cells. All these parameters can contribute together to identify and discriminate subpopulations of patients with extremely poor prognosis and can give them the opportunity to receive, and benefit of individually tailored treatments.
Collapse
Affiliation(s)
- Emilia Andersson
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Isabel Poschke
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital; Stockholm, Sweden; Division of Molecular Oncology of Gastrointestinal Tumors; German Cancer Research Center; Heidelberg, Germany
| | - Lisa Villabona
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Joseph W Carlson
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Andreas Lundqvist
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Rolf Kiessling
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Barbara Seliger
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg ; Halle/Saale, Germany
| | - Giuseppe V Masucci
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| |
Collapse
|
42
|
Moradi S, Berry R, Pymm P, Hitchen C, Beckham SA, Wilce MCJ, Walpole NG, Clements CS, Reid HH, Perugini MA, Brooks AG, Rossjohn J, Vivian JP. The structure of the atypical killer cell immunoglobulin-like receptor, KIR2DL4. J Biol Chem 2015; 290:10460-71. [PMID: 25759384 PMCID: PMC4400354 DOI: 10.1074/jbc.m114.612291] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/10/2015] [Indexed: 01/31/2023] Open
Abstract
The engagement of natural killer cell immunoglobulin-like receptors (KIRs) with their target ligands, human leukocyte antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA, respectively, whereas the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice by size exclusion chromatography, dynamic light scattering, analytical ultracentrifugation, and small angle x-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.
Collapse
Affiliation(s)
- Shoeib Moradi
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Richard Berry
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and the Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Phillip Pymm
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Corinne Hitchen
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Simone A Beckham
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Matthew C J Wilce
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Nicholas G Walpole
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Craig S Clements
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Hugh H Reid
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Matthew A Perugini
- the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne Victoria 3086 Australia
| | - Andrew G Brooks
- the Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Jamie Rossjohn
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and the Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Julian P Vivian
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and the Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia,
| |
Collapse
|
43
|
|
44
|
Rizzo R, Bortolotti D, Bolzani S, Fainardi E. HLA-G Molecules in Autoimmune Diseases and Infections. Front Immunol 2014; 5:592. [PMID: 25477881 PMCID: PMC4235267 DOI: 10.3389/fimmu.2014.00592] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 01/22/2023] Open
Abstract
Human leukocyte antigen (HLA)-G molecule, a non-classical HLA-Ib molecule, is less polymorphic when compared to classical HLA class I molecules. Human leukocyte antigen-G (HLA-G) was first detected on cytotrophoblast cells at the feto-maternal interface but its expression is prevalent during viral infections and several autoimmune diseases. HLA-G gene is characterized by polymorphisms at the 3' un-translated region and 5' upstream regulatory region that regulate its expression and are associated with autoimmune diseases and viral infection susceptibility, creating an unbalanced and pathologic environment. This review focuses on the role of HLA-G genetic polymorphisms, mRNA, and protein expression in autoimmune conditions and viral infections.
Collapse
Affiliation(s)
- Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Bolzani
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliera-Universitaria Arcispedale S. Anna, Ferrara, Italy
| |
Collapse
|
45
|
Li T, Xu Y, Yin S, Liu B, Zhu S, Wang W, Wang Y, Liu F, Allain JP, Li C. Characterization of major histocompatibility complex class I allele polymorphisms in common marmosets. ACTA ACUST UNITED AC 2014; 84:568-73. [PMID: 25355647 DOI: 10.1111/tan.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/21/2014] [Accepted: 09/12/2014] [Indexed: 11/27/2022]
Abstract
Currently, little information is available for major histocompatibility complex (MHC)-I that conditions the T-cell response of marmosets. In this study, 471 clones of MHC-I cDNA sequences were isolated from 12 marmosets. Twenty full-length sequences of class I G (Caja-G) alleles were obtained from these marmosets, 15 of them were novel. Among these 20 Caja-G alleles, 10 were found in individual animals while the rests were in two to four marmosets, but none was common to all animals. Ten marmosets possessed one to three Caja-G alleles, and two marmosets carried five or six alleles, which suggested that the Caja-G locus was duplicated in marmoset's genome. The high polymorphisms of Caja-G sequences provided important information helpful for understanding the cellular immune response in virus-infected marmosets.
Collapse
Affiliation(s)
- T Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Human leukocyte antigen-G (HLA-G) is a low polymorphic nonclassical HLA-I molecule restrictively expressed and with suppressive functions. HLA-G gene products are quite complex, with seven HLA-G isoforms, four membrane bound, and other three soluble isoforms that can suffer different posttranslational modifications or even complex formations. In addition, HLA-G has been described included in exosomes. In this review we will focus on HLA-G biochemistry with special emphasis to the mechanisms that regulate its expression and how the protein modifications affect the quantification in biological fluids.
Collapse
|
47
|
Smith MA, Tellier PP, Roger M, Coutlée F, Franco EL, Richardson H. Determinants of Human Papillomavirus Coinfections among Montreal University Students: The Influence of Behavioral and Biologic Factors. Cancer Epidemiol Biomarkers Prev 2014; 23:812-22. [DOI: 10.1158/1055-9965.epi-13-1255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Zhao L, Teklemariam T, Hantash BM. Mutated HLA-G3 localizes to the cell surface but does not inhibit cytotoxicity of natural killer cells. Cell Immunol 2013; 287:23-6. [PMID: 24355712 DOI: 10.1016/j.cellimm.2013.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022]
Abstract
HLA-G plays an important role in the induction of immune tolerance. Various attempts to produce good manufacturing practice levels of HLA-G as a therapeutic molecule have failed to date partly due to the complicated structure of full-length HLA-G1. Truncated HLA-G3 is simpler and easier to produce than HLA-G1 and contains the expected functional epitope in its only α1 monomorphic domain. In this study, we engineered the ER retrieval and retention signal on HLA-G3's cytoplasmic tail by replacing its RKKSSD motif with RAASSD. We observed that mutated HLA-G3 was highly expressed on the cell surface of transduced K562 cells but did not inhibit cytotoxicity of natural killer cells.
Collapse
Affiliation(s)
- Longmei Zhao
- Escape Therapeutics, Inc., San Jose, CA, United States
| | | | | |
Collapse
|
49
|
LeMaoult J, Daouya M, Wu J, Loustau M, Horuzsko A, Carosella ED. Synthetic HLA-G proteins for therapeutic use in transplantation. FASEB J 2013; 27:3643-51. [PMID: 23752205 DOI: 10.1096/fj.13-228247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human leukocyte antigen (HLA)-G is a tolerogenic molecule, whose expression by allografts is associated with better acceptance. An increasing interest in producing HLA-G as a clinical-grade molecule for therapy use is impaired by its complexity and limited stability. Our purpose was to engineer simpler and more stable HLA-G-derived molecules than the full-length HLA-G trimolecular complex that are also tolerogenic, functional as soluble molecules, and compatible with good manufacturing practice (GMP) production conditions. We present two synthetic molecules: (α3-L)x2 and (α1-α3)x2 polypeptides. We show their capability to bind the HLA-G receptor LILRB2 and their functions in vitro and in vivo. The (α1-α3)x2 polypeptide proved to be a potent tolerogenic molecule in vivo: One treatment of skin allograft recipient mice with (α1-α3)x2 was sufficient to significantly prolong graft survival, and four weekly treatments induced complete tolerance. Furthermore, (α1-α3)x2 was active as a soluble molecule and capable of inhibiting the proliferation of tumor cell lines, as does the full length HLA-G trimolecular complex. Thus, the synthetic (α1-α3)x2 polypeptide is a stable and simpler alternative to the full-length HLA-G molecule. It can be produced under GMP conditions, it functions as a soluble molecule, and it is at least as tolerogenic as HLA-G in vivo.
Collapse
Affiliation(s)
- Joel LeMaoult
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Paris, France.
| | | | | | | | | | | |
Collapse
|
50
|
Obara B, Jabeen A, Fernandez N, Laissue PP. A novel method for quantified, superresolved, three-dimensional colocalisation of isotropic, fluorescent particles. Histochem Cell Biol 2013; 139:391-402. [PMID: 23381680 DOI: 10.1007/s00418-012-1068-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
Colocalisation, the overlap of subcellular structures labelled with different colours, is a key step to characterise cellular phenotypes. We have developed a novel bioimage informatics approach for quantifying colocalisation of round, blob-like structures in two-colour, highly resolved, three-dimensional fluorescence microscopy datasets. First, the algorithm identifies isotropic fluorescent particles, of relative brightness compared to their immediate neighbourhood, in three dimensions and for each colour. The centroids of these spots are then determined, and each object in one location of a colour image is checked for a corresponding object in the other colour image. Three-dimensional distance maps between the centroids of differently coloured spots then display where and how closely they colocalise, while histograms allow to analyse all colocalisation distances. We use the method to reveal sparse colocalisation of different human leukocyte antigen receptors in choriocarcinoma cells. It can also be applied to other isotropic subcellular structures such as vesicles, aggresomes and chloroplasts. The simple, robust and fast approach yields superresolved, object-based colocalisation maps and provides a first indication of protein-protein interactions of fluorescent, isotropic particles.
Collapse
Affiliation(s)
- Boguslaw Obara
- School of Engineering and Computing Sciences, University of Durham, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|