1
|
Pansini A, Berlino M, Mangano MC, Sarà G, Ceccherelli G. Meta-analysis reveals the effectiveness and best practices for the iconic Mediterranean seagrass restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179325. [PMID: 40188723 DOI: 10.1016/j.scitotenv.2025.179325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Seagrass forest restoration programs have become a global priority to reverse their decline and regain their ecosystem services. However, defining the restoration effectiveness has remained controversial, probably due to the wide selection of procedures experienced mainly on short-term periods and local scales. Here, scientific literature from 40 years of experience on experimental works and active restoration interventions of the Mediterranean foundation seagrass Posidonia oceanica has been systematically summarized through a meta-analysis. Twenty-five variables concerning the characteristics of the site selection, procedural context, and plant performance evidenced the best practices for the seagrass restoration. Results have evidenced the importance of the correct selection of the donor and receiving site, the use of plagiotropic cuttings bearing at least three shoots, and the need of monitoring the total extent of restored area for long term periods, considering more than one plant trait to define the plant performance. Higher biological levels should be also considered to estimate the recovery of the habitat structure and ecosystem functioning.
Collapse
Affiliation(s)
- Arianna Pansini
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, via Piandanna 4, 07100 Sassari, Italy.
| | - Manuel Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo Piazza Marina 61, 90133 Palermo, Italy
| | - Maria Cristina Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo Piazza Marina 61, 90133 Palermo, Italy
| | - Gianluca Sarà
- National Biodiversity Future Centre (NBFC), Palermo Piazza Marina 61, 90133 Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTeM), Palermo, Italy
| | - Giulia Ceccherelli
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, via Piandanna 4, 07100 Sassari, Italy; National Biodiversity Future Centre (NBFC), Palermo Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
2
|
Schneller NM, Strugnell JM, Field MA, Johannesson K, Cooke I. Putting Structural Variants Into Practice: The Role of Chromosomal Inversions in the Management of Marine Environments. Mol Ecol 2025:e17776. [PMID: 40342214 DOI: 10.1111/mec.17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Major threats to marine species and ecosystems include overfishing, invasive species, pollution and climate change. The changing climate not only imposes direct threats through the impacts of severe marine heatwaves, cyclones and ocean acidification but also complicates fisheries and invasive species management by driving species range shifts. The dynamic nature of these threats means that the future of our oceans will depend on the ability of species to adapt. This has led to calls for genetic interventions focussed on enhancing species' adaptive capacity, including translocations, restocking and selective breeding. Assessing the benefits and risks of such approaches requires an improved understanding of the genetic architecture of adaptive variation, not only in relation to climate-resilient phenotypes but also locally adapted populations and the fitness of hybrids. Large structural genetic variants such as chromosomal inversions play an important role in local adaptation by linking multiple adaptive loci. Consequently, inversions are likely to be particularly important when managing for adaptive capacity. However, under some circumstances, they also accumulate deleterious mutations, potentially increasing the risk of inbreeding depression. Genetic management that takes account of these dual roles on fitness is likely to be more effective at ensuring population persistence. We summarise evolutionary factors influencing adaptive and deleterious variation of inversions, review inversions found in marine taxa, and provide a framework to predict the consequences of ignoring inversions in key management scenarios. We conclude by describing practical methods to bridge the gap between evolutionary theory and practical application of inversions in conservation.
Collapse
Affiliation(s)
- Nadja M Schneller
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| | - Matt A Field
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Ira Cooke
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
3
|
Neel MC, Marsden BW, Engelhardt KAM. Going With the Flow? Relative Importance of Riverine Hydrologic Connectivity Versus Tidal Influence for Spatial Structure of Genetic Diversity and Relatedness in a Foundational Submersed Aquatic Plant. Ecol Evol 2025; 15:e71264. [PMID: 40336545 PMCID: PMC12058210 DOI: 10.1002/ece3.71264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 05/09/2025] Open
Abstract
Genetic connectivity in rivers is generally high, and levels of genotypic and genetic diversity of riverine species are expected to accumulate in downstream locations. Genetic structure of marine and estuarine species is less predictable, even though hydrologic connectivity is also expected to be relatively high in those ecosystems. These observations have been generated across different species and locations such that our understanding of the effects of hydrologic connectivity in the same river, spanning tidal and nontidal habitats, remains incomplete. To control for species and location, we quantified diversity in 941 samples of Vallisneria americana Michx. (Hydrocharitaceae) collected from 36 sites along the species' entire distribution in the tidal and nontidal Potomac River of Maryland, Virginia, and the District of Columbia, USA. Using 10 microsatellite loci, we found 507 unique multilocus genotypes (MLGs) that were collapsed to 482 multilocus lineages (MLLs). Fifty-three MLLs were found multiple times across the riverscape, accounting for over 54% of the genotyped shoots. We found some evidence supporting connectivity throughout the river and stronger evidence that tidal regime drives genotypic and genetic structure within V. americana. Extensive clonality, including two MLLs spanning 230 and 152 km, limits diversity in the nontidal reaches and contrasts with very little evidence of clonal reproduction in tidal reaches. Genetic differentiation, structure, and pairwise relatedness of sampled shoots and MLLs also differed by tidal reach, with the nontidal Potomac having higher levels of relatedness, lower allelic diversity, and higher heterozygosity. The differences in spatial distribution of genetic diversity suggest very different outlooks for V. americana adaptation and acclimation to perturbations in tidal and nontidal regions of the Potomac, which lead to different recommendations for restoration of the same species in the same river.
Collapse
Affiliation(s)
- Maile C. Neel
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Brittany W. Marsden
- Marine, Estuarine, Environmental SciencesUniversity of MarylandCollege ParkMarylandUSA
| | | |
Collapse
|
4
|
Fargeot L, Poesy C, Lefort M, Prunier JG, Krick M, Verdonck R, Veyssiere C, Richard M, Legrand D, Loot G, Simon B. Genetic diversity affects ecosystem functions across trophic levels as much as species diversity, but in an opposite direction. eLife 2025; 13:RP100041. [PMID: 40111393 PMCID: PMC11925449 DOI: 10.7554/elife.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yields similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels - primary producers, primary consumers, and secondary consumers - in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity - gauged within three pivotal species - within each trophic level, evaluating seven key ecosystem functions, and analyzing the magnitude of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persist across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.
Collapse
Affiliation(s)
- Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
- Université Paul Sabatier (UPS) Toulouse IIIToulouseFrance
| | - Camille Poesy
- Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| | - Maxim Lefort
- Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| | - Jerome G Prunier
- Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| | - Madoka Krick
- Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| | - Rik Verdonck
- Center for Environmental Sciences, Environmental Biology, Hasselt UniversityDiepenbeekBelgium
| | | | - Murielle Richard
- Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| | - Delphine Legrand
- Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| | - Geraldine Loot
- Université Paul Sabatier (UPS) Toulouse IIIToulouseFrance
| | - Blanchet Simon
- Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| |
Collapse
|
5
|
Shaw RE, Farquharson KA, Bruford MW, Coates DJ, Elliott CP, Mergeay J, Ottewell KM, Segelbacher G, Hoban S, Hvilsom C, Pérez-Espona S, Ruņģis D, Aravanopoulos F, Bertola LD, Cotrim H, Cox K, Cubric-Curik V, Ekblom R, Godoy JA, Konopiński MK, Laikre L, Russo IRM, Veličković N, Vergeer P, Vilà C, Brajkovic V, Field DL, Goodall-Copestake WP, Hailer F, Hopley T, Zachos FE, Alves PC, Biedrzycka A, Binks RM, Buiteveld J, Buzan E, Byrne M, Huntley B, Iacolina L, Keehnen NLP, Klinga P, Kopatz A, Kurland S, Leonard JA, Manfrin C, Marchesini A, Millar MA, Orozco-terWengel P, Ottenburghs J, Posledovich D, Spencer PB, Tourvas N, Unuk Nahberger T, van Hooft P, Verbylaite R, Vernesi C, Grueber CE. Global meta-analysis shows action is needed to halt genetic diversity loss. Nature 2025; 638:704-710. [PMID: 39880948 PMCID: PMC11839457 DOI: 10.1038/s41586-024-08458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Mitigating loss of genetic diversity is a major global biodiversity challenge1-4. To meet recent international commitments to maintain genetic diversity within species5,6, we need to understand relationships between threats, conservation management and genetic diversity change. Here we conduct a global analysis of genetic diversity change via meta-analysis of all available temporal measures of genetic diversity from more than three decades of research. We show that within-population genetic diversity is being lost over timescales likely to have been impacted by human activities, and that some conservation actions may mitigate this loss. Our dataset includes 628 species (animals, plants, fungi and chromists) across all terrestrial and most marine realms on Earth. Threats impacted two-thirds of the populations that we analysed, and less than half of the populations analysed received conservation management. Genetic diversity loss occurs globally and is a realistic prediction for many species, especially birds and mammals, in the face of threats such as land use change, disease, abiotic natural phenomena and harvesting or harassment. Conservation strategies designed to improve environmental conditions, increase population growth rates and introduce new individuals (for example, restoring connectivity or performing translocations) may maintain or even increase genetic diversity. Our findings underscore the urgent need for active, genetically informed conservation interventions to halt genetic diversity loss.
Collapse
Affiliation(s)
- Robyn E Shaw
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
- School of Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Centre for Conservation Ecology and Genomics, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael W Bruford
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
| | - David J Coates
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Carole P Elliott
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Joachim Mergeay
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
| | - Kym M Ottewell
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gernot Segelbacher
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Wildlife Ecology and Management, University Freiburg, Freiburg, Germany
| | - Sean Hoban
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- The Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | - Christina Hvilsom
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Copenhagen Zoo, Frederiksberg, Denmark
| | - Sílvia Pérez-Espona
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Dainis Ruņģis
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Genetic Resource Centre, Latvian State Forest Research Institute "Silava", Salaspils, Latvia
| | - Filippos Aravanopoulos
- Laboratory of Forest Genetics and Tree Breeding, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Laura D Bertola
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Helena Cotrim
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- cE3c-Center for Ecology, Evolution and Environmental Change and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Karen Cox
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Vlatka Cubric-Curik
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Robert Ekblom
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Stockholm, Sweden
| | - José A Godoy
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Maciej K Konopiński
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Linda Laikre
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
| | - Isa-Rita M Russo
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
| | - Nevena Veličković
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Philippine Vergeer
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Carles Vilà
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Vladimir Brajkovic
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - David L Field
- Applied BioSciences, Macquarie University, Sydney, New South Wales, Australia
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | | | - Frank Hailer
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK
- Institute of Zoology Joint Laboratory for Biocomplexity Research (CIBR), Chinese Academy of Sciences, Beijing, China
| | - Tara Hopley
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Frank E Zachos
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Natural History Museum Vienna, Vienna, Austria
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Paulo C Alves
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO/ BIOPOLIS Program in Genomics, Biodiversity and Land Planning, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- EBM, Biological Station of Mértola, Mértola, Portugal
| | - Aleksandra Biedrzycka
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Rachel M Binks
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Joukje Buiteveld
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Centre for Genetic Resources, The Netherlands, Wageningen University, Wageningen, The Netherlands
| | - Elena Buzan
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
- Faculty of Environmental Protection, Velenje, Slovenia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Barton Huntley
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Laura Iacolina
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Naomi L P Keehnen
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter Klinga
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Alexander Kopatz
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Sara Kurland
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
- Department of Earth Sciences, Natural Resources and Sustainable Development, Uppsala University, Uppsala, Sweden
| | | | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alexis Marchesini
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Research Institute on Terrestrial Ecosystems (IRET), The National Research Council of Italy (CNR), Porano, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Melissa A Millar
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Pablo Orozco-terWengel
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK
| | - Jente Ottenburghs
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands
- Forest Ecology and Forest Management, Wageningen University, Wageningen, The Netherlands
| | - Diana Posledovich
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
| | - Peter B Spencer
- School of Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Nikolaos Tourvas
- Laboratory of Forest Genetics and Tree Breeding, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pim van Hooft
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Rita Verbylaite
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Department of Forest Genetics and Tree Breeding, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai, Lithuania
| | - Cristiano Vernesi
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG)
- European Cooperation in Science and Technology (COST), COST Action CA 18134 'Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)'
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Catherine E Grueber
- International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG), .
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
6
|
Pansini A, Stipcich P, Frasca S, Migliore L, Ceccherelli G. Different thermal regimes and susceptibility to herbivory do not constrain seagrass seedling restoration. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106918. [PMID: 39733557 DOI: 10.1016/j.marenvres.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Recovering seagrass ecosystems through restoration has become impellent to re-establish their functionality and services. Although the use of seedlings may represent an appropriate solution, little information is provided on the seedling-based restoration effectiveness with influence of biotic and abiotic interactions. Survival, morphological development and leaf total phenol content of transplanted Posidonia oceanica seedlings were evaluated under different origin, thermal regimes and herbivore pressure through a five-months field experiment in two MPAs, located on the west (cold) and east (warm) Sardinia coast to explore the effectiveness of seedling-based restoration. Seedlings originated from the two coasts responded differently to thermal regime site and herbivory pressure, as the warm-adapted ones survived less but developed more (and vice-versa) and resisted to the herbivory pressure increasing their phenol content, thus showing compensating responses. This study provided information on the P. oceanica seedling-based restoration by investigating abiotic and biotic interactions with the transplanted plants. It promotes the collection of beach-cast fruits from different coasts and their transplantation, regardless their origin, with no need of protecting seedlings from predators.
Collapse
Affiliation(s)
- Arianna Pansini
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy.
| | - Patrizia Stipcich
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy; University of Naples Federico II, Department of Biology, Naples, Italy; National Biodiversity Future Centre, Palermo, Italy
| | | | | | - Giulia Ceccherelli
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy; National Biodiversity Future Centre, Palermo, Italy
| |
Collapse
|
7
|
Carr M, Kratochwill C, Daly-Engel T, Crombie T, van Woesik R. Geographical patterns of intraspecific genetic diversity reflect the adaptive potential of the coral Pocillopora damicornis species complex. PLoS One 2025; 20:e0316380. [PMID: 39841675 PMCID: PMC11753671 DOI: 10.1371/journal.pone.0316380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025] Open
Abstract
Marine heatwaves are increasing in intensity and frequency however, responses and survival of reef corals vary geographically. Geographical differences in thermal tolerance may be in part a consequence of intraspecific diversity, where high-diversity localities are more likely to support heat-tolerant alleles that promote survival through thermal stress. Here, we assessed geographical patterns of intraspecific genetic diversity in the ubiquitous coral Pocillopora damicornis species complex using 428 sequences of the Internal Transcribed Spacer 2 (ITS2) region across 44 sites in the Pacific and Indian Oceans. We focused on detecting genetic diversity hotspots, wherein some individuals are likely to possess gene variants that tolerate marine heatwaves. A deep-learning, multi-layer neural-network model showed that geographical location played a major role in intraspecific diversity, with mean sea-surface temperature and oceanic regions being the most influential predictor variables differentiating diversity. The highest estimate of intraspecific variation was recorded in French Polynesia and Southeast Asia. The corals on these reefs are more likely than corals elsewhere to harbor alleles with adaptive potential to survive climate change, so managers should prioritize high-diversity regions when forming conservation goals.
Collapse
Affiliation(s)
- M. Carr
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - C. Kratochwill
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - T. Daly-Engel
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - T. Crombie
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - R. van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, United States of America
| |
Collapse
|
8
|
Etterson JR, Fliehr P, Pizza R, Gross BL. Domestication During Restoration: Unintentional Selection During Eight Generations of Wild Seed Propagation Reduces Herkogamy, Dichogamy and Heterozygosity in Clarkia pulchella. Mol Ecol 2025:e17655. [PMID: 39810715 DOI: 10.1111/mec.17655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Seed production on native seed farms has increased to meet the rising demand for plant material for restoration. Although these propagation efforts are necessary for restoration, cultivating wild populations may also result in unintentional selection and elicit evolutionary changes that mimic crop domestication, essentially turning these efforts into artificial domestication experiments. Here, we investigated whether phenotypic and genomic changes associated with domestication occurred in the wildflower Clarkia pulchella Pursh (Onagraceae) by comparing the wild source populations to the farmed population after eight generations of cultivation. At the phenotypic level, the farmed population shifted towards a floral morphology associated with self-pollination, with a significant decrease in both dichogamy and herkogamy. At the genomic level, > 6500 SNPs revealed that mean expected heterozygosity of the farmed population was significantly lower than the wild populations, despite the fact that the farmed population originated from a pool of multiple wild populations. Both the shift towards a selfing phenotype and the loss of diversity are expected consequences of domestication, although the phenotypic shifts in particular occurred much more rapidly than has been observed for other domestication traits. We discuss these results in the context of plant domestication and the implications for retaining the genetic integrity of wild populations during the process of seed production for restoration.
Collapse
Affiliation(s)
- Julie R Etterson
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Paige Fliehr
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Riley Pizza
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Briana L Gross
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
9
|
Longman EK, Sanford E. An experimental test of eco-evolutionary dynamics on rocky shores. Ecology 2025; 106:e4505. [PMID: 39814598 PMCID: PMC11735340 DOI: 10.1002/ecy.4505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 01/18/2025]
Abstract
A growing body of theoretical studies and laboratory experiments has focused attention on reciprocal feedbacks between ecological and evolutionary processes. However, uncertainty remains about whether such eco-evolutionary feedbacks have an important or negligible influence on natural communities. Thus, recent discussions call for field experiments that explore whether selection on phenotypic variation within populations leads to contemporaneous effects on community dynamics. To help fill this gap, in this study, we test the hypothesis that selection on consumer traits in a population of predatory drilling snails can drive eco-evolutionary dynamics in a rocky intertidal community in California, USA. We first conducted a laboratory selection experiment to raise newly hatched dogwhelks (Nucella canaliculata) on four diet treatments encompassing a range of prey species and shell thicknesses. Snails that survived to adulthood under these diet treatments differed in their capacity to drill thick-shelled mussels. Dogwhelks from these treatment groups were then outplanted to intertidal field cages for 1 year to test whether groups experiencing selection differed in their effects on mussel bed succession. As expected, succession proceeded most rapidly in the reference treatment with dogwhelks excluded. However, successional patterns differed minimally among dogwhelks raised under the different diet treatments. Thus, although our laboratory results suggest that prey can impose selection that leads to rapid adaptation and divergent consumer traits, these feedbacks were not strong enough to result in clear community effects in the field. We propose that a limited range of variation in functional traits within populations, moderate strengths of selection, and a background of substantial abiotic and biotic variation may all act to dampen the potential for strong eco-evolutionary dynamics in this and many other natural communities.
Collapse
Affiliation(s)
- Emily K. Longman
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
- Present address:
Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Eric Sanford
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
10
|
Hoban S, Hvilsom C, Aissi A, Aleixo A, Bélanger J, Biala K, Ekblom R, Fedorca A, Funk WC, Goncalves AL, Gonzalez A, Heuertz M, Hughes A, Ishihama F, Stroil BK, Laikre L, McGowan PJK, Millette KL, O'Brien D, Paz-Vinas I, Rincón-Parra VJ, Robuchon M, Rodríguez JP, Rodríguez-Morales MA, Segelbacher G, Straza TRA, Susanti R, Tshidada N, Vilaça ST, da Silva JM. How can biodiversity strategy and action plans incorporate genetic diversity and align with global commitments? Bioscience 2025; 75:47-60. [PMID: 39911160 PMCID: PMC11791525 DOI: 10.1093/biosci/biae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 02/07/2025] Open
Abstract
National, subnational, and supranational entities are creating biodiversity strategy and action plans (BSAPs) to develop concrete commitments and actions to curb biodiversity loss, meet international obligations, and achieve a society in harmony with nature. In light of policymakers' increasing recognition of genetic diversity in species and ecosystem adaptation and resilience, this article provides an overview of how BSAPs can incorporate species' genetic diversity. We focus on three areas: setting targets; committing to actions, policies, and programs; and monitoring and reporting. Drawing from 21 recent BSAPs, we provide examples of policies, knowledge, projects, capacity building, and more. We aim to enable and inspire specific and ambitious BSAPs and have put forward 10 key suggestions mapped to the policy cycle. Together, scientists and policymakers can translate high level commitments, such as the Convention on Biological Diversity's Kunming-Montreal Global Biodiversity Framework, into concrete nationally relevant targets, actions and policies, and monitoring and reporting mechanisms.
Collapse
Affiliation(s)
- Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, Illinois, Colorado State University, Fort Collins, Colorado, United States
| | | | - Abdeldjalil Aissi
- LAPAPEZA, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna, Algeria
| | | | - Julie Bélanger
- Office of Climate Change, Biodiversity and Environment, Food and Agriculture Organization, United Nations, Rome, Italy
| | | | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Ancuta Fedorca
- National Institute for Research and Development, Forestry Marin Dracea, Department of Silviculture, Transilvania University, Brasov, Romania
| | - W Chris Funk
- Colorado State University, Fort Collins, Colorado, United States
- CSU Global Biodiversity Center
| | - Alejandra Lorena Goncalves
- National University of Misiones, National Council of Scientific and Technical Research, Institute of Subtropical Biology, Posadas, Argentina
| | - Andrew Gonzalez
- Group on Earth Observations Biodiversity Observation Network based, McGill University, Montreal, Quebec, Canada
| | | | - Alice Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Fumiko Ishihama
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Belma Kalamujic Stroil
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Society for Genetic Conservation of B&H Endemic and Autochthonous Resources GENOFOND, Sarajevo, Bosnia and Herzegovina
| | - Linda Laikre
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philip J K McGowan
- Newcastle University, Newcastle upon Tyne, England, United Kingdom
- IUCN Species Survival Commission Global Biodiversity Framework Task Force
| | - Katie L Millette
- Group on Earth Observations Biodiversity Observation Network based, McGill University, Montreal, Quebec, Canada
| | - David O'Brien
- NatureScot, Inverness, United Kingdom
- Royal Botanic Garden, Edinburgh, United Kingdom
| | - Ivan Paz-Vinas
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne, France
| | | | - Marine Robuchon
- Joint Research Centre of the European Commission, Ispra, Italy
| | - Jon Paul Rodríguez
- IUCN Species Survival Commission
- Center for Ecology of the Venezuelan Institute for Scientific Investigations, Caracas, Venezuela
| | | | - Gernot Segelbacher
- Chair of Wildlife Ecology and Management, University Freiburg, Freiburg, Germany
| | - Tiffany R A Straza
- Secretariat of the Pacific Regional Environment Programme, Apia, Samoa
- United Nations Educational, Scientific, and Cultural Organization, Paris, France
| | - Ruliyana Susanti
- Research Center for Ecology and Ethnobiology
- Secretariat of Scientific Authority for Biodiversity, National Research and Innovation Agency, Indonesia
| | | | | | - Jessica M da Silva
- South African National Biodiversity Institute, Cape Town, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
11
|
Kontou D, Paterson AM, Favot EJ, Grooms C, Smol JP, Tanentzap AJ. Adaptation in a keystone grazer under novel predation pressure. Proc Biol Sci 2025; 292:20241935. [PMID: 39837507 PMCID: PMC11750393 DOI: 10.1098/rspb.2024.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Understanding how species adapt to environmental change is necessary to protect biodiversity and ecosystem services. Growing evidence suggests species can adapt rapidly to novel selection pressures like predation from invasive species, but the repeatability and predictability of selection remain poorly understood in wild populations. We tested how a keystone aquatic herbivore, Daphnia pulicaria, evolved in response to predation pressure by the introduced zooplanktivore Bythotrephes longimanus. Using high-resolution 210Pb-dated sediment cores from 12 lakes in Ontario (Canada), which primarily differed in invasion status by Bythotrephes, we compared Daphnia population genetic structure over time using whole-genome sequencing of individual resting embryos. We found strong genetic differentiation between populations approximately 70 years before versus 30 years after reported Bythotrephes invasion, with no difference over this period in uninvaded lakes. Compared with uninvaded lakes, we identified, on average, 64 times more loci were putatively under selection in the invaded lakes. Differentiated loci were mainly associated with known reproductive and stress responses, and mean body size consistently increased by 14.1% over time in invaded lakes. These results suggest Daphnia populations were repeatedly acquiring heritable genetic adaptations to escape gape-limited predation. More generally, our results suggest some aspects of environmental change predictably shape genome evolution.
Collapse
Affiliation(s)
- Danai Kontou
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, UK
| | - Andrew M. Paterson
- Dorset Environmental Science Centre, Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, Dorset, OntarioP0A 1E0, Canada
| | - Elizabeth J. Favot
- Vale Living with Lakes Centre, Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury, OntarioP3E 2C6, Canada
| | - Christopher Grooms
- Paleoecological Environmental Assessment and Research Lab, Department of Biology, Queen’s University, Kingston, OntarioK7L 3N6, Canada
| | - John P. Smol
- Paleoecological Environmental Assessment and Research Lab, Department of Biology, Queen’s University, Kingston, OntarioK7L 3N6, Canada
| | - Andrew J. Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, UK
- Ecosystems and Global Change Group, School of Environment, Trent University, Peterborough, OntarioK9L 0G2, Canada
| |
Collapse
|
12
|
Gross CP, Duffy JE, Hovel KA, Reynolds PL, Boström C, Boyer KE, Cusson M, Eklöf J, Engelen AH, Eriksson BK, Fodrie FJ, Griffin JN, Hereu CM, Hori M, Hughes AR, Ivanov MV, Jorgensen P, Kardish MR, Kruschel C, Lee K, Lefcheck J, McGlathery K, Moksnes P, Nakaoka M, O'Connor MI, O'Connor NE, Olsen JL, Orth RJ, Peterson BJ, Reiss H, Rossi F, Ruesink J, Sotka EE, Thormar J, Tomas F, Unsworth R, Voigt EP, Whalen MA, Ziegler SL, Stachowicz JJ. A Latitudinal Cline in the Taxonomic Structure of Eelgrass Epifaunal Communities is Associated With Plant Genetic Diversity. GLOBAL ECOLOGY AND BIOGEOGRAPHY 2024; 33. [DOI: 10.1111/geb.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/11/2024] [Indexed: 01/05/2025]
Abstract
ABSTRACTAimBiogenic structural complexity increases mobile animal richness and abundance at local, regional and global scales, yet animal taxa vary in their response to complexity. When these taxa also vary functionally, habitat structures favouring certain taxa may have consequences for ecosystem function. We characterised global patterns of epifaunal invertebrates in eelgrass (Zostera marina) beds that varied in structural and genetic composition.LocationNorth America, Europe and Asia.Time Period2014.Major Taxa StudiedPeracarid crustaceans and gastropod molluscs.MethodsWe sampled epifaunal invertebrate communities in 49 eelgrass beds across 37° latitude in two ocean basins concurrently with measurements of eelgrass genetic diversity, structural complexity and other abiotic and biotic environmental variables. We examined how species richness, abundance and community composition varied with latitude and environmental predictors using a random forest approach. We also examined how functional trait composition varied along with community structure.ResultsTotal species richness decreased with latitude, but this was accompanied by a taxonomic shift in dominance from peracarid crustaceans to gastropods, which exhibited different sets of functional traits. Greater eelgrass genetic diversity was strongly correlated with both richness and abundance of peracarids, but less so for gastropods.Main ConclusionsOur results add to a growing body of literature that suggests genetic variation in plant traits influences their associated faunal assemblages via habitat structure. Because peracarids and gastropods exhibited distinct functional traits, our results suggest a tentative indirect link between broad‐scale variation in plant genetic diversity and ecosystem function.
Collapse
Affiliation(s)
- Collin P. Gross
- Department of Evolution and Ecology University of California Davis California USA
| | - J. Emmett Duffy
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center Edgewater Maryland USA
| | - Kevin A. Hovel
- Department of Biology San Diego State University San Diego California USA
| | - Pamela L. Reynolds
- DataLab: Data Science and Informatics University of California Davis California USA
| | | | - Katharyn E. Boyer
- Estuary & Ocean Science Center and Department of Biology San Francisco State University San Francisco California USA
| | - Mathieu Cusson
- Sciences Fondamentales and Québec Océan Université du Québec à Chicoutimi Chicoutimi Quebec Canada
| | - Johan Eklöf
- Department of Ecology, Environment and Plant Sciences (DEEP) Stockholm University Stockholm Sweden
| | | | | | - F. Joel Fodrie
- Institute of Marine Sciences, University of North Carolina at Chapel Hill Morehead City North Carolina USA
| | | | - Clara M. Hereu
- Departamento de Ecología Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada Baja California Mexico
| | - Masakazu Hori
- Fisheries Research and Education Agency Hatsukaichi Hiroshima Japan
| | - A. Randall Hughes
- Department of Marine and Environmental Sciences Northeastern University Nahant Massachusetts USA
| | - Mikhail V. Ivanov
- Department of Ichthyology and Hydrobiology St Petersburg State University St Petersburg Russia
| | - Pablo Jorgensen
- Instituto de Investigaciones Marinas y Costeras (IIMyC‐UNMDP‐CONICET), Universidad Nacional de mar del Plata Mar del Plata Buenos Aires Argentina
| | - Melissa R. Kardish
- Department of Evolution and Ecology University of California Davis California USA
| | | | - Kun‐Seop Lee
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Jonathan Lefcheck
- University of Maryland Center for Environmental Science Cambridge Maryland USA
| | - Karen McGlathery
- Department of Environmental Sciences University of Virginia Charlottesville Virginia USA
| | - Per‐Olav Moksnes
- Department of Marine Sciences University of Gothenburg Goteborg Sweden
| | | | - Mary I. O'Connor
- Biodiversity Research Centre and Department of Zoology University of British Columbia Vancouver British Columbia Canada
| | | | | | - Robert J. Orth
- Virginia Institute of Marine Science, College of William and Mary Gloucester Point Virginia USA
| | - Bradley J. Peterson
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York USA
| | | | - Francesca Rossi
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn National Institute of Marine Biology, Ecology, and Biotechnology, Genoa Marine Center Genoa Italy
| | - Jennifer Ruesink
- Department of Biology University of Washington Seattle Washington USA
| | - Erik E. Sotka
- Grice Marine Laboratory, College of Charleston Charleston South Carolina USA
| | | | | | | | - Erin P. Voigt
- Center for Marine Science and Technology North Carolina State University Morehead City North Carolina USA
| | - Matthew A. Whalen
- Department of Biology Virginia State University Petersburg Virginia USA
| | - Shelby L. Ziegler
- Department of Biology Villanova University Villanova Pennsylvania USA
| | - John J. Stachowicz
- Department of Evolution and Ecology University of California Davis California USA
| |
Collapse
|
13
|
Alagna A, Giacalone VM, Zenone A, Martinez M, D’Anna G, Buffa G, Cavalca CJ, Poli A, Varese GC, Prigione VP, Badalamenti F. Tannins and copper sulphate as antimicrobial agents to prevent contamination of Posidonia oceanica seedling culture for restoration purposes. FRONTIERS IN PLANT SCIENCE 2024; 15:1433358. [PMID: 39654965 PMCID: PMC11625593 DOI: 10.3389/fpls.2024.1433358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Seed-based restoration methods are increasingly recognized as a relevant tool contributing to halt and reverse the loss of seagrass meadows while providing genetic and evolutionary benefit for the conservation of these habitats. Ad-hoc protocols aimed at maximizing the survival of plantlets obtained from seeds in cultivation systems are therefore required. Previous trials of seedling culture of Posidonia oceanica, the dominant seagrass of the Mediterranean Sea, recorded up to 40% loss due to mould development. In this study we aim to (i) identify the putative causal agents of seed decay and (ii) test the efficacy of copper sulphate (0.2 and 2 ppm) and of tannin-based products derived from chestnut, tara and quebracho in reducing seed and seedling decay, while assessing possible phytotoxic effects on plant development. Halophytophthora lusitanica, H. thermoambigua and a putative new Halophytophtora species were identified as possible causal agents of seed loss. The antimicrobial agents (copper and tannins) reduced seed contamination by 20%, although copper sulphate at 2 ppm strongly inhibited the root growth. Among tannins, chestnut and tara reduced seeds germination by up to 75% and decreased shoot and root development, while quebracho showed a less severe phytotoxic effect. The use of copper sulphate at 0.2 ppm is therefore recommended to prevent P. oceanica seedling loss in culture facilities since it reduces seed contamination with no phytotoxic effects. Our results contribute to improving the seedling culture of one the key species of the Mediterranean Sea, increasing propagule availability for restoration purposes.
Collapse
Affiliation(s)
- Adriana Alagna
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Palermo, Italy
- National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - Vincenzo Maximiliano Giacalone
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic impacts and Sustainability in Marine Environment, IAS-CNR, Capo Granitola, Italy
| | - Arturo Zenone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Palermo, Italy
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic Impacts and Sustainability in Marine Environment, IAS-CNR, Palermo, Italy
| | - Marco Martinez
- Institute for the Anthropic Impacts and Sustainability in Marine Environment, IAS-CNR, Palermo, Italy
| | - Giovanni D’Anna
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic Impacts and Sustainability in Marine Environment, IAS-CNR, Castellammare del Golfo, Italy
| | - Gaspare Buffa
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic impacts and Sustainability in Marine Environment, IAS-CNR, Capo Granitola, Italy
| | - Caterina Jessica Cavalca
- Institute for the Anthropic impacts and Sustainability in Marine Environment, IAS-CNR, Capo Granitola, Italy
| | - Anna Poli
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Department of Life Sciences and Systems Biology, University of Torino, Mycotheca Universitatis Taurinensis (MUT), Torino, Italy
| | - Giovanna Cristina Varese
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Department of Life Sciences and Systems Biology, University of Torino, Mycotheca Universitatis Taurinensis (MUT), Torino, Italy
| | - Valeria Paola Prigione
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Department of Life Sciences and Systems Biology, University of Torino, Mycotheca Universitatis Taurinensis (MUT), Torino, Italy
| | - Fabio Badalamenti
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic Impacts and Sustainability in Marine Environment, IAS-CNR, Palermo, Italy
| |
Collapse
|
14
|
Han Q, Sun J, Chou Q, Cao T, Li W, Cao Y. To be or not to be: The fate of submerged macrophyte biodiversity in the plateau lakes after restoration for the last decade. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123085. [PMID: 39490016 DOI: 10.1016/j.jenvman.2024.123085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The preservation of biodiversity is crucial for sustaining ecosystem functioning, and recently the ongoing loss of biodiversity in lake ecosystems due to human activities has raised significant concerns. This study aimed to assess the impact of human activities on the biodiversity of aquatic plants through long-term empirical evidence. By comparing species composition and genetic diversity of submerged macrophyte within last decade, this research focused on the long-term changes of submerged macrophyte biodiversity resulting from human disturbances and restoration efforts. Three plateau lakes - Lake Erhai, Lake Fuxianhu, and Lake Jianhu - were selected as study sites, exhibiting varying biodiversity alterations in response to different levels of human disturbance and restoration activities. The oligotrophic Lake Fuxianhu demonstrated a stable level of both biodiversity levels, and the eutrophic Lake Jianhu exhibited a significant reduction in species diversity and genetic diversity. Meanwhile, the strong restoration measures in Lake Erhai between the 2010s and the 2020s effectively safeguard species diversity and alleviate declines in genetic diversity due to eutrophication during the last decade. We also found that improper use of alien species and the transplantation of clones of aquatic plant may pose ecological risks to biodiversity. Given the importance of aquatic plant re-establishment for the long-term recovery of plateau lakes, conservation strategies could prioritize large-scale propagation of aquatic plant materials through local seed banks.
Collapse
Affiliation(s)
- Qingxiang Han
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Yani Wetland Ecosystem Positioning Observation and Research Station, Tibet University, Lhasa, China
| | - Junyao Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- Yani Wetland Ecosystem Positioning Observation and Research Station, Tibet University, Lhasa, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, China
| | - Yu Cao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
15
|
Weiss M, Lorenz AW, Feld CK, Leese F. Strong Small-Scale Differentiation but No Cryptic Species Within the Two Isopod Species Asellus aquaticus and Proasellus coxalis in a Restored Urban River System (Emscher, Germany). Ecol Evol 2024; 14:e70575. [PMID: 39559469 PMCID: PMC11573423 DOI: 10.1002/ece3.70575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Worldwide, humans have strongly altered river networks. Key changes resulted in modified hydromorphology, poor habitat quality and availability, migration barriers, and pollution. Restoration measures aim at mitigating anthropogenic stressors and at restoring connectivity, but the biological success of these measures is not guaranteed. Analyzing genetic diversity and metapopulation structure of target species in the river network with genetic markers can help to understand recolonization processes and to identify persisting gene flow barriers. Here, we studied the population genetic structure of the two pollution-tolerant detritivorous isopod species, Asellus aquaticus and Proasellus coxalis, in the former heavily degraded and polluted, but now mostly restored Emscher catchment in Germany. For both species, we analyzed mitochondrial cytochrome c oxidase I (COI) gene sequences and nuclear genome-wide single nucleotide polymorphism (SNP) data. Surprisingly, we found a strong metapopulation structure for both species with several isolated populations on a small-scale of few kilometers, but a still high genetic diversity, especially in the COI gene. For both taxa, potentially cryptic species are known, but our SNP data showed that the mitochondrial lineages represent only one species, each, in the study area. This highlights the importance of integrating high-resolution nuclear markers into species identification because species diversity may otherwise be overestimated. While we could identify some migration barriers and find indications for passive dispersal by birds or humans, these factors could not fully explain the local metapopulation structure, suggesting that also other drivers, such as isolation by adaptation, priority effects, or biotic interactions, play a role in shaping the population genetic structure.
Collapse
Affiliation(s)
- Martina Weiss
- Aquatic Ecosystem ResearchUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
| | - Armin W. Lorenz
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
- Aquatic EcologyUniversity of Duisburg‐EssenEssenGermany
| | - Christian K. Feld
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
- Aquatic EcologyUniversity of Duisburg‐EssenEssenGermany
| | - Florian Leese
- Aquatic Ecosystem ResearchUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
| |
Collapse
|
16
|
Martínez-De León G, Thakur MP. Ecological debts induced by heat extremes. Trends Ecol Evol 2024; 39:1024-1034. [PMID: 39079760 DOI: 10.1016/j.tree.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
Heat extremes have become the new norm in the Anthropocene. Their potential to trigger major ecological responses is widely acknowledged, but their unprecedented severity hinders our ability to predict the magnitude of such responses, both during and after extreme heat events. To address this challenge we propose a conceptual framework inspired by the core concepts of ecological stability and thermal biology to depict how responses of populations and communities accumulate at three response stages (exposure, resistance, and recovery). Biological mechanisms mitigating responses at a given stage incur associated costs that only become apparent at other response stages; these are known as 'ecological debts'. We outline several scenarios for how ecological responses associate with debts to better understand biodiversity changes caused by heat extremes.
Collapse
Affiliation(s)
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
Metzger DCH, Earhart ML, Schulte PM. Genomic and Epigenomic Influences on Resilience across Scales: Lessons from the Responses of Fish to Environmental Stressors. Integr Comp Biol 2024; 64:853-866. [PMID: 38632046 PMCID: PMC11445785 DOI: 10.1093/icb/icae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the factors that influence the resilience of biological systems to environmental change is a pressing concern in the face of increasing human impacts on ecosystems and the organisms that inhabit them. However, most considerations of biological resilience have focused at the community and ecosystem levels, whereas here we discuss how including consideration of processes occurring at lower levels of biological organization may provide insights into factors that influence resilience at higher levels. Specifically, we explore how processes at the genomic and epigenomic levels may cascade up to influence resilience at higher levels. We ask how the concepts of "resistance," or the capacity of a system to minimize change in response to a disturbance, and "recovery," or the ability of a system to return to its original state following a disturbance and avoid tipping points and resulting regime shifts, map to these lower levels of biological organization. Overall, we suggest that substantial changes at these lower levels may be required to support resilience at higher levels, using selected examples of genomic and epigenomic responses of fish to climate-change-related stressors such as high temperature and hypoxia at the levels of the genome, epigenome, and organism.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
18
|
Ito M, Guy-Haim T, Sawall Y, Franz M, Buchholz B, Hansen T, Neitzel P, Pansch C, Steinhoff T, Wahl M, Weinberger F, Scotti M. Responses at various levels of ecological hierarchy indicate acclimation to sequential sublethal heatwaves in a temperate benthic ecosystem. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230171. [PMID: 39034694 PMCID: PMC11293849 DOI: 10.1098/rstb.2023.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 07/23/2024] Open
Abstract
Marine heatwaves have caused massive mortality in coastal benthic ecosystems, altering community composition. Here, we aim to understand the effects of single and sequential sublethal heatwaves in a temperate benthic ecosystem, investigating their disturbance on various levels of ecological hierarchy, i.e. individual physiology, trophic groups' biomass and ecosystem carbon fluxes. To do so, we performed a near-natural experiment using outdoor benthic mesocosms along spring/summer, where communities were exposed to different thermal regimes: without heatwaves (0HW), with one heatwave (1HW) and with three heatwaves (3HWs). Gastropods were negatively impacted by one single heatwave treatment, but the exposure to three sequential heatwaves caused no response, indicating ecological stress memory. The magnitude of ecosystem carbon fluxes mostly decreased after 1HW, with a marked negative impact on mesograzers' feeding, while the overall intensity of carbon fluxes increased after 3HWs. Consumers' acclimation after the exposure to sequential heatwaves increased grazing activity, representing a threat for the macroalgae biomass. The evaluation of physiological responses and ecological interactions is crucial to interpret variations in community composition and to detect early signs of stress. Our results reveal the spread of heatwave effects along the ecological hierarchical levels, helping to predict the trajectories of ecosystem development.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Maysa Ito
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O.B. 2336, Haifa3102201, Israel
| | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), 17 Ferry Reach, St George’sGE01, Bermuda
| | - Markus Franz
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
| | - Björn Buchholz
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
| | - Thomas Hansen
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
| | - Philipp Neitzel
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
| | - Christian Pansch
- Environmental and Marine Biology, Åbo Akademi University, Turku/Åbo20500, Finland
| | - Tobias Steinhoff
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
| | - Martin Wahl
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
| | - Florian Weinberger
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
| | - Marco Scotti
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, Kiel24148, Germany
- National Research Council of Italy, Institute of Biosciences and Bioresources, via Madonna del Piano 10, Sesto Fiorentino50019, Italy
| |
Collapse
|
19
|
Foo SA, Byrne M. Reprint: Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. ADVANCES IN MARINE BIOLOGY 2024; 97:11-58. [PMID: 39307554 DOI: 10.1016/bs.amb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To persist in an ocean changing in temperature, pH and other stressors related to climate change, many marine species will likely need to acclimatize or adapt to avoid extinction. If marine populations possess adequate genetic variation in tolerance to climate change stressors, species might be able to adapt to environmental change. Marine climate change research is moving away from single life stage studies where individuals are directly placed into projected scenarios ('future shock' approach), to focus on the adaptive potential of populations in an ocean that will gradually change over coming decades. This review summarizes studies that consider the adaptive potential of marine invertebrates to climate change stressors and the methods that have been applied to this research, including quantitative genetics, laboratory selection studies and trans- and multigenerational experiments. Phenotypic plasticity is likely to contribute to population persistence providing time for genetic adaptation to occur. Transgenerational and epigenetic effects indicate that the environmental and physiological history of the parents can affect offspring performance. There is a need for long-term, multigenerational experiments to determine the influence of phenotypic plasticity, genetic variation and transgenerational effects on species' capacity to persist in a changing ocean. However, multigenerational studies are only practicable for short generation species. Consideration of multiple morphological and physiological traits, including changes in molecular processes (eg, DNA methylation) and long-term studies that facilitate acclimatization will be essential in making informed predictions of how the seascape and marine communities will be altered by climate change.
Collapse
Affiliation(s)
- Shawna A Foo
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Cozzolino L, Nicastro KR, Detree C, Gribouval L, Seuront L, Lima FP, McQuaid CD, Zardi GI. Intraspecific variations in oyster (Magallana gigas) ploidy does not affect physiological responses to microplastic pollution. CHEMOSPHERE 2024; 364:143206. [PMID: 39209043 DOI: 10.1016/j.chemosphere.2024.143206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in genetic manipulation such as triploid breeding and artificial selection, have rapidly emerged as valuable hatchery methodologies for enhancing seafood stocks. The Pacific oyster Magallana gigas is a leading aquaculture species worldwide and key ecosystem engineer that has received particular attention in this field of science. In light of the growing recognition of the ecological effects of intraspecific variation, oyster polyploids provide a valuable opportunity to assess whether intraspecific diversity affects physiological responses to environmental stressors. While the responses of diploid and triploid oysters to climate change have been extensively investigated, research on their sensitivity to environmental pollution remains scarce. Here, we assess whether genotypic (i.e., ploidy) variation within Magallana gigas affects physiological responses to microplastic pollution. We show that diploid and triploid M. gigas have similar clearance rates and ingest similar amounts of microplastics under laboratory-controlled condition. In addition, they exhibited similar heart rates after prolonged exposure to microplastic leachates. Our findings suggest that intraspecific variations within M. gigas ploidy does not affect oyster responses to microplastic pollution. However, regardless of ploidy, our work highlights significant adverse effects of microplastic leachates on the heart rate of M. gigas and provides evidence of microplastic ingestion in the laboratory.
Collapse
Affiliation(s)
- Lorenzo Cozzolino
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| | - Katy R Nicastro
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Camille Detree
- Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France; Office Française de la Biodiversité, 16, quai de la Douane, 29229, Brest, France
| | - Laura Gribouval
- SATMAR, La Saline, 47 route du Val-de-Saire, 50760, Gatteville-Phare, France
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Fernando P Lima
- CIBIO, Centro de Investigaccaao em Biodiversidade e Recursos Geneticos, InBIO Laboratório Associado, Campus de Vairaao, Rua Padre Armando Quintas, no 7, 4485-661, Vairaao, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairaao, Rua Padre Armando Quintas, no 7, 4485-661, Vairaao, Portugal
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France
| |
Collapse
|
21
|
Wang X, Zhang Z, Shi Y, Man J, Huang Y, Zhang X, Liu S, He G, An K, Amu L, Chen W, Liu Z, Wang X, Wei S. Population identification and genetic diversity analysis of Fritillaria ussuriensis (Fritillaria) based on chloroplast genes atpF and petB. J Appl Genet 2024; 65:453-462. [PMID: 38684618 DOI: 10.1007/s13353-024-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The chloroplast genomes of five Fritillaria ussuriensis materials from different production areas were comparatively analyzed, atpF and petB were screened as specific DNA barcodes, and the population identification and genetic diversity of F. ussuriensis were analyzed based on them. The F. ussuriensis chloroplast genome showed a total length of 151 515-151 548 bp with a typical tetrad structure and encoded 130 genes. atpF and petB were used to amplify 183 samples from 13 populations, and they could identify 6 and 9 haplotypes, respectively. Joint analysis of the two sequences revealed 18 haplotypes, named H1-H18, with the most widely distributed and most abundant being H4. Ten haplotypes were unique for 7 populations that they could be used to distinguish from others. Haplotype diversity and nucleotide diversity were 0.99 and 2.09 × 10-3, respectively, indicating the genetic diversity was relatively rich. The results of the intermediary adjacency network showed that H5 was the oldest haplotype, and stellate radiation was centered around it, indicating that population expansion occurred in genuine production areas. This study lays a theoretical foundation for the population identification, genetic evolution, and breed selection of F. ussuriensis.
Collapse
Affiliation(s)
- Xin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Zhifei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yue Shi
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 102488, People's Republic of China
| | - Jinhui Man
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yuying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xiaoqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Shanhu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Gaojie He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Kelu An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Laha Amu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Wenqin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Ziqi Liu
- Heilongjiang BCT Chinese Traditional Medicine Co.Ltd, Heilongjiang, 150600, People's Republic of China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine,, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
- Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 102488, People's Republic of China.
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
- Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 102488, People's Republic of China.
| |
Collapse
|
22
|
Segoli M, Kishinevsky M, Harvey JA. Climate change, temperature extremes, and impacts on hyperparasitoids. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101229. [PMID: 38944274 DOI: 10.1016/j.cois.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Anthropogenic climate change, including temperature extremes, is having a major impact on insect physiology, phenology, behavior, populations, and communities. Hyperparasitoids (insects whose offspring develop in, or on, the body of a primary parasitoid host) are expected to be especially impacted by such effects due to their typical life history traits (e.g. low fecundity and slow development), small populations (being high on the food chain), and cascading effects mediated via lower trophic levels. We review evidence for direct and indirect temperature and climate-related effects mediated via plants, herbivores, and the primary parasitoid host species on hyperparasitoid populations, focusing on higher temperatures. We discuss how hyperparasitoid responses may feed back to the community and affect biological control programs. We conclude that despite their great importance, very little is known about the potential effects of climate change on hyperparasitoids and make a plea for additional studies exploring such responses.
Collapse
Affiliation(s)
- Michal Segoli
- The Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, SIDEER, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Israel.
| | - Miriam Kishinevsky
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey A Harvey
- Netherlands Institute of Ecology, Wageningen, the Netherlands; Department of Ecological Sciences- Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Sgambelluri LR, Jarvis JC, Kamel SJ. Multiple paternity, fertilization success, and male quality: Mating system variation in the eelgrass, Zostera marina. Ecol Evol 2024; 14:e11608. [PMID: 38919644 PMCID: PMC11197038 DOI: 10.1002/ece3.11608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Genetic diversity can modulate a population's response to a changing environment and plays a critical role in its ecological function. While multiple processes act to maintain genetic diversity, sexual reproduction remains the primary driving force. Eelgrass (Zostera marina) is an important habitat-forming species found in temperate coastal ecosystems across the globe. Recent increases in sea surface temperatures have resulted in shifts to a mixed-annual life-history strategy (i.e., displaying characteristics of both annual and perennial meadows) at its southern edge-of-range. Given that mating systems are intimately linked to standing levels of genetic variation, understanding the scope of sexual reproduction can illuminate the processes that shape genetic diversity. To characterize edge-of-range eelgrass mating systems, developing seeds on flowering Z. marina shoots were genotyped from three meadows in Topsail, North Carolina. In all meadows, levels of multiple mating were high, with shoots pollinated by an average of eight sires (range: 3-16). The number of fertilized seeds (i.e., reproductive success) varied significantly across sires (range: 1-25) and was positively correlated with both individual heterozygosity and self-fertilization. Outcrossing rates were high (approx. 70%) and varied across spathes. No clones were detected, and kinship among sampled flowering shoots was low, supporting observed patterns of reproductive output. Given the role that genetic diversity plays in enhancing resistance to and resilience from ecological disturbance, disentangling the links between life history, sexual reproduction, and genetic variation will aid in informing the management and conservation of this key foundation species.
Collapse
Affiliation(s)
- Lauren R. Sgambelluri
- Department of Biology and Marine Biology, Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Jessie C. Jarvis
- Department of Biology and Marine Biology, Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Stephanie J. Kamel
- Department of Biology and Marine Biology, Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| |
Collapse
|
24
|
Tomas F, Hernan G, Mañez-Crespo J, Arona A, Meléndez DH, Reynés X, Delgado J, Procaccini G, Ballesteros E. Mass flowering and unprecedented extended pseudovivipary in seagrass (Posidonia oceanica) after a Marine Heat Wave. MARINE POLLUTION BULLETIN 2024; 203:116394. [PMID: 38705001 DOI: 10.1016/j.marpolbul.2024.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Seagrasses are marine flowering plants that create critical coastal ecosystems and are threatened by warming. Clonal expansion is generally the dominant strategy for meadow recovery, while sexual reproduction strongly differs among species (e.g., monoecious and diecious species, some creating seed banks, viviparous seedlings). In 2022, the Western Mediterranean underwent unprecedented warming, and, associated with it, we observed flowering (100 %) across 11 Posidonia oceanica meadows in Mallorca, Balearic Islands. Furthermore, 64 % of the sites also exhibited pseudovivipary, an extremely rare phenomenon in angiosperms whereby plantlets replace sexual reproductive structures, producing clones of the maternal plant. Our results support the notion that P. oceanica flowering and pseudovivipary (genetically confirmed) are triggered by warming, never before being pseudovivipary reported across multiple sites in a marine plant. Considering the negative impacts that warming can have on seagrasses, existence of widespread pseudovivipary is a critical aspect to consider for understanding mechanisms of resilience in seagrasses.
Collapse
Affiliation(s)
- Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), CSIC-UIB, Esporles, Balearic Islands, Spain.
| | - Gema Hernan
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), CSIC-UIB, Esporles, Balearic Islands, Spain
| | - Julia Mañez-Crespo
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), CSIC-UIB, Esporles, Balearic Islands, Spain
| | - Andrés Arona
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), CSIC-UIB, Esporles, Balearic Islands, Spain
| | | | - Xesca Reynés
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), CSIC-UIB, Esporles, Balearic Islands, Spain
| | | | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | | |
Collapse
|
25
|
Hatton IA, Mazzarisi O, Altieri A, Smerlak M. Diversity begets stability: Sublinear growth and competitive coexistence across ecosystems. Science 2024; 383:eadg8488. [PMID: 38484074 DOI: 10.1126/science.adg8488] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
The worldwide loss of species diversity brings urgency to understanding how diverse ecosystems maintain stability. Whereas early ecological ideas and classic observations suggested that stability increases with diversity, ecological theory makes the opposite prediction, leading to the long-standing "diversity-stability debate." Here, we show that this puzzle can be resolved if growth scales as a sublinear power law with biomass (exponent <1), exhibiting a form of population self-regulation analogous to models of individual ontogeny. We show that competitive interactions among populations with sublinear growth do not lead to exclusion, as occurs with logistic growth, but instead promote stability at higher diversity. Our model realigns theory with classic observations and predicts large-scale macroecological patterns. However, it makes an unsettling prediction: Biodiversity loss may accelerate the destabilization of ecosystems.
Collapse
Affiliation(s)
- Ian A Hatton
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada
| | - Onofrio Mazzarisi
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
- The Abdus Salam International Centre for Theoretical Physics (ICTP), 34014 Trieste, Italy
- National Institute of Oceanography and Applied Geophysics (OGS), 34014 Trieste, Italy
| | - Ada Altieri
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité CNRS, 75013 Paris, France
| | - Matteo Smerlak
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Laboratoire de Biophysique et Evolution, UMR 8231 CBI, ESPCI Paris, PSL Research University, 75005 Paris, France
- Capital Fund Management, 75007 Paris, France
| |
Collapse
|
26
|
Koontz AC, Schumacher EK, Spence ES, Hoban SM. Ex situ conservation of two rare oak species using microsatellite and SNP markers. Evol Appl 2024; 17:e13650. [PMID: 38524684 PMCID: PMC10960078 DOI: 10.1111/eva.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Plant collections held by botanic gardens and arboreta are key components of ex situ conservation. Maintaining genetic diversity in such collections allows them to be used as resources for supplementing wild populations. However, most recommended minimum sample sizes for sufficient ex situ genetic diversity are based on microsatellite markers, and it remains unknown whether these sample sizes remain valid in light of more recently developed next-generation sequencing (NGS) approaches. To address this knowledge gap, we examine how ex situ conservation status and sampling recommendations differ when derived from microsatellites and single nucleotide polymorphisms (SNPs) in garden and wild samples of two threatened oak species. For Quercus acerifolia, SNPs show lower ex situ representation of wild allelic diversity and slightly lower minimum sample size estimates than microsatellites, while results for each marker are largely similar for Q. boyntonii. The application of missing data filters tends to lead to higher ex situ representation, while the impact of different SNP calling approaches is dependent on the species being analyzed. Measures of population differentiation within species are broadly similar between markers, but larger numbers of SNP loci allow for greater resolution of population structure and clearer assignment of ex situ individuals to wild source populations. Our results offer guidance for future ex situ conservation assessments utilizing SNP data, such as the application of missing data filters and the usage of a reference genome, and illustrate that both microsatellites and SNPs remain viable options for botanic gardens and arboreta seeking to ensure the genetic diversity of their collections.
Collapse
Affiliation(s)
| | | | - Emma S. Spence
- Morton ArboretumCenter for Tree ScienceLisleIllinoisUSA
- Cornell UniversityDepartment of Public and Ecosystem HealthIthacaNew YorkUSA
| | - Sean M. Hoban
- Morton ArboretumCenter for Tree ScienceLisleIllinoisUSA
| |
Collapse
|
27
|
Gangoso L, Viana DS, Merchán M, Figuerola J. A new trophic specialization buffers a top predator against climate-driven resource instability. Behav Ecol 2024; 35:arae005. [PMID: 38287939 PMCID: PMC10824164 DOI: 10.1093/beheco/arae005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Intraspecific phenotypic variability is key to respond to environmental changes and anomalies. However, documenting the emergence of behavioral diversification in natural populations has remained elusive due to the difficulty of observing such a phenomenon at the right time and place. Here, we investigated how the emergence of a new trophic strategy in a population subjected to high fluctuations in the availability of its main trophic resource (migrating songbirds) affected the breeding performance, population structure, and population fitness of a specialized color polymorphic predator, the Eleonora's falcon from the Canary Islands. Using long-term data (2007-2022), we found that the exploitation of an alternative prey (a local petrel species) was associated with the growth of a previously residual falcon colony. Pairs in this colony laid earlier and raised more fledglings than in the other established colonies. The specialization on petrels increased over time, independently of annual fluctuations in prey availability. Importantly, however, the positive effect of petrel consumption on productivity was stronger in years with lower food availability. This trophic diversification was further associated with the genetically determined color morph, with dark individuals preying more frequently on petrels than pale ones, which might promote the long-term maintenance of genotypic and phenotypic diversity. We empirically demonstrate how the emergence of an alternative trophic strategy can buffer populations against harsh environmental fluctuations by stabilizing their productivity.
Collapse
Affiliation(s)
- Laura Gangoso
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, C/Antonio Novais 12, 28040, Madrid, Spain
| | - Duarte S Viana
- Estación Biológica de Doñana, CSIC, C/Américo Vespucio 26, 41092, Sevilla, Spain
| | - Marina Merchán
- Estación Biológica de Doñana, CSIC, C/Américo Vespucio 26, 41092, Sevilla, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana, CSIC, C/Américo Vespucio 26, 41092, Sevilla, Spain
| |
Collapse
|
28
|
Cheng C, Liu Z, Zhang Q, Tian X, Ju R, Li B, van Kleunen M, Chase JM, Wu J. Genotype diversity enhances invasion resistance of native plants via soil biotic feedbacks. Ecol Lett 2024; 27:e14384. [PMID: 38426584 DOI: 10.1111/ele.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Although native species diversity is frequently reported to enhance invasion resistance, within-species diversity of native plants can also moderate invasions. While the positive diversity-invasion resistance relationship is often attributed to competition, indirect effects mediated through plant-soil feedbacks can also influence the relationship. We manipulated the genotypic diversity of an endemic species, Scirpus mariqueter, and evaluated the effects of abiotic versus biotic feedbacks on the performance of a global invader, Spartina alterniflora. We found that invader performance on live soils decreased non-additively with genotypic diversity of the native plant that trained the soils, but this reversed when soils were sterilized to eliminate feedbacks through soil biota. The influence of soil biota on the feedback was primarily associated with increased levels of microbial biomass and fungal diversity in soils trained by multiple-genotype populations. Our findings highlight the importance of plant-soil feedbacks mediating the positive relationship between genotypic diversity and invasion resistance.
Collapse
Affiliation(s)
- Cai Cheng
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Zekang Liu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Qun Zhang
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
| | - Xing Tian
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ruiting Ju
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Cozzolino L, Nicastro KR, Hubbard PC, Seuront L, McQuaid CD, Zardi GI. Intraspecific genetic lineages of a marine mussel show behavioural divergence when exposed to microplastic leachates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122779. [PMID: 37863252 DOI: 10.1016/j.envpol.2023.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Worldwide, microplastic pollution has numerous negative implications for marine biota, exacerbating the effects of other forms of global anthropogenic disturbance. Mounting evidence shows that microplastics (MPs) not only cause physical damage through their ingestion, but also act as vectors for hazardous compounds by leaching absorbed and adsorbed chemicals. Research on the effects of plastic pollution has, however, largely assumed that species respond uniformly, while ignoring intraspecific diversity (i.e., variation within a single species). We investigated the effects of plastic leachates derived from factory-fresh (virgin) and beached microplastics on the behavioural responses of two genetic lineages of the Mediterranean mussel Mytilus galloprovincialis. Through laboratory behavioural experiments, we found that during exposure to leachates from beached microplastics (beached MPLs), Atlantic specimens moved significantly less than Mediterranean individuals in terms of both (i) proportion of individuals responding through movement and (ii) net and gross distances crawled. In contrast, no significant intraspecific differences were observed in the behaviour of either adults or recruits when exposed to MPLs from virgin microplastics (virgin MPLs). Additionally, the reception of cues from three amino acids (L-cysteine, proline and L-leucine) at increasing concentrations (10-5 M to 10-3 M in charcoal-filtered seawater) was tested by electrophysiological analysis using mussels exposed to beached MPLs or control seawater. We found significant intraspecific differences in response to 10-3 M L-cysteine (regardless of treatment) and 10-4 M L-cysteine (in mussels exposed to beached MPLs) and to 10-3 M proline (in mussels exposed to beached MPLs) and 10-5 M L-leucine. Our study suggests that intraspecific variation in a marine mussel may prompt different responses to plastic pollution, potentially triggered by local adaptation and physiological variability between lineages. Our work highlights the importance of assessing the effects of intraspecific variation, especially in environmental sentinel species as this level of diversity could modulate responses to plastic pollution.
Collapse
Affiliation(s)
- Lorenzo Cozzolino
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| | - Katy R Nicastro
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Peter C Hubbard
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108- 8477, Japan
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Gerardo I Zardi
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France
| |
Collapse
|
30
|
Novak AB, Plaisted HK, Hughes ZJ, Mittermayr A, Molden E. Eelgrass (Zostera marina L.) populations are threatened by high sea-surface temperatures and impaired waters on Nantucket Island, USA. MARINE POLLUTION BULLETIN 2023; 197:115689. [PMID: 37951120 DOI: 10.1016/j.marpolbul.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Eelgrass (Zostera marina L.) is a key foundation species that provides multiple ecosystem services to shallow coastal and estuarine systems in the Northern Hemisphere. It is estimated that, over the last century, up to 50 % of all Z. marina habitat has been lost along the east coast of the USA due to factors including light reduction, eutrophication, and physical disturbance. Warming sea surface temperatures are also believed to be exacerbating losses and the future of this ecosystem is unclear. Here, we assess Z. marina meadows on Nantucket, an island system located 50 km off-shore of Massachusetts, by using common indicators of seagrass plant health and environmental quality. Our results show that Z. marina meadows on Nantucket Island are thermally stressed and light-limited during parts of their peak growing season. This suggests that sea-surface temperatures are a pivotal factor, along with cultural eutrophication, in observed large-scale losses of Z. marina and that further degradation could be expected in the future as the climate continues to warm. Methods from this study may be used by managers as a guide to assess seagrass ecosystem status in degrading systems.
Collapse
Affiliation(s)
- A B Novak
- Boston University, Earth and Environment, Boston, MA, United States of America.
| | - H K Plaisted
- US National Park Service, Northeast Coastal and Barrier Network, Wellfleet, MA, United States of America
| | - Z J Hughes
- US National Park Service, Northeast Coastal and Barrier Network, Wellfleet, MA, United States of America
| | - A Mittermayr
- Center for Coastal Studies, Provincetown, MA, United States of America
| | - E Molden
- Nantucket Land Council, Nantucket, MA, United States of America
| |
Collapse
|
31
|
Ngeve MN, Engelhardt KAM, Gray M, Neel MC. Calm after the storm? Similar patterns of genetic variation in a riverine foundation species before and after severe disturbance. Ecol Evol 2023; 13:e10670. [PMID: 37920773 PMCID: PMC10618894 DOI: 10.1002/ece3.10670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
In summer 2011, Tropical storms Lee and Irene caused an estimated 90% decline of the submersed aquatic plant Vallisneria americana Michx. (Hydrocharitaceae) in the Hudson River of New York (USA). To understand the genetic impact of such large-scale demographic losses, we compared diversity at 10 microsatellite loci in 135 samples collected from five sites just before the storms with 239 shoots collected from nine sites 4 years after. Although 80% of beds sampled in 2011 lacked V. americana in 2015, we found similar genotypic and genetic diversity and effective population sizes in pre-storm versus post-storm sites. These similarities suggest that despite local extirpations concentrated at the upstream end of the sampling area, V. americana was regionally resistant to genetic losses. Similar geographically based structure among sites in both sampling periods suggested that cryptic local refugia at previously occupied sites facilitated re-expansion after the storms. However, this apparent resistance to disturbance may lead to a false sense of security. Low effective population sizes and high clonality in both time periods suggest that V. americana beds were already small and had high frequency of asexual reproduction before the storms. Dispersal was not sufficient to recolonize more isolated sites that had been extirpated. Chronic low diversity and reliance on asexual reproduction for persistence can be risky when more frequent and intense storms are paired with ongoing anthropogenic stressors. Monitoring genetic diversity along with extent and abundance of V. americana will give a more complete picture of long-term potential for resilience.
Collapse
Affiliation(s)
- Magdalene N. Ngeve
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | | | - Michelle Gray
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Maile C. Neel
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
32
|
Martínez-Calvo A, Trenado-Yuste C, Lee H, Gore J, Wingreen NS, Datta SS. Interfacial morphodynamics of proliferating microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563665. [PMID: 37961366 PMCID: PMC10634769 DOI: 10.1101/2023.10.23.563665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains-which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems.
Collapse
|
33
|
Thomasdotter A, Shum P, Mugnai F, Vingiani M, Dubut V, Marschal F, Abbiati M, Chenuil A, Costantini F. Spineless and overlooked: DNA metabarcoding of autonomous reef monitoring structures reveals intra- and interspecific genetic diversity in Mediterranean invertebrates. Mol Ecol Resour 2023; 23:1689-1705. [PMID: 37452608 DOI: 10.1111/1755-0998.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ability to gather genetic information using DNA metabarcoding of bulk samples obtained directly from the environment is crucial to determine biodiversity baselines and understand population dynamics in the marine realm. While DNA metabarcoding is effective in evaluating biodiversity at community level, genetic patterns within species are often concealed in metabarcoding studies and overlooked for marine invertebrates. In the present study, we implement recently developed bioinformatics tools to investigate intraspecific genetic variability for invertebrate taxa in the Mediterranean Sea. Using metabarcoding samples from Autonomous Reef Monitoring Structures (ARMS) deployed in three locations, we present haplotypes and diversity estimates for 145 unique species. While overall genetic diversity was low, we identified several species with high diversity records and potential cryptic lineages. Further, we emphasize the spatial scale of genetic variability, which was observed from locations to individual sampling units (ARMS). We carried out a population genetic analysis of several important yet understudied species, which highlights the current knowledge gap concerning intraspecific genetic patterns for the target taxa in the Mediterranean basin. Our approach considerably enhances biodiversity monitoring of charismatic and understudied Mediterranean species, which can be incorporated into ARMS surveys.
Collapse
Affiliation(s)
- Anna Thomasdotter
- County Administrative Board of Västerbotten, Umeå, Sweden
- Department of Biological, Geological and Environmental Sciences, University of Bologna, UOS Ravenna, Ravenna, Italy
| | - Peter Shum
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Francesco Mugnai
- Department of Biological, Geological and Environmental Sciences, University of Bologna, UOS Ravenna, Ravenna, Italy
| | - Marina Vingiani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, UOS Ravenna, Ravenna, Italy
- National Research Council, Institute of Marine Sciences, CNR-ISMAR, Venice, Italy
| | - Vincent Dubut
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Florent Marschal
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Marco Abbiati
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- National Interuniversity Consortium for Marine Sciences (CoNISMa), Rome, Italy
- Interdepartmental Research Center for Environmental Sciences (CIRSA), Ravenna, Italy
- Institute of Marine Sciences, National Research Council (CNR-ISMAR), Bologna, Italy
| | - Anne Chenuil
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Federica Costantini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, UOS Ravenna, Ravenna, Italy
- National Interuniversity Consortium for Marine Sciences (CoNISMa), Rome, Italy
- Interdepartmental Research Center for Environmental Sciences (CIRSA), Ravenna, Italy
| |
Collapse
|
34
|
Chiba S, Iwamoto A, Shimabukuro S, Matsumoto H, Inoue K. Mechanisms that can cause population decline under heavily skewed male-biased adult sex ratios. J Anim Ecol 2023; 92:1893-1903. [PMID: 37434418 DOI: 10.1111/1365-2656.13980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/02/2023] [Indexed: 07/13/2023]
Abstract
While adult sex ratio (ASR) is a crucial component for population management, there is still a limited understanding of how its fluctuation affects population dynamics. To demonstrate mechanisms that hinder population growth under a biased ASR, we examined changes in reproductive success with ASR using a decapod crustacean exposed to female-selective harvesting. We examined the effect of ASR on the spawning success of females. A laboratory experiment showed that the number of eggs carried by females decreased as the proportion of males in the mating groups increased. Although the same result was not observed in data collected over 25 years in the wild, the negative effect of ASR was suggested when success in carrying eggs was considered as a spawning success. These results indicate that a surplus of males results in females failing to carry eggs, probably due to sexual coercion, and the negative effect of ASR can be detected at the population level only when the bias increases because failure in spawning success occurs in part of population. We experimentally examined how male-biased sex ratios affected the maintenance of genetic diversity in a population. The diversity of paternity in a clutch increased with the number of candidate fathers. However, over 50% of a clutch was fertilised by a single male regardless of the sex ratio, and the degree of diversity was less than half of the highest diversity expected in each mating group. We also experimentally examined the mating ability of males during the breeding season. The experiment showed that multiple mating by males could not compensate for the risk that their genotypes would be lost when multiple males competed for one female. These results suggest that a male-biased ASR could trigger a decline of genetic diversity in a population. We show that ASR skewed by female-selective harvesting decreases reproductive success not only of males that have few mating opportunities but also of females. We discuss that we may still underestimate the significance of ASR on population persistence due to the difficulty of revealing the effect of ASR.
Collapse
Affiliation(s)
- Susumu Chiba
- Graduate School of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
- Department of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Aya Iwamoto
- Department of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Seina Shimabukuro
- Department of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Hiroyuki Matsumoto
- Graduate School of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Karin Inoue
- Graduate School of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| |
Collapse
|
35
|
Sanderson S, Bolnick DI, Kinnison MT, O'Dea RE, Gorné LD, Hendry AP, Gotanda KM. Contemporary changes in phenotypic variation, and the potential consequences for eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S127-S139. [PMID: 37840026 DOI: 10.1111/ele.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/17/2023]
Abstract
Most studies assessing rates of phenotypic change focus on population mean trait values, whereas a largely overlooked additional component is changes in population trait variation. Theoretically, eco-evolutionary dynamics mediated by such changes in trait variation could be as important as those mediated by changes in trait means. To date, however, no study has comprehensively summarised how phenotypic variation is changing in contemporary populations. Here, we explore four questions using a large database: How do changes in trait variances compare to changes in trait means? Do different human disturbances have different effects on trait variance? Do different trait types have different effects on changes in trait variance? Do studies that established a genetic basis for trait change show different patterns from those that did not? We find that changes in variation are typically small; yet we also see some very large changes associated with particular disturbances or trait types. We close by interpreting and discussing the implications of our findings in the context of eco-evolutionary studies.
Collapse
Affiliation(s)
- Sarah Sanderson
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
| | - Daniel I Bolnick
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael T Kinnison
- School of Biology and Ecology and Maine Center for Genetics in the Environment, University of Maine, Orono, Maine, USA
| | | | - Lucas D Gorné
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
- Department of Biological Sciences, Brock University, St. Catharine's, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrew P Hendry
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
| | - Kiyoko M Gotanda
- Department of Biological Sciences, Brock University, St. Catharine's, Ontario, Canada
| |
Collapse
|
36
|
Crandall ED, Toczydlowski RH, Liggins L, Holmes AE, Ghoojaei M, Gaither MR, Wham BE, Pritt AL, Noble C, Anderson TJ, Barton RL, Berg JT, Beskid SG, Delgado A, Farrell E, Himmelsbach N, Queeno SR, Trinh T, Weyand C, Bentley A, Deck J, Riginos C, Bradburd GS, Toonen RJ. Importance of timely metadata curation to the global surveillance of genetic diversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14061. [PMID: 36704891 PMCID: PMC10751740 DOI: 10.1111/cobi.14061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 05/18/2023]
Abstract
Genetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome-scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data-sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever.
Collapse
Affiliation(s)
- Eric D Crandall
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rachel H Toczydlowski
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Libby Liggins
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Ann E Holmes
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Maryam Ghoojaei
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Michelle R Gaither
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Briana E Wham
- Department of Research Informatics and Publishing, The Pennsylvania State University Libraries, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrea L Pritt
- Madlyn L. Hanes Library, The Pennsylvania State University Libraries, Pennsylvania State University, Middletown, Pennsylvania, USA
| | - Cory Noble
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tanner J Anderson
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Randi L Barton
- Department of Marine Science, California State University Monterey Bay, Seaside, California, USA
- Moss Landing Marine Laboratories, Moss Landing, California, USA
| | - Justin T Berg
- UOG Marine Laboratory, University of Guam, Mangilao, Guam
| | - Sofia G Beskid
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Alonso Delgado
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - Emily Farrell
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Nan Himmelsbach
- Department of Natural Science, Hawai'i Pacific University, Honolulu, Hawaii, USA
| | - Samantha R Queeno
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Thienthanh Trinh
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Courtney Weyand
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Andrew Bentley
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - John Deck
- Berkeley Natural History Museums, University of California, Berkeley, Berkeley, California, USA
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gideon S Bradburd
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, Hawaii, USA
| |
Collapse
|
37
|
Blanchet S, Fargeot L, Raffard A. Phylogenetically-conserved candidate genes unify biodiversity-ecosystem function relationships and eco-evolutionary dynamics across biological scales. Mol Ecol 2023; 32:4467-4481. [PMID: 37296539 DOI: 10.1111/mec.17043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The intra- and interspecific facets of biodiversity have traditionally been analysed separately, limiting our understanding of how evolution has shaped biodiversity, how biodiversity (as a whole) alters ecological dynamics and hence eco-evolutionary feedbacks at the community scale. Here, we propose using candidate genes phylogenetically-conserved across species and sustaining functional traits as an inclusive biodiversity unit transcending the intra- and interspecific boundaries. This framework merges knowledge from functional genomics and functional ecology, and we first provide guidelines and a concrete example for identifying phylogenetically-conserved candidate genes (PCCGs) within communities and for measuring biodiversity from PCCGs. We then explain how biodiversity measured at PCCGs can be linked to ecosystem functions, which unifies recent observations that both intra- and interspecific biodiversity are important for ecosystem functions. We then highlight the eco-evolutionary processes shaping PCCG diversity patterns and argue that their respective role can be inferred from concepts derived from population genetics. Finally, we explain how PCCGs may shift the field of eco-evolutionary dynamics from a focal-species approach to a more realistic focal-community approach. This framework provides a novel perspective to investigate the global ecosystem consequences of diversity loss across biological scales, and how these ecological changes further alter biodiversity evolution.
Collapse
Affiliation(s)
- Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, UAR2029, Moulis, France
| | - Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, UAR2029, Moulis, France
| | - Allan Raffard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
38
|
Prunier JG, Chevalier M, Raffard A, Loot G, Poulet N, Blanchet S. Genetic erosion reduces biomass temporal stability in wild fish populations. Nat Commun 2023; 14:4362. [PMID: 37474616 PMCID: PMC10359329 DOI: 10.1038/s41467-023-40104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Genetic diversity sustains species adaptation. However, it may also support key ecosystems functions and services, for example biomass production, that can be altered by the worldwide loss of genetic diversity. Despite extensive experimental evidence, there have been few attempts to empirically test whether genetic diversity actually promotes biomass and biomass stability in wild populations. Here, using long-term demographic wild fish data from two large river basins in southwestern France, we demonstrate through causal modeling analyses that populations with high genetic diversity do not reach higher biomasses than populations with low genetic diversity. Nonetheless, populations with high genetic diversity have much more stable biomasses over recent decades than populations having suffered from genetic erosion, which has implications for the provision of ecosystem services and the risk of population extinction. Our results strengthen the importance of adopting prominent environmental policies to conserve this important biodiversity facet.
Collapse
Affiliation(s)
- Jérôme G Prunier
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200, Moulis, France.
| | - Mathieu Chevalier
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland
- Ifremer, DYNECO, F-29280, Plouzané, France
| | - Allan Raffard
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200, Moulis, France
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Géraldine Loot
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, cedex, 4, France
| | - Nicolas Poulet
- Pôle écohydraulique AFB-IMT, allée du Pr Camille Soula, 31400, Toulouse, France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200, Moulis, France.
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, cedex, 4, France.
| |
Collapse
|
39
|
Carluccio G, Greco D, Sabella E, Vergine M, De Bellis L, Luvisi A. Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens 2023; 12:825. [PMID: 37375515 DOI: 10.3390/pathogens12060825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The maintenance of an intact water column in the xylem lumen several meters above the ground is essential for woody plant viability. In fact, abiotic and biotic factors can lead to the formation of emboli in the xylem, interrupting sap flow and causing consequences on the health status of the plant. Anyway, the tendency of plants to develop emboli depends on the intrinsic features of the xylem, while the cyto-histological structure of the xylem plays a role in resistance to vascular pathogens, as in the case of the pathogenic bacterium Xylella fastidiosa. Analysis of the scientific literature suggests that on grapevine and olive, some xylem features can determine plant tolerance to vascular pathogens. However, the same trend was not reported in citrus, indicating that X. fastidiosa interactions with host plants differ by species. Unfortunately, studies in this area are still limited, with few explaining inter-cultivar insights. Thus, in a global context seriously threatened by X. fastidiosa, a deeper understanding of the relationship between the physical and mechanical characteristics of the xylem and resistance to stresses can be useful for selecting cultivars that may be more resistant to environmental changes, such as drought and vascular pathogens, as a way to preserve agricultural productions and ecosystems.
Collapse
Affiliation(s)
- Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
40
|
Tavares AI, Assis J, Larkin PD, Creed JC, Magalhães K, Horta P, Engelen A, Cardoso N, Barbosa C, Pontes S, Regalla A, Almada C, Ferreira R, Abdoul BM, Ebaye S, Bourweiss M, Dos Santos CVD, Patrício AR, Teodósio A, Santos R, Pearson GA, Serrao EA. Long range gene flow beyond predictions from oceanographic transport in a tropical marine foundation species. Sci Rep 2023; 13:9112. [PMID: 37277448 DOI: 10.1038/s41598-023-36367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
The transport of passively dispersed organisms across tropical margins remains poorly understood. Hypotheses of oceanographic transportation potential lack testing with large scale empirical data. To address this gap, we used the seagrass species, Halodule wrightii, which is unique in spanning the entire tropical Atlantic. We tested the hypothesis that genetic differentiation estimated across its large-scale biogeographic range can be predicted by simulated oceanographic transport. The alternative hypothesis posits that dispersal is independent of ocean currents, such as transport by grazers. We compared empirical genetic estimates and modelled predictions of dispersal along the distribution of H. wrightii. We genotyped eight microsatellite loci on 19 populations distributed across Atlantic Africa, Gulf of Mexico, Caribbean, Brazil and developed a biophysical model with high-resolution ocean currents. Genetic data revealed low gene flow and highest differentiation between (1) the Gulf of Mexico and two other regions: (2) Caribbean-Brazil and (3) Atlantic Africa. These two were more genetically similar despite separation by an ocean. The biophysical model indicated low or no probability of passive dispersal among populations and did not match the empirical genetic data. The results support the alternative hypothesis of a role for active dispersal vectors like grazers.
Collapse
Affiliation(s)
- Ana I Tavares
- Center of Marine Sciences (CCMAR-CIMAR), Universidade do Algarve, Faro, Portugal.
| | - Jorge Assis
- Center of Marine Sciences (CCMAR-CIMAR), Universidade do Algarve, Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, Postboks 1490, 8049, Bodø, Norway
| | | | - Joel C Creed
- Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karine Magalhães
- Área de Ecologia, Departamento de Biologia, Universidade Federal Rural de Pernambuco, R. Dom Manoel de Medeiros, s/n-Dois Irmãos, Recife, PE, CEP 52171-900, Brazil
| | - Paulo Horta
- Laboratório de Ficologia, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Aschwin Engelen
- Center of Marine Sciences (CCMAR-CIMAR), Universidade do Algarve, Faro, Portugal
- CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao, The Netherlands
| | - Noelo Cardoso
- CIPA, Centro de Investigação Pesqueira Aplicada, Bissau, Guinea-Bissau
| | - Castro Barbosa
- IBAP-Instituto da Biodiversidade e Áreas Protegidas, Bissau, Guinea-Bissau
| | - Samuel Pontes
- IBAP-Instituto da Biodiversidade e Áreas Protegidas, Bissau, Guinea-Bissau
| | - Aissa Regalla
- IBAP-Instituto da Biodiversidade e Áreas Protegidas, Bissau, Guinea-Bissau
| | - Carmen Almada
- Faculdade de Ciências e Tecnologia, Universidade de Cabo Verde, Praia, Cabo Verde
| | - Rogério Ferreira
- Center of Marine Sciences (CCMAR-CIMAR), Universidade do Algarve, Faro, Portugal
- Dragões do Mar, Nova Estrela, Ilha do Príncipe, São Tomé and Príncipe
| | | | - Sidina Ebaye
- Parc Nationale du Banc d'Arguin (PNBA), Chami, Mauritania
| | - Mohammed Bourweiss
- Institut Mauritanien de Recherche Oceanographique et des Peches (IMROP), Nouadhibou, Mauritania
| | | | - Ana R Patrício
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon, Portugal
- Centre for Ecology and Conservation, University of Exete, Penryn, UK
| | - Alexandra Teodósio
- Center of Marine Sciences (CCMAR-CIMAR), Universidade do Algarve, Faro, Portugal
| | - Rui Santos
- Center of Marine Sciences (CCMAR-CIMAR), Universidade do Algarve, Faro, Portugal
| | - Gareth A Pearson
- Center of Marine Sciences (CCMAR-CIMAR), Universidade do Algarve, Faro, Portugal
| | - Ester A Serrao
- Center of Marine Sciences (CCMAR-CIMAR), Universidade do Algarve, Faro, Portugal
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal
| |
Collapse
|
41
|
Rothäusler E, Carbone CPS, López BA, Tala F. Heterozostera nigricaulis from the south-East Pacific coast of Chile: First insights into its physiology and growth. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105996. [PMID: 37104877 DOI: 10.1016/j.marenvres.2023.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 06/11/2023]
Abstract
A short stretch (27°S and 30°S) along the coast of Chile is habitat for the seagrass Heterozostera nigricaulis. The seagrass is classified as endangered and grows only clonally, but there are no data on its physiology and growth. However, this information is important to gain insights into its acclimation potential and how disturbances may affect them. We therefore studied H. nigricaulis at 27° and 30°S, and determined their growth and physiology among seasons and depths over one year. Biomass was higher at 27° than at 30°S, and was always higher in summer than in autumn and winter. Increased photosynthesis supported growth in summer, and in winter carbonic anhydrase activity was in place to maintain these evergreen meadows. Our results suggest that these seagrass meadows are adapted to local conditions, which, together with their asexual reproduction, could make them more vulnerable to disturbance. Therefore, our results serve as a basis for future studies on seagrass growth dynamics, and are important for protection and management plans.
Collapse
Affiliation(s)
- Eva Rothäusler
- Centro de Investigaciones Costeras, Universidad de Atacama (CIC - UDA), Avenida Copayapu 485, Copiapó, Atacama, Chile.
| | - Clementina Paz-Soldan Carbone
- Departamento de Biología Marina, Universidad Católica Del Norte, Larrondo 1281, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias Del Mar, Universidad Católica Del Norte, Larrondo 1281, Coquimbo, Chile.
| | - Boris A López
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Av. Fuchslocher 1305, Osorno, Chile.
| | - Fadia Tala
- Departamento de Biología Marina, Universidad Católica Del Norte, Larrondo 1281, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias Del Mar, Universidad Católica Del Norte, Larrondo 1281, Coquimbo, Chile; Instituto Milenio en Socio-Ecología Costera, SECOS, Santiago, Chile.
| |
Collapse
|
42
|
Rosser NL, Quinton A, Davey H, Ayre DJ, Denham AJ. Genetic assessment of the value of restoration planting within an endangered eucalypt woodland. Sci Rep 2023; 13:6583. [PMID: 37085553 PMCID: PMC10121665 DOI: 10.1038/s41598-023-33720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
Assessment of woodland restoration often focusses on stand demographics, but genetic factors likely influence long-term stand viability. We examined the genetic composition of Yellow Box (Eucalyptus melliodora) trees in endangered Box-Gum Grassy Woodland in SE Australia, some 30 years after planting with seeds of reportedly local provenance. Using DArT sequencing for 1406 SNPs, we compared genetic diversity and population structure of planted E. melliodora trees with remnant bushland trees, paddock trees and natural recruits. Genetic patterns imply that natural stands and paddock trees had historically high gene flow (among group pairwise FST = 0.04-0.10). Genetic diversity was highest among relictual paddock trees (He = 0.17), while diversity of revegetated trees was identical to natural bushland trees (He = 0.14). Bayesian clustering placed the revegetated trees into six genetic groups with four corresponding to genotypes from paddock trees, indicating that revegetated stands are mainly of genetically diverse, local provenance. Natural recruits were largely derived from paddock trees with some contribution from planted trees. A few trees have likely hybridised with other local eucalypt species which are unlikely to compromise stand integrity. We show that paddock trees have high genetic diversity and capture historic genetic variety and provide important foci for natural recruitment of genetically diverse and outcrossed seedlings.
Collapse
Affiliation(s)
- Natalie L Rosser
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Anthony Quinton
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Huw Davey
- Independent Researcher, Wollongong, NSW, Australia
| | - David J Ayre
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew J Denham
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
- Science, Economics and Insights Division, NSW Department of Planning and Environment, Parramatta, NSW, Australia.
| |
Collapse
|
43
|
Harvey JA, Dong Y. Climate Change, Extreme Temperatures and Sex-Related Responses in Spiders. BIOLOGY 2023; 12:biology12040615. [PMID: 37106814 PMCID: PMC10136024 DOI: 10.3390/biology12040615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Climatic extremes, such as heat waves, are increasing in frequency, intensity and duration under anthropogenic climate change. These extreme events pose a great threat to many organisms, and especially ectotherms, which are susceptible to high temperatures. In nature, many ectotherms, such as insects, may seek cooler microclimates and 'ride out´ extreme temperatures, especially when these are transient and unpredictable. However, some ectotherms, such as web-building spiders, may be more prone to heat-related mortality than more motile organisms. Adult females in many spider families are sedentary and build webs in micro-habitats where they spend their entire lives. Under extreme heat, they may be limited in their ability to move vertically or horizontally to find cooler microhabitats. Males, on the other hand, are often nomadic, have broader spatial distributions, and thus might be better able to escape exposure to heat. However, life-history traits in spiders such as the relative body size of males and females and spatial ecology also vary across different taxonomic groups based on their phylogeny. This may make different species or families more or less susceptible to heat waves and exposure to very high temperatures. Selection to extreme temperatures may drive adaptive responses in female physiology, morphology or web site selection in species that build small or exposed webs. Male spiders may be better able to avoid heat-related stress than females by seeking refuge under objects such as bark or rocks with cooler microclimates. Here, we discuss these aspects in detail and propose research focusing on male and female spider behavior and reproduction across different taxa exposed to temperature extremes.
Collapse
Affiliation(s)
- Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Yuting Dong
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
44
|
Schenck FR, DuBois K, Kardish MR, Stachowicz JJ, Hughes AR. The effect of warming on seagrass wasting disease depends on host genotypic identity and diversity. Ecology 2023; 104:e3959. [PMID: 36530038 DOI: 10.1002/ecy.3959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022]
Abstract
Temperature increases due to climate change have affected the distribution and severity of diseases in natural systems, causing outbreaks that can destroy host populations. Host identity, diversity, and the associated microbiome can affect host responses to both infection and temperature, but little is known about how they could function as important mediators of disease in altered thermal environments. We conducted an 8-week warming experiment to test the independent and interactive effects of warming, host genotypic identity, and host genotypic diversity on the prevalence and intensity of infections of seagrass (Zostera marina) by the wasting disease parasite (Labyrinthula zosterae). At elevated temperatures, we found that genotypically diverse host assemblages had reduced infection intensity, but not reduced prevalence, relative to less diverse assemblages. This dilution effect on parasite intensity was the result of both host composition effects as well as emergent properties of biodiversity. In contrast with the benefits of genotypic diversity under warming, diversity actually increased parasite intensity slightly in ambient temperatures. We found mixed support for the hypothesis that a growth-defense trade-off contributed to elevated disease intensity under warming. Changes in the abundance (but not composition) of a few taxa in the host microbiome were correlated with genotype-specific responses to wasting disease infections under warming, consistent with the emerging evidence linking changes in the host microbiome to the outcome of host-parasite interactions. This work emphasizes the context dependence of biodiversity-disease relationships and highlights the potential importance of interactions among biodiversity loss, climate change, and disease outbreaks in a key foundation species.
Collapse
Affiliation(s)
- Forest R Schenck
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA.,Massachusetts Division of Marine Fisheries, Gloucester, Massachusetts, USA
| | - Katherine DuBois
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Melissa R Kardish
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA.,Center for Population Biology, University of California, Davis, California, USA
| | - A Randall Hughes
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
| |
Collapse
|
45
|
Temporal decline of genetic differentiation among populations of western flower thrips across an invaded range. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
46
|
Walker RH, Hutchinson MC, Potter AB, Becker JA, Long RA, Pringle RM. Mechanisms of individual variation in large herbivore diets: Roles of spatial heterogeneity and state-dependent foraging. Ecology 2023; 104:e3921. [PMID: 36415899 PMCID: PMC10078531 DOI: 10.1002/ecy.3921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
Abstract
Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual-level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the "opportunity cost" of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high-quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck, Tragelaphus sylvaticus) in an African floodplain-savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS-collared animals (range 6-14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual-level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity-of-use index), and had higher-quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual-level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes.
Collapse
Affiliation(s)
- Reena H Walker
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Matthew C Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Arjun B Potter
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Justine A Becker
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
47
|
Wan NF, Fu L, Dainese M, Hu YQ, Pødenphant Kiær L, Isbell F, Scherber C. Plant genetic diversity affects multiple trophic levels and trophic interactions. Nat Commun 2022; 13:7312. [PMID: 36437257 PMCID: PMC9701765 DOI: 10.1038/s41467-022-35087-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Intraspecific genetic diversity is an important component of biodiversity. A substantial body of evidence has demonstrated positive effects of plant genetic diversity on plant performance. However, it has remained unclear whether plant genetic diversity generally increases plant performance by reducing the pressure of plant antagonists across trophic levels for different plant life forms, ecosystems and climatic zones. Here, we analyse 4702 effect sizes reported in 413 studies that consider effects of plant genetic diversity on trophic groups and their interactions. We found that that increasing plant genetic diversity decreased the performance of plant antagonists including invertebrate herbivores, weeds, plant-feeding nematodes and plant diseases, while increasing the performance of plants and natural enemies of herbivores. Structural equation modelling indicated that plant genetic diversity increased plant performance partly by reducing plant antagonist pressure. These results reveal that plant genetic diversity often influences multiple trophic levels in ways that enhance natural pest control in managed ecosystems and consumer control of plants in natural ecosystems for sustainable plant production.
Collapse
Affiliation(s)
- Nian-Feng Wan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liwan Fu
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Matteo Dainese
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lars Pødenphant Kiær
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Christoph Scherber
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Adenauerallee 127, 53113, Bonn, Germany
| |
Collapse
|
48
|
Cozzolino L, Nicastro KR, Seuront L, McQuaid CD, Zardi GI. The relative effects of interspecific and intraspecific diversity on microplastic trapping in coastal biogenic habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157771. [PMID: 35926622 DOI: 10.1016/j.scitotenv.2022.157771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Our understanding of how anthropogenic stressors such as climate change and plastic pollution interact with biodiversity is being widened to include diversity below the species level, i.e., intraspecific variation. The emerging appreciation of the key ecological importance of intraspecific diversity and its potential loss in the Anthropocene, further highlights the need to assess the relative importance of intraspecific versus interspecific diversity. One such issue is whether a species responds as a homogenous whole to plastic pollution. Using manipulative field transplant experiments and laboratory-controlled hydrodynamic simulations, we assessed the relative effects of intraspecific and interspecific diversity on microplastic trapping in coastal biogenic habitats dominated by two key bioengineers, the brown intertidal macroalgae Fucus vesiculosus and F. guiryi. At the individual level, northern morphotypes of F. guiryi trapped more microplastics than southern individuals, and F. vesiculosus trapped more microplastics than F. guiryi. Canopy density varied among species, however, leading to reversed patterns of microplastic accumulation, with F. guiryi canopies accumulating more microplastics than those of F. vesiculosus, while no differences were observed between the canopies of F. guiryi morphotypes. We emphasize the importance of assessing the effects of intraspecific variation which, along with other crucial factors such as canopy density, flow velocity and polymer composition, modulates the extent of microplastic accumulation in coastal biogenic habitats. Our findings indicate that a realistic estimation of plastic accumulation in biogenic habitats requires an understanding of within- and between-species traits at both the individual and population levels.
Collapse
Affiliation(s)
- Lorenzo Cozzolino
- CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Katy R Nicastro
- CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000 Caen, France
| |
Collapse
|
49
|
Bayliss SLJ, Mueller LO, Ware IM, Schweitzer JA, Bailey JK. Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales. Commun Biol 2022; 5:1213. [PMID: 36357488 PMCID: PMC9649771 DOI: 10.1038/s42003-022-04131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Climate change is having profound effects on species distributions and is likely altering the distribution of genetic variation across landscapes. Maintaining population genetic diversity is essential for the survival of species facing rapid environmental change, and variation loss will further ecological and evolutionary change. We used trait values of spring foliar leaf-out phenology of 400 genotypes from three geographically isolated populations of Populus angustifolia grown under common conditions, in concert with stacked species distribution modeling, to ask: (a) How will climate change alter phenological variation across the P. angustifolia species-range, and within populations; and (b) will the distribution of phenological variation among and within populations converge (become more similar) in future climatic conditions? Models predicted a net loss of phenological variation in future climate scenarios on 20-25% of the landscape across the species' range, with the trailing edge population losing variation on as much as 47% of the landscape. Our models also predicted that population's phenological trait distributions will become more similar over time. This stacked distribution model approach allows for the identification of areas expected to experience the greatest loss of genetically based functional trait variation and areas that may be priorities to conserve as future genetic climate refugia.
Collapse
Affiliation(s)
- Shannon L J Bayliss
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA.
- Department of Geography, Florida State University, Tallahassee, FL, USA.
| | - Liam O Mueller
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Ian M Ware
- Funga PBC 1612 Canterbury Street, Austin, TX, 78702, USA
| | - Jennifer A Schweitzer
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Joseph K Bailey
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA
| |
Collapse
|
50
|
Abstract
The morphogenesis of two-dimensional bacterial colonies has been well studied. However, little is known about the colony morphologies of bacteria growing in three dimensions, despite the prevalence of three-dimensional environments (e.g., soil, inside hosts) as natural bacterial habitats. Using experiments on bacteria in granular hydrogel matrices, we find that dense multicellular colonies growing in three dimensions undergo a common morphological instability and roughen, adopting a characteristic broccoli-like morphology when they exceed a critical size. Analysis of a continuum “active fluid” model of the expanding colony reveals that this behavior originates from an interplay of competition for nutrients with growth-driven colony expansion, both of which vary spatially. These results shed light on the fundamental biophysical principles underlying growth in three dimensions. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
Collapse
|