1
|
Kligfeld H, Han I, Abraham A, Shukla V. Alternative DNA structures in hematopoiesis and adaptive immunity. Adv Immunol 2024; 161:109-126. [PMID: 38763699 PMCID: PMC11956803 DOI: 10.1016/bs.ai.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Besides the canonical B-form, DNA also adopts alternative non-B form conformations which are highly conserved in all domains of life. While extensive research over decades has centered on the genomic functions of B-form DNA, understanding how non-B-form conformations influence functional genomic states remains a fundamental and open question. Recent studies have ascribed alternative DNA conformations such as G-quadruplexes and R-loops as important functional features in eukaryotic genomes. This review delves into the biological importance of alternative DNA structures, with a specific focus on hematopoiesis and adaptive immunity. We discuss the emerging roles of G-quadruplex and R-loop structures, the two most well-studied alternative DNA conformations, in the hematopoietic compartment and present evidence for their functional roles in normal cellular physiology and associated pathologies.
Collapse
Affiliation(s)
- Heather Kligfeld
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, United States; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Isabella Han
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, United States
| | - Ajay Abraham
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, United States; Center for Human Immunobiology, Northwestern University, Chicago, IL, United States
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, United States; Center for Human Immunobiology, Northwestern University, Chicago, IL, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
2
|
Kobayashi M, Wakaguri H, Shimizu M, Higasa K, Matsuda F, Honjo T. Ago2 and a miRNA reduce Topoisomerase 1 for enhancing DNA cleavage in antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2023; 120:e2216918120. [PMID: 37094168 PMCID: PMC10161001 DOI: 10.1073/pnas.2216918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is the essential enzyme for imprinting immunological memory through class switch recombination (CSR) and somatic hypermutation (SHM) of the immunoglobulin (Ig) gene. AID-dependent reduction of Topoisomerase 1 (Top1) promotes DNA cleavage that occurs upon Ig gene diversification, whereas the mechanism behind AID-induced Top1 reduction remains unclear. Here, we clarified the contribution of the microRNA-Ago2 complex in AID-dependent Top1 decrease. Ago2 binds to Top1 3'UTR with two regions of AID-dependent Ago2-binding sites (5'- and 3'dABs). Top1 3'UTR knockout (3'UTRKO) in B lymphoma cells leads to decreases in DNA break efficiency in the IgH gene accompanied by a reduction in CSR and SHM frequencies. Furthermore, AID-dependent Top1 protein reduction and Ago2-binding to Top1 mRNA are down-regulated in 3'UTRKO cells. Top1 mRNA in the highly translated fractions of the sucrose gradient is decreased in an AID-dependent and Top1 3'UTR-mediated manner, resulting in a decrease in Top1 protein synthesis. Both AID and Ago2 localize in the mRNA-binding protein fractions and they interact with each other. Furthermore, we found some candidate miRNAs which possibly bind to 5'- and 3'dAB in Top1 mRNA. Among them, miR-92a-3p knockdown induces the phenotypes of 3'UTRKO cells to wild-type cells whereas it does not impact on 3'UTRKO cells. Taken together, the Ago2-miR-92a-3p complex will be recruited to Top1 3'UTR in an AID-dependent manner and posttranscriptionally reduces Top1 protein synthesis. These consequences cause the increase in a non-B-DNA structure, enhance DNA cleavage by Top1 in the Ig gene and contribute to immunological memory formation.
Collapse
Affiliation(s)
- Maki Kobayashi
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Hiroyuki Wakaguri
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Masakazu Shimizu
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
3
|
Peycheva M, Neumann T, Malzl D, Nazarova M, Schoeberl UE, Pavri R. DNA replication timing directly regulates the frequency of oncogenic chromosomal translocations. Science 2022; 377:eabj5502. [DOI: 10.1126/science.abj5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chromosomal translocations result from the joining of DNA double-strand breaks (DSBs) and frequently cause cancer. However, the steps linking DSB formation to DSB ligation remain undeciphered. We report that DNA replication timing (RT) directly regulates lymphomagenic
Myc
translocations during antibody maturation in B cells downstream of DSBs and independently of DSB frequency. Depletion of minichromosome maintenance complexes alters replication origin activity, decreases translocations, and deregulates global RT. Ablating a single origin at
Myc
causes an early-to-late RT switch, loss of translocations, and reduced proximity with the immunoglobulin heavy chain (
Igh
) gene, its major translocation partner. These phenotypes were reversed by restoring early RT. Disruption of early RT also reduced tumorigenic translocations in human leukemic cells. Thus, RT constitutes a general mechanism in translocation biogenesis linking DSB formation to DSB ligation.
Collapse
Affiliation(s)
- Mihaela Peycheva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Daniel Malzl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Mariia Nazarova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Ursula E. Schoeberl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
4
|
Abstract
The innate immune receptors in higher organisms have evolved to detect molecular signatures associated with pathogenic infection and trigger appropriate immune response. One common class of molecules utilized by the innate immune system for self vs. nonself discrimination is RNA, which is ironically present in all forms of life. To avoid self-RNA recognition, the innate immune sensors have evolved sophisticated discriminatory mechanisms that involve cellular RNA metabolic machineries. Posttranscriptional RNA modification and editing represent one such mechanism that allows cells to chemically tag the host RNAs as "self" and thus tolerate the abundant self-RNA molecules. In this chapter, we discuss recent advances in our understanding of the role of RNA editing/modification in the modulation of immune signaling pathways, and application of RNA editing/modification in RNA-based therapeutics and cancer immunotherapies.
Collapse
|
5
|
Islam H, Kobayashi M, Honjo T. Apurinic/apyrimidinic endonuclease 1 (APE1) is dispensable for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation in the immunoglobulin gene. Int Immunol 2020; 31:543-554. [PMID: 30877298 DOI: 10.1093/intimm/dxz028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates DNA breakage in the variable (V) and switch (S) regions of the immunoglobulin gene, which results in somatic hypermutation (SHM) and class switch recombination (CSR), respectively. Apurinic/apyrimidinic endonuclease 1 (APE1) has been shown to be important for CSR, and is supposed to cleave at abasic sites when AID-dependently deaminated cytidine is removed by uracil DNA glycosylase. However, APE1 is unexpectedly dispensable for SHM in the S region and translocation between immunoglobulin heavy chain (IgH) and c-myc genes in the mouse B lymphoma cell line, CH12F3-2A. This suggested that APE1 is not involved in AID-dependent DNA breakage, but rather, in DNA repair. In order to investigate detailed molecular mechanisms underlying APE1's involvement in CSR and SHM, we measured apurinic/apyrimidinic (AP) sites via aldehyde reactive probe labeling. Results indicated that the frequencies of AP sites in the S regions were not different between APE1-/-/-CH12F3-2A and wild-type CH12F3-2A cells. To carry out similar experiments in SHM of the V region, we generated an APE1 knockout (APE1-/-) human Burkitt's lymphoma cell line, and compared SHM between APE1-proficient and -deficient BL2 lymphoma cells. SHM frequencies in the V regions of APE1-/-BL2 and APE1-proficient cells were also similar. Taken together, we showed that AID does not induce AP sites in the S region of the IgH gene, and that APE1 is not necessary for SHM in the V and S regions; however, it is required for DNA repair following DNA breakage in CSR.
Collapse
Affiliation(s)
- Helena Islam
- Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Maki Kobayashi
- Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
6
|
Wang Q, Kieffer-Kwon KR, Oliveira TY, Mayer CT, Yao K, Pai J, Cao Z, Dose M, Casellas R, Jankovic M, Nussenzweig MC, Robbiani DF. The cell cycle restricts activation-induced cytidine deaminase activity to early G1. J Exp Med 2016; 214:49-58. [PMID: 27998928 PMCID: PMC5206505 DOI: 10.1084/jem.20161649] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023] Open
Abstract
Wang et al. show that antibody gene deamination by activation-induced cytidine deaminase (AID) is restricted to a short time window in early G1 as a result of AID’s transient nuclear localization and accessibility of the target sites. Activation-induced cytidine deaminase (AID) converts cytosine into uracil to initiate somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes. In addition, this enzyme produces DNA lesions at off-target sites that lead to mutations and chromosome translocations. However, AID is mostly cytoplasmic, and how and exactly when it accesses nuclear DNA remains enigmatic. Here, we show that AID is transiently in spatial contact with genomic DNA from the time the nuclear membrane breaks down in prometaphase until early G1, when it is actively exported into the cytoplasm. Consistent with this observation, the immunoglobulin (Igh) gene deamination as measured by uracil accumulation occurs primarily in early G1 after chromosomes decondense. Altering the timing of cell cycle–regulated AID nuclear residence increases DNA damage at off-target sites. Thus, the cell cycle–controlled breakdown and reassembly of the nuclear membrane and the restoration of transcription after mitosis constitute an essential time window for AID-induced deamination, and provide a novel DNA damage mechanism restricted to early G1.
Collapse
Affiliation(s)
- Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kaihui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Zhen Cao
- Weill Cornell Medical College and Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marei Dose
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
7
|
Rebhandl S, Huemer M, Greil R, Geisberger R. AID/APOBEC deaminases and cancer. Oncoscience 2015; 2:320-33. [PMID: 26097867 PMCID: PMC4468319 DOI: 10.18632/oncoscience.155] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Mutations are the basis for evolution and the development of genetic diseases. Especially in cancer, somatic mutations in oncogenes and tumor suppressor genes alongside the occurrence of passenger mutations have been observed by recent deep-sequencing approaches. While mutations have long been considered random events induced by DNA-replication errors or by DNA damaging agents, genome sequencing led to the discovery of non-random mutation signatures in many human cancer. Common non-random mutations comprise DNA strand-biased mutation showers and mutations restricted to certain DNA motifs, which recently have become attributed to the activity of the AID/APOBEC family of DNA deaminases. Hence, APOBEC enzymes, which have evolved as key players in natural and adaptive immunity, have been proposed to contribute to cancer development and clonal evolution of cancer by inducing collateral genomic damage due to their DNA deaminating activity. This review focuses on how mutagenic events through AID/APOBEC deaminases may contribute to cancer development.
Collapse
Affiliation(s)
- Stefan Rebhandl
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Michael Huemer
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Richard Greil
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Roland Geisberger
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| |
Collapse
|
8
|
Liang G, Liu G, Kitamura K, Wang Z, Chowdhury S, Monjurul AM, Wakae K, Koura M, Shimadu M, Kinoshita K, Muramatsu M. TGF-β suppression of HBV RNA through AID-dependent recruitment of an RNA exosome complex. PLoS Pathog 2015; 11:e1004780. [PMID: 25836330 PMCID: PMC4383551 DOI: 10.1371/journal.ppat.1004780] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/03/2015] [Indexed: 01/15/2023] Open
Abstract
Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner.
Collapse
Affiliation(s)
- Guoxin Liang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
| | - Guangyan Liu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouichi Kitamura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Zhe Wang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Division of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Sajeda Chowdhury
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ahasan Md Monjurul
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miyuki Shimadu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
9
|
A source of the single-stranded DNA substrate for activation-induced deaminase during somatic hypermutation. Nat Commun 2014; 5:4137. [PMID: 24923561 PMCID: PMC4154566 DOI: 10.1038/ncomms5137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/16/2014] [Indexed: 11/08/2022] Open
Abstract
During somatic hypermutation (SHM), activation-induced deaminase (AID) mutates deoxycytidine on single-stranded DNA (ssDNA) generated by the transcription machinery, but the detailed mechanism remains unclear. Here we report a higher abundance of RNA polymerase II (Pol II) at the immunoglobulin heavy-chain variable (Igh-V) region compared with the constant region and partially transcribed Igh RNAs, suggesting a slower Pol II progression at Igh-V that could result in some early/premature transcription termination after prolonged pausing/stalling of Pol II. Knocking down RNA-exosome complexes, which could decrease premature transcription termination, leads to decreased SHM. Knocking down Spt5, which can augment premature transcription termination, leads to increase in both, SHM and the abundance of ssDNA substrates. Collectively, our data support the model that, following the reduction of Pol II progression (pausing or stalling) at the Igh-V, additional steps such as premature transcription termination are involved in providing ssDNA substrates for AID during SHM.
Collapse
|
10
|
Wang Z, Wakae K, Kitamura K, Aoyama S, Liu G, Koura M, Monjurul AM, Kukimoto I, Muramatsu M. APOBEC3 deaminases induce hypermutation in human papillomavirus 16 DNA upon beta interferon stimulation. J Virol 2014; 88:1308-17. [PMID: 24227842 PMCID: PMC3911654 DOI: 10.1128/jvi.03091-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein B mRNA-editing catalytic polypeptide 3 (APOBEC3) proteins are interferon (IFN)-inducible antiviral factors that counteract various viruses such as hepatitis B virus (HBV) and human immunodeficiency virus type 1 (HIV-1) by inducing cytidine (C)-to-uracil (U) mutations in viral DNA and inhibiting reverse transcription. However, whether APOBEC3 proteins (A3s) can hypermutate human papillomavirus (HPV) viral DNA and exhibit antiviral activity in human keratinocyte remains unknown. Here we examined the involvement of A3s in the HPV life cycle using cervical keratinocyte W12 cells, which are derived from low-grade lesions and retain episomal HPV16 genomes in their nuclei. We focused on the viral E2 gene as a potential target for A3-mediated hypermutation because this gene is frequently found as a boundary sequence in integrated viral DNA. Treatment of W12 cells with beta interferon (IFN-β) increased expression levels of A3s such as A3A, A3F, and A3G and induced C-to-U conversions in the E2 gene in a manner depending on inhibition of uracil DNA glycosylase. Exogenous expression of A3A and A3G also induced E2 hypermutation in W12 cells. IFN-β-induced hypermutation was blocked by transfection of small interfering RNAs against A3G (and modestly by those against A3A). However, the HPV16 episome level was not affected by overexpression of A3A and A3G in W12 cells. This study demonstrates that endogenous A3s upregulated by IFN-β induce E2 hypermutation of HPV16 in cervical keratinocytes, and a pathogenic consequence of E2 hypermutation is discussed.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kouichi Kitamura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoru Aoyama
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Guangyan Liu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ahasan M. Monjurul
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
11
|
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 2014; 122:1-57. [PMID: 24507154 PMCID: PMC4150736 DOI: 10.1016/b978-0-12-800267-4.00001-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as "Ch genes", e.g., Cγ, Cɛ, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Simin Zheng
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lauren J DiMenna
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
12
|
Chowdhury S, Kitamura K, Simadu M, Koura M, Muramatsu M. Concerted action of activation-induced cytidine deaminase and uracil-DNA glycosylase reduces covalently closed circular DNA of duck hepatitis B virus. FEBS Lett 2013; 587:3148-52. [PMID: 23954625 DOI: 10.1016/j.febslet.2013.07.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/24/2013] [Indexed: 12/29/2022]
Abstract
Covalently closed circular DNA (cccDNA) forms a template for the replication of hepatitis B virus (HBV) and duck HBV (DHBV). Recent studies suggest that activation-induced cytidine deaminase (AID) functions in innate immunity, although its molecular mechanism of action remains unclear, particularly regarding HBV restriction. Here we demonstrated that overexpression of chicken AID caused hypermutation and reduction of DHBV cccDNA levels. Inhibition of uracil-DNA glycosylase (UNG) by UNG inhibitor protein (UGI) abolished AID-induced cccDNA reduction, suggesting that the AID/UNG pathway triggers the degradation of cccDNA via cytosine deamination and uracil excision.
Collapse
Affiliation(s)
- Sajeda Chowdhury
- Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
13
|
Kitamura K, Wang Z, Chowdhury S, Simadu M, Koura M, Muramatsu M. Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog 2013; 9:e1003361. [PMID: 23696735 PMCID: PMC3656096 DOI: 10.1371/journal.ppat.1003361] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/31/2013] [Indexed: 12/17/2022] Open
Abstract
The covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV) plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC) DNA (partially double-stranded DNA) into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deamination, resulting in cytidine-to-uracil (C-to-U) hypermutation of the viral genome. We investigated whether uracil residues in hepadnavirus DNA were excised by uracil-DNA glycosylase (UNG), a host factor for base excision repair (BER). When UNG activity was inhibited by the expression of the UNG inhibitory protein (UGI), hypermutation of NC-DNA induced by either APOBEC3G or interferon treatment was enhanced in a human hepatocyte cell line. To assess the effect of UNG on the cccDNA viral intermediate, we used the duck HBV (DHBV) replication model. Sequence analyses of DHBV DNAs showed that cccDNA accumulated G-to-A or C-to-T mutations in APOBEC3G-expressing cells, and this was extensively enhanced by UNG inhibition. The cccDNA hypermutation generated many premature stop codons in the P gene. UNG inhibition also enhanced the APOBEC3G-mediated suppression of viral replication, including reduction of NC-DNA, pre-C mRNA, and secreted viral particle-associated DNA in prolonged culture. Enhancement of APOBEC3G-mediated suppression by UNG inhibition was not observed when the catalytic site of APOBEC3G was mutated. Transfection experiments of recloned cccDNAs revealed that the combination of UNG inhibition and APOBEC3G expression reduced the replication ability of cccDNA. Taken together, these data indicate that UNG excises uracil residues from the viral genome during or after cccDNA formation in the nucleus and imply that BER pathway activities decrease the antiviral effect of APOBEC3-mediated hypermutation.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Zhe Wang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Sajeda Chowdhury
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miyuki Simadu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
14
|
RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2013; 110:2246-51. [PMID: 23341589 DOI: 10.1073/pnas.1221921110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.
Collapse
|
15
|
Kato L, Stanlie A, Begum NA, Kobayashi M, Aida M, Honjo T. An evolutionary view of the mechanism for immune and genome diversity. THE JOURNAL OF IMMUNOLOGY 2012; 188:3559-66. [PMID: 22492685 DOI: 10.4049/jimmunol.1102397] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ortholog of activation-induced cytidine deaminase (AID) was, evolutionarily, the first enzyme to generate acquired immune diversity by catalyzing gene conversion and probably somatic hypermutation (SHM). AID began to mediate class switch recombination (CSR) only after the evolution of frogs. Recent studies revealed that the mechanisms for generating immune and genetic diversity share several critical features. Meiotic recombination, V(D)J recombination, CSR, and SHM all require H3K4 trimethyl histone modification to specify the target DNA. Genetic instability related to dinucleotide or triplet repeats depends on DNA cleavage by topoisomerase 1, which also initiates DNA cleavage in both SHM and CSR. These similarities suggest that AID hijacked the basic mechanism for genome instability when AID evolved in jawless fish. Thus, the risk of introducing genome instability into nonimmunoglobulin loci is unavoidable but tolerable compared with the advantage conferred on the host of being protected against pathogens by the enormous Ig diversification.
Collapse
Affiliation(s)
- Lucia Kato
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Pérez-Durán P, Belver L, de Yébenes VG, Delgado P, Pisano DG, Ramiro AR. UNG shapes the specificity of AID-induced somatic hypermutation. ACTA ACUST UNITED AC 2012; 209:1379-89. [PMID: 22665573 PMCID: PMC3405504 DOI: 10.1084/jem.20112253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNG activity repairs activation-induced deaminase-generated U:G mismatches via error-prone or error-free repair, depending on the sequence context of the deaminated cytosine. Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development.
Collapse
Affiliation(s)
- Pablo Pérez-Durán
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
18
|
Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. Proc Natl Acad Sci U S A 2011; 108:19305-10. [PMID: 22080610 DOI: 10.1073/pnas.1114522108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Somatic hypermutation (SHM) and class-switch recombination (CSR) of the Ig gene require both the transcription of the locus and the expression of activation-induced cytidine deaminase (AID). During CSR, AID decreases the amount of topoisomerase I (Top1); this decrease alters the DNA structure and induces cleavage in the S region. Similarly, Top1 is involved in transcription-associated mutation at dinucleotide repeats in yeast and in triplet-repeat contraction in mammals. Here, we report that the AID-induced decrease in Top1 is critical for SHM. Top1 knockdown or haploinsufficiency enhanced SHM, whereas Top1 overexpression down-regulated it. A specific Top1 inhibitor, camptothecin, suppressed SHM, indicating that Top1's activity is required for DNA cleavage. Nonetheless, suppression of transcription abolished SHM, even in cells with Top1 knockdown, suggesting that transcription is critical. These results are consistent with a model proposed for CSR and triplet instability, in which transcription-induced non-B structure formation is enhanced by Top1 reduction and provides the target for irreversible cleavage by Top1. We speculate that the mechanism for transcription-coupled genome instability was adopted to generate immune diversity when AID evolved.
Collapse
|
19
|
Okuyama S, Marusawa H, Matsumoto T, Ueda Y, Matsumoto Y, Endo Y, Takai A, Chiba T. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int J Cancer 2011; 130:1294-301. [PMID: 21469143 DOI: 10.1002/ijc.26114] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 03/25/2011] [Indexed: 11/06/2022]
Abstract
Apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) was originally identified as a member of the cytidine deaminase family with putative nucleotide editing activity. To clarify the physiologic and pathologic roles, and the target nucleotide of APOBEC2, we established an APOBEC2 transgenic mouse model and investigated whether APOBEC2 expression causes nucleotide alterations in host DNA or RNA sequences. Sequence analyses revealed that constitutive expression of APOBEC2 in the liver resulted in significantly high frequencies of nucleotide alterations in the transcripts of eukaryotic translation initiation factor 4 gamma 2 (Eif4g2) and phosphatase and tensin homolog (PTEN) genes. Hepatocellular carcinoma developed in 2 of 20 APOBEC2 transgenic mice at 72 weeks of age. In addition, constitutive APOBEC2 expression caused lung tumors in 7 of 20 transgenic mice analyzed. Together with the fact that the proinflammatory cytokine tumor necrosis factor-α induces ectopic expression of APOBEC2 in hepatocytes, our findings indicate that aberrant APOBEC2 expression causes nucleotide alterations in the transcripts of the specific target gene and could be involved in the development of human hepatocellular carcinoma through hepatic inflammation.
Collapse
Affiliation(s)
- Shunsuke Okuyama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-Ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Matsumoto Y, Marusawa H, Kinoshita K, Niwa Y, Sakai Y, Chiba T. Up-regulation of activation-induced cytidine deaminase causes genetic aberrations at the CDKN2b-CDKN2a in gastric cancer. Gastroenterology 2010; 139:1984-94. [PMID: 20637757 DOI: 10.1053/j.gastro.2010.07.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The DNA/RNA editing enzyme activation-induced cytidine deaminase (AID) is mutagenic and has been implicated in human tumorigenesis. Helicobacter pylori infection of gastric epithelial cells leads to aberrant expression of AID and somatic gene mutations. We investigated whether AID induces genetic aberrations at specific chromosomal loci that encode tumor-related proteins in gastric epithelial cells. METHODS Human gastric epithelial cell lines that express activated AID and gastric cells from AID transgenic mice were examined for DNA copy number changes and nucleotide alterations. Copy number aberrations in stomach cells of H pylori-infected mice and gastric tissues (normal and tumor) from H pylori-positive patients were also analyzed. RESULTS In human gastric cells, aberrant AID activity induced copy number changes at various chromosomal loci. In AID-expressing cells and gastric mucosa of AID transgenic mice, point mutations and reductions in copy number were observed frequently in the tumor suppressor genes CDKN2A and CDKN2B. Oral infection of wild-type mice with H pylori reduced the copy number of the Cdkn2b-Cdkn2a locus, whereas no such changes were observed in the gastric mucosa of H pylori-infected AID-deficient mice. In human samples, the relative copy numbers of CDKN2A and CDKN2B were reduced in a subset of gastric cancer tissues compared with the surrounding noncancerous region. CONCLUSIONS H pylori infection leads to aberrant expression of AID and might be a mechanism of the accumulation of submicroscopic deletions and somatic mutations in gastric epithelial cells. AID-mediated genotoxic effects appear to occur frequently at the CDKN2b-CDKN2a locus and contribute to malignant transformation of the gastric mucosa.
Collapse
Affiliation(s)
- Yuko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
21
|
AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. Proc Natl Acad Sci U S A 2009; 106:22375-80. [PMID: 20018730 DOI: 10.1073/pnas.0911879106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.
Collapse
|
22
|
Shivarov V, Shinkura R, Doi T, Begum NA, Nagaoka H, Okazaki IM, Ito S, Nonaka T, Kinoshita K, Honjo T. Molecular mechanism for generation of antibody memory. Philos Trans R Soc Lond B Biol Sci 2009; 364:569-75. [PMID: 19022739 DOI: 10.1098/rstb.2008.0183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is the essential enzyme inducing the DNA cleavage required for both somatic hypermutation and class switch recombination (CSR) of the immunoglobulin gene. We originally proposed the RNA-editing model for the mechanism of DNA cleavage by AID. We obtained evidence that fulfils three requirements for CSR by this model, namely (i) AID shuttling between nucleus and cytoplasm, (ii) de novo protein synthesis for CSR, and (iii) AID-RNA complex formation. The alternative hypothesis, designated as the DNA-deamination model, assumes that the in vitro DNA deamination activity of AID is representative of its physiological function in vivo. Furthermore, the resulting dU was removed by uracil DNA glycosylase (UNG) to generate a basic site, followed by phosphodiester bond cleavage by AP endonuclease. We critically examined each of these provisional steps. We identified a cluster of mutants (H48A, L49A, R50A and N51A) that had particularly higher CSR activities than expected from their DNA deamination activities. The most striking was the N51A mutant that had no ability to deaminate DNA in vitro but retained approximately 50 per cent of the wild-type level of CSR activity. We also provide further evidence that UNG plays a non-canonical role in CSR, namely in the repair step of the DNA breaks. Taking these results together, we favour the RNA-editing model for the function of AID in CSR.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination. Proc Natl Acad Sci U S A 2009; 106:2758-63. [PMID: 19202055 DOI: 10.1073/pnas.0813253106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is an essential factor for the class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. CSR and SHM are initiated by AID-induced DNA breaks in the S and V regions, respectively. Because truncation or frame-shift mutations at the carboxyl (C)-terminus of AID abolishes CSR but not SHM, the C-terminal region of AID likely is required for the targeting of DNA breaks in the S region. To test this hypothesis, we determined the precise location and relative amounts of AID-induced DNA cleavage using an in situ DNA end-labeling method. We established CH12F3-2 cell transfectants expressing the estrogen receptor (ER) fused with wild-type (WT) AID or a deletion mutant lacking the C-terminal 16 aa, JP8Bdel. We found that AID-ER, but not JP8Bdel-ER, caused a CSR to IgA from the addition of 4-hydroxy tamoxifen. In contrast, both WT AID and JP8Bdel induced DNA breaks in both the V and S regions. In addition, JP8Bdel enhanced c-myc/IgH translocations. Our findings indicate that the C-terminal domain of AID is not required for S-region DNA breaks but is required for S-region recombination after DNA cleavage. Therefore, AID does not distinguish between the V and S regions for cleavage, but carries another function specific to CSR.
Collapse
|
24
|
Carboxy-terminal domain of AID required for its mRNA complex formation in vivo. Proc Natl Acad Sci U S A 2009; 106:2747-51. [PMID: 19196959 DOI: 10.1073/pnas.0812957106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. Originally, AID was postulated to be an RNA-editing enzyme, because of its structural homology with a known RNA-editing enzyme, APOBEC1. In support of this idea, AID shares many of the properties of RNA-editing enzymes, including nucleocytoplasmic shuttling and a dependency on de novo protein synthesis. However, it has not been shown whether AID recognizes a specific mRNA and edits it to generate an enzyme involved in CSR or SHM. Here, we examined the association between AID and polyadenylated [poly(A)(+)] RNA in vivo, using UV cross-linking coupled with a poly(A) capture method that relies on biotinylated oligo(dT) and streptavidin-conjugated beads. We found that both exogenous AID expressed in transfected CH12 cells and endogenous AID expressed in BL2 cells were associated with poly(A)(+) RNA. Similar protein-poly(A)(+) RNA complexes were formed by APOBEC1 and APOBEC3G. However, the interactions of all of these cytidine deaminase family members, including AID, with poly(A)(+) RNA were indirect. This was expected for APOBEC1, which is known to act through an RNA-interacting cofactor, APOBEC1 complementation factor (ACF). In addition, the carboxy-terminal region of AID, which is essential for class switching, was also required for its interaction with poly(A)(+) RNA. These results suggest that the CSR activity of AID requires an ACF-like cofactor that specifically interacts with the carboxy-terminal domain of AID.
Collapse
|
25
|
Dissociation of in vitro DNA deamination activity and physiological functions of AID mutants. Proc Natl Acad Sci U S A 2008; 105:15866-71. [PMID: 18832469 DOI: 10.1073/pnas.0806641105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the DNA cleavage that initiates both somatic hypermutation (SHM) and class switch recombination (CSR) of the Ig gene. Two alternative mechanisms of DNA cleavage by AID have been proposed: RNA editing and DNA deamination. In support of the latter, AID has DNA deamination activity in cell-free systems that is assumed to represent its physiological function. To test this hypothesis, we generated various mouse AID mutants and compared their DNA deamination, CSR, and SHM activities. Here, we compared DNA deamination, CSR, and SHM activities of various AID mutants and found that most of their CSR or SHM activities were disproportionate with their DNA deamination activities. Specifically, we identified a cluster of mutants (H48A, L49A, R50A, and N51A) with low DNA deamination activity but relatively intact CSR activity. Of note is an AID mutant (N51A) that retained CSR function but lost DNA deamination activity. In addition, an APOBEC1 mutation at N57, homologous to N51 of AID, also abolished DNA deamination activity but retained RNA editing activity. These results indicate that DNA deamination activity does not represent the physiological function of AID.
Collapse
|
26
|
Kovalchuk AL, duBois W, Mushinski E, McNeil NE, Hirt C, Qi CF, Li Z, Janz S, Honjo T, Muramatsu M, Ried T, Behrens T, Potter M. AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. ACTA ACUST UNITED AC 2007; 204:2989-3001. [PMID: 17998390 PMCID: PMC2118515 DOI: 10.1084/jem.20070882] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation-induced cytidine deaminase (AID) is required for immunoglobulin (Ig) class switch recombination and somatic hypermutation, and has also been implicated in translocations between Ig switch regions and c-Myc in plasma cell tumors in mice. We asked if AID is required for accelerated tumor development in pristane-treated Bcl-xL transgenic BALB/c mice deficient in AID (pBxAicda−/−). pBxAicda−/− mice developed tumors with a lower frequency (24 vs. 62%) and a longer mean latency (108 vs. 36 d) than AID-sufficient mice. The tumors appeared in oil granuloma tissue and did not form ascites. By interphase fluorescence in situ hybridization, six out of nine pBxAicda−/− primary tumors had T(12;15) and one had T(6;15) chromosomal translocations. Two tumors were transplantable and established as stable cell lines. Molecular and cytogenetic analyses showed that one had an unusual unbalanced T(12;15) translocation, with IgH Cμ and Pvt-1 oriented head to tail at the breakpoint, resulting in an elevated expression of c-Myc. In contrast, the second was T(12;15) negative, but had an elevated N-Myc expression caused by a paracentric inversion of chromosome 12. Thus, novel mechanisms juxtapose Ig and Myc-family genes in AID-deficient plasma cell tumors.
Collapse
Affiliation(s)
- Alexander L Kovalchuk
- Laboratory of Cancer Biology and Genetics, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Narvi E, Nera KP, Terho P, Mustonen L, Granberg J, Lassila O. Aiolos controls gene conversion and cell death in DT40 B cells. Scand J Immunol 2007; 65:503-13. [PMID: 17523942 DOI: 10.1111/j.1365-3083.2007.01929.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Ikaros family transcription factor Aiolos is important for B cell function, since B cells of Aiolos-null mutant mice exhibit an activated phenotype, enhanced B-cell receptor (BCR) signalling response and develop a systemic lupus erythematosus (SLE) type autoimmune disease. Aiolos has also been reported to interact with anti-apoptotic Bcl-2 and Bcl-x(L) in T cells, but whether Aiolos regulates cell death has not been studied in B cells. Here we show that the disruption of Aiolos in the DT40 B cell line induces a cell death sensitive phenotype, as the Aiolos(-/-) cells are more prone to apoptosis by nutritional stress, BCR cross-linking, UV- or gamma-irradiation. Furthermore, the Aiolos(-/-) cells have defective Ig gene conversion providing evidence that Aiolos is needed for the somatic diversification of the BCR repertoire. The re-expression of DNA-binding isoform Aio-1 was able to restore the gene conversion defect of the Aiolos-deficient cells, whereas the introduction of dominant negative isofom Aio-2 had no effect on gene conversion, thus demonstrating the functional importance of alternative splicing within Ikaros family. Although the Aiolos(-/-) cells exhibit reduced expression of activation-induced cytidine deaminase (AID), ectopic AID overexpression did not restore the gene conversion defect in the Aiolos(-/-) cells. Our findings indicate that Aiolos may regulate gene conversion in an AID independent manner.
Collapse
Affiliation(s)
- E Narvi
- Turku Graduate School of Biomedical Sciences, University of Turku, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
28
|
Endo Y, Marusawa H, Kinoshita K, Morisawa T, Sakurai T, Okazaki IM, Watashi K, Shimotohno K, Honjo T, Chiba T. Expression of activation-induced cytidine deaminase in human hepatocytes via NF-kappaB signaling. Oncogene 2007; 26:5587-95. [PMID: 17404578 DOI: 10.1038/sj.onc.1210344] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activation-induced cytidine deaminase (AID) is involved in somatic DNA alterations of the immunoglobulin gene for amplification of immune diversity. The fact that constitutive expression of AID in mice causes tumors in various organs, including lymphoid tissues and lungs, suggests the important role of the aberrant editing activity of AID on various tumor-related genes for carcinogenesis. AID expression, however, is restricted to activated B cells under physiological conditions. We demonstrate here that ectopic AID expression is induced in response to tumor necrosis factor-alpha stimulation in cultured human hepatocytes. The proinflammatory cytokine-mediated expression of AID is achieved by IkappaB kinase-dependent nuclear factor (NF)-kappaB signaling pathways. Hepatitis C virus, one of the leading causes of hepatocellular carcinoma (HCC), enhanced AID expression via NF-kappaB activation through expression of viral core protein. The aberrant expression of AID in hepatoma-derived cells resulted in accumulation of genetic alterations in the c-myc and pim1 genes, suggesting that inappropriate expression of AID acts as a DNA mutator that enhances the genetic susceptibility to mutagenesis in human hepatocytes. Our current findings indicate that the inappropriate expression of AID is induced by proinflammatory cytokine stimulation and may provide the link between hepatic inflammation and the development of HCC.
Collapse
Affiliation(s)
- Y Endo
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, Azuma T, Okazaki IM, Honjo T, Chiba T. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med 2007; 13:470-6. [PMID: 17401375 DOI: 10.1038/nm1566] [Citation(s) in RCA: 371] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 02/21/2007] [Indexed: 12/12/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IkappaB kinase-dependent nuclear factor-kappaB activation pathway. H. pylori-mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Yuko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. Evolution of the Immunoglobulin Heavy Chain Class Switch Recombination Mechanism. Adv Immunol 2007; 94:157-214. [PMID: 17560275 DOI: 10.1016/s0065-2776(06)94006-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To mount an optimum immune response, mature B lymphocytes can change the class of expressed antibody from IgM to IgG, IgA, or IgE through a recombination/deletion process termed immunoglobulin heavy chain (IgH) class switch recombination (CSR). CSR requires the activation-induced cytidine deaminase (AID), which has been shown to employ single-stranded DNA as a substrate in vitro. IgH CSR occurs within and requires large, repetitive sequences, termed S regions, which are parts of germ line transcription units (termed "C(H) genes") that are composed of promoters, S regions, and individual IgH constant region exons. CSR requires and is directed by germ line transcription of participating C(H) genes prior to CSR. AID deamination of cytidines in S regions appears to lead to S region double-stranded breaks (DSBs) required to initiate CSR. Joining of two broken S regions to complete CSR exploits the activities of general DNA DSB repair mechanisms. In this chapter, we discuss our current knowledge of the function of S regions, germ line transcription, AID, and DNA repair in CSR. We present a model for CSR in which transcription through S regions provides DNA substrates on which AID can generate DSB-inducing lesions. We also discuss how phosphorylation of AID may mediate interactions with cofactors that facilitate access to transcribed S regions during CSR and transcribed variable regions during the related process of somatic hypermutation (SHM). Finally, in the context of this CSR model, we further discuss current findings that suggest synapsis and joining of S region DSBs during CSR have evolved to exploit general mechanisms that function to join widely separated chromosomal DSBs.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Muramatsu M, Nagaoka H, Shinkura R, Begum NA, Honjo T. Discovery of activation-induced cytidine deaminase, the engraver of antibody memory. Adv Immunol 2007; 94:1-36. [PMID: 17560270 DOI: 10.1016/s0065-2776(06)94001-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Discovery of activation-induced cytidine deaminase (AID) paved a new path to unite two genetic alterations induced by antigen stimulation; class switch recombination (CSR) and somatic hypermutation (SHM). AID is now established to cleave specific target DNA and to serve as engraver of these genetic alterations. AID of a 198-residue protein has four important domains: nuclear localization signal and SHM-specific region at the N-terminus; the alpha-helical segment (residue 47-54) responsible for dimerization; catalytic domain (residues 56-94) shared by all the other cytidine deaminase family members; and nuclear export signal overlapping with class switch-specific domain at the C-terminus. Two alternative models have been proposed for the mode of AID action; whether AID directly attacks DNA or indirectly through RNA editing. Lines of evidence supporting RNA editing hypothesis include homology in various aspects with APOBEC1, a bona fide RNA editing enzyme as well as requirement of de novo protein synthesis for DNA cleavage by AID in CSR and SHM. This chapter critically evaluates DNA deamination hypothesis and describes evidence to indicate UNG is involved not in DNA cleavage but in DNA repair of CSR. In addition, UNG appears to have a noncanonical function through interaction with an HIV Vpr-like protein at the WXXF motif. Taken together, RNA editing hypothesis is gaining the ground.
Collapse
Affiliation(s)
- Masamichi Muramatsu
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
33
|
Durandy A, Taubenheim N, Peron S, Fischer A. Pathophysiology of B‐Cell Intrinsic Immunoglobulin Class Switch Recombination Deficiencies. Adv Immunol 2007; 94:275-306. [PMID: 17560278 DOI: 10.1016/s0065-2776(06)94009-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.
Collapse
|
34
|
Durandy A, Peron S, Taubenheim N, Fischer A. Activation-induced cytidine deaminase: structure-function relationship as based on the study of mutants. Hum Mutat 2006; 27:1185-91. [PMID: 16964591 DOI: 10.1002/humu.20414] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation-induced cytidine deaminase (AID; gene symbol AICDA) is the key molecule required to induce immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM) of the variable regions of Ig genes. Its deficiency causes a form of hyper-IgM (HIGM) syndrome. The study of natural AID mutants associated with HIGM as well as engineered mutants led to the characterization of the active domains of the protein. AID, through its cytidine deaminase activity, induces a targeted DNA lesion as an early step required for both CSR and SHM. Besides its cytidine deaminase activity, AID plays a further essential role in CSR, likely by recruiting CSR-specific cofactors by its C-terminus. A similar binding of SHM-specific cofactors to the N-terminal part is suggested by the functional characteristics of N(ter) AID artificial mutants. These data require confirmation in vivo. Finally, AID acts as a homo-, di-, or multimeric complex. Together, these data strongly suggest that AID, a master molecule for antibody diversification, exerts its activity on CSR not only as a cytidine deaminase enzyme but also as a docking protein, recruiting specific cofactors to a multimeric complex.
Collapse
Affiliation(s)
- Anne Durandy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U768, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The recent elucidation of the molecular defects leading to hyper-IgM syndromes has provided considerable insight into the complex mechanisms that govern the antibody maturation in humans. RECENT FINDINGS The study of a large cohort of patients revealed unexpected clinical, immunological and genetic findings, which have significant implications on the molecular basis of immunoglobulin class switch recombination and somatic hypermutation, as shown for hypomorphic mutations in the nuclear factor-kappaB essential modulator (NEMO) gene and peculiar activation-induced cytidine deaminase defects that differently affect class switch recombination and somatic hypermutation. The description of the hyper-IgM condition due to mutations in the gene encoding uracil-N glycosylase has been essential for defining the DNA-editing activity of activation-induced cytidine deaminase. Novel findings are awaited from the study of the yet genetically undefined hyper-IgM syndromes, leading to the identification of activation-induced cytidine deaminase cofactors and proteins involved in class switch recombination-induced DNA repair. In the genetically characterized hyper-IgM syndromes, the precise identification of the molecular defect allows the evaluation of hyper-IgM complications, and thus aids assessment of prognosis and proper survey and treatment. SUMMARY The important contribution made by investigation of this condition improves our understanding of the physiology of the antibody response in humans.
Collapse
Affiliation(s)
- Anne Durandy
- Inserm U768, René Descartes-Paris 5 University, France.
| | | | | |
Collapse
|
36
|
Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 2006; 7:52. [PMID: 17094807 PMCID: PMC1657028 DOI: 10.1186/1471-2156-7-52] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 11/09/2006] [Indexed: 12/23/2022] Open
Abstract
Background Genetic maps are based on recombination of orthologous gene sequences between different strains of the same species. Therefore, it was unexpected to find extensive non-collinearity of genes between different inbred strains of maize. Interestingly, disruption of gene collinearity can be caused among others by a rolling circle-type copy and paste mechanism facilitated by Helitrons. However, understanding the role of this type of gene amplification has been hampered by the lack of finding intact gene sequences within Helitrons. Results By aligning two haplotypes of the z1C1 locus of maize we found a Helitron that contains two genes, one encoding a putative cytidine deaminase and one a hypothetical protein with part of a 40S ribosomal protein. The cytidine deaminase gene, called ZmCDA3, has been copied from the ZmCDA1 gene on maize chromosome 7 about 4.5 million years ago (mya) after maize was formed by whole-genome duplication from two progenitors. Inbred lines contain gene copies of both progenitors, the ZmCDA1 and ZmCDA2 genes. Both genes diverged when the progenitors of maize split and are derived from the same progenitor as the rice OsCDA1 gene. The ZmCDA1 and ZmCDA2 genes are both transcribed in leaf and seed tissue, but transcripts of the paralogous ZmCDA3 gene have not been found yet. Based on their protein structure the maize CDA genes encode a nucleoside deaminase that is found in bacterial systems and is distinct from the mammalian RNA and/or DNA modifying enzymes. Conclusion The conservation of a paralogous gene sequence encoding a cytidine deaminase gene over 4.5 million years suggests that Helitrons could add functional gene sequences to new chromosomal positions and thereby create new haplotypes. However, the function of such paralogous gene copies cannot be essential because they are not present in all maize strains. However, it is interesting to note that maize hybrids can outperform their inbred parents. Therefore, certain haplotypes may function only in combination with other haplotypes or under specialized environmental conditions.
Collapse
|
37
|
Rucci F, Cattaneo L, Marrella V, Sacco MG, Sobacchi C, Lucchini F, Nicola S, Della Bella S, Villa ML, Imberti L, Gentili F, Montagna C, Tiveron C, Tatangelo L, Facchetti F, Vezzoni P, Villa A. Tissue-specific sensitivity to AID expression in transgenic mouse models. Gene 2006; 377:150-8. [PMID: 16787714 DOI: 10.1016/j.gene.2006.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 03/31/2006] [Accepted: 03/31/2006] [Indexed: 11/23/2022]
Abstract
Activation-induced cytidine deaminase (AID), an enzyme with homology to members of the APOBEC family, is involved in somatic hypermutation (SHM) of immunoglobulin (Ig) genes, either by direct deamination of DNA or by an indirect action through its putative RNA editing activity. AID is able to mutate both Ig-like reporter constructs and selected non-Ig genes in normal B cells and in other cells when ectopically overexpressed in mammalian cells and transgenic mice. However, in spite of the fact that in these transgenic animals AID activity was driven by an ubiquitous promoter, only T lymphomas and lung adenomas occurred. In the present work, we constructed three sets of transgenic mice in which AID was under the control of lck, HTLV-I and MMTV promoters, respectively. The lck/AID mice developed thymic lymphomas with variable but high efficiency, while no tumor was detected in HTLV-I/AID mice after two years of monitoring. Four MMTV/AID founder mice died with an atypical clinical picture, although no mammary tumor was found. These findings suggest that additional factors, present in thymocytes but not in other tissues or in lymphoid cells at different stages of differentiation, are needed for AID to fully manifest its tumorigenic potential in mouse. Alternatively, the display of full AID mutagenic and transforming activity could be related to the existence of physiologic DSBs which occur in both thymocytes and switching B cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Differentiation
- Cell Transformation, Neoplastic
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Female
- Gene Expression
- Genes, T-Cell Receptor beta
- Genes, myc
- Genes, p53
- Human T-lymphotropic virus 1/genetics
- Kidney/enzymology
- Kidney/pathology
- Liver/enzymology
- Liver/pathology
- Lymph Nodes/enzymology
- Lymph Nodes/pathology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Mutation
- Promoter Regions, Genetic
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tissue Distribution
Collapse
Affiliation(s)
- Francesca Rucci
- Human Genome Department, Istituto di Tecnologie Biomediche, CNR, Segrate (MI), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McBride KM, Gazumyan A, Woo EM, Barreto VM, Robbiani DF, Chait BT, Nussenzweig MC. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc Natl Acad Sci U S A 2006; 103:8798-803. [PMID: 16723391 PMCID: PMC1482658 DOI: 10.1073/pnas.0603272103] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Indexed: 01/19/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates Ig class switch recombination and somatic hypermutation by producing U:G mismatches in DNA. These mismatches also have the potential to induce DNA damage including double-stranded breaks and chromosome translocations; therefore, strict regulation of AID is important for maintaining genomic stability. In addition to transcriptional regulation, it has been proposed that phosphorylation can also modulate AID activity. Using a combination of MS and immunochemical approaches we found that 5-15% of the AID expressed in activated B cells was phosphorylated at serine-38 (p38AID). This form of AID was enriched in the chromatin fraction in activated B cells, suggesting a role for phosphorylation in targeting AID to DNA. Consistent with this idea, serine-38 to alanine mutant AID (AID(S38A)) showed diminished somatic hypermutation activity on artificial and physiological DNA targets. We conclude that a small fraction of AID is phosphorylated in activated B cells and that the modified form contributes disproportionately to hypermutation.
Collapse
Affiliation(s)
| | - Anna Gazumyan
- *Laboratory of Molecular Immunology and
- Howard Hughes Medical Institute, New York, NY 10021
| | - Eileen M. Woo
- Laboratory of Mass Spectrometry, The Rockefeller University and
| | | | | | - Brian T. Chait
- Laboratory of Mass Spectrometry, The Rockefeller University and
| | - Michel C. Nussenzweig
- *Laboratory of Molecular Immunology and
- Howard Hughes Medical Institute, New York, NY 10021
| |
Collapse
|
39
|
Kinoshita K, Nonaka T. The dark side of activation-induced cytidine deaminase: relationship with leukemia and beyond. Int J Hematol 2006; 83:201-7. [PMID: 16720548 DOI: 10.1532/ijh97.06011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a unique cellular enzyme that can trigger point mutations and chromosomal translocations, both of which potentially disturb normal cellular metabolism and affect cancer initiation and progression. The involvement of AID in the progression of leukemia has been suggested by multiple groups on the basis of observations of the statistical correlation between AID expression and a poor prognosis of B-cell chronic lymphocytic leukemia. The fact that ectopic expression of AID in mice results in tumors of the lung and T-lymphocytes suggests an oncogenic role for AID. The inducible nature of AID expression indicates that AID might be induced and cause oncogenic mutations, even in epithelial tissues, where AID expression is absent or very weak under normal conditions. If AID can be induced in epithelial cells by inflammatory signals, as from B-lymphocytes, it may be involved in various pathologic conditions, including inflammation-and infection-associated cancers, for which the molecular mechanism is largely unknown, despite the clinical significance of these diseases.
Collapse
Affiliation(s)
- Kazuo Kinoshita
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama.
| | | |
Collapse
|
40
|
Abstract
Class switch recombination (CSR) has been the least well understood of the Ig gene DNA rearrangements. The discovery that activation-induced deaminase (AID) is a pivotal player in CSR as well as somatic hypermutation (SHM) and its variant, gene conversion, represents a sea change in our understanding of these processes. The recognition that AID directly deaminates ssDNA has provided a springboard toward the emergence of a model that explains the initiation of these events. Nonhomologous end joining (NHEJ), the main pathway for the repair of double-strand breaks in mammalian cells plays a key role in the resolution of CSR transactions. Mediators of general double-strand break repair are also involved in CSR and are mutated in several immunodeficiency diseases. A global picture of the mechanism of CSR is emerging and is providing new insights toward understanding the genetic events that underlie B cell cancers.
Collapse
Affiliation(s)
- A L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612-7344, USA.
| |
Collapse
|
41
|
Yadav A, Olaru A, Saltis M, Setren A, Cerny J, Livák F. Identification of a ubiquitously active promoter of the murine activation-induced cytidine deaminase (AICDA) gene. Mol Immunol 2006; 43:529-41. [PMID: 16005067 DOI: 10.1016/j.molimm.2005.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Indexed: 11/16/2022]
Abstract
Somatic hypermutation and class switch recombination of immunoglobulin genes are dependent on the presence of the activation-induced cytidine deaminase (AICDA) enzyme. AICDA expression is restricted to activated B-lymphocytes in the germinal centers. It has been suggested that inappropriate expression of AICDA may lead to genome instability and aberrant affinity maturation of putative autoreactive antibodies. To better understand the molecular control of its tightly regulated expression we have identified the transcription initiation site and an upstream, conserved promoter region of the murine AICDA gene. The promoter lacks a consensus TATA box but contains an initiator (Inr) element and is active in several murine and human cell lines irrespective of endogenous AICDA expression. Mutagenesis analysis identified a functionally important Sp-binding site which binds both Sp1 and Sp3 in vitro in all cell types. Contrary to a recent report, no evidence was found for direct Pax5-binding at this DNA site. We discuss the role of ubiquitous and lymphoid-specific factors in the control of AICDA gene transcription.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, 655 West Baltimore St, BRB 13-017, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
42
|
Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2006; 86:43-112. [PMID: 15705419 DOI: 10.1016/s0065-2776(04)86002-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
V(D)J recombination is the process by which the variable region exons encoding the antigen recognition sites of receptors expressed on B and T lymphocytes are generated during early development via somatic assembly of component gene segments. In response to antigen, somatic hypermutation (SHM) and class switch recombination (CSR) induce further modifications of immunoglobulin genes in B cells. CSR changes the IgH constant region for an alternate set that confers distinct antibody effector functions. SHM introduces mutations, at a high rate, into variable region exons, ultimately allowing affinity maturation. All of these genomic alteration processes require tight regulatory control mechanisms, both to ensure development of a normal immune system and to prevent potentially oncogenic processes, such as translocations, caused by errors in the recombination/mutation processes. In this regard, transcription of substrate sequences plays a significant role in target specificity, and transcription is mechanistically coupled to CSR and SHM. However, there are many mechanistic differences in these reactions. V(D)J recombination proceeds via precise DNA cleavage initiated by the RAG proteins at short conserved signal sequences, whereas CSR and SHM are initiated over large target regions via activation-induced cytidine deaminase (AID)-mediated DNA deamination of transcribed target DNA. Yet, new evidence suggests that AID cofactors may help provide an additional layer of specificity for both SHM and CSR. Whereas repair of RAG-induced double-strand breaks (DSBs) involves the general nonhomologous end-joining DNA repair pathway, and CSR also depends on at least some of these factors, CSR requires induction of certain general DSB response factors, whereas V(D)J recombination does not. In this review, we compare and contrast V(D)J recombination and CSR, with particular emphasis on the role of the initiating enzymes and DNA repair proteins in these processes.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital Boston, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
43
|
Komori A, Xu Z, Wu X, Zan H, Casali P. Biased dA/dT somatic hypermutation as regulated by the heavy chain intronic iEmu enhancer and 3'Ealpha enhancers in human lymphoblastoid B cells. Mol Immunol 2006; 43:1817-26. [PMID: 16412510 PMCID: PMC4621958 DOI: 10.1016/j.molimm.2005.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/28/2005] [Indexed: 12/18/2022]
Abstract
Somatic hypermutation (SHM) in immunoglobulin gene (Ig) variable (V) regions is critical for the maturation of the antibody response. It is dependent on the expression of activation-induced cytidine deaminase (AID) and translesion DNA polymerases in germinal center B cells as well as Ig V transcription, as regulated by the Ig heavy chain (H) intronic enhancer (iEmu) and the 3' enhancer (3'Ealpha) region. We analyzed the role of these cis elements in SHM by stably transfecting Ramos human lymphoblastoid B cells with a rearranged human IgH chain VD (diversity) J (joining) DNA construct containing a V(H) promoter at the 5' end and C(H)1 and C(H)2 exons of Cgamma1 at the 3' end. In this construct, mutations preferentially targeted dA/dT basepairs in the RGYW/WRCY hotspot. Most of the dA/dT mutations and accompanying dC/dG mutations were transitions. Deletion of iEmu resulted in decreased SHM which could be partially restored by insertion of the IgH hs1,2 enhancer. Other two 3'Ealpha enhancers, hs3-hs4, did not significantly increase the mutation frequency, but further strengthened the dA/dT bias. The frequency and spectrum of the mutations were independent of the genomic integration of the transgene or V gene transcription level. Thus, we have established a novel in vitro system to analyze SHM and identify the role of multiple cis-regulatory elements in regulating dA/dT biased SHM. This model system will be useful to further address the role of other cis-regulating elements and recruited trans-acting factors in expressing the modalities of SHM.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Casali
- Corresponding author. Tel.: +1 949 824 4456; fax: +1 949 824 2305. (P. Casali)
| |
Collapse
|
44
|
Kou T, Marusawa H, Kinoshita K, Endo Y, Okazaki IM, Ueda Y, Kodama Y, Haga H, Ikai I, Chiba T. Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis. Int J Cancer 2006; 120:469-76. [PMID: 17066440 DOI: 10.1002/ijc.22292] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation-induced cytidine deaminase (AID) plays a role as a genome mutator in activated B cells, and inappropriate expression of AID has been implicated in the immunopathological phenotype of human B-cell malignancies. Notably, we found that the transgenic mice overexpressing AID developed lung adenocarcinoma and hepatocellular carcinoma (HCC), suggesting that ectopic expression of AID can lead to tumorigenesis in epithelial tissues as well. To examine the involvement of AID in the development of human HCC, we analyzed the AID expression and its correlation with mutation frequencies of the p53 gene in liver tissues from 51 patients who underwent resection of primary HCCs. The specific expression, inducibility by cytokine stimulation and mutagenic activity of AID were investigated in cultured human hepatocytes. Only trace amounts of AID transcripts were detected in the normal liver; however, endogenous AID was significantly upregulated in both HCC and surrounding noncancerous liver tissues with underlying chronic hepatitis or liver cirrhosis (p < 0.05). Most liver tissues with underlying chronic inflammation with endogenous AID upregulation already contained multiple genetic changes in the p53 gene. In both hepatoma cell lines and cultured human primary hepatocytes, the expression of AID was substantially induced by TGF-beta stimulation. Aberrant activation of AID in hepatocytes resulted in accumulation of multiple genetic alterations in the p53 gene. Our findings suggest that the aberrant expression of AID is observed in human hepatocytes with several pathological settings, including chronic liver disease and HCC, which might enhance the genetic susceptibility to mutagenesis leading to hepatocarcinogenesis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Base Sequence
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cells, Cultured
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Enzyme Activation
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatitis, Viral, Human/physiopathology
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Immunoblotting
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Mutation/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transforming Growth Factor beta/pharmacology
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Tadayuki Kou
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pasqualucci L, Kitaura Y, Gu H, Dalla-Favera R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc Natl Acad Sci U S A 2005; 103:395-400. [PMID: 16387847 PMCID: PMC1326186 DOI: 10.1073/pnas.0509969103] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During humoral immune responses, two distinct genetic modification events diversify the Ig genes in germinal center (GC) B cells: somatic hypermutation and class switch recombination (CSR). Both processes require the activity of activation-induced cytidine deaminase (AID), an enzyme expressed specifically in GC B cells. However, the mechanisms that regulate AID activity are largely unknown. Here we report that protein kinase A (PKA) phosphorylates AID and regulates its activity in GC B cells. AID physically interacts with the PKA holoenzyme in the cytoplasm and is phosphorylated by the PKA catalytic subunit at specific residues. AID phosphorylation is required for CSR, because substitution of the two phosphorylation targets impairs its ability to rescue CSR in AID-deficient B cells. Pharmacologic inhibition of PKA prevents isotype class switching in a murine B-cell lymphoma cell line; conversely, B cells from mice where PKA activity is made constitutive by conditional deletion of the PKA regulatory subunit gene display enhanced CSR. These findings implicate PKA in the regulation of AID function and suggest that the control of T cell-dependent immune responses may be modulated, via AID, by signals that activate PKA.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center and Department of Microbiology, Columbia University, 1150 Saint Nicholas Avenue, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
46
|
Kawatani Y, Igarashi H, Matsui T, Kuwahara K, Fujimura S, Okamoto N, Takagi K, Sakaguchi N. Cutting Edge: Double-Stranded DNA Breaks in theIgVRegion Gene Were Detected at Lower Frequency in Affinity-Maturation Impeded GANP−/−Mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:5615-8. [PMID: 16237049 DOI: 10.4049/jimmunol.175.9.5615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Double-stranded DNA breaks (DSBs) at the IgV region (IgV) genes might be involved in somatic hypermutation and affinity-maturation of the B cell receptor in response to T cell-dependent Ag. By ligation-mediated PCR, we studied IgV DSBs that occurred in mature germinal center B cells in response to nitrophenyl-chicken gamma-globulin in a RAG1-independent, Ag-dependent, and IgV-selective manner. We quantified their levels in GANP-deficient B cells that have impaired generation of high-affinity Ab. GANP-/- B cells showed a decreased level of DSBs with blunt ends than control B cells and, on the contrary, the ganp gene transgenic (GANPTg) B cells showed an increased level. These results suggested that the level of IgV DSBs in germinal center B cells is associated with GANP expression, which is presumably required for B cell receptor affinity maturation.
Collapse
Affiliation(s)
- Yousuke Kawatani
- Department of Immunology, Graduate School of Medicine, Kumamoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Diaz M, Lawrence C. An update on the role of translesion synthesis DNA polymerases in Ig hypermutation. Trends Immunol 2005; 26:215-20. [PMID: 15797512 DOI: 10.1016/j.it.2005.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several years have passed since the discovery of activation-induced cytosine deaminase (AID), the molecule responsible for triggering hypermutation of Ig genes. We now know that AID deaminates cytosines in the DNA encoding the variable portion of the Ig receptor, although an additional role in deaminating a regulatory mRNA transcript has not been ruled out. A major question that remains unanswered is how AID, a cytosine deaminase, causes mutations at both G:C and A:T base pairs. Mounting evidence suggests the involvement of a group of error-prone DNA polymerases known to bypass DNA lesions: the translesion synthesis (TLS) DNA polymerases. In this Review, we discuss the evidence for a role of TLS DNA polymerases in Ig hypermutation and argue that a major remaining challenge in our understanding of this mechanism is the recruitment of TLS DNA polymerases to the Ig locus following AID-mediated cytosine deamination.
Collapse
Affiliation(s)
- Marilyn Diaz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
49
|
Mayorov VI, Rogozin IB, Adkison LR, Frahm C, Kunkel TA, Pavlov YI. Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes. BMC Immunol 2005; 6:10. [PMID: 15949042 PMCID: PMC1180437 DOI: 10.1186/1471-2172-6-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Accepted: 06/10/2005] [Indexed: 12/02/2022] Open
Abstract
Background Antibody genes are diversified by somatic hypermutation (SHM), gene conversion and class-switch recombination. All three processes are initiated by the activation-induced deaminase (AID). According to a DNA deamination model of SHM, AID converts cytosine to uracil in DNA sequences. The initial deamination of cytosine leads to mutation and recombination in pathways involving replication, DNA mismatch repair and possibly base excision repair. The DNA sequence context of mutation hotspots at G-C pairs during SHM is DGYW/WRCH (G-C is a hotspot position, R = A/G, Y = T/C, W = A/T, D = A/G/T). Results To investigate the mechanisms of AID-induced mutagenesis in a model system, we studied the genetic consequences of AID expression in yeast. We constructed a yeast vector with an artificially synthesized human AID gene insert using codons common to highly expressed yeast genes. We found that expression of the artificial hAIDSc gene was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain. A majority of mutations were at G-C pairs. In the ung1 strain, C-G to T-A transitions were found almost exclusively, while a mixture of transitions with 12% transversions was characteristic in the wild-type strain. In the ung1 strain mutations that could have originated from deamination of the transcribed stand were found more frequently. In the wild-type strain, the strand bias was reversed. DGYW/WRCH motifs were preferential sites of mutations. Conclusion The results are consistent with the hypothesis that AID-mediated deamination of DNA is a major cause of mutations at G-C base pairs in immunoglobulin genes during SHM. The sequence contexts of mutations in yeast induced by AID and those of somatic mutations at G-C pairs in immunoglobulin genes are significantly similar. This indicates that the intrinsic substrate specificity of AID itself is a primary determinant of mutational hotspots at G-C base pairs during SHM.
Collapse
Affiliation(s)
| | - Igor B Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda MD 20894, USA
- Institute of Cytology and Genetics SD RAS, Novosibirsk 630090, Russia
| | | | - Christin Frahm
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas A Kunkel
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
50
|
Xu Z, Fulop Z, Zhong Y, Evinger AJ, Zan H, Casali P. DNA lesions and repair in immunoglobulin class switch recombination and somatic hypermutation. Ann N Y Acad Sci 2005; 1050:146-62. [PMID: 16014529 PMCID: PMC4621013 DOI: 10.1196/annals.1313.119] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Immunoglobulin (Ig) gene somatic hypermutation (SHM) and class switch DNA recombination (CSR) are critical for the maturation of the antibody response. These processes endow antibodies with increased antigen-binding affinity and acquisition of new biological effector functions, thereby underlying the generation of memory B cells and plasma cells. They are dependent on the generation of specific DNA lesions and the intervention of activation-induced cytidine deaminase as well as newly identified translesion DNA polymerases, which are expressed in germinal center B cells. DNA lesions include mismatches, abasic sites, nicks, single-strand breaks, and double-strand breaks (DSBs). DSBs in the switch (S) region DNA are critical for CSR, but they also occur in V(D)J regions and possibly contribute to the events that lead to SHM. The nature of the DSBs in the Ig locus, their generation, and the repair processes that they trigger and that are responsible for their regulation remain poorly understood. Aberrant regulation of these events can result in chromosomal breaks and translocations, which are significant steps in B-cell neoplastic transformation.
Collapse
Affiliation(s)
- Zhenming Xu
- Center for Immunology, 3028 Hewitt Hall, University of California, Irvine, CA 92697-4120, USA
| | | | | | | | | | | |
Collapse
|