1
|
Dey C, Roy M, Ghosh R, Pal P, Roy D, Ghosh Dey S. Active Site Environment and Reactivity of Copper-Aβ in Membrane Mimetic SDS Micellar Environment. Chemistry 2024; 30:e202401531. [PMID: 38899478 DOI: 10.1002/chem.202401531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is characterized by the abnormal aggregation of amyloid β (Aβ) peptide in extracellular deposits generated upon proteolysis of Amyloid Precursor Protein (APP). While copper (Cu(II)) binds to Aβ in soluble oligomeric and aggregated forms, its interaction with membrane-bound Aβ remains elusive. Investigating these interactions is crucial for understanding AD pathogenesis. Here, utilizing SDS micelles as a simplified membrane mimic, we focus on elucidating the interplay between membrane-anchored Aβ and copper, given their pivotal roles in AD. We employed spectroscopic techniques including UV, CD, and EPR to characterize the active site of Cu-Aβ complexes. Our findings demonstrate that copper interacts with Aβ peptides in membrane-mimicking micellar environments similarly to aqueous buffer solutions. Cu-Aβ complexes in this medium also induce higher hydrogen peroxide (H2O2) production, potentially contributing to AD-related oxidative stress. Moreover, we observe an increased oxidation rate of neurotransmitter such as dopamine by Cu-Aβ complexes. These results enhance our understanding of Cu-Aβ interactions in AD pathology and offer insights into potential therapeutic interventions targeting this interaction.
Collapse
Affiliation(s)
- Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rimi Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Puja Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Debapriyo Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
2
|
Sarb OF, Sarb AD, Iacobescu M, Vlad IM, Milaciu MV, Ciurmarnean L, Vacaras V, Tantau AI. From Gut to Brain: Uncovering Potential Serum Biomarkers Connecting Inflammatory Bowel Diseases to Neurodegenerative Diseases. Int J Mol Sci 2024; 25:5676. [PMID: 38891863 PMCID: PMC11171869 DOI: 10.3390/ijms25115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic gastrointestinal inflammation due to abnormal immune responses to gut microflora. The gut-brain axis is disrupted in IBDs, leading to neurobiological imbalances and affective symptoms. Systemic inflammation in IBDs affects the brain's inflammatory response system, hormonal axis, and blood-brain barrier integrity, influencing the gut microbiota. This review aims to explore the association between dysregulations in the gut-brain axis, serum biomarkers, and the development of cognitive disorders. Studies suggest a potential association between IBDs and the development of neurodegeneration. The mechanisms include systemic inflammation, nutritional deficiency, GBA dysfunction, and the effect of genetics and comorbidities. The objective is to identify potential correlations and propose future research directions to understand the impact of altered microbiomes and intestinal barrier functions on neurodegeneration. Serum levels of vitamins, inflammatory and neuronal damage biomarkers, and neuronal growth factors have been investigated for their potential to predict the development of neurodegenerative diseases, but current results are inconclusive and require more studies.
Collapse
Affiliation(s)
- Oliviu-Florentiu Sarb
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Adriana-Daniela Sarb
- Department of Internal Medicine, Heart Institute, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Irina-Maria Vlad
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Lorena Ciurmarnean
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Vitalie Vacaras
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Alina-Ioana Tantau
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| |
Collapse
|
3
|
Sarkar D, Bhunia A. Delineating the Role of GxxxG Motif in Amyloidogenesis: A New Perspective in Targeting Amyloid-Beta Mediated AD Pathogenesis. ACS BIO & MED CHEM AU 2024; 4:4-19. [PMID: 38404748 PMCID: PMC10885112 DOI: 10.1021/acsbiomedchemau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 02/27/2024]
Abstract
The pursuit of a novel structural motif that can shed light on the key functional attributes is a primary focus in the study of protein folding disorders. Decades of research on Alzheimer's disease (AD) have centered on the Amyloid β (Aβ) pathway, highlighting its significance in understanding the disorder. The diversity in the Aβ pathway and the possible silent tracks which are yet to discover, makes it exceedingly intimidating to the interdisciplinary scientific community. Over the course of AD research, Aβ has consistently been at the forefront of scientific inquiry and discussion. In this review, we epitomize the role of a potential structural motif (GxxxG motif) that may provide a new horizon to the Aβ conflict. We emphasize on how comprehensive understanding of this motif from a structure-function perspective may pave the way for designing novel therapeutics intervention in AD and related diseases.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| |
Collapse
|
4
|
Poddar NK, Khan A, Fatima F, Saxena A, Ghaley G, Khan S. Association of mTOR Pathway and Conformational Alterations in C-Reactive Protein in Neurodegenerative Diseases and Infections. Cell Mol Neurobiol 2023; 43:3815-3832. [PMID: 37665407 PMCID: PMC11407721 DOI: 10.1007/s10571-023-01402-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Inflammatory biomarkers have been very useful in detecting and monitoring inflammatory processes along with providing helpful information to select appropriate therapeutic strategies. C-reactive protein (CRP) is a nonspecific, but quite useful medical acute inflammatory biomarker and is associated with persistent chronic inflammatory processes. Several studies suggest that different levels of CRP are correlated with neurological disorders such as Alzheimer's disease (AD). However, dynamics of CRP levels have also been observed in virus/bacterial-related infections leading to inflammatory responses and this triggers mTOR-mediated pathways for neurodegeneration diseases. The biophysical structural transition from CRP to monomeric CRP (mCRP) and the significance of the ratio of CRP levels on the onset of symptoms associated with inflammatory response have been discussed. In addition, mTOR inhibitors act as immunomodulators by downregulating the expression of viral infection and can be explored as a potential therapy for neurological diseases.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007.
| | - Arshma Khan
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India, 243123
| | - Falak Fatima
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, India, 201301
| | - Anshulika Saxena
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| | - Garima Ghaley
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, Uttar Pradesh, India, 247554.
| |
Collapse
|
5
|
Dey C, Roy M, Dey A, Ghosh Dey S. Heme-Aβ in SDS micellar environment: Active site environment and reactivity. J Inorg Biochem 2023; 246:112271. [PMID: 37301164 DOI: 10.1016/j.jinorgbio.2023.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/13/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disorder that causes brain cell death. Oxidative stress derived from the accumulation of redox cofactors like heme in amyloid plaques originating from amyloid β (Aβ) peptides has been implicated in the pathogenesis of AD. In the past our group has studied the interactions and reactivities of heme with soluble oligomeric and aggregated forms of Aβ. In this manuscript we report the interaction of heme with Aβ that remains membrane bound using membrane mimetic SDS (sodium dodecyl sulfate) micellar medium. Employing different spectroscopic techniques viz. circular dichroism (CD), absorption (UV-Vis), electron paramagnetic resonance (EPR) and resonance Raman (rR) we find that Aβ binds heme using one of its three His (preferentially His13) in SDS micellar medium. We also find that Arg5 is an essential distal residue responsible for higher peroxidase activity of heme bound Aβ in this membrane mimetic environment than free heme. This peroxidase activity exerted by even membrane bound heme-Aβ can potentially be more detrimental as the active site remains close to membranes and can hence oxidise the lipid bilayer of the neuronal cell, which can induce cell apoptosis. Thus, heme-Aβ in solution as well as in membrane-bound form are detrimental.
Collapse
Affiliation(s)
- Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
6
|
Abstract
Perturbation of cell membranes by amyloid β (Ab) peptide oligomers is one possible mechanism of cytotoxicity in Alzheimer's disease, but the structure of such Ab-membrane complexes is unknown. Here we examine the stability of several putative structures by implicit membrane and all-atom molecular dynamics simulations. The structures include (a) a variety of models proposed by other researchers in the past, (b) a heptameric β barrel determined by grafting the Ab sequence onto α-hemolysin, (c) a similar structure with modified strand orientation and turn location based on an experimental β-hairpin structure, (d) oligomers inserting C-terminal β hairpins into one leaflet of the bilayer, (e) oligomers forming parallel C-terminal β barrels, and (f) a helical hexamer made of C-terminal fragments. The α-hemolysin-grafted structure and its alternately oriented variant are stable in the membrane and form an aqueous pore. In contrast, the C-terminal parallel barrels are not stable, presumably due to excessive hydrophobicity of their inner surface. The helical hexamer also failed to stabilize an aqueous pore for the same reason. The C-terminal hairpin-inserting structures remain stably inserted but, again, do not form an aqueous pore. Our results suggest that only β-barrels inserting a combination of C-terminal and other residues can form stable aqueous pores.
Collapse
Affiliation(s)
- Aliasghar Sepehri
- Department of Chemistry, City College of New York, CUNY, 160 Convent Avenue, New York, New York10031, United States
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, CUNY, 160 Convent Avenue, New York, New York10031, United States.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York10016, United States
| |
Collapse
|
7
|
Chakraborty I, Kar RK, Sarkar D, Kumar S, Maiti NC, Mandal AK, Bhunia A. Solvent Relaxation NMR: A Tool for Real-Time Monitoring Water Dynamics in Protein Aggregation Landscape. ACS Chem Neurosci 2021; 12:2903-2916. [PMID: 34292711 DOI: 10.1021/acschemneuro.1c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Solvent dynamics strongly induce the fibrillation of an amyloidogenic system. Probing the solvation mechanism is crucial as it enables us to predict different proteins' functionalities, such as the aggregation propensity, structural flexibility, and toxicity. This work shows that a straightforward NMR method in conjunction with phenomenological models gives a global and qualitative picture of water dynamics at different concentrations and temperatures. Here, we study amyloid system Aβ40 and its fragment AV20 (A21-V40) and G37L (mutation at Gly37 → Leu of AV20), having different aggregation and toxic properties. The independent validation of this method is elucidated using all-atom classical MD simulation. These two state-of-the-art techniques are pivotal in linking the effect of solvent environment in the near hydration-shell to their aggregation nature. The time-dependent modulation in solvent dynamics probed with the NMR solvent relaxation method can be further adopted to gain insight into amyloidogenesis and link with their toxicity profiles.
Collapse
Affiliation(s)
| | - Rajiv K. Kar
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Dibakar Sarkar
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Nakul C. Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| |
Collapse
|
8
|
Effect of Amyloid-β Monomers on Lipid Membrane Mechanical Parameters-Potential Implications for Mechanically Driven Neurodegeneration in Alzheimer's Disease. Int J Mol Sci 2020; 22:ijms22010018. [PMID: 33375009 PMCID: PMC7792773 DOI: 10.3390/ijms22010018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that results in memory loss and the impairment of cognitive skills. Several mechanisms of AD’s pathogenesis were proposed, such as the progressive accumulation of amyloid-β (Aβ) and τ pathology. Nevertheless, the exact neurodegenerative mechanism of the Aβ remains complex and not fully understood. This paper proposes an alternative hypothesis of the mechanism based on maintaining the neuron membrane’s mechanical balance. The incorporation of Aβ decreases the lipid membrane’s elastic properties, which eventually leads to the impairment of membrane clustering, disruption of mechanical wave propagation, and change in gamma oscillations. The first two disrupt the neuron’s ability to function correctly while the last one decreases sensory encoding and perception enabling. To begin discussing this mechanical-balance hypothesis, we measured the effect of two selected peptides, Aβ-40 and Aβ-42, as well as their fluorescently labeled modification, on membrane mechanical properties. The decrease of bending rigidity, consistent for all investigated peptides, was observed using molecular dynamic studies and experimental flicker-noise techniques. Additionally, wave propagation was investigated with molecular dynamic studies in membranes with and without incorporated neurodegenerative peptides. A change in membrane behavior was observed in the membrane system with incorporated Aβ.
Collapse
|
9
|
Yavarpour-Bali H, Ghasemi-Kasman M, Shojaei A. Direct reprogramming of terminally differentiated cells into neurons: A novel and promising strategy for Alzheimer's disease treatment. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109820. [PMID: 31743695 DOI: 10.1016/j.pnpbp.2019.109820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
Glial activation is a common pathological process of the central nervous system (CNS) in disorders such as Alzheimer's disease (AD). Several approaches have been used to reduce the number of activated astrocytes and microglia in damaged areas. In recent years, various kinds of fully differentiated cells have been successfully reprogrammed to a desired type of cell in lesion areas. Interestingly, internal glial cells, including astrocytes and NG2 positive cells, were efficiently converted to neuroblasts and neurons by overexpression of some transcription factors (TFs) or microRNAs (miRNAs). Notably, some specific subtypes of neurons have been achieved by in vivo reprogramming and the resulting neurons were successfully integrated into local neuronal circuits. Furthermore, somatic cells from AD patients have been converted to functional neurons. Although direct reprogramming of a patient's own internal cells has revolutionized regenerative medicine, but there are some major obstacles that should be examined before using these induced cells in clinical therapies. In the present review article, we aim to discuss the current studies on in vitro and in vivo reprogramming of somatic cells to neurons using TFs, miRNAs or small molecules in healthy and AD patients.
Collapse
Affiliation(s)
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Amir Shojaei
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Xu XF, Wang YC, Zong L, Wang XL. miR-151-5p modulates APH1a expression to participate in contextual fear memory formation. RNA Biol 2019; 16:282-294. [PMID: 30663934 DOI: 10.1080/15476286.2019.1572435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Long-term memory formation requires gene expression and new protein synthesis. MicroRNAs (miRNAs), a family of small non-coding RNAs that inhibit target gene mRNA expression, are involved in new memory formation. In this study, elevated miR-151-5p (miR-151) levels were found to be responsible for hippocampal contextual fear memory formation. Using a luciferase reporter assay, we demonstrated that miR-151 targets APH1a, a protein that has been identified as a key factor in γ-secretase activity, namely APH1a. Blocking miR-151 can upregulate APH1a protein levels and subsequently impair hippocampal fear memory formation. These results indicate that miR-151 is involved in hippocampal contextual fear memory by inhibiting APH1a protein expression. This work provides novel evidence for the role of miRNAs in memory formation and demonstrates the implication of APH1a protein in miRNA processing in the adult brain.
Collapse
Affiliation(s)
- Xu-Feng Xu
- a Institute of Brain Science and Disease, School of Basic Medicine , Qingdao University , Qingdao , Shandong , People's Republic of China.,b The Royal, Department of Psychiatry, and Department of Cellular and Molecular Medicine , University of Ottawa Institute of Mental Health Research , Ottawa , Canada.,c Department of Cell and Neurobiology , School of Basic Medicine, Shandong University , Jinan , Shandong , People's Republic of China
| | - You-Cui Wang
- a Institute of Brain Science and Disease, School of Basic Medicine , Qingdao University , Qingdao , Shandong , People's Republic of China
| | - Liang Zong
- d BGI-Shenzhen , Shenzhen , People's Republic of China
| | - Xiao-Long Wang
- e Department of Breast Surgery , Qilu hospital, Shandong University , Jinan , Shandong , People's Republic of China
| |
Collapse
|
11
|
Janas T, Sapoń K, Stowell MHB, Janas T. Selection of Membrane RNA Aptamers to Amyloid Beta Peptide: Implications for Exosome-Based Antioxidant Strategies. Int J Mol Sci 2019; 20:ijms20020299. [PMID: 30642129 PMCID: PMC6359565 DOI: 10.3390/ijms20020299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
The distribution of amyloid beta peptide 42 (Aβ42) between model exosomal membranes and a buffer solution was measured. The model membranes contained liquid-ordered regions or phosphatidylserine. Results demonstrated that up to ca. 20% of amyloid peptide, generated in the plasma (or intracellular) membrane as a result of proteolytic cleavage of amyloid precursor proteins by β- and γ-secretases, can stay within the membrane milieu. The selection of RNA aptamers that bind to Aβ42 incorporated into phosphatidylserine-containing liposomal membranes was performed using the selection-amplification (SELEX) method. After eight selection cycles, the pool of RNA aptamers was isolated and its binding to Aβ42-containing membranes was demonstrated using the gel filtration method. Since membranes can act as a catalytic surface for Aβ42 aggregation, these RNA aptamers may inhibit the formation of toxic amyloid aggregates that can permeabilize cellular membranes or disrupt membrane receptors. Strategies are proposed for using functional exosomes, loaded with RNA aptamers specific to membrane Aβ42, to reduce the oxidative stress in Alzheimer's disease and Down's syndrome.
Collapse
Affiliation(s)
- Teresa Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Karolina Sapoń
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Michael H B Stowell
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
- Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Tadeusz Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
12
|
BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer's Disease Pathology. Molecules 2017; 22:molecules22101723. [PMID: 29027981 PMCID: PMC6151801 DOI: 10.3390/molecules22101723] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations.
Collapse
|
13
|
Liu M, Wan L, Bin Y, Xiang J. Role of norepinephrine in Aβ-related neurotoxicity: dual interactions with Tyr10 and SNK(26-28) of Aβ. Acta Biochim Biophys Sin (Shanghai) 2017; 49:170-178. [PMID: 28069584 DOI: 10.1093/abbs/gmw126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/27/2016] [Indexed: 01/05/2023] Open
Abstract
With their capability to inhibit the formation of amyloid-β peptide (Aβ) fibril, norepinephrine (NE), and other catechol derivatives have been considered for the potential treatment of Alzheimer's disease (AD). Such treatment, however, remains debatable because of the diverse functions of Aβ and NE in AD pathology. Moreover, the complicated oxidation accompanying NE has caused the majority of the previous research to focus on the binding of NE oxides onto Aβ. The molecular mechanism by which Aβ interacts with the reduction state of NE, which is correlated with the brain function, should be urgently explored. In this work, by controlling rigorous anaerobic experimental conditions, the molecular mechanism of the Aβ/NE interaction was investigated, and two binding sites were revealed. Tyr10 was identified as the strong binding site of NE, and SNK(26-28) segment was the weak binding segment. Furthermore, thioflavin T fluorescence confirmed NE's positive function of inhibiting Aβ aggregation through its weak binding with SNK(26-28) segment. Meanwhile, 7-OHCCA fluorescence exhibited NE's negative function of enhancing ·OH generation through inhibiting the Aβ/Cu2+ coordination. The viability tests of the neuroblastoma SH-SY5Y cells displayed that the coexistence of NE, Cu2+, and Aβ induced lower cell viability than free Cu2+, indicating the significant negative effect of excessive NE on AD progression. These data revealed the possible pathway of NE-induced damage in AD brain, which is significant for understanding the function of NE in Aβ-involved AD neuropathology and for designing an NE-related therapeutic strategy for AD.
Collapse
Affiliation(s)
- Mengmeng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liping Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yannan Bin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Foidl BM, Do-Dinh P, Hutter-Schmid B, Bliem HR, Humpel C. Cholinergic neurodegeneration in an Alzheimer mouse model overexpressing amyloid-precursor protein with the Swedish-Dutch-Iowa mutations. Neurobiol Learn Mem 2016; 136:86-96. [PMID: 27670619 PMCID: PMC6020032 DOI: 10.1016/j.nlm.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/26/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is mainly characterized by beta-amyloid (Aβ) plaque deposition, Tau pathology and dysfunction of the cholinergic system causing memory impairment. The aim of the present study was to examine (1) anxiety and cognition, (2) Aβ plaque deposition and (3) degeneration of cholinergic neurons in the nucleus basalis of Meynert (nbM) and cortical cholinergic innervation in an Alzheimer mouse model (APP_SweDI; overexpressing amyloid precursor protein (APP) with the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations). Our results show that 12-month-old APP_SweDI mice were more anxious and had more memory impairment. A large number of Aβ plaques were already visible at the age of 6 months and increased with age. A significant decrease in cholinergic neurons was seen in the transgenic mouse model in comparison to the wild-type mice, identified by immunohistochemistry against choline acetyltransferase (ChAT) and p75 neurotrophin receptor as well as by in situ hybridization. Moreover, a significant decrease in cortical cholinergic fiber density was found in the transgenic mice as compared to the wild-type. In the cerebral cortex of APP_SweDI mice, swollen cholinergic varicosities were seen in the vicinity of Aβ plaques. In conclusion, the present study shows that in an AD mouse model (APP_SweDI mice) a high Aβ plaque load in the cortex causes damage to cholinergic axons in the cortex, followed by subsequent retrograde-induced cell death of cholinergic neurons and some forms of compensatory processes. This degeneration was accompanied by enhanced anxiety and impaired cognition.
Collapse
Affiliation(s)
- Bettina Maria Foidl
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Austria
| | - Patricia Do-Dinh
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Austria
| | - Bianca Hutter-Schmid
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Austria
| | - Harald R Bliem
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Austria; Department of Psychology, University of Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Austria.
| |
Collapse
|
15
|
Liu M, Kou L, Bin Y, Wan L, Xiang J. Complicated function of dopamine in Aβ-related neurotoxicity: Dual interactions with Tyr10 and SNK(26–28) of Aβ. J Inorg Biochem 2016; 164:119-128. [DOI: 10.1016/j.jinorgbio.2016.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/31/2016] [Accepted: 09/13/2016] [Indexed: 12/29/2022]
|
16
|
Wang L, Du Y, Wang K, Xu G, Luo S, He G. Chronic cerebral hypoperfusion induces memory deficits and facilitates Aβ generation in C57BL/6J mice. Exp Neurol 2016; 283:353-64. [PMID: 27421879 DOI: 10.1016/j.expneurol.2016.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia frequently responsible for cognitive decline in the elderly. The etiology and molecular mechanism of AD pathogenesis remain inconclusive. Aging and vascular factors are important independent causes and contributors to sporadic AD. Clinical imaging studies showed that cerebral blood flow decreases before cognitive impairment in patients with AD. To investigate the effect of chronic cerebral hypoperfusion (CCH) on cognitive impairment and morphological features, we developed a new manner of CCH mouse model by narrowing bilateral common carotid arteries. Mice started to manifest spatial memory deficits 1month after the surgery and exhibited behavioral changes in a time-dependent manner. Mice also presented memory deficits accompanied with morphological changes at the neuronal and synaptic levels. CCH damaged the normal neuronal morphology and significantly reduced the expression level of PSD95. CCH activated astrocytes, increased the co-expression of GFAP and AQP4, and destroyed the blood-brain barrier (BBB). Furthermore, CCH facilitated intracellular and extracellular Aβ deposition by up-regulating γ-secretase and β-secretase levels. Our results showed good reproducibility of post-CCH pathological processes, which are characterized by neuronal apoptosis, axonal abnormalities, glial activation, BBB damage, amyloid deposition, and cognitive dysfunction; these processes may be used to decipher the complex interplay and pathological process between CCH and AD. This study provides laboratory evidence for the prevention and treatment of cognitive malfunction and AD.
Collapse
Affiliation(s)
- Lingxi Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yehong Du
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shifang Luo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Anatomy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Lipid insertion domain unfolding regulates protein orientational transition behavior in a lipid bilayer. Biophys Chem 2015; 206:22-39. [PMID: 26164502 DOI: 10.1016/j.bpc.2015.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/02/2023]
Abstract
We have used coarse-grained (CG) and united atom (UA) molecular dynamics simulations to explore the mechanisms of protein orientational transition of a model peptide (Aβ42) in a phosphatidylcholine/cholesterol (PC/CHO) lipid bilayer. We started with an inserted state of Aβ42 containing a folded (I) or unfolded (II) K28-A42 lipid insertion domain (LID), which was stabilized by the K28-snorkeling and A42-anchoring to the PC polar groups in the lipid bilayer. After a UA-to-CG transformation and a 1000ns-CG simulation for enhancing the sampling of protein orientations, we discovered two transitions: I-to-"deep inserted" state with disrupted K28-snorkeling and II-to-"deep surface" state with disrupted A42-anchoring. The new states remained stable after a CG-to-UA transformation and a 200ns-UA simulation relaxation. Significant changes in the cholesterol-binding domain of Aβ42 and protein-induced membrane disruptions were evident after the transitions. We propose that the conformation of the LID regulates protein orientational transitions in the lipid membrane.
Collapse
|
18
|
Cuddy LK, Seah C, Pasternak SH, Rylett RJ. Differential regulation of the high-affinity choline transporter by wild-type and Swedish mutant amyloid precursor protein. J Neurochem 2015; 134:769-82. [DOI: 10.1111/jnc.13167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Leah K. Cuddy
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
| | - Claudia Seah
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
| | - Stephen H. Pasternak
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Rebecca Jane Rylett
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
| |
Collapse
|
19
|
Qiu L, Buie C, Cheng KH, Vaughn MW. Scaling and alpha-helix regulation of protein relaxation in a lipid bilayer. J Chem Phys 2014; 141:225101. [PMID: 25494768 PMCID: PMC4265037 DOI: 10.1063/1.4902229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/10/2014] [Indexed: 11/15/2022] Open
Abstract
Protein conformation and orientation in the lipid membrane plays a key role in many cellular processes. Here we use molecular dynamics simulation to investigate the relaxation and C-terminus diffusion of a model helical peptide: beta-amyloid (Aβ) in a lipid membrane. We observed that after the helical peptide was initially half-embedded in the extracelluar leaflet of phosphatidylcholine (PC) or PC/cholesterol (PC/CHOL) membrane, the C-terminus diffused across the membrane and anchored to PC headgroups of the cytofacial lipid leaflet. In some cases, the membrane insertion domain of the Aβ was observed to partially unfold. Applying a sigmoidal fit to the process, we found that the characteristic velocity of the C-terminus, as it moved to its anchor site, scaled with θu (-4/3), where θu is the fraction of the original helix that was lost during a helix to coil transition. Comparing this scaling with that of bead-spring models of polymer relaxation suggests that the C-terminus velocity is highly regulated by the peptide helical content, but that it is independent of the amino acid type. The Aβ was stabilized by the attachment of the positive Lys28 side chain to the negative phosphate of PC or 3β oxygen of CHOL in the extracellular lipid leaflet and of the C-terminus to its anchor site in the cytofacial lipid leaflet.
Collapse
Affiliation(s)
- Liming Qiu
- Department of Physics, Texas Tech University, Lubbock, Texas 79409, USA
| | - Creighton Buie
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Kwan Hon Cheng
- Department of Physics, Texas Tech University, Lubbock, Texas 79409, USA
| | - Mark W Vaughn
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
20
|
Accumulation of amyloid-like Aβ1-42 in AEL (autophagy-endosomal-lysosomal) vesicles: potential implications for plaque biogenesis. ASN Neuro 2014; 6:AN20130044. [PMID: 24521233 PMCID: PMC4379859 DOI: 10.1042/an20130044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal accumulation of Aβ (amyloid β) within AEL (autophagy-endosomal-lysosomal) vesicles is a prominent neuropathological feature of AD (Alzheimer's disease), but the mechanism of accumulation within vesicles is not clear. We express secretory forms of human Aβ1-40 or Aβ1-42 in Drosophila neurons and observe preferential localization of Aβ1-42 within AEL vesicles. In young animals, Aβ1-42 appears to associate with plasma membrane, whereas Aβ1-40 does not, suggesting that recycling endocytosis may underlie its routing to AEL vesicles. Aβ1-40, in contrast, appears to partially localize in extracellular spaces in whole brain and is preferentially secreted by cultured neurons. As animals become older, AEL vesicles become dysfunctional, enlarge and their turnover appears delayed. Genetic inhibition of AEL function results in decreased Aβ1-42 accumulation. In samples from older animals, Aβ1-42 is broadly distributed within neurons, but only the Aβ1-42 within dysfunctional AEL vesicles appears to be in an amyloid-like state. Moreover, the Aβ1-42-containing AEL vesicles share properties with AD-like extracellular plaques. They appear to be able to relocate to extracellular spaces either as a consequence of age-dependent neurodegeneration or a non-neurodegenerative separation from host neurons by plasma membrane infolding. We propose that dysfunctional AEL vesicles may thus be the source of amyloid-like plaque accumulation in Aβ1-42-expressing Drosophila with potential relevance for AD.
Collapse
|
21
|
The Cleavage Domain of the Amyloid Precursor Protein Transmembrane Helix Does Not Exhibit Above-Average Backbone Dynamics. Chembiochem 2013; 14:1943-8. [DOI: 10.1002/cbic.201300322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 11/07/2022]
|
22
|
Tay WM, da Silva GFZ, Ming LJ. Metal Binding of Flavonoids and Their Distinct Inhibition Mechanisms Toward the Oxidation Activity of Cu2+–β-Amyloid: Not Just Serving as Suicide Antioxidants! Inorg Chem 2013; 52:679-90. [DOI: 10.1021/ic301832p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- William Maung Tay
- Department of Chemistry, University of South Florida, Tampa,
Florida 33620-5250, United States
| | - Giordano F. Z. da Silva
- Department of Chemistry, University of South Florida, Tampa,
Florida 33620-5250, United States
| | - Li-June Ming
- Department of Chemistry, University of South Florida, Tampa,
Florida 33620-5250, United States
| |
Collapse
|
23
|
Cross-linking of cell surface amyloid precursor protein leads to increased β-amyloid peptide production in hippocampal neurons: implications for Alzheimer's disease. J Neurosci 2012; 32:10674-85. [PMID: 22855816 DOI: 10.1523/jneurosci.6473-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.
Collapse
|
24
|
Ryan TM, Friedhuber A, Lind M, Howlett GJ, Masters C, Roberts BR. Small amphipathic molecules modulate secondary structure and amyloid fibril-forming kinetics of Alzheimer disease peptide Aβ(1-42). J Biol Chem 2012; 287:16947-54. [PMID: 22461629 DOI: 10.1074/jbc.m111.321778] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Amyloid fibril formation is associated with a number of debilitating systemic and neurodegenerative diseases. One of the most prominent is Alzheimer disease in which aggregation and deposition of the Aβ peptide occur. Aβ is widely considered to mediate the extensive neuronal loss observed in this disease through the formation of soluble oligomeric species, with the final fibrillar end product of the aggregation process being relatively inert. Factors that influence the aggregation of these amyloid-forming proteins are therefore very important. We have screened a library of 96 amphipathic molecules for effects on Aβ(1-42) aggregation and self-association. We find, using thioflavin T fluorescence and electron microscopy assays, that 30 of the molecules inhibit the aggregation process, whereas 36 activate fibril formation. Several activators and inhibitors were subjected to further analysis using analytical ultracentrifugation and circular dichroism. Activators typically display a 1:10 peptide:detergent stoichiometry for maximal activation, whereas the inhibitors are effective at a 1:1 stoichiometry. Analytical ultracentrifugation and circular dichroism experiments show that activators promote a mixture of unfolded and β-sheet structures and rapidly form large aggregates, whereas inhibitors induce α-helical structures that form stable dimeric/trimeric oligomers. The results suggest that Aβ(1-42) contains at least one small molecule binding site, which modulates the secondary structure and aggregation processes. Further studies of the binding of these compounds to Aβ may provide insight for developing therapeutic strategies aimed at stabilizing Aβ in a favorable conformation.
Collapse
Affiliation(s)
- Timothy M Ryan
- Mental Health Research Institute, the University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Li X, Buxbaum JN. Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener 2011; 6:79. [PMID: 22112803 PMCID: PMC3267701 DOI: 10.1186/1750-1326-6-79] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Since the mid-1990's a trickle of publications from scattered independent laboratories have presented data suggesting that the systemic amyloid precursor transthyretin (TTR) could interact with the amyloidogenic β-amyloid (Aβ) peptide of Alzheimer's disease (AD). The notion that one amyloid precursor could actually inhibit amyloid fibril formation by another seemed quite far-fetched. Further it seemed clear that within the CNS, TTR was only produced in choroid plexus epithelial cells, not in neurons. The most enthusiastic of the authors proclaimed that TTR sequestered Aβ in vivo resulting in a lowered TTR level in the cerebrospinal fluid (CSF) of AD patients and that the relationship was salutary. More circumspect investigators merely showed in vitro interaction between the two molecules. A single in vivo study in Caenorhabditis elegans suggested that wild type human TTR could suppress the abnormalities seen when Aβ was expressed in the muscle cells of the worm. Subsequent studies in human Aβ transgenic mice, including those from our laboratory, also suggested that the interaction reduced the Aβ deposition phenotype. We have reviewed the literature analyzing the relationship including recent data examining potential mechanisms that could explain the effect. We have proposed a model which is consistent with most of the published data and current notions of AD pathogenesis and can serve as a hypothesis which can be tested.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd,, MEM-230, La Jolla, CA 92037, USA
| | | |
Collapse
|
26
|
Axelsen PH, Komatsu H, Murray IVJ. Oxidative stress and cell membranes in the pathogenesis of Alzheimer's disease. Physiology (Bethesda) 2011; 26:54-69. [PMID: 21357903 DOI: 10.1152/physiol.00024.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Amyloid β proteins and oxidative stress are believed to have central roles in the development of Alzheimer's disease. Lipid membranes are among the most vulnerable cellular components to oxidative stress, and membranes in susceptible regions of the brain are compositionally distinct from those in other tissues. This review considers the evidence that membranes are either a source of neurotoxic lipid oxidation products or the target of pathogenic processes involving amyloid β proteins that cause permeability changes or ion channel formation. Progress toward a comprehensive theory of Alzheimer's disease pathogenesis is discussed in which lipid membranes assume both roles and promote the conversion of monomeric amyloid β proteins into fibrils, the pathognomonic histopathological lesion of the disease.
Collapse
Affiliation(s)
- Paul H Axelsen
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
27
|
Grasso G. The use of mass spectrometry to study amyloid-β peptides. MASS SPECTROMETRY REVIEWS 2011; 30:347-365. [PMID: 21500241 DOI: 10.1002/mas.20281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 05/30/2023]
Abstract
Amyloid-β peptide (Aβ) varies in size from 39 to 43 amino acids and arises from sequential β- and γ-secretase processing of the amyloid precursor protein. Whereas the non-pathological role for Aβ is yet to be established, there is no disputing that Aβ is now widely regarded as central to the development of Alzheimer's disease (AD). The so named "amyloid cascade hypothesis" states that disease progression is the result of an increased Aβ burden in affected areas of the brain. To elucidate the Aβ role in AD, many analytical approaches have been proposed as suitable tools to investigate not only the total Aβ load but also many other issues that are considered crucial for AD, such as: (i) the aggregation state in which Aβ is present; (ii) its interaction with other species or metals; (iii) its ability to induce oxidative stress; and (iv) its degradative pathways. This review provides an insight into the use of mass spectrometry (MS) in the field of Aβ investigation aimed to assess its role in AD. In particular, the different MS-based approaches applied in vitro and in vivo that can provide detailed information on the above-mentioned issues are reviewed. Moreover, the advantages offered by the MS methods over all the other techniques are highlighted, together with the recent developments and uses of combined analytical approaches to detect and characterize Aβ.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Università di Catania, Viale Andrea Doria 6, Catania 95125, Italy.
| |
Collapse
|
28
|
Zhong J. From simple to complex: investigating the effects of lipid composition and phase on the membrane interactions of biomolecules using in situ atomic force microscopy. Integr Biol (Camb) 2011; 3:632-44. [DOI: 10.1039/c0ib00157k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Humpel C. Chronic mild cerebrovascular dysfunction as a cause for Alzheimer's disease? Exp Gerontol 2010; 46:225-32. [PMID: 21112383 PMCID: PMC3070802 DOI: 10.1016/j.exger.2010.11.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive chronic disorder and is characterized by β-amyloid plaques and angiopathy, tau pathology, neuronal cell death, and inflammatory responses. The reasons for this disease are not known. This review proposes the hypothesis that a chronic mild longlasting cerebrovascular dysfunction could initiate a cascade of events leading to AD. It is suggested that (vascular) risk factors (e.g. hypercholesterolemia, type 2 diabetes, hyperhomocysteinemia) causes either damage of the cerebrovascular system including silent strokes or causes dysregulation of beta-amyloid clearance at the blood-brain barrier resulting in increased brain beta-amyloid. A cascade of subsequent downstream events may lead to disturbed metabolic changes, and neuroinflammation and tau pathology. The role of NGF on the cell death of cholinergic neurons is discussed. Additional risk factors (e.g. acidosis, metals) contribute to plaque development.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Exp. Alzheimers Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Austria.
| |
Collapse
|
30
|
Avila J, Santa-María I, Pérez M, Hernández F, Moreno F. Tau phosphorylation, aggregation, and cell toxicity. J Biomed Biotechnol 2010; 2006:74539. [PMID: 17047313 PMCID: PMC1479889 DOI: 10.1155/jbb/2006/74539] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein aggregation takes place in many neurodegenerative disorders. However, there is a controversy about the possible toxicity of these protein aggregates. In this review, this controversy is discussed, focussing on the tau aggregation that takes place in those disorders known as tauopathies.
Collapse
Affiliation(s)
- J. Avila
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
- *J. Avila:
| | - I. Santa-María
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
| | - M. Pérez
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
| | - F. Hernández
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
| | - F. Moreno
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
31
|
Hubert P, Sawma P, Duneau JP, Khao J, Hénin J, Bagnard D, Sturgis J. Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adh Migr 2010; 4:313-24. [PMID: 20543559 PMCID: PMC2900628 DOI: 10.4161/cam.4.2.12430] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/20/2010] [Indexed: 01/28/2023] Open
Abstract
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.
Collapse
Affiliation(s)
- Pierre Hubert
- LISM UPR 9027, CNRS-Aix-Marseille University, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Peptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo. Oncogene 2010; 29:2381-92. [PMID: 20140015 DOI: 10.1038/onc.2010.9] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis in glioblastoma is largely dependent on vascular endothelial growth factor (VEGF) signalling. Consistently, the VEGF coreceptor NRP1 promotes angiogenesis and tumour growth in gliomas. Here, we provide data showing that an innovative peptidic tool targeting the transmembrane domain of NRP1 efficiently blocks rat and human glioma growth in vivo. We show both in vivo and in vitro that the antitumour effect results from the anti-proliferative, anti-migratory and anti-angiogenic properties of the compound. The proposed NRP1 antagonizing peptide is therefore a promising novel class of anti-angiogenic drugs that might prolong glioma patient survival. Our results finally show for the first time that the transmembrane domain of important signalling receptors can be antagonized in vivo thereby providing a new avenue towards the development of atypical antagonists with strong therapeutic potential.
Collapse
|
33
|
Tabaton M, Zhu X, Perry G, Smith MA, Giliberto L. Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Exp Neurol 2009; 221:18-25. [PMID: 19747481 DOI: 10.1016/j.expneurol.2009.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 12/28/2022]
Abstract
The effects of amyloid-beta are extremely complex. Current work in the field of Alzheimer disease is focusing on discerning the impact between the physiological signaling effects of soluble low molecular weight amyloid-beta species and the more global cellular damage that could derive from highly concentrated and/or aggregated amyloid. Being able to dissect the specific signaling events, to understand how soluble amyloid-beta induces its own production by up-regulating BACE1 expression, could lead to new tools to interrupt the distinctive feedback cycle with potential therapeutic consequences. Here we describe a positive loop that exists between the secretases that are responsible for the generation of the amyloid-beta component of Alzheimer disease. According to our hypothesis, in familial Alzheimer disease, the primary overproduction of amyloid-beta can induce BACE1 transcription and drive a further increase of amyloid-beta precursor protein processing and resultant amyloid-beta production. In sporadic Alzheimer disease, many factors, among them oxidative stress and inflammation, with consequent induction of presenilins and BACE1, would activate a loop and proceed with the generation of amyloid-beta and its signaling role onto BACE1 transcription. This concept of a signaling effect by and feedback on the amyloid-beta precursor protein will likely shed light on how amyloid-beta generation, oxidative stress, and secretase functions are intimately related in sporadic Alzheimer disease.
Collapse
Affiliation(s)
- Massimo Tabaton
- Departments of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova, Italy.
| | | | | | | | | |
Collapse
|
34
|
Effects of lipid composition and phase on the membrane interaction of the prion peptide 106-126 amide. Biophys J 2009; 96:4610-21. [PMID: 19486683 DOI: 10.1016/j.bpj.2009.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/17/2008] [Accepted: 01/23/2009] [Indexed: 12/27/2022] Open
Abstract
Lipid rafts are specialized liquid-ordered (L(o)) phases of the cell membrane that are enriched in sphingolipids and cholesterol (Chl), and surrounded by a liquid-disordered (L(d)) phase enriched in glycerophospholipids. Lipid rafts are involved in the generation of pathological forms of proteins that are associated with neurodegenerative diseases. To investigate the effects of lipid composition and phase on the generation of pathological forms of proteins, we constructed an L(d)-gel phase-separated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/sphingomyelin (from bovine brain (BSM))-supported lipid bilayer (SLB) and an L(d)-L(o) phase-separated POPC/BSM/Chl SLB. We used in situ time-lapse atomic force microscopy to study the interactions between these SLBs and the prion peptide K(106)TNMKHMAGAAAAGAVVGGLG(126) (PrP106-126) amide, numbered according to the human prion-peptide sequence. Our results show that: 1), with the presence of BSM in the L(d) phase, the PrP106-126 amide induces fully penetrated porations in the L(d) phase of POPC/BSM SLB and POPC/BSM/Chl SLB; 2), with the presence of both BSM and Chl in the L(d) phase, the PrP106-126 amide induces the disintegration of the L(d) phase of POPC/BSM/Chl SLB; and 3), with the presence of both BSM and Chl in the L(o) phase, PrP106-126 amide induces membrane thinning in the L(o) phase of POPC/BSM/Chl SLB. These results provide comprehensive insight into the process by which the PrP106-126 amide interacts with lipid membranes.
Collapse
|
35
|
Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:877-88. [DOI: 10.1007/s00249-009-0439-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/04/2009] [Indexed: 12/13/2022]
|
36
|
Mendonsa G, Dobrowolska J, Lin A, Vijairania P, Jong YJI, Baenziger NL. Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer's disease human skin fibroblasts. PLoS One 2009; 4:e4655. [PMID: 19247475 PMCID: PMC2644820 DOI: 10.1371/journal.pone.0004655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 01/26/2009] [Indexed: 11/18/2022] Open
Abstract
The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal fibroblasts lost in PS-1 M146L fibroblasts. Complex molecular profiles of signaling dysfunction in the most putatively straightforward human cellular models of AD suggest that risk ascertainment and therapeutic interventions in AD as a whole will likely demand complex solutions.
Collapse
Affiliation(s)
- Graziella Mendonsa
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Justyna Dobrowolska
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Angela Lin
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Pooja Vijairania
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Y.-J. I. Jong
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Nancy L. Baenziger
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
37
|
Vaden TD, Gowers SAN, de Boer TSJA, Steill JD, Oomens J, Snoek LC. Conformational preferences of an amyloidogenic peptide: IR spectroscopy of Ac-VQIVYK-NHMe. J Am Chem Soc 2008; 130:14640-50. [PMID: 18844349 DOI: 10.1021/ja804213s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The (306)VQIVYK(311) sequence in the tau peptide is essential for the formation of intracellular amyloid fibrils related to Alzheimer's disease, where it forms interdigitating cross-beta-structures. The inherent conformational preferences of the capped hexapeptide Ac-VQIVYK-NHMe were characterized in the gas phase. IR/UV double-resonance spectroscopy of the peptide isolated in a cold molecular beam was used to probe the conformation of the neutral peptide. The influence of protonation at the lysine side chain was investigated at 298 K by characterizing the protonated peptide ion, Ac-VQIVYK(H(+))-NHMe, with IRMPD spectroscopy in the fingerprint and amide I/II band region in an FTICR mass spectrometer. The conformations for both neutral and protonated peptides were predicted by an extensive conformational search procedure followed by cluster analysis and then DFT calculations. Comparison of the experimental and computed IR spectra, with consideration of the relative energies, was used to assign the dominant conformations observed. The neutral peptide adopts a beta-hairpin-like conformation with two loosely extended peptide chains, demonstrating the preference of the sequence for extended beta-strand-like structures. In the protonated peptide, the lysine NH3(+) disrupts this extended conformation by binding to the backbone and induces a transition to a random-coil-like structure.
Collapse
Affiliation(s)
- Timothy D Vaden
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Marksteiner J, Humpel C. Beta-amyloid expression, release and extracellular deposition in aged rat brain slices. Mol Psychiatry 2008; 13:939-52. [PMID: 17712316 DOI: 10.1038/sj.mp.4002072] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is characterized by beta-amyloid plaques, tau pathology, cholinergic cell death and inflammation. The aim of this study was to investigate whether beta-amyloid is generated, released and extracellularly deposited in organotypic brain slices. In developing slices, no amyloid-precursor protein (APP) was detectable; however, there was a strong upregulation in aging slices. In such slices, rat beta-amyloid(1-42) and -(1-40) peptides were found using four sequence-specific antibodies. APP and beta-amyloid were expressed in neurons and to a lesser extent in astrocytes. Beta-amyloid was secreted into the medium. Beta-amyloid was located extracellularly when aging slices were incubated with medium at pH 6.0 including apolipoprotein E4 (ApoE4). It is concluded that aging organotypic brain slices express beta-amyloid and that acidosis induces cell death with efflux of beta-amyloid and extracellular depositions, which is triggered by ApoE4. This novel in vitro model may enable us to investigate further the pathological cascade for AD and may be useful to explore future therapeutics.
Collapse
Affiliation(s)
- J Marksteiner
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of General Psychiatry, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
39
|
Ciccarese P, Wu E, Kinoshita J, Wong GT, Ocana M, Ruttenberg A, Clark T. The SWAN biomedical discourse ontology. J Biomed Inform 2008; 41:739-51. [PMID: 18583197 PMCID: PMC4536833 DOI: 10.1016/j.jbi.2008.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
Developing cures for highly complex diseases, such as neurodegenerative disorders, requires extensive interdisciplinary collaboration and exchange of biomedical information in context. Our ability to exchange such information across sub-specialties today is limited by the current scientific knowledge ecosystem's inability to properly contextualize and integrate data and discourse in machine-interpretable form. This inherently limits the productivity of research and the progress toward cures for devastating diseases such as Alzheimer's and Parkinson's. SWAN (Semantic Web Applications in Neuromedicine) is an interdisciplinary project to develop a practical, common, semantically structured, framework for biomedical discourse initially applied, but not limited, to significant problems in Alzheimer Disease (AD) research. The SWAN ontology has been developed in the context of building a series of applications for biomedical researchers, as well as in extensive discussions and collaborations with the larger bio-ontologies community. In this paper, we present and discuss the SWAN ontology of biomedical discourse. We ground its development theoretically, present its design approach, explain its main classes and their application, and show its relationship to other ongoing activities in biomedicine and bio-ontologies.
Collapse
Affiliation(s)
- Paolo Ciccarese
- Massachusetts General Hospital, Boston MA 02129 USA
- Harvard Medical School, Boston MA 02115 USA
| | - Elizabeth Wu
- Alzheimer Research Forum Foundation, Boston MA 02109 USA
| | - June Kinoshita
- Alzheimer Research Forum Foundation, Boston MA 02109 USA
| | | | - Marco Ocana
- Massachusetts General Hospital, Boston MA 02129 USA
| | | | - Tim Clark
- Massachusetts General Hospital, Boston MA 02129 USA
- Harvard Medical School, Boston MA 02115 USA
| |
Collapse
|
40
|
Jellinger KA, Janetzky B, Attems J, Kienzl E. Biomarkers for early diagnosis of Alzheimer disease: 'ALZheimer ASsociated gene'--a new blood biomarker? J Cell Mol Med 2008; 12:1094-117. [PMID: 18363842 PMCID: PMC3865653 DOI: 10.1111/j.1582-4934.2008.00313.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 02/12/2008] [Indexed: 12/11/2022] Open
Abstract
Simple, non-invasive tests for an early detection of degenerative dementia by use of biomarkers are urgently required. However, up to the present, no validated extracerebral diagnostic markers (plasma/serum, platelets, urine, connective tissue) for the early diagnosis of Alzheimer disease (AD) are available. In disease stages with evident cognitive disturbances, the clinical diagnosis of probable AD is made with around 90% accuracy using modern clinical, neuropsychological and imaging methods. Diagnostic sensitivity and specificity even in early disease stages are improved by CSF markers, in particular combined tau and amyloid beta peptides (Abeta) and plasma markers (eg, Abeta-42/Abeta-40 ratio). Recently, a novel gene/protein--ALZAS (Alzheimer Associated Protein)--with a 79 amino acid sequence, containing the amyloid beta-42 fragment (Abeta-42), the amyloid precursor protein (APP) transmembrane signal and a 12 amino acid C-terminal, not present in any other known APP alleles, has been discovered on chromosome 21 within the APP region. Reverse transcriptase-PCR revealed the expression of the transcript of this protein in the cortex and hippocampal regions as well as in lymphocytes of human AD patients. The expression of ALZAS is mirrored by a specific autoimmune response in AD patients, directed against the ct-12 end of the ALZAS-peptide but not against the Abeta-sequence. ELISA studies of plasma detected highest titers of ALZAS in patients with mild cognitive impairment (presymptomatic AD), but only moderately increased titers in autopsy-confirmed AD, whereas low or undetectable ct-12 titers were found in cognitively intact age-matched subjects and young controls. The antigen, ALZAS protein, was detected in plasma in later clinical stages of AD. It is suggested that ALZAS represents an indicator in a dynamic equilibrium between both peripheral and brain degenerative changes in AD and may become a useful "non-invasive" diagnostic marker via a simple blood test.
Collapse
|
41
|
Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T, Fei JZ, Aimoto S, Courtoy PJ, Smith SO, Constantinescu SN, Octave JN. Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem 2008; 283:7733-44. [PMID: 18201969 PMCID: PMC2702479 DOI: 10.1074/jbc.m707142200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The beta-amyloid peptide (Abeta) is the major constituent of the amyloid core of senile plaques found in the brain of patients with Alzheimer disease. Abeta is produced by the sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases. Cleavage of APP by gamma-secretase also generates the APP intracellular C-terminal domain (AICD) peptide, which might be involved in regulation of gene transcription. APP contains three Gly-XXX-Gly (GXXXG) motifs in its juxtamembrane and transmembrane (TM) regions. Such motifs are known to promote dimerization via close apposition of TM sequences. We demonstrate that pairwise replacement of glycines by leucines or isoleucines, but not alanines, in a GXXXG motif led to a drastic reduction of Abeta40 and Abeta42 secretion. beta-Cleavage of mutant APP was not inhibited, and reduction of Abeta secretion resulted from inhibition of gamma-cleavage. It was anticipated that decreased gamma-cleavage of mutant APP would result from inhibition of its dimerization. Surprisingly, mutations of the GXXXG motif actually enhanced dimerization of the APP C-terminal fragments, possibly via a different TM alpha-helical interface. Increased dimerization of the TM APP C-terminal domain did not affect AICD production.
Collapse
Affiliation(s)
- Pascal Kienlen-Campard
- Université catholique de Louvain, Center for Neurosciences, Experimental Pharmacology Unit, B-1200 Brussels, Belgium
| | - Bernadette Tasiaux
- Université catholique de Louvain, Center for Neurosciences, Experimental Pharmacology Unit, B-1200 Brussels, Belgium
| | - Joanne Van Hees
- Université catholique de Louvain, Christian de Duve Institute and Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium
| | - Mingli Li
- Université catholique de Louvain, Christian de Duve Institute and Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium
| | - Sandra Huysseune
- Université catholique de Louvain, Center for Neurosciences, Experimental Pharmacology Unit, B-1200 Brussels, Belgium
| | - Takeshi Sato
- Osaka University, Institute for Protein Research, Osaka 565-0871, Japan
| | - Jeffrey Z. Fei
- Stony Brook University, Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook, NY 11794-5115
| | - Saburo Aimoto
- Osaka University, Institute for Protein Research, Osaka 565-0871, Japan
| | - Pierre J. Courtoy
- Université catholique de Louvain, Christian de Duve Institute of Cellular Pathology, Cell Unit, B-1200 Brussels, Belgium
| | - Steven O. Smith
- Stony Brook University, Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook, NY 11794-5115
| | - Stefan N. Constantinescu
- Université catholique de Louvain, Christian de Duve Institute and Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium
| | - Jean-Noël Octave
- Université catholique de Louvain, Center for Neurosciences, Experimental Pharmacology Unit, B-1200 Brussels, Belgium
| |
Collapse
|
42
|
West MJ, Bach G, Søderman A, Jensen JL. Synaptic contact number and size in stratum radiatum CA1 of APP/PS1DeltaE9 transgenic mice. Neurobiol Aging 2008; 30:1756-76. [PMID: 18336954 DOI: 10.1016/j.neurobiolaging.2008.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/11/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Synaptic changes occur early in the course of Alzheimer's disease and are key to understanding the initial events in associated neurodegenerative processes. The quantitative analysis of synaptic morphology in transgenic mouse models of Alzheimer's disease can provide important insights into these processes. To this end, the total number and the distribution of the diameters of synaptic contacts in the stratum radiatum of the CA1 region of the hippocampus of 12-month-old APP/PS1DeltaE9 transgenic mice and wild type littermates have been evaluated by applying design-based stereological methods to material prepared for electron microscopy. Although there were no differences in the size of the synaptic contacts, the total number of synaptic contacts was significantly larger in the transgenic mice, suggesting that the transgenic effect at this age is synaptotrophic and that the presence of amyloid plaques and an elevated Abeta42/40 ratio are not necessarily detrimental to populations of synapses. The potential of this type of data in evaluating synaptic changes related to Alzheimer's disease is discussed and the methodology described in detail.
Collapse
Affiliation(s)
- Mark J West
- Anatomical Institute, University of Aarhus, Aarhus, Denmark.
| | | | | | | |
Collapse
|
43
|
Van Vickle GD, Esh CL, Kokjohn TA, Patton RL, Kalback WM, Luehrs DC, Beach TG, Newel AJ, Lopera F, Ghetti B, Vidal R, Castaño EM, Roher AE. Presenilin-1 280Glu-->Ala mutation alters C-terminal APP processing yielding longer abeta peptides: implications for Alzheimer's disease. Mol Med 2008; 14:184-94. [PMID: 18317569 PMCID: PMC2258166 DOI: 10.2119/2007-00094.vanvickle] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/14/2008] [Indexed: 01/17/2023] Open
Abstract
Presenilin (PS) mutations enhance the production of the Abeta42 peptide that is derived from the amyloid precursor protein (APP). The pathway(s) by which the Abeta42 species is preferentially produced has not been elucidated, nor is the mechanism by which PS mutations produce early-onset dementia established. Using a combination of histological, immunohistochemical, biochemical, and mass spectrometric methods, we examined the structural and morphological nature of the amyloid species produced in a patient expressing the PS1 280Glu-->Ala familial Alzheimer's disease mutation. Abundant diffuse plaques were observed that exhibited a staining pattern and morphology distinct from previously described PS cases, as well as discreet amyloid plaques within the white matter. In addition to finding increased amounts of CT99 and Abeta42 peptides, our investigation revealed the presence of a complex array of Abeta peptides substantially longer than 42/43 amino acid residue species. The increased hydrophobic nature of longer Abeta species retained within the membrane walls could impact the structure and function of plasma membrane and organelles. These C-terminally longer peptides may, through steric effects, dampen the rate of turnover by critical amyloid degrading enzymes such as neprilysin and insulin degrading enzyme. A complete understanding of the deleterious side effects of membrane bound Abeta as a consequence of gamma-secretase alterations is needed to understand Alzheimer's disease pathophysiology and will aid in the design of therapeutic interventions.
Collapse
Affiliation(s)
- Gregory D Van Vickle
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Chera L Esh
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Tyler A Kokjohn
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
- Department of Microbiology, Midwestern University, Glendale, Arizona, USA
| | - R Lyle Patton
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Walter M Kalback
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Dean C Luehrs
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Thomas G Beach
- W H Civin Laboratory of Neuropathology, Sun Health Research Institute, Sun City, Arizona, USA
| | - Amanda J Newel
- W H Civin Laboratory of Neuropathology, Sun Health Research Institute, Sun City, Arizona, USA
| | - Francisco Lopera
- Department of Neuropathology Neuroscience Group, University of Antioquia, Colombia
| | - Bernardino Ghetti
- Indiana Alzheimer Disease Center, Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Ruben Vidal
- Indiana Alzheimer Disease Center, Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | | | - Alex E Roher
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
44
|
Gorman PM, Kim S, Guo M, Melnyk RA, McLaurin J, Fraser PE, Bowie JU, Chakrabartty A. Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer's disease mutants. BMC Neurosci 2008; 9:17. [PMID: 18234110 PMCID: PMC2266763 DOI: 10.1186/1471-2202-9-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 01/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyloid precursor protein (APP) is enzymatically cleaved by gamma-secretase to form two peptide products, either Abeta40 or the more neurotoxic Abeta42. The Abeta42/40 ratio is increased in many cases of familial Alzheimer's disease (FAD). The transmembrane domain (TM) of APP contains the known dimerization motif GXXXA. We have investigated the dimerization of both wild type and FAD mutant APP transmembrane domains. RESULTS Using synthetic peptides derived from the APP-TM domain, we show that this segment is capable of forming stable transmembrane dimers. A model of a dimeric APP-TM domain reveals a putative dimerization interface, and interestingly, majority of FAD mutations in APP are localized to this interface region. We find that FAD-APP mutations destabilize the APP-TM dimer and increase the population of APP peptide monomers. CONCLUSION The dissociation constants are correlated to both the Abeta42/Abeta40 ratio and the mean age of disease onset in AD patients. We also show that these TM-peptides reduce Abeta production and Abeta42/Abeta40 ratios when added to HEK293 cells overexpressing the Swedish FAD mutation and gamma-secretase components, potentially revealing a new class of gamma-secretase inhibitors.
Collapse
Affiliation(s)
- Paul M Gorman
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Sanguk Kim
- Department of Life Science, Pohang University of Science and Technology, 790-784, South Korea
| | - Meng Guo
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Roman A Melnyk
- Department of Microbiology and Molecular Genetics, Harvard, Boston, Massachusetts 02115, USA
| | - Joanne McLaurin
- Center for Research in Neurodegenerative Disease, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 3H2, Canada
| | - Paul E Fraser
- Center for Research in Neurodegenerative Disease, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 3H2, Canada
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Avijit Chakrabartty
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| |
Collapse
|
45
|
Nelson PT, Jicha GA, Schmitt FA, Liu H, Davis DG, Mendiondo MS, Abner EL, Markesbery WR. Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles "do count" when staging disease severity. J Neuropathol Exp Neurol 2007; 66:1136-46. [PMID: 18090922 PMCID: PMC3034246 DOI: 10.1097/nen.0b013e31815c5efb] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is uncertainty regarding the association of cognitive decline in Alzheimer disease (AD) with classic histopathologic features- neurofibrillary tangles (NFTs) and "neuritic" amyloid plaques (NPs). This uncertainty fuels doubts about the diagnostic importance of NFTs and NPs and leads to confusion regarding hypotheses of AD pathogenesis. Three hundred ninety subjects who underwent longitudinal premortem clinical workup and postmortem quantitative neuropathologic assessment served as the group to address this issue. Subjects with concomitant brain disease(s) were analyzed independently to more accurately assess the contribution of distinct pathologies to cognitive decline. More than 60% of patients of all age groups had important non-AD brain pathologies. However, subjects without superimposed brain diseases showed strong correlations between AD-type pathology counts (NFTs > NPs) and premortem Mini-Mental State Examination scores. The observed correlation was stronger in isocortex than in allocortex and was maintained across age groups including patients older than 90 years. A theoretical model is proposed in which our results are interpreted to support the "amyloid cascade hypothesis" of AD pathogenesis. Our data show that there are many important contributory causes to cognitive decline in older persons. However, NFTs and NPs should not be dismissed as irrelevant in AD based on clinicopathologic correlation.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Division of Neuropathology, University of Kentucky, Lexington, Kentucky 40536-0230, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Autophagy is the sole pathway for organelle turnover in cells and is a vital pathway for degrading normal and aggregated proteins, particularly under stress or injury conditions. Recent evidence has shown that the amyloid β peptide is generated from amyloid β precursor protein (APP) during autophagic turnover of APP-rich organelles supplied by both autophagy and endocytosis. Aβ generated during normal autophagy is subsequently degraded by lysosomes. Within neurons, autophagosomes and endosomes actively form in synapses and along neuritic processes but efficient clearance of these compartments requires their retrograde transport towards the neuronal cell body, where lysosomes are most concentrated. In Alzheimer disease, the maturation of autophagolysosomes and their retrograde transport are impeded, which leads to a massive accumulation of `autophagy intermediates' (autophagic vacuoles) within large swellings along dystrophic and degenerating neurites. The combination of increased autophagy induction and defective clearance of Aβ-generating autophagic vacuoles creates conditions favorable for Aβ accumulation in Alzheimer disease.
Collapse
Affiliation(s)
- Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, Departments of Psychiatry and Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
47
|
Zitnik G, Wang L, Martin GM, Hu Q. Localizations of endogenous APP/APP-proteolytic products are consistent with microtubular transport. J Mol Neurosci 2007; 31:59-68. [PMID: 17416970 DOI: 10.1007/bf02686118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 11/30/1999] [Accepted: 06/03/2006] [Indexed: 12/12/2022]
Abstract
Dementia of the Alzheimer type (DAT) is associated with the accumulation of beta-amyloid (A beta) peptides derived from beta-amyloid precursor protein (APP). Goldstein and coworkers have suggested that APP acts as a cargo receptor connecting post-Golgi vesicles and motor proteins. Sisodia and colleagues have suggested that APP is a passive passenger within the vesicles. Both views predict that one should be able to visualize colocalizations of APP with microtubules, the object of the present investigation. To avoid possible artifacts created by APP overexpression, we studied endogenous expression in a human neuroblastoma cell line (SK-N-SH). Using high resolution fluorescence microscopy and antibodies specific for the amino termini of APP and A beta sequences, we found that endogenous APP and A beta peptide immunoreactivities colocalized with microtubules in interphase cells. Disruption of microtubules, followed by fixation at various time points during repolymerization, allowed us to observe the sequence and timing of these colocalizations in interphase cells. In addition, to our surprise, we found that A beta immunoreactivities colocalize with the mitotic spindle, a bundle of specialized microtubules. Because of the condensed cytoplasm found in neurons, we suggest that SK-N-SH cells might be a more convenient experimental system for exploring the mechanisms that underlie these protein localizations and the pathology that might result from altered APP protein structure and function.
Collapse
Affiliation(s)
- Galynn Zitnik
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA.
| | | | | | | |
Collapse
|
48
|
Qu W, Kung MP, Hou C, Jin LW, Kung HF. Radioiodinated aza-diphenylacetylenes as potential SPECT imaging agents for beta-amyloid plaque detection. Bioorg Med Chem Lett 2007; 17:3581-4. [PMID: 17502139 PMCID: PMC1950143 DOI: 10.1016/j.bmcl.2007.04.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
Two new iodinated fluoro- and hydroxy-pegylated aza-diphenylacetylene derivatives, 1 and 2, targeting beta-amyloid (Abeta) plaques have been successfully prepared. In vitro binding carried out in tissue homogenates prepared from postmortem AD brains with [(125)I]IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2-a]pyridine) as the radioligand indicated good binding affinities (K(i)=9.2 and 16.8 nM for 1 and 2, respectively). Brain penetrations of the corresponding radioiodinated ligands, evaluated in the normal mice, showed good initial brain penetrations (3.55% and 5.67% ID/g for [(125)I]1 and [(125)I]2 at 2 min post-injection). The washout from normal mice brain was relatively fast (0.33% and 0.91% ID/g at 2h post-injection). The specific binding of these radioiodinated ligands to beta-amyloid plaques was clearly demonstrated using film autoradiography of AD brain sections. Taken together, these preliminary results strongly suggest that these novel iodinated aza-diphenylacetylenes may be potentially useful for imaging Abeta plaques in the living human brain.
Collapse
Affiliation(s)
- Wenchao Qu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mei-Ping Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lee-Way Jin
- Department of Pathology, University of California Health System, Sacramento, CA 95817
| | - Hank F. Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
49
|
Atamna H, Frey WH. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease. Mitochondrion 2007; 7:297-310. [PMID: 17625988 DOI: 10.1016/j.mito.2007.06.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 06/06/2007] [Indexed: 12/31/2022]
Abstract
Several studies have demonstrated aberrations in the Electron Transport Complexes (ETC) and Krebs (TCA) cycle in Alzheimer's disease (AD) brain. Optimal activity of these key metabolic pathways depends on several redox active centers and metabolites including heme, coenzyme Q, iron-sulfur, vitamins, minerals, and micronutrients. Disturbed heme metabolism leads to increased aberrations in the ETC (loss of complex IV), dimerization of APP, free radical production, markers of oxidative damage, and ultimately cell death all of which represent key cytopathologies in AD. The mechanism of mitochondrial dysfunction in AD is controversial. The observations that Abeta is found both in the cells and in the mitochondria and that Abeta binds with heme may provide clues to this mechanism. Mitochondrial Abeta may interfere with key metabolites or metabolic pathways in a manner that overwhelms the mitochondrial mechanisms of repair. Identifying the molecular mechanism for how Abeta interferes with mitochondria and that explains the established key cytopathologies in AD may also suggest molecular targets for therapeutic interventions. Below we review recent studies describing the possible role of Abeta in altered energy production through heme metabolism. We further discuss how protecting mitochondria could confer resistance to oxidative and environmental insults. Therapies targeted at protecting mitochondria may improve the clinical outcome of AD patients.
Collapse
Affiliation(s)
- Hani Atamna
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA.
| | | |
Collapse
|
50
|
Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O, Chen H, Doherty D, Forsberg K, Gao Y, Kashyap V, Kinoshita J, Luciano J, Marshall MS, Ogbuji C, Rees J, Stephens S, Wong GT, Wu E, Zaccagnini D, Hongsermeier T, Neumann E, Herman I, Cheung KH. Advancing translational research with the Semantic Web. BMC Bioinformatics 2007; 8 Suppl 3:S2. [PMID: 17493285 PMCID: PMC1892099 DOI: 10.1186/1471-2105-8-s3-s2] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. RESULTS We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. CONCLUSION Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work.
Collapse
Affiliation(s)
| | - Tim Clark
- Initiative in Innovative Computing, Harvard University, Cambridge, MA, USA
| | - William Bug
- Laboratory for Bioimaging and Anatomical Informatics, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Matthias Samwald
- Section on Medical Expert and Knowledge-Based Systems, Medical University of Vienna, Vienna, Austria
| | | | - Helen Chen
- Agfa Healthcare, Waterloo, Ontario, Canada
| | | | | | - Yong Gao
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | - M Scott Marshall
- Integrative Bioinformatics Unit, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | - Kei-Hoi Cheung
- Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|