1
|
Liu S, Wang M, Xu L, Deng D, Lu L, Tian J, Zhou D, Rui K. New insight into the role of SOCS family in immune regulation and autoimmune pathogenesis. J Adv Res 2025:S2090-1232(25)00313-3. [PMID: 40349956 DOI: 10.1016/j.jare.2025.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Suppressor of cytokine signaling (SOCS) proteins regulate signal transduction by interacting with cytokine receptors and signaling proteins and targeting associated proteins for degradation. Recent studies have demonstrated that the SOCS proteins serve as crucial inhibitors in cytokine signaling networks and play a pivotal role in both innate and adaptive immune responses. AIM OF REVIEW In this review, we aim to discuss recent advancements in understanding the complex functions of SOCS proteins in various immune cells, as well as the effects of SOCS proteins in human health and diseases. Increasing evidence indicates that SOCS proteins are frequently dysregulated in developing autoimmune diseases, suggesting that therapeutic targeting of SOCS proteins could provide clinical benefit. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of SOCS proteins in immune regulation and autoimmune pathogenesis, it also highlights the role of SOCS-related mimetic peptides in immunotherapy.
Collapse
Affiliation(s)
- Shiyi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mingwei Wang
- Department of Emergency, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Liangjie Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Daihua Deng
- Department of Rheumatology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Dongmei Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Clements AN, Casillas AL, Flores CE, Liou H, Toth RK, Chauhan SS, Sutterby K, Deshmukh SK, Wu S, Xiu J, Farrell A, Radovich M, Nabhan C, Heath EI, McKay RR, Subah N, Centuori S, Weeler TJ, Cress AE, Rogers GC, Wilson JE, Recio-Boiles A, Warfel NA. Inhibition of PIM Kinase in Tumor-Associated Macrophages Suppresses Inflammasome Activation and Sensitizes Prostate Cancer to Immunotherapy. Cancer Immunol Res 2025; 13:633-645. [PMID: 39982419 PMCID: PMC12048269 DOI: 10.1158/2326-6066.cir-24-0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/26/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Immune checkpoint inhibitors (ICI) have changed the treatment paradigm for many cancers but have not shown benefit in prostate cancer. Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. In this study, we identify the proviral integration site for Moloney murine leukemia virus (PIM) kinases as regulators of inflammasome activation in tumor-associated macrophages (TAM). The analysis of clinical data from a cohort of patients with treatment-naïve, hormone-responsive prostate cancer revealed that tumors from patients with high PIM1/2/3 displayed an immunosuppressive tumor microenvironment characterized by high inflammation and a high density of repressive immune cells, most notably TAMs. Macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicated that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized prostate cancer tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Our data implicate macrophage PIM as a driver of inflammation that limits ICI potency and provide preclinical evidence that PIM inhibitors are an effective strategy to improve the ICI efficacy in prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Hope Liou
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ
| | | | | | | | | | | | | | | | | | | | | | | | - Noor Subah
- University of Arizona Health Sciences, Tucson, AZ
| | | | | | - Anne E. Cress
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Gregory C. Rogers
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Justin E. Wilson
- University of Arizona Cancer Center, Tucson, AZ
- Department of Immunobiology, University of Arizona, Tucson, AZ
| | - Alejandro Recio-Boiles
- University of Arizona Cancer Center, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Noel A. Warfel
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
3
|
Clements AN, Casillas AL, Flores CE, Liou H, Toth RK, Chauhan SS, Sutterby K, Deshmukh SK, Wu S, Xiu J, Farrell A, Radovich M, Nabhan C, Heath EI, McKay RR, Subah N, Centuori S, Wheeler TJ, Cress AE, Rogers GC, Wilson JE, Recio-Boiles A, Warfel NA. Inhibition of PIM kinase in tumor associated macrophages suppresses inflammasome activation and sensitizes prostate cancer to immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.618756. [PMID: 39484473 PMCID: PMC11526960 DOI: 10.1101/2024.10.21.618756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Immunotherapy has changed the treatment paradigm for many types of cancer, but immune checkpoint inhibitors (ICIs) have not shown benefit in prostate cancer (PCa). Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment (TME) and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. Here, we identify PIM kinases as important regulators of inflammasome activation in tumor associated macrophages (TAMs). Analysis of clinical data from a cohort of treatment naïve, hormone responsive PCa patients revealed that tumors from patients with high PIM1/2/3 display an immunosuppressive TME characterized by high inflammation (IL-1β and TNFα) and a high density of repressive immune cells, most notably TAMs. Strikingly, macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicate that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized PCa tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Collectively, our data implicate macrophage PIM as a driver of inflammation that limits the potency of ICIs and provides preclinical evidence that PIM inhibitors are an effective strategy to improve the efficacy of immunotherapy in prostate cancer.
Collapse
|
4
|
Nielsen MH, Nielsen PR, Bzorek M, Eriksen JO, Wehkamp U, Lindahl LM, Woetmann A, Ødum N, Litman T, Gjerdrum LMR. Stage-related increase in PIM2 expression in mycosis fungoides. APMIS 2024; 132:564-570. [PMID: 38757234 DOI: 10.1111/apm.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
The oncogene PIM2 is upregulated in several malignancies but has never been investigated in mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma (CTCL). PIM2 is a well-known oncogene and is regulated by cell signaling pathways like the JAK/STAT- and NF-kB-pathway, key regulators in the pathogenesis of CTCL. The aim of this study was to examine the role of PIM2 in MF. PIM2 gene expression was measured in 81 formalin-fixed paraffin-embedded skin biopsies from patients with MF and 46 control biopsies from healthy skin (HS) and benign inflammatory skin disease (BID). Validation of PIM2 protein expression was performed on selected biopsies with immunohistochemical staining. We found a significant difference in gene expression levels between both early stage MF and HS (p < 0.0001), and BID (p < 0.0001). In addition, the PIM2 gene expression was higher in advanced-stage MF compared to early stage disease (p = 0.0001). No significant difference in gene expression levels was found between patients with and without disease progression. In conclusion, we found PIM2 expression is significantly increased in MF compared to controls, and in advanced-stage MF compared to early stage MF. These findings could potentially have diagnostic value in discriminating early stage MF from BID.
Collapse
Affiliation(s)
- Mie Holm Nielsen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Pia Rude Nielsen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Ulrike Wehkamp
- Department of Dermatology, University Hospital, Kiel, Schleswig-Holstein, Germany
| | | | - Anders Woetmann
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Morelli M, Madonna S, Albanesi C. SOCS1 and SOCS3 as key checkpoint molecules in the immune responses associated to skin inflammation and malignant transformation. Front Immunol 2024; 15:1393799. [PMID: 38975347 PMCID: PMC11224294 DOI: 10.3389/fimmu.2024.1393799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.
Collapse
Affiliation(s)
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | | |
Collapse
|
6
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Nock S, Karim E, Unsworth AJ. Pim Kinases: Important Regulators of Cardiovascular Disease. Int J Mol Sci 2023; 24:11582. [PMID: 37511341 PMCID: PMC10380471 DOI: 10.3390/ijms241411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pim Kinases; Pim-1, Pim-2, and Pim-3, are a family of constitutively active serine/threonine kinases, widely associated with cell survival, proliferation, and migration. Historically considered to be functionally redundant, independent roles for the individual isoforms have been described. Whilst most established for their role in cancer progression, there is increasing evidence for wider pathological roles of Pim kinases within the context of cardiovascular disease, including inflammation, thrombosis, and cardiac injury. The Pim kinase isoforms have widespread expression in cardiovascular tissues, including the heart, coronary artery, aorta, and blood, and have been demonstrated to be upregulated in several co-morbidities/risk factors for cardiovascular disease. Pim kinase inhibition may thus be a desirable therapeutic for a multi-targeted approach to treat cardiovascular disease and some of the associated risk factors. In this review, we discuss what is known about Pim kinase expression and activity in cells of the cardiovascular system, identify areas where the role of Pim kinase has yet to be fully explored and characterised and review the suitability of targeting Pim kinase for the prevention and treatment of cardiovascular events in high-risk individuals.
Collapse
Affiliation(s)
| | | | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
8
|
Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 2023; 22:18. [PMID: 36694243 PMCID: PMC9875428 DOI: 10.1186/s12943-023-01721-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.
Collapse
|
9
|
Clements AN, Warfel NA. Targeting PIM Kinases to Improve the Efficacy of Immunotherapy. Cells 2022; 11:3700. [PMID: 36429128 PMCID: PMC9688203 DOI: 10.3390/cells11223700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases is a family of serine/threonine kinases that regulates numerous signaling networks that promote cell growth, proliferation, and survival. PIM kinases are commonly upregulated in both solid tumors and hematological malignancies. Recent studies have demonstrated that PIM facilitates immune evasion in cancer by promoting an immunosuppressive tumor microenvironment that suppresses the innate anti-tumor response. The role of PIM in immune evasion has sparked interest in examining the effect of PIM inhibition in combination with immunotherapy. This review focuses on the role of PIM kinases in regulating immune cell populations, how PIM modulates the immune tumor microenvironment to promote immune evasion, and how PIM inhibitors may be used to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Amber N. Clements
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ 85724, USA
| | - Noel A. Warfel
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
10
|
Masuzaki R, Kanda T, Sasaki R, Matsumoto N, Nirei K, Ogawa M, Karp SJ, Moriyama M, Kogure H. Suppressors of Cytokine Signaling and Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:2549. [PMID: 35626153 PMCID: PMC9139988 DOI: 10.3390/cancers14102549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cytokines are secreted soluble glycoproteins that regulate cellular growth, proliferation, and differentiation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate cytokine signaling and form a classical negative feedback loop in the signaling pathways. There are eight members of the SOCS family. The SOCS proteins are all comprised of a loosely conserved N-terminal domain, a central Src homology 2 (SH2) domain, and a highly conserved SOCS box at the C-terminus. The role of SOCS proteins has been implicated in the regulation of cytokines and growth factors in liver diseases. The SOCS1 and SOCS3 proteins are involved in immune response and inhibit protective interferon signaling in viral hepatitis. A decreased expression of SOCS3 is associated with advanced stage and poor prognosis of patients with hepatocellular carcinoma (HCC). DNA methylations of SOCS1 and SOCS3 are found in HCC. Precise regulation of liver regeneration is influenced by stimulatory and inhibitory factors after partial hepatectomy (PH), in particular, SOCS2 and SOCS3 are induced at an early time point after PH. Evidence supporting the important role of SOCS signaling during liver regeneration also supports a role of SOCS signaling in HCC. Immuno-oncology drugs are now the first-line therapy for advanced HCC. The SOCS can be potential targets for HCC in terms of cell proliferation, cell differentiation, and immune response. In this literature review, we summarize recent findings of the SOCS family proteins related to HCC and liver diseases.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Reina Sasaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Kazushige Nirei
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Seth J. Karp
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Hirofumi Kogure
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| |
Collapse
|
11
|
Sutra Del Galy A, Menegatti S, Fuentealba J, Lucibello F, Perrin L, Helft J, Darbois A, Saitakis M, Tosello J, Rookhuizen D, Deloger M, Gestraud P, Socié G, Amigorena S, Lantz O, Menger L. In vivo genome-wide CRISPR screens identify SOCS1 as intrinsic checkpoint of CD4 + T H1 cell response. Sci Immunol 2021; 6:eabe8219. [PMID: 34860579 DOI: 10.1126/sciimmunol.abe8219] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Silvia Menegatti
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Jaime Fuentealba
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | | | - Laetitia Perrin
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Julie Helft
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Aurélie Darbois
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Michael Saitakis
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Jimena Tosello
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Derek Rookhuizen
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Marc Deloger
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Pierre Gestraud
- Bioinformatics and Computational Systems Biology of Cancer, PSL Research University, MINES ParisTech, INSERM U900, Paris 75005, France
| | - Gérard Socié
- AP-HP Hospital Saint Louis, Hematology/Transplantation, Paris 75010, France
| | | | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.,Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France.,Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, Paris 75005, France
| | - Laurie Menger
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| |
Collapse
|
12
|
Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne) 2021; 8:727987. [PMID: 34604264 PMCID: PMC8481645 DOI: 10.3389/fmed.2021.727987] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cytokine signaling represents one of the cornerstones of the immune system, mediating the complex responses required to facilitate appropriate immune cell development and function that supports robust immunity. It is crucial that these signals be tightly regulated, with dysregulation underpinning immune defects, including excessive inflammation, as well as contributing to various immune-related malignancies. A specialized family of proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS proteins identified regulate cytokine and other signaling pathways in unique ways. SOCS1–3 and CISH are most closely involved in the regulation of immune-related signaling, influencing processes such polarization of lymphocytes and the activation of myeloid cells by controlling signaling downstream of essential cytokines such as IL-4, IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the development of inflammatory and autoimmune conditions as well as malignancies. As a consequence, SOCS proteins are garnering increased interest as a unique avenue to treat these disorders.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
14
|
Hur J, Lee HG, Kim E, Won JP, Cho Y, Choi MJ, Lee H, Seo HG. Ginseng leaf extract ameliorates the survival of endotoxemic mice by inhibiting the release of high mobility group box 1. J Food Biochem 2021; 45:e13805. [PMID: 34096077 DOI: 10.1111/jfbc.13805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
High mobility group box 1 (HMGB1) is a well-defined mediator involved in the pathophysiologic response to endotoxemia and sepsis. However, the mechanisms and therapeutic agents that could prevent its release are not fully elucidated. Here, the present study demonstrates that the ginseng leaf extract (GLE) regulates lipopolysaccharide (LPS)-triggered release of HMGB1 in macrophages and endotoxemic animal model. Treatment of RAW264.7 macrophages with GLE significantly inhibited the release of HMGB1 stimulated by LPS. GLE also suppressed the generation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of GLE were accompanied by inhibition of HMGB1 release stimulated by LPS, indicating a potential mechanism by which GLE regulates HMGB1 release through NO signaling. Furthermore, induction of suppressor of cytokine signaling 1 by GLE-mediated GLE-dependent suppression of HMGB1 release and NO/iNOS induction by inhibiting Janus kinase 2/signal transducer and activator of transcription 1 signal in RAW 264.7 cells exposed to LPS. Finally, administration of the GLE ameliorated the survival rate of LPS-injected endotoxemic mice in a NO-dependent manner. Thus, GLE may block the LPS-stimulated release of HMGB1 by regulating cellular signal networks, thereby providing a therapeutic strategy for endotoxemia as a functional food. PRACTICAL APPLICATIONS: High mobility group box 1 (HMGB1) is released into the extracellular milieu when immune cells are exposed to pathogen-related molecules such as lipopolysaccharide (LPS), in which it acts as a critical mediator of lethality in sepsis and endotoxemia. The extract of ginseng leaf, which is a part that can be easily thrown away, ameliorated the survival rate of endotoxemic mice by inhibiting HMGB1 secretion in a NO-dependent manner. Thus, this study suggests that ginseng leaf can be used as a functional food by resolving the immune responses in the pathology of endotoxemia.
Collapse
Affiliation(s)
- Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunsu Kim
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jun Pil Won
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Youngjae Cho
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hwan Lee
- Health Balance R&D Center, Seoul, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Lee JK, Koo SY, Nam HM, Lee JB, Ko J, Kim KM, Park EJ, Kim TJ, Lee H, Go H, Lee CW. Ssu72 is a T-cell receptor-responsive modifier that is indispensable for regulatory T cells. Cell Mol Immunol 2021; 18:1395-1411. [PMID: 33850312 PMCID: PMC8166877 DOI: 10.1038/s41423-021-00671-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The homeostatic balance between effector T cells and regulatory T cells (Tregs) is crucial for adaptive immunity; however, epigenetic programs that inhibit phosphorylation to regulate Treg development, peripheral expression, and suppressive activity are elusive. Here, we found that the Ssu72 phosphatase is activated by various T-cell receptor signaling pathways, including the T-cell receptor and IL-2R pathways, and localizes at the cell membrane. Deletion of Ssu72 in T cells disrupts CD4+ T-cell differentiation into Tregs in the periphery via the production of high levels of the effector cytokines IL-2 and IFNγ, which induce CD4+ T-cell activation and differentiation into effector cell lineages. We also found a close correlation between downregulation of Ssu72 and severe defects in mucosal tolerance in patients. Interestingly, Ssu72 forms a complex with PLCγ1, which is an essential effector molecule for T-cell receptor signaling as well as Treg development and function. Ssu72 deficiency impairs PLCγ1 downstream signaling and results in failure of Foxp3 induction. Thus, our studies show that the Ssu72-mediated cytokine response coordinates the differentiation and function of Treg cells in the periphery.
Collapse
Affiliation(s)
- Jin-Kwan Lee
- Research Institute, Curogen Technology, Suwon, South Korea
| | - Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hye-Mi Nam
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
- MOGAM Institute for Biomedical Research, Gyeonggi, South Korea
| | - Jee-Boong Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Mo Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Gyeonggi, South Korea.
| | - Heounjeong Go
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Chang-Woo Lee
- Research Institute, Curogen Technology, Suwon, South Korea.
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| |
Collapse
|
16
|
SILAC proteomics implicates SOCS1 in modulating cellular macromolecular complexes and the ubiquitin conjugating enzyme UBE2D involved in MET receptor tyrosine kinase downregulation. Biochimie 2021; 182:185-196. [PMID: 33493533 DOI: 10.1016/j.biochi.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023]
Abstract
Suppressor of Cytokine Signaling 1 (SOCS1) functions as a tumor suppressor in hepatocellular carcinoma and many other types of cancers. SOCS1 mediates its functions by inhibiting tyrosine kinases, promoting ubiquitination and proteasomal degradation of signal transducing proteins, and by modulating transcription factors. Here, we studied the impact of SOCS1 on the hepatocyte proteome using Stable Isotopic Labelling of Amino acids in Cell culture (SILAC)-based mass spectrometry on the Hepa1-6 murine HCC cell line stably expressing wildtype SOCS1 or a mutant SOCS1 with impaired SH2 domain. As SOCS1 regulates the hepatocyte growth factor (HGF) receptor, the MET receptor tyrosine kinase (RTK), the SILAC-labelled cells were stimulated or not with HGF. Following mass spectrometry analysis, differentially modulated proteins were identified, quantified and analyzed for pathway enrichment. Of the 3440 proteins identified in Hepa-SOCS1 cells at steady state, 181 proteins were significantly modulated compared to control cells. The SH2 domain mutation and HGF increased the number of differentially modulated proteins. Protein interaction network analysis revealed enrichment of SOCS1-modulated proteins within multiprotein complexes such as ubiquitin conjugating enzymes, proteasome, mRNA spliceosome, mRNA exosome and mitochondrial ribosome. Notably, the expression of UBE2D ubiquitin conjugating enzyme, which is implicated in the control of growth factor receptor tyrosine kinase signaling, was found to be regulated by SOCS1. These findings suggest that SOCS1, induced by cytokines, growth factors and diverse other stimuli, has the potential to dynamically modulate of large macromolecular regulatory complexes to help maintain cellular homeostasis.
Collapse
|
17
|
Liu Z, Han M, Ding K, Fu R. The role of Pim kinase in immunomodulation. Am J Cancer Res 2020; 10:4085-4097. [PMID: 33414987 PMCID: PMC7783746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Pim kinase, which has three isozymes (Pim-1, Pim-2 and Pim-3), is a serine/threonine kinase abnormally expressed in many cancers. High Pim kinase expression has been recognized to be associated with disease progression and prognosis. It is well accepted that Pim kinase is considered a clinical biomarker and potential therapeutic target for tumor cell. In recent years, researches verified the role of Pim kinase in immunomodulation. The mechanisms by which Pim kinase modulates the immune microenvironment and regulates immune cells, as well as the effects of Pim kinase inhibitors on immunity, have not been systematically described. This review comprehensively focuses on the current research status of Pim kinase pathways and the immune regulation.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Mei Han
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| |
Collapse
|
18
|
Opazo-Ríos L, Sanchez Matus Y, Rodrigues-Díez RR, Carpio D, Droguett A, Egido J, Gomez-Guerrero C, Mezzano S. Anti-inflammatory, antioxidant and renoprotective effects of SOCS1 mimetic peptide in the BTBR ob/ob mouse model of type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001242. [PMID: 32900697 PMCID: PMC7478022 DOI: 10.1136/bmjdrc-2020-001242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/13/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is the leading cause of chronic kidney disease worldwide. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway participates in the development and progression of DN. Among the different mechanisms involved in JAK/STAT negative regulation, the family of suppressor of cytokine signaling (SOCS) proteins has been proposed as a new target for DN. Our aim was to evaluate the effect of SOCS1 mimetic peptide in a mouse model of obesity and type 2 diabetes (T2D) with progressive DN. RESEARCH DESIGN AND METHODS Six-week-old BTBR (black and tan brachyuric) mice with the ob/ob (obese/obese) leptin-deficiency mutation were treated for 7 weeks with two different doses of active SOCS1 peptide (MiS1 2 and 4 µg/g body weight), using inactive mutant peptide (Mut 4 µg) and vehicle as control groups. At the end of the study, the animals were sacrificed to obtain blood, urine and kidney tissue for further analysis. RESULTS Treatment of diabetic mice with active peptide significantly decreased urine albumin to creatinine ratio by up to 50%, reduced renal weight, glomerular and tubulointerstitial damage, and restored podocyte numbers. Kidneys from treated mice exhibited lower inflammatory infiltrate, proinflammatory gene expression and STAT activation. Concomitantly, active peptide administration modulated redox balance markers and reduced lipid peroxidation and cholesterol transporter gene expression in diabetic kidneys. CONCLUSION Targeting SOCS proteins by mimetic peptides to control JAK/STAT signaling pathway ameliorates albuminuria, morphological renal lesions, inflammation, oxidative stress and lipotoxicity, and could be a therapeutic approach to T2D kidney disease.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma (UAM), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Madrid, Spain
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Raúl R Rodrigues-Díez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Daniel Carpio
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Droguett
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma (UAM), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma (UAM), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
19
|
Lim JT, Singh N, Leuvano LA, Calvert VS, Petricoin EF, Teachey DT, Lock RB, Padi M, Kraft AS, Padi SKR. PIM Kinase Inhibitors Block the Growth of Primary T-cell Acute Lymphoblastic Leukemia: Resistance Pathways Identified by Network Modeling Analysis. Mol Cancer Ther 2020; 19:1809-1821. [PMID: 32753387 DOI: 10.1158/1535-7163.mct-20-0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022]
Abstract
Despite significant progress in understanding the genetic landscape of T-cell acute lymphoblastic leukemia (T-ALL), the discovery of novel therapeutic targets has been difficult. Our results demonstrate that the levels of PIM1 protein kinase is elevated in early T-cell precursor ALL (ETP-ALL) but not in mature T-ALL primary samples. Small-molecule PIM inhibitor (PIMi) treatment decreases leukemia burden in ETP-ALL. However, treatment of animals carrying ETP-ALL with PIMi was not curative. To model other pathways that could be targeted to complement PIMi activity, HSB-2 cells, previously characterized as a PIMi-sensitive T-ALL cell line, were grown in increasing doses of PIMi. Gene set enrichment analysis of RNA sequencing data and functional enrichment of network modules demonstrated that the HOXA9, mTOR, MYC, NFκB, and PI3K-AKT pathways were activated in HSB-2 cells after long-term PIM inhibition. Reverse phase protein array-based pathway activation mapping demonstrated alterations in the mTOR, PI3K-AKT, and NFκB pathways, as well. PIMi-tolerant HSB-2 cells contained phosphorylated RelA-S536 consistent with activation of the NFκB pathway. The combination of NFκB and PIMis markedly reduced the proliferation in PIMi-resistant leukemic cells showing that this pathway plays an important role in driving the growth of T-ALL. Together these results demonstrate key pathways that are activated when HSB-2 cell line develop resistance to PIMi and suggest pathways that can be rationally targeted in combination with PIM kinases to inhibit T-ALL growth.
Collapse
Affiliation(s)
- James T Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Neha Singh
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Libia A Leuvano
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Valerie S Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
- Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, Arizona
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.
| | - Sathish K R Padi
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.
| |
Collapse
|
20
|
Combined inhibition of PIM and CDK4/6 suppresses both mTOR signaling and Rb phosphorylation and potentiates PI3K inhibition in cancer cells. Oncotarget 2020; 11:1478-1492. [PMID: 32391118 PMCID: PMC7197449 DOI: 10.18632/oncotarget.27539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/14/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant activation of mitogenic signaling pathways in cancer promotes growth and proliferation of cells by activating mTOR and S6 phosphorylation, and D-cyclin kinases and Rb phosphorylation, respectively. Correspondingly, inhibition of phosphorylation of both Rb and S6 is required for robust anti-tumor efficacy of drugs that inhibit cell signaling. The best-established mechanism of mTOR activation in cancer is via PI3K/Akt signaling, but mTOR activity can also be stimulated by CDK4 and PIM kinases. In this study, we show that the CDK4/6 inhibitor abemaciclib inhibits PIM kinase and S6 phosphorylation in cancer cells and concurrent inhibition of PIM, CDK4, and CDK6 suppresses both S6 and Rb phosphorylation. TSC2 or PIK3CA mutations obviate the requirement for PIM kinase and circumvent the inhibition of S6 phosphorylation by abemaciclib. Combination with a PI3K inhibitor restored suppression of S6 phosphorylation and synergized to curtail cell growth. By combining abemaciclib with a PI3K inhibitor, three pathways (Akt, PIM, and CDK4) to mTOR activation are neutralized, suggesting a potential combination strategy for the treatment of PIK3CA-mutant ER+ breast cancer.
Collapse
|
21
|
Pereiro P, Álvarez-Rodríguez M, Valenzuela-Muñoz V, Gallardo-Escárate C, Figueras A, Novoa B. RNA-Seq analysis reveals that spring viraemia of carp virus induces a broad spectrum of PIM kinases in zebrafish kidney that promote viral entry. FISH & SHELLFISH IMMUNOLOGY 2020; 99:86-98. [PMID: 32004617 DOI: 10.1016/j.fsi.2020.01.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
PIM kinases are a family of serine/threonine protein kinases that potentiate the progression of the cell cycle and inhibit apoptosis. Because of this, they are considered to be proto-oncogenes, and they represent an interesting target for the development of anticancer drugs. In mammals, three PIM kinases exist (PIM-1, PIM-2 and PIM-3), and different inhibitors have been developed to block their activity. In addition to their involvement in cancer, some publications have reported that the PIM kinases have pro-viral activity, and different mechanisms where PIM kinases favour viral infections have been proposed. Zebrafish possess more than 300 Pim kinase members in their genome, and by using RNA-Seq analysis, we found a high number of Pim kinase genes that were significantly induced after infection with spring viraemia of carp virus (SVCV). Moreover, analysis of the miRNAs modulated by this infection revealed that some of them could be involved in the post-transcriptional regulation of Pim kinase abundance. To elucidate the potential role of the 16 overexpressed Pim kinases in the infectivity of SVCV, we used three different pan-PIM kinase inhibitors (SGI-1776, INCB053914 and AZD1208), and different experiments were conducted both in vitro and in vivo. We observed that the PIM kinase inhibitors had a protective effect against SVCV, indicating that, similar to what is observed in mammals, PIM kinases are beneficial for the virus in zebrafish. Moreover, zebrafish Pim kinases seem to facilitate viral entry into the host cells because when ZF4 cells were pre-incubated with the virus and then were treated with the inhibitors, the protective effect of the inhibitors was abrogated. Although more investigation is necessary, these results show that pan-PIM kinase inhibitors could serve as a useful treatment for preventing the spread of viral diseases.
Collapse
Affiliation(s)
- Patricia Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain; Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Margarita Álvarez-Rodríguez
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.
| |
Collapse
|
22
|
Sun K, Zhang G. Long noncoding RNA CASC2 suppresses esophageal squamous cell carcinoma progression by increasing SOCS1 expression. Cell Biosci 2019; 9:90. [PMID: 31728180 PMCID: PMC6842511 DOI: 10.1186/s13578-019-0353-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer-related deaths worldwide. Emerging evidence suggests the involvement of long noncoding RNAs (lncRNAs) in tumorigenesis. LncRNA Cancer Susceptibility Candidate 2 (CASC2) has been demonstrated to act as a tumor suppressor contributing to the development and progression of several cancers. However, the functional significance and underlying mechanism of CASC2 in ESCC progression has not been well elucidated. Methods The expression levels of CASC2 in ESCC tissues were detected by qRT-PCR. CASC2 overexpression and knockdown models were established and used to investigate the functional role of CASC2 in ESCC cells. RIP, RNA pull-down and dual-luciferase assay was used to detect the association between CASC2 and miR-155. The interaction between CASC2 and Suppressor Of Cytokine Signaling 1 (SOCS1) was assessed by RIP and RNA pull-down assays. Results In the present study, we found that CASC2 was significantly downregulated in ESCC tissues and positively correlated with overall survival time of patients with ESCC. Functional assays demonstrated that CASC2 suppressed proliferation, migration and invasion, as well as enhanced drug sensitivity in ESCC cells. Mechanistically, CASC2 inhibited ESCC progression by upregulating the expression of SOCS1 via two different ways. CASC2 acted as competing endogenous RNA (ceRNA) for miR-155 to post-transcriptionally increase SOCS1 expression. On the other hand, CASC2 was capable of interacting with SOCS1 protein and suppressing its degradation. Conclusion Conclusively, these results demonstrated that CASC2 could exert as a tumor suppressive lncRNA in ESCC progression via regulating SOCS1.
Collapse
Affiliation(s)
- Ke Sun
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 of Jinghua Road, Jianxi District, Luoyang, 471003 Henan China
| | - Guangping Zhang
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 of Jinghua Road, Jianxi District, Luoyang, 471003 Henan China
| |
Collapse
|
23
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
SOCS1 and its Potential Clinical Role in Tumor. Pathol Oncol Res 2019; 25:1295-1301. [DOI: 10.1007/s12253-019-00612-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
|
25
|
Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen HD, Bastian D, Zhang M, Sofi MH, Chatterjee S, Hill EG, Mehrotra S, Kraft AS, Yu XZ. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest 2018; 128:2787-2801. [PMID: 29781812 DOI: 10.1172/jci95407] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/29/2018] [Indexed: 01/03/2023] Open
Abstract
PIM kinase family members play a crucial role in promoting cell survival and proliferation via phosphorylation of their target substrates. In this study, we investigated the role of the PIM kinases with respect to T cell responses in transplantation and tumor immunity. We found that the PIM-2 isoform negatively regulated T cell responses to alloantigen, in contrast to the PIM-1 and PIM-3 isoforms, which acted as positive regulators. T cells deficient in PIM-2 demonstrated increased T cell differentiation toward Th1 subset, proliferation, and migration to target organs after allogeneic bone marrow transplantation, resulting in dramatically accelerated graft-versus-host disease (GVHD) severity. Restoration of PIM-2 expression markedly attenuated the pathogenicity of PIM-2-deficient T cells to induce GVHD. On the other hand, mice deficient in PIM-2 readily rejected syngeneic tumor, which was primarily dependent on CD8+ T cells. Furthermore, silencing PIM-2 in polyclonal or antigen-specific CD8+ T cells substantially enhanced their antitumor response in adoptive T cell immunotherapy. We conclude that PIM-2 kinase plays a prominent role in suppressing T cell responses, and provide a strong rationale to target PIM-2 for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yongxia Wu
- Department of Microbiology and Immunology
| | | | | | | | | | | | | | - Elizabeth G Hill
- Department of Public Health Science, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Andrew S Kraft
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
26
|
Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug Metab Dispos 2018; 46:567-580. [PMID: 29514827 PMCID: PMC5896366 DOI: 10.1124/dmd.118.080663] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathologic conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4, and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown; however, these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters.
Collapse
Affiliation(s)
- Rebecca R Crawford
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Praveen K Potukuchi
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
27
|
Padi SKR, Luevano LA, An N, Pandey R, Singh N, Song JH, Aster JC, Yu XZ, Mehrotra S, Kraft AS. Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset. Oncotarget 2018; 8:30199-30216. [PMID: 28415816 PMCID: PMC5444737 DOI: 10.18632/oncotarget.16320] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
New approaches are needed for the treatment of patients with T-cell acute lymphoblastic leukemia (T-ALL) who fail to achieve remission with chemotherapy. Analysis of the effects of pan-PIM protein kinase inhibitors on human T-ALL cell lines demonstrated that the sensitive cell lines expressed higher PIM1 protein kinase levels, whereas T-ALL cell lines with NOTCH mutations tended to have lower levels of PIM1 kinase and were insensitive to these inhibitors. NOTCH-mutant cells selected for resistance to gamma secretase inhibitors developed elevated PIM1 kinase levels and increased sensitivity to PIM inhibitors. Gene profiling using a publically available T-ALL dataset demonstrated overexpression of PIM1 in the majority of early T-cell precursor (ETP)-ALLs and a small subset of non-ETP ALL. While the PIM inhibitors blocked growth, they also stimulated ERK and STAT5 phosphorylation, demonstrating that activation of additional signaling pathways occurs with PIM inhibitor treatment. To block these pathways, Ponatinib, a broadly active tyrosine kinase inhibitor (TKI) used to treat chronic myelogenous leukemia, was added to this PIM-inhibitor regimen. The combination of Ponatinib with a PIM inhibitor resulted in synergistic T-ALL growth inhibition and marked apoptotic cell death. Treatment of mice engrafted with human T-ALL with these two agents significantly decreased the tumor burden and improved the survival of treated mice. This dual therapy has the potential to be developed as a novel approach to treat T-ALL with high PIM expression.
Collapse
Affiliation(s)
- Sathish K R Padi
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Libia A Luevano
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ningfei An
- Department of Pathology, Pediatric Hematology/Oncology Division, University of Chicago, Chicago, IL, USA
| | - Ritu Pandey
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Neha Singh
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jin H Song
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
Santio NM, Koskinen PJ. PIM kinases: From survival factors to regulators of cell motility. Int J Biochem Cell Biol 2017; 93:74-85. [DOI: 10.1016/j.biocel.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
|
29
|
Kapoor S, Natarajan K, Baldwin PR, Doshi KA, Lapidus RG, Mathias TJ, Scarpa M, Trotta R, Davila E, Kraus M, Huszar D, Tron AE, Perrotti D, Baer MR. Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation. Clin Cancer Res 2017; 24:234-247. [PMID: 29074603 DOI: 10.1158/1078-0432.ccr-17-1629] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023]
Abstract
Purpose:fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is present in 30% of acute myeloid leukemia (AML), and these patients have short disease-free survival. FLT3 inhibitors have limited and transient clinical activity, and concurrent treatment with inhibitors of parallel or downstream signaling may improve responses. The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD and also promotes its signaling in a positive feedback loop, suggesting benefit of combined Pim and FLT3 inhibition.Experimental Design: Combinations of clinically active Pim and FLT3 inhibitors were studied in vitro and in vivoResults: Concurrent treatment with the pan-Pim inhibitor AZD1208 and FLT3 inhibitors at clinically applicable concentrations abrogated in vitro growth of FLT3-ITD, but not wild-type FLT3 (FLT3-WT), cell lines. AZD1208 cotreatment increased FLT3 inhibitor-induced apoptosis of FLT3-ITD, but not FLT3-WT, cells measured by sub-G1 fraction, annexin V labeling, mitochondrial membrane potential, and PARP and caspase-3 cleavage. Concurrent treatment with AZD1208 and the FLT3 inhibitor quizartinib decreased growth of MV4-11 cells, with FLT3-ITD, in mouse xenografts, and prolonged survival, enhanced apoptosis of FLT3-ITD primary AML blasts, but not FLT3-WT blasts or remission marrow cells, and decreased FLT3-ITD AML blast colony formation. Mechanistically, AZD1208 and quizartinib cotreatment decreased expression of the antiapoptotic protein Mcl-1. Decrease in Mcl-1 protein expression was abrogated by treatment with the proteasome inhibitor MG132, and was preceded by downregulation of the Mcl-1 deubiquitinase USP9X, a novel mechanism of Mcl-1 regulation in AML.Conclusions: The data support clinical testing of Pim and FLT3 inhibitor combination therapy for FLT3-ITD AML. Clin Cancer Res; 24(1); 234-47. ©2017 AACR.
Collapse
Affiliation(s)
- Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Karthika Natarajan
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Patrick R Baldwin
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kshama A Doshi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Rena G Lapidus
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Trevor J Mathias
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Rossana Trotta
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eduardo Davila
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland.,Veterans Affairs Medical Center, Baltimore, Maryland
| | | | | | | | - Danilo Perrotti
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
30
|
Funakoshi-Tago M, Moriwaki T, Ueda F, Tamura H, Kasahara T, Tago K. Phosphorylated CIS suppresses the Epo or JAK2 V617F mutant-triggered cell proliferation through binding to EpoR. Cell Signal 2017; 31:41-57. [DOI: 10.1016/j.cellsig.2016.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/01/2022]
|
31
|
Sukka-Ganesh B, Larkin J. Therapeutic Potential for Targeting the Suppressor of Cytokine Signalling-1 Pathway for the Treatment of SLE. Scand J Immunol 2017; 84:299-309. [PMID: 27781323 DOI: 10.1111/sji.12475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
Although the specific events dictating systemic lupus erythematosus (SLE) pathology remain unclear, abundant evidence indicates a critical role for dysregulated cytokine signalling in disease progression. Notably, the suppressor of cytokine signalling (SOCS) family of intracellular proteins, in particular the kinase inhibitory region (KIR) bearing SOCS1 and SOCS3, plays a critical role in regulating cytokine signalling. To assess a relationship between SOCS1/SOCS3 expression and SLE, the goals of this study were to (1) evaluate the time kinetics of SOCS1/SOCS3 message and protein expression based on SLE-associated stimulations, (2) compare levels of SOCS1 and SOCS3 present in SLE patients and healthy controls by message and protein, (3) relate SOCS1/SOCS3 expression to inflammatory markers in SLE patients and (4) correlate SOCS1/SOCS3 levels to current treatments. We found that SOCS1 and SOCS3 were most abundant in murine splenic samples at 48 h subsequent to stimulation by anti-CD3, LPS or interferon-gamma. In addition, significant reductions in SOCS1 and SOCS3 were present within PMBCs of SLE patients compared to controls by both mRNA and protein expression. We also found that decreased levels of SOCS1 in SLE patients were correlated with enhanced levels of inflammatory markers and upregulated expression of MHC class II. Finally, we show that patients receiving steroid treatment possessed higher levels SOCS1 compared to SLE patient counterparts and that steroid administration to human PBMCs upregulated SOCS1 message in a dose- and time-dependent manner. Together, these results suggest that therapeutic strategies focused on SOCS1 signalling may have efficacy in the treatment of SLE.
Collapse
Affiliation(s)
- B Sukka-Ganesh
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - J Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
SOCS1 in cancer: An oncogene and a tumor suppressor. Cytokine 2016; 82:87-94. [DOI: 10.1016/j.cyto.2016.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
|
33
|
Vries MD, Bedke N, Smithers NP, Loxham M, Howarth PH, Nawijn MC, Davies DE. Inhibition of Pim1 kinase, new therapeutic approach in virus-induced asthma exacerbations. Eur Respir J 2016; 47:783-91. [PMID: 26869670 DOI: 10.1183/13993003.00171-2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
Abstract
Therapeutic options to treat virus-induced asthma exacerbations are limited and urgently needed. Therefore, we tested Pim1 kinase as potential therapeutic target in human rhinovirus (HRV) infections. We hypothesised that inhibition of Pim1 kinase reduces HRV replication by augmenting the interferon-induced anti-viral response due to increased activity of the janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway.Air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) from healthy individuals and moderate-to-severe asthmatic volunteers were infected with HRV-16 with or without a specific Pim1 inhibitor; viral replication and induction of anti-viral responses were measured using RT-qPCR. Viral titres were measured by 50% tissue culture infective dose and release of interferon-γ-induced protein 10 (IP-10) and RANTES protein assessed by ELISA. Phosphorylation of STAT-1 was determined using western blotting.Viral replication was reduced in ALI cultures of healthy and asthmatic PBECs treated with the Pim1 inhibitor. Using cultures from healthy donors, enhanced STAT-1 phosphorylation upon inhibition of Pim1 kinase activity resulted in increased mRNA expression of interferon-β, interleukin-29, IP-10 and RANTES 12 h after infection and increased protein levels of IP-10 and RANTES 24 h after infection.We have identified Pim1 kinase as novel target to reduce viral replication in ALI cultures of PBECs. This may open new avenues for therapeutic interventions in virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Maaike de Vries
- University of Groningen, University Medical Center Groningen, Experimental Pulmonology and Inflammation Research, Dept of Pathology and Medical Biology, Groningen, The Netherlands Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Nicole Bedke
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Natalie P Smithers
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Peter H Howarth
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK National Institute for Health Research, Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, Experimental Pulmonology and Inflammation Research, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Donna E Davies
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK National Institute for Health Research, Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| |
Collapse
|
34
|
McCormick SM, Heller NM. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front Immunol 2015; 6:549. [PMID: 26579124 PMCID: PMC4621458 DOI: 10.3389/fimmu.2015.00549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.
Collapse
Affiliation(s)
- Sarah M McCormick
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| | - Nicola M Heller
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA ; Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
35
|
Deng G, Nagai Y, Xiao Y, Li Z, Dai S, Ohtani T, Banham A, Li B, Wu SL, Hancock W, Samanta A, Zhang H, Greene MI. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation. J Biol Chem 2015; 290:20211-20. [PMID: 25987564 DOI: 10.1074/jbc.m115.638221] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 01/28/2023] Open
Abstract
Regulation of the extent of immune responses is a requirement to maintain self-tolerance and limit inflammatory processes. CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play a role in regulation. The Foxp3 transcription factor is considered a dominant regulator for Treg cell development and function. Foxp3 function itself is directly regulated by multiple posttranslational modifications that occur in response to various external stimuli. The Foxp3 protein is a component of several dynamic macromolecular regulatory complexes. The complexes change constituents over time and through different signals to regulate the development and function of regulatory T cells. Here we identified a mechanism regulating Foxp3 level and activity that operates through discrete phosphorylation. The Pim-2 kinase can phosphorylate Foxp3, leading to decreased suppressive functions of Treg cells. The amino-terminal domain of Foxp3 is modified at several sites by Pim-2 kinase. This modification leads to altered expression of proteins related to Treg cell functions and increased Treg cell lineage stability. Treg cell suppressive function can be up-regulated by either pharmacologically inhibiting Pim-2 kinase activity or by genetically knocking out Pim-2 in rodent Treg cells. Deficiency of Pim-2 activity increases murine host resistance to dextran sodium sulfate-induced colitis in vivo, and a Pim-2 small molecule kinase inhibitor also modified Treg cell functions. Our studies define a pathway for limiting the regulation of Foxp3 function because the Pim-2 kinase represents a potential therapeutic target for modulating the Treg cell suppressive activities in controlling immune responses.
Collapse
Affiliation(s)
- Guoping Deng
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yasuhiro Nagai
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yan Xiao
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhiyuan Li
- the Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shujia Dai
- the Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115-5000
| | - Takuya Ohtani
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alison Banham
- the Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom, and
| | - Bin Li
- the Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiaw-Lin Wu
- the Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115-5000
| | - Wayne Hancock
- the Division of Transplant Immunology and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Arabinda Samanta
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hongtao Zhang
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark I Greene
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
36
|
Schistosoma mansoni Soluble Egg Antigens Induce Expression of the Negative Regulators SOCS1 and SHP1 in Human Dendritic Cells via Interaction with the Mannose Receptor. PLoS One 2015; 10:e0124089. [PMID: 25897665 PMCID: PMC4405200 DOI: 10.1371/journal.pone.0124089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/25/2015] [Indexed: 12/31/2022] Open
Abstract
Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses.
Collapse
|
37
|
Jensik PJ, Arbogast LA. Regulation of cytokine-inducible SH2-containing protein (CIS) by ubiquitination and Elongin B/C interaction. Mol Cell Endocrinol 2015; 401:130-41. [PMID: 25448846 PMCID: PMC4373541 DOI: 10.1016/j.mce.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Cytokine-inducible SH2-containing protein (CIS) inhibits prolactin receptor (PRLR) signaling and acts as part of an E3 ubiquitin ligase complex through interactions with Elongin B/C proteins. This study aimed to identify CIS lysine ubiquitination sites and determine roles of ubiquitination and Elongin B/C interactions on CIS protein stability and PRLR signaling inhibition. Site-directed mutations revealed that CIS can be ubiquitinated on all six lysine residues. Elongin B/C interaction box mutation had no influence on CIS ubiquitination. CIS stability was increased by mutation of lysine residues and further enhanced by co-mutation of Elongin B/C interaction domain. CIS inhibition of STAT5B phosphorylation and casein promoter activation was dependent on CIS interactions with Elongin B/C, but not on CIS ubiquitination. These data indicate CIS protein stability is regulated through multiple mechanisms, including ubiquitination and interaction with Elongin B/C proteins, whereas CIS functional inhibition of PRLR signaling is dependent on the Elongin B/C interaction.
Collapse
|
38
|
Kirschner AN, Wang J, van der Meer R, Anderson PD, Franco-Coronel OE, Kushner MH, Everett JH, Hameed O, Keeton EK, Ahdesmaki M, Grosskurth SE, Huszar D, Abdulkadir SA. PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J Natl Cancer Inst 2014; 107:dju407. [PMID: 25505253 DOI: 10.1093/jnci/dju407] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND PIM1 kinase is coexpressed with c-MYC in human prostate cancers (PCs) and dramatically enhances c-MYC-induced tumorigenicity. Here we examine the effects of a novel oral PIM inhibitor, AZD1208, on prostate tumorigenesis and recurrence. METHODS A mouse c-MYC/Pim1-transduced tissue recombination PC model, Myc-CaP allografts, and human PC xenografts were treated with AZD1208 (n = 5-11 per group). Androgen-sensitive and castrate-resistant prostate cancer (CRPC) models were studied as well as the effects of hypoxia and radiation. RNA sequencing was used to analyze drug-induced gene expression changes. Results were analyzed with χ(2) test. Student's t test and nonparametric Mann-Whitney rank sum U Test. All statistical tests were two-sided. RESULTS AZD1208 inhibited tumorigenesis in tissue recombinants, Myc-CaP, and human PC xenograft models. PIM inhibition decreased c-MYC/Pim1 graft growth by 54.3 ± 39% (P < .001), decreased cellular proliferation by 46 ± 14% (P = .016), and increased apoptosis by 326 ± 170% (P = .039). AZD1208 suppressed multiple protumorigenic pathways, including the MYC gene program. However, it also downregulated the p53 pathway. Hypoxia and radiation induced PIM1 in prostate cancer cells, and AZD1208 functioned as a radiation sensitizer. Recurrent tumors postcastration responded transiently to either AZD1208 or radiation treatment, and combination treatment resulted in more sustained inhibition of tumor growth. Cell lines established from recurrent, AZD1208-resistant tumors again revealed downregulation of the p53 pathway. Irradiated AZD1208-treated tumors robustly upregulated p53, providing a possible mechanistic explanation for the effectiveness of combination therapy. Finally, an AZD1208-resistant gene signature was found to be associated with biochemical recurrence in PC patients. CONCLUSIONS PIM inhibition is a potential treatment for MYC-driven prostate cancers including CRPC, and its effectiveness may be enhanced by activators of the p53 pathway, such as radiation.
Collapse
Affiliation(s)
- Austin N Kirschner
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Jie Wang
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Riet van der Meer
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Philip D Anderson
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Omar E Franco-Coronel
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Max H Kushner
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Joel H Everett
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Omar Hameed
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Erika K Keeton
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Miika Ahdesmaki
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Shaun E Grosskurth
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Dennis Huszar
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA)
| | - Sarki A Abdulkadir
- Department of Radiation Oncology (ANK), Department of Pathology, Microbiology and Immunology (JW, RvdM, JHE, OH, SAA), Department of Urology (OEFC), Department of Cancer Biology (SAA), Vanderbilt University Medical Center, Nashville, TN; Department of Biological Sciences, Salisbury University, Salisbury, MD (PDA); Department of Biological Sciences, Vanderbilt University, Nashville, TN (MHK); AstraZeneca, Oncology iMED, Waltham, MA (EKK, SEG, DH); AstraZeneca, R&D Information, Macclesfield, Cheshire, UK (MA); Currently at Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL (SAA).
| |
Collapse
|
39
|
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7:95. [PMID: 25491234 PMCID: PMC4266197 DOI: 10.1186/s13045-014-0095-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125, Messina, Italy. .,Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Michael Mian
- Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. .,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
40
|
Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity. Biochem J 2014; 461:177-88. [PMID: 24966052 DOI: 10.1042/bj20140143] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Overactivation of immune pathways in obesity is an important cause of insulin resistance and thus new approaches aimed to limit inflammation or its consequences may be effective for treating Type 2 diabetes. The SOCS (suppressors of cytokine signalling) are a family of proteins that play an essential role in mediating inflammatory responses in both immune cells and metabolic organs such as the liver, adipose tissue and skeletal muscle. In the present review we discuss the role of SOCS1 and SOCS3 in controlling immune cells such as macrophages and T-cells and the impact this can have on systemic inflammation and insulin resistance. We also dissect the mechanisms by which SOCS (1-7) regulate insulin signalling in different tissues including their impact on the insulin receptor and insulin receptor substrates. Lastly, we discuss the important findings from SOCS whole-body and tissue-specific null mice, which implicate an important role for these proteins in controlling insulin action and glucose homoeostasis in obesity.
Collapse
|
41
|
Banerjee S, Lu J, Cai Q, Sun Z, Jha HC, Robertson ES. EBNA3C augments Pim-1 mediated phosphorylation and degradation of p21 to promote B-cell proliferation. PLoS Pathog 2014; 10:e1004304. [PMID: 25121590 PMCID: PMC4133388 DOI: 10.1371/journal.ppat.1004304] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/28/2014] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. The oncogenic serine/threonine kinase Pim-1 is upregulated in a number of human cancers including lymphomas, gastric, colorectal and prostate carcinomas. EBV nuclear antigen 3C (EBNA3C) is essential for EBV-induced transformation of human primary B-lymphocytes. Our current study revealed that EBNA3C significantly enhances Pim-1 kinase expression at both the transcript and protein levels. EBNA3C also interacts with Pim-1 and can form a complex in EBV-transformed cells. Moreover, EBNA3C increases nuclear localization of Pim-1 and stabilizes Pim-1 protein levels by inhibiting its poly-ubiquitination. Additionally, EBNA3C augments Pim-1 mediated phosphorylation of p21 and its proteosomal degradation. Stable knockdown of Pim-1 using si-RNA showed a significant decrease in proliferation of EBV transformed lymphoblastoid cell lines and subsequent induction of apoptosis by triggering the intrinsic apoptotic pathway. Therefore, our study demonstrated a new mechanism by which the oncogenic Pim-1 kinase targeted by EBV latent antigen 3C can inhibit p21 function, and is therefore a potential therapeutic target for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qiliang Cai
- Key Laboratory of Molecular Medical Virology (Ministries of Education and Health), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
42
|
Li YY, Mukaida N. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. World J Gastroenterol 2014; 20:9392-9404. [PMID: 25071334 PMCID: PMC4110571 DOI: 10.3748/wjg.v20.i28.9392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/22/2014] [Accepted: 03/08/2014] [Indexed: 02/07/2023] Open
Abstract
Pim-3 is a member of the provirus integration site for Moloney murine leukemia virus (Pim) family proteins that exhibit serine/threonine kinase activity. Similar to the other Pim kinases (Pim-1 and Pim-2), Pim-3 is involved in many cellular processes, including cell proliferation, survival, and protein synthesis. Although Pim-3 is expressed in normal vital organs, it is overexpressed particularly in tumor tissues of endoderm-derived organs, including the liver, pancreas, and colon. Silencing of Pim-3 expression can retard in vitro cell proliferation of hepatocellular, pancreatic, and colon carcinoma cell lines by promoting cell apoptosis. Pim-3 lacks the regulatory domains similarly as Pim-1 and Pim-2 lack, and therefore, Pim-3 can exhibit its kinase activity once it is expressed. Pim-3 expression is regulated at transcriptional and post-transcriptional levels by transcription factors (e.g., Ets-1) and post-translational modifiers (e.g., translationally-controlled tumor protein), respectively. Pim-3 could promote growth and angiogenesis of human pancreatic cancer cells in vivo in an orthotopic nude mouse model. Furthermore, a Pim-3 kinase inhibitor inhibited cell proliferation when human pancreatic cancer cells were injected into nude mice, without inducing any major adverse effects. Thus, Pim-3 kinase may serve as a novel molecular target for developing targeting drugs against pancreatic and other types of cancer.
Collapse
|
43
|
Liang Y, Xu WD, Peng H, Pan HF, Ye DQ. SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol 2014; 44:1265-75. [PMID: 24595859 DOI: 10.1002/eji.201344369] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/08/2014] [Accepted: 02/25/2014] [Indexed: 11/08/2022]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are mainly induced by various cytokines and have been described as classical inhibitors of cytokine signaling. SOCS signaling is involved in the regulation of immune cells, and recent findings suggest that SOCS proteins, especially SOCS1 and SOCS3, are often dysregulated in a wide variety of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, psoriasis, and multiple sclerosis. Recent studies suggest that SOCS signaling could be therapeutically targeted in various autoimmune diseases. In this review, we discuss recent studies on the role of SOCS proteins in the development and pathogenesis of autoimmune diseases, as well as their clinical implications.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014; 2014:630797. [PMID: 24757565 PMCID: PMC3976820 DOI: 10.1155/2014/630797] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022] Open
Abstract
Suppressors of cytokine signalling 1-7 (SOCS1-7) and cytokine-inducible SH2-containing protein (CIS) are a group of intracellular proteins that are well known as JAK-STAT and several other signalling pathways negative feedback regulators. More recently several members have been identified as tumour suppressors and dysregulation of their biological roles in controlling cytokine and growth factor signalling may contribute to the development of many solid organ and haematological malignancies. This review explores their biological functions and their possible tumour suppressing role in human neoplasms.
Collapse
|
45
|
Babon JJ, Varghese LN, Nicola NA. Inhibition of IL-6 family cytokines by SOCS3. Semin Immunol 2014; 26:13-9. [PMID: 24418198 DOI: 10.1016/j.smim.2013.12.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023]
Abstract
IL-6 a multi-functional cytokine with important effects in both inflammation and haematopoiesis. SOCS3 is the primary inhibitor of IL-6 signalling, interacting with gp130, the common shared chain of the IL-6 family of cytokines, and JAK1, JAK2 and TYK2 to control both the duration of signalling and the biological response. Recent biochemical and structural studies have shown SOCS3 binds to only these three JAKs, all of which are associated with IL-6 signalling, and not JAK3. This specificity is determined by a three residue "GQM" motif in the kinase domain of JAK1, JAK2 and TYK2. SOCS3 binds to JAK and gp130 simultaneously, and inhibits JAK activity in an ATP-independent manner by partially occluding the kinase's substrate binding groove with its kinase inhibitory region. We therefore propose a model in which each of gp130, JAK and SOCS3 are directly bound to the other two, allowing SOCS3 to inhibit IL6 signalling with high potency and specificity.
Collapse
Affiliation(s)
- Jeffrey J Babon
- Walter and Eliza Hall Institute, Parkville, Australia; The University of Melbourne, Parkville, Australia.
| | - Leila N Varghese
- Walter and Eliza Hall Institute, Parkville, Australia; The University of Melbourne, Parkville, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, Parkville, Australia; The University of Melbourne, Parkville, Australia
| |
Collapse
|
46
|
Lee MC, Kuo YY, Chou WC, Hou HA, Hsiao M, Tien HF. Gfi-1 is the transcriptional repressor of SOCS1in acute myeloid leukemia cells. J Leukoc Biol 2013; 95:105-115. [DOI: 10.1189/jlb.0912475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
ABSTRACTSilencing of SOCS1, a TSG, has been detected in various malignancies, including AML. However, the underlying mechanism of SOCS1 inactivation remains elusive. In this study, we explored the role of histone methylation in SOCS1 expression in AML cells. By ChIP assay, we demonstrated that G9a and SUV39H1, two enzymes catalyzing H3K9 methylation, were physically associated with the SOCS1 promoter, and treatment with chaetocin, a histone methyltransferase inhibitor, suppressed H3K9 methylation on the SOCS1 promoter and enhanced SOCS1 expression. Furthermore, knockdown of G9a and SUV39H1 by siRNA could also induce SOCS1 expression. On the other hand, SOCS1 knockdown by shRNA eliminated chaetocin-induced cell apoptosis. To investigate further whether any transcription factor was involved in H3K9 methylation-related SOCS1 repression, we scanned the sequences of the SOCS1 gene promoter and found two binding sites for Gfi-1, a transcription repressor. By DNA pull-down and ChIP assays, we showed that Gfi-1 directly bound the SOCS1 promoter, and ectopic Gfi-1 expression suppressed STAT5-induced SOCS1 promoter activation. In contrast, Gfi-1 knockdown by shRNA enhanced SOCS1 expression and inhibited STAT5 expression. Moreover, the knockdown of G9a completely rescued the repressive effect of Gfi-1 on STAT5A-induced SOCS1 promoter activation. Collectively, our study indicates that the expression of Gfi-1 contributes to SOCS1 silencing in AML cells through epigenetic modification, and suppression of histone methyltransferase can provide new insight in AML therapy.
Collapse
Affiliation(s)
- Ming-Cheng Lee
- Division of Hematology, Department of Internal Medicine, National Taiwan University , Taipei, Taiwan
| | - Yuan-Yeh Kuo
- Graduate Institutes of Oncology, National Taiwan University , Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University , Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University , Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University , Taipei, Taiwan
- Clinical Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica , Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
47
|
Pim-1 kinase phosphorylates and stabilizes 130 kDa FLT3 and promotes aberrant STAT5 signaling in acute myeloid leukemia with FLT3 internal tandem duplication. PLoS One 2013; 8:e74653. [PMID: 24040307 PMCID: PMC3764066 DOI: 10.1371/journal.pone.0074653] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/07/2013] [Indexed: 01/19/2023] Open
Abstract
The type III receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) is expressed on both normal hematopoietic stem cells and acute myeloid leukemia (AML) cells and regulates their proliferation. Internal tandem duplication (ITD) mutation of FLT3 is present in a third of AML cases, results in constitutive activation and aberrant signaling of FLT3, and is associated with adverse treatment outcomes. While wild-type (WT) FLT3 is predominantly a 150 kDa complex glycosylated cell surface protein, FLT3-ITD is partially retained in the endoplasmic reticulum as a 130 kDa underglycosylated species associated with the chaperones calnexin and heat shock protein (HSP) 90, and mediates aberrant STAT5 signaling, which upregulates the oncogenic serine/threonine kinase Pim-1. FLT3 contains a Pim-1 substrate consensus serine phosphorylation site, and we hypothesized that it might be a Pim-1 substrate. Pim-1 was indeed found to directly interact with and serine-phosphorylate FLT3. Pim-1 inhibition decreased the expression and half-life of 130 kDa FLT3, with partial abrogation by proteasome inhibition, in association with decreased FLT3 binding to calnexin and HSP90, and increased 150 kDa FLT3 expression and half-life, with abrogation by inhibition of glycosylation. These findings were consistent with Pim-1 stabilizing FLT3-ITD as a 130 kDa species associated with calnexin and HSP90 and inhibiting its glycosylation to form the 150 kDa species. Pim-1 knockdown effects were similar. Pim-1 inhibition also decreased phosphorylation of FLT3 at tyrosine 591 and of STAT5, and expression of Pim-1 itself, consistent with inhibition of the FLT3-ITD-STAT5 signaling pathway. Finally, Pim-1 inhibition synergized with FLT3 inhibition in inducing apoptosis of FLT3-ITD cells. This is, to our knowledge, the first demonstration of a role of Pim-1 in a positive feedback loop promoting aberrant signaling in malignant cells.
Collapse
|
48
|
Dittrich A, Siewert E, Schaper F. Determination of protein turnover rates in the JAK/STAT pathway using a radioactive pulse-chase approach. Methods Mol Biol 2013; 967:69-80. [PMID: 23296722 DOI: 10.1007/978-1-62703-242-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The turnover rate of different protein species in a signal transduction network strongly affects the impact of the given species on the outcome of a stimulus. Whereas stable, long-lived proteins mainly account for the transmission of a signal, unstable short-lived species often comprise regulatory functions. Here, we describe a method to determine the half-lives of proteins of the JAK/STAT pathway by a pulse-chase approach in cell culture. First, radioactive labeling with (35)S-methionine is carried out to label newly synthesized proteins (pulse). Subsequently, the dynamics of the decay of these proteins is monitored in the absence of labeled amino acids over a defined time period (chase). For this purpose the protein of interest is isolated by immunoprecipitation from total cell lysates, separated on an SDS-polyacrylamide gel, and subsequently visualized by autoradiography.
Collapse
Affiliation(s)
- Anna Dittrich
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | | | | |
Collapse
|
49
|
Yang J, Wang J, Chen K, Guo G, Xi R, Rothman PB, Whitten D, Zhang L, Huang S, Chen JL. eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes. Cancer Res 2013; 73:4898-908. [PMID: 23749639 DOI: 10.1158/0008-5472.can-12-4277] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alterations in translation occur in cancer cells, but the precise pathogenic processes and mechanistic underpinnings are not well understood. In this study, we report that interactions between Pim family kinases and the translation initiation factor eIF4B are critical for Abl oncogenicity. Pim kinases, Pim-1 and Pim-2, both directly phosphorylated eIF4B on Ser406 and Ser422. Phosphorylation of eIF4B on Ser422 was highly sensitive to pharmacologic or RNA interference-mediated inhibition of Pim kinases. Expression and phosphorylation of eIF4B relied upon Abl kinase activity in both v-Abl- and Bcr-Abl-expressing leukemic cells based on their blockade by the Abl kinase inhibitor imatinib. Ectopic expression of phosphomimetic mutants of eIF4B conferred resistance to apoptosis by the Pim kinase inhibitor SMI-4a in Abl-transformed cells. In contrast, silencing eIF4B sensitized Abl-transformed cells to imatinib-induced apoptosis and also inhibited their growth as engrafted tumors in nude mice. Extending these observations, we found that primary bone marrow cells derived from eIF4B-knockdown transgenic mice were less susceptible to Abl transformation, relative to cells from wild-type mice. Taken together, our results identify eIF4B as a critical substrate of Pim kinases in mediating the activity of Abl oncogenes, and they highlight eIF4B as a candidate therapeutic target for treatment of Abl-induced cancers.
Collapse
Affiliation(s)
- Jianling Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Narlik-Grassow M, Blanco-Aparicio C, Cecilia Y, Perez M, Muñoz-Galvan S, Cañamero M, Carnero A. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS One 2013; 8:e60277. [PMID: 23565217 PMCID: PMC3614961 DOI: 10.1371/journal.pone.0060277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/24/2013] [Indexed: 11/19/2022] Open
Abstract
The Pim proteins are a family of highly homologous protein serine/threonine kinases that have been found to be overexpressed in cancer. Elevated levels of Pim1 kinase were first discovered in human leukemia and lymphomas. However, more recently Pim1 was found to be increased in solid tumors, including pancreatic and prostate cancers, and has been proposed as a prognostic marker. Although the Pim kinases have been identified as oncogenes in transgenic models, they have weak transforming abilities on their own. However, they have been shown to greatly enhance the ability of other genes or chemical carcinogens to induce tumors. To explore the role of Pim1 in prostate cancer, we generated conditional Pim1 transgenic mice, expressed Pim1 in prostate epithelium, and analyzed the contribution of PIM1 to neoplastic initiation and progression. Accordingly, we explored the effect of PIM1 overexpression in 3 different settings: upon hormone treatment, during aging, and in combination with the absence of one Pten allele. We have found that Pim1 overexpression increased the severity of mouse prostate intraepithelial neoplasias (mPIN) moderately in all three settings. Furthermore, Pim1 overexpression, in combination with the hormone treatment, increased inflammation surrounding target tissues leading to pyelonephritis in transgenic animals. Analysis of senescence induced in these prostatic lesions showed that the lesions induced in the presence of inflammation exhibited different behavior than those induced in the absence of inflammation. While high grade prostate preneoplastic lesions, mPIN grades III and IV, in the presence of inflammation did not show any senescence markers and demonstrated high levels of Ki67 staining, untreated animals without inflammation showed senescence markers and had low levels of Ki67 staining in similar high grade lesions. Our data suggest that Pim1 might contribute to progression rather than initiation in prostate neoplasia.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Yolanda Cecilia
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Marco Perez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| | - Sandra Muñoz-Galvan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| | - Marta Cañamero
- Biotechnology programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|