1
|
Ayushman M, Mikos G, Tong X, Sinha S, Lopez-Fuentes E, Jones S, Cai PC, Lee HP, Morrison AJ, Spakowitz A, Heilshorn SC, Sweet-Cordero A, Yang F. Cell tumbling enhances stem cell differentiation in hydrogels via nuclear mechanotransduction. NATURE MATERIALS 2025; 24:312-322. [PMID: 39487316 DOI: 10.1038/s41563-024-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Cells can deform their local niche in three dimensions via whole-cell movements such as spreading, migration or volume expansion. These behaviours, occurring over hours to days, influence long-term cell fates including differentiation. Here we report a whole-cell movement that occurs in sliding hydrogels at the minutes timescale, termed cell tumbling, characterized by three-dimensional cell dynamics and hydrogel deformation elicited by heightened seconds-to-minutes-scale cytoskeletal and nuclear activity. Studies inhibiting or promoting the cell tumbling of mesenchymal stem cells show that this behaviour enhances differentiation into chondrocytes. Further, it is associated with a decrease in global chromatin accessibility, which is required for enhanced differentiation. Cell tumbling also occurs during differentiation into other lineages and its differentiation-enhancing effects are validated in various hydrogel platforms. Our results establish that cell tumbling is an additional regulator of stem cell differentiation, mediated by rapid niche deformation and nuclear mechanotransduction.
Collapse
Affiliation(s)
- Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Georgios Mikos
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eunice Lopez-Fuentes
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah Jones
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Pamela C Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Hung-Pang Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Andrew Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Li K, Jan YN. Experimental tools and emerging principles of organellar mechanotransduction. Trends Cell Biol 2025:S0962-8924(24)00279-4. [PMID: 39828483 DOI: 10.1016/j.tcb.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Mechanotransduction is the process by which cells detect mechanical forces and convert them into biochemical or electrical signals. This process occurs across various cellular compartments, including the plasma membrane, cytoskeleton, and intracellular organelles. While research has focused mainly on force sensing at the plasma membrane, the mechanisms and significance of intracellular mechanotransduction are just beginning to be understood. This review summarizes current techniques for studying organellar mechanobiology, and highlights advances in our understanding of the mechanosensitive events occurring in organelles such as the endoplasmic reticulum (ER), Golgi apparatus, and endolysosomes. Additionally, some open questions and promising directions are identified for future research.
Collapse
Affiliation(s)
- Kai Li
- Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, 100069, China; School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Liu C, Dernburg AF. Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope. Science 2024; 386:eadm7969. [PMID: 39571011 DOI: 10.1126/science.adm7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/20/2024] [Indexed: 11/24/2024]
Abstract
Sexual reproduction relies on robust quality control during meiosis. Assembly of the synaptonemal complex between homologous chromosomes (synapsis) regulates meiotic recombination and is crucial for accurate chromosome segregation in most eukaryotes. Synapsis defects can trigger cell cycle delays and, in some cases, apoptosis. We developed and deployed a chemically induced proximity system to identify key elements of this quality control pathway in Caenorhabditis elegans. Persistence of the polo-like kinase PLK-2 at pairing centers-specialized chromosome regions that interact with the nuclear envelope-induced apoptosis of oocytes in response to phosphorylation and destabilization of the nuclear lamina. Unexpectedly, the Piezo1/PEZO-1 channel localized to the nuclear envelope and was required to transduce this signal to promote apoptosis in maturing oocytes.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abby F Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
4
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Xiong X, Huo Q, Li K, Cui C, Chang C, Park C, Ku B, Hong CS, Lim H, Pandya PH, Saadatzadeh MR, Bijangi-Vishehsaraei K, Lin CC, Kacena MA, Pollok KE, Chen A, Liu J, Thompson WR, Li XL, Li BY, Yokota H. Enhancing anti-tumor potential: low-intensity vibration suppresses osteosarcoma progression and augments MSCs' tumor-suppressive abilities. Theranostics 2024; 14:1430-1449. [PMID: 38389836 PMCID: PMC10879868 DOI: 10.7150/thno.90945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Osteosarcoma (OS), a common malignant bone tumor, calls for the investigation of novel treatment strategies. Low-intensity vibration (LIV) presents itself as a promising option, given its potential to enhance bone health and decrease cancer susceptibility. This research delves into the effects of LIV on OS cells and mesenchymal stem cells (MSCs), with a primary focus on generating induced tumor-suppressing cells (iTSCs) and tumor-suppressive conditioned medium (CM). Methods: To ascertain the influence of vibration frequency, we employed numerical simulations and conducted experiments to determine the most effective LIV conditions. Subsequently, we generated iTSCs and CM through LIV exposure and assessed the impact of CM on OS cells. We also explored the underlying mechanisms of the tumor-suppressive effects of LIV-treated MSC CM, with a specific focus on vinculin (VCL). We employed cytokine array, RNA sequencing, and Western blot techniques to investigate alterations in cytokine profiles, transcriptomes, and tumor suppressor proteins. Results: Numerical simulations validated LIV frequencies within the 10-100 Hz range. LIV induced notable morphological changes in OS cells and MSCs, confirming its dual role in inhibiting OS cell progression and promoting MSC conversion into iTSCs. Upregulated VCL expression enhanced MSC responsiveness to LIV, significantly bolstering CM's efficacy. Notably, we identified tumor suppressor proteins in LIV-treated CM, including procollagen C endopeptidase enhancer (PCOLCE), histone H4 (H4), peptidylprolyl isomerase B (PPIB), and aldolase A (ALDOA). Consistently, cytokine levels decreased significantly in LIV-treated mouse femurs, and oncogenic transcript levels were downregulated in LIV-treated OS cells. Moreover, our study demonstrated that combining LIV-treated MSC CM with chemotherapy drugs yielded additive anti-tumor effects. Conclusions: LIV effectively impeded the progression of OS cells and facilitated the transformation of MSCs into iTSCs. Notably, iTSC-derived CM demonstrated robust anti-tumor properties and the augmentation of MSC responsiveness to LIV via VCL. Furthermore, the enrichment of tumor suppressor proteins within LIV-treated MSC CM and the reduction of cytokines within LIV-treated isolated bone underscore the pivotal tumor-suppressive role of LIV within the bone tumor microenvironment.
Collapse
Affiliation(s)
- Xue Xiong
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Changpeng Cui
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chunyi Chang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Charles Park
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - BonHeon Ku
- Department of Mechanical Engineering, Pusan National University, Busan 46241, Korea
| | - Chin-Suk Hong
- Department of Mechanical Engineering, Ulsan College, Ulsan 44022, Korea
| | - HeeChang Lim
- Department of Mechanical Engineering, Pusan National University, Busan 46241, Korea
| | - Pankita H. Pandya
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - M. Reza Saadatzadeh
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | | | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Andy Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jing Liu
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - William R. Thompson
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Physical Therapy, Indiana University, Indianapolis, IN 46202, USA
| | - Xue-Lian Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Chen J. Current advances in anisotropic structures for enhanced osteogenesis. Colloids Surf B Biointerfaces 2023; 231:113566. [PMID: 37797464 DOI: 10.1016/j.colsurfb.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Bone defects are a challenge to healthcare systems, as the aging population experiences an increase in bone defects. Despite the development of biomaterials for bone fillers and scaffolds, there is still an unmet need for a bone-mimetic material. Cortical bone is highly anisotropic and displays a biological liquid crystalline (LC) arrangement, giving it exceptional mechanical properties and a distinctive microenvironment. However, the biofunctions, cell-tissue interactions, and molecular mechanisms of cortical bone anisotropic structure are not well understood. Incorporating anisotropic structures in bone-facilitated scaffolds has been recognised as essential for better outcomes. Various approaches have been used to create anisotropic micro/nanostructures, but biomimetic bone anisotropic structures are still in the early stages of development. Most scaffolds lack features at the nanoscale, and there is no comprehensive evaluation of molecular mechanisms or characterisation of calcium secretion. This manuscript provides a review of the latest development of anisotropic designs for osteogenesis and discusses current findings on cell-anisotropic structure interactions. It also emphasises the need for further research. Filling knowledge gaps will enable the fabrication of scaffolds for improved and more controllable bone regeneration.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Mechanical Engineering, University College London, WC1E 7JE, UK.
| |
Collapse
|
7
|
Donnaloja F, Raimondi MT, Messa L, Barzaghini B, Carnevali F, Colombo E, Mazza D, Martinelli C, Boeri L, Rey F, Cereda C, Osellame R, Cerullo G, Carelli S, Soncini M, Jacchetti E. 3D photopolymerized microstructured scaffolds influence nuclear deformation, nucleo/cytoskeletal protein organization, and gene regulation in mesenchymal stem cells. APL Bioeng 2023; 7:036112. [PMID: 37692376 PMCID: PMC10491463 DOI: 10.1063/5.0153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Carnevali
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milan, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomic and Rare Diseases, “V. Buzzi” Children's Hospital, 20154 Milan, Italy
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | - Giulio Cerullo
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | | | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
8
|
Sun Q, Pei F, Zhang M, Zhang B, Jin Y, Zhao Z, Wei Q. Curved Nanofiber Network Induces Cellular Bridge Formation to Promote Stem Cell Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204479. [PMID: 36382560 PMCID: PMC9875655 DOI: 10.1002/advs.202204479] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Remarkable exertions are directed to reveal and understand topographic cues that induce cell mechanical sensitive responses including lineage determination. Extracellular matrix (ECM) is the sophisticated ensemble of diverse factors offering the complicated cellular microenvironment to regulate cell behaviors. However, the functions of only a few of these factors are revealed; most of them are still poorly understood. Herein, the focus is on understanding the curved structure in ECM network for regulating stem cell mechanotransduction. A curved nanofiber network mimicking the curved structure in ECM is fabricated by an improved electrospinning technology. Compared with the straight fibers, the curved fibers promote cell bridge formation because of the cytoskeleton tension. The actomyosin filaments are condensed near the curved edge of the non-adhesive bridge in the bridging cells, which generates higher myosin-II-based intracellular force. This force drives cell lineage commitment toward osteogenic differentiation. This study enriches and perfects the knowledge of the effects of topographic cues on cell behaviors and guides the development of novel biomaterials.
Collapse
Affiliation(s)
- Qian Sun
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Fang Pei
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Man Zhang
- College of Biomedical EngineeringSichuan UniversityChengdu610065P. R. China
| | - Bo Zhang
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Ying Jin
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Zhihe Zhao
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
9
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
10
|
Wang AY, Coelho NM, Arora PD, Wang Y, Eymael D, Ji C, Wang Q, Lee W, Xu J, Kapus A, Carneiro KMM, McCulloch CA. DDR1 associates with TRPV4 in cell-matrix adhesions to enable calcium-regulated myosin activity and collagen compaction. J Cell Physiol 2022; 237:2451-2468. [PMID: 35150133 DOI: 10.1002/jcp.30696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Tissue fibrosis manifests as excessive deposition of compacted, highly aligned collagen fibrils, which interfere with organ structure and function. Cells in collagen-rich lesions often exhibit marked overexpression of discoidin domain receptor 1 (DDR1), which is linked to increased collagen compaction through the association of DDR1 with the Ca2+ -dependent nonmuscle myosin IIA (NMIIA). We examined the functional relationship between DDR1 and the transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable ion channel that is implicated in collagen compaction. Fibroblasts expressing high levels of DDR1 were used to model cells in lesions with collagen compaction. In these cells, the expression of the β1 integrin was deleted to simplify studies of DDR1 function. Compared with DDR1 wild-type cells, high DDR1 expression was associated with increased Ca2+ influx through TRPV4, enrichment of TRPV4 in collagen adhesions, and enhanced contractile activity mediated by NMIIA. At cell adhesion sites to collagen, DDR1 associated with TRPV4, which enhanced DDR1-mediated collagen alignment and compaction. We conclude that DDR1 regulates Ca2+ influx through the TRPV4 channel to promote critical, DDR1-mediated processes that are important in lesions with collagen compaction and alignment.
Collapse
Affiliation(s)
- Andrew Y Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Pamma D Arora
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Denise Eymael
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Wilson Lee
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Xu
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital and Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Codjoe JM, Miller K, Haswell ES. Plant cell mechanobiology: Greater than the sum of its parts. THE PLANT CELL 2022; 34:129-145. [PMID: 34524447 PMCID: PMC8773992 DOI: 10.1093/plcell/koab230] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 05/04/2023]
Abstract
The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood-including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or "mechanostasis," and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.
Collapse
Affiliation(s)
- Jennette M Codjoe
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Kari Miller
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | | |
Collapse
|
12
|
Abstract
Cells generate and sense mechanical forces that trigger biochemical signals to elicit cellular responses that control cell fate changes. Mechanical forces also physically distort neighboring cells and the surrounding connective tissue, which propagate mechanochemical signals over long distances to guide tissue patterning, organogenesis, and adult tissue homeostasis. As the largest and stiffest organelle, the nucleus is particularly sensitive to mechanical force and deformation. Nuclear responses to mechanical force include adaptations in chromatin architecture and transcriptional activity that trigger changes in cell state. These force-driven changes also influence the mechanical properties of chromatin and nuclei themselves to prevent aberrant alterations in nuclear shape and help maintain genome integrity. This review will discuss principles of nuclear mechanotransduction and chromatin mechanics and their role in DNA damage and cell fate regulation.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
13
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
14
|
Manivasagam VK, Popat KC. Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112315. [PMID: 34474866 DOI: 10.1016/j.msec.2021.112315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Implant surface plays a crucial role in improving osseointegration and long-term implant life. When the implant comes in contact with the bone tissue, the bone marrow mesenchymal cells interact with the implant surface and the surface properties such as morphology, wettability, mechanical properties and chemistry influences cell migration, proliferation and differentiation. Different surface modification strategies such as ceramic coatings, surface dealloying, and surface topography modifications for improving osteointegration have been investigated. However, studies have not yet established which of the surface property is more influential. In this study, titanium surfaces were treated hydrothermally with sodium hydroxide and sulfuric acid separately. This treatment led to the development of two unique surface topography at nanoscale. These modified surfaces were characterized for surface morphology, wettability, chemistry, and crystallinity. Cytotoxicity, cell adhesion, proliferation, morphology, and differentiation of adipose derived stem cells on modified surfaces was investigated. The results indicate that wettability does influence initial cell adhesion. However, the surface morphology can play major role in cell spreading, proliferation and differentiation. The results indicate that titanium surfaces treated hydrothermally with sodium hydroxide led to a nanoporous architecture that promoted appropriate cell interaction with the surface promoting osteoblastic lineage.
Collapse
Affiliation(s)
- Vignesh K Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
15
|
Nader GPDF, Williart A, Piel M. Nuclear deformations, from signaling to perturbation and damage. Curr Opin Cell Biol 2021; 72:137-145. [PMID: 34461580 DOI: 10.1016/j.ceb.2021.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
During cell growth and motility in crowded tissues or interstitial spaces, cells must integrate multiple physical and biochemical environmental inputs. After a number of recent studies, the view of the nucleus as a passive object that cells have to drag along has become obsolete, placing the nucleus as a central player in sensing some of these inputs. In the present review, we will focus on changes in nuclear shape caused by external and internal forces. Depending on their magnitude, nuclear deformations can generate signaling events that modulate cell behavior and fate, or be a source of perturbations or even damage, having detrimental effects on cellular functions. On very large deformations, nuclear envelope rupture events become frequent, leading to uncontrolled nucleocytoplasmic mixing and DNA damage. We will also discuss the consequences of repeated compromised nuclear integrity, which can trigger DNA surveillance mechanisms, with critical consequences to cell fate and tissue homeostasis.
Collapse
Affiliation(s)
| | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France.
| |
Collapse
|
16
|
Safaralizade M, Fuderer R, Grosse R, Zhao B. Measuring nuclear calcium and actin assembly in living cells. J Biochem 2021; 169:287-294. [PMID: 33479753 DOI: 10.1093/jb/mvab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/29/2020] [Indexed: 11/12/2022] Open
Abstract
Nuclear calcium signalling has emerged as a critical mechanism regulating processes like chromatin organization and gene expression. Recently, we have shown that nuclear calcium elevation triggers rapid and transient actin filament assembly inside the nucleus. Here, we constructed and employed a nuclear-specific calcium sensor based upon the new generation of genetically encoded probes jGCaMP7f. By fusing a nuclear localization signal to jGCaMP7f, we achieved highly efficient nuclear-specific targeting. Comparing the jGCaMP7f-NLS probe with the previous GCaMP6f-NLS calcium sensor showed clearly that jGCaMP7f-NLS is more sensitive and reverses significantly quicker thereby reflecting rapid nuclear calcium transients in a closely physiological manner. We further confirm that nuclear calcium transients precede nuclear actin polymerization by several seconds. Our data show that calcium-triggered nuclear actin assembly in fibroblasts is independent of the actin nucleating Arp2/3 complex. Together, jGCaMP7f-NLS represents an easy to use, reliable and highly sensitive nuclear calcium sensor that allows to tightly interrogate real-time, spatiotemporal calcium signalling and calcium-elicited effects in the nucleus of living cells.
Collapse
Affiliation(s)
| | | | - Robert Grosse
- Institute of Pharmacology, Faculty of Medicine.,Centre for Integrative Biological Signaling Studies, University of Freiburg, Albertstraße 25, D-79104 Freiburg, Germany
| | - Bing Zhao
- Institute of Pharmacology, Faculty of Medicine.,Centre for Integrative Biological Signaling Studies, University of Freiburg, Albertstraße 25, D-79104 Freiburg, Germany
| |
Collapse
|
17
|
The nuclear import of the transcription factor MyoD is reduced in mesenchymal stem cells grown in a 3D micro-engineered niche. Sci Rep 2021; 11:3021. [PMID: 33542304 PMCID: PMC7862644 DOI: 10.1038/s41598-021-81920-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Smart biomaterials are increasingly being used to control stem cell fate in vitro by the recapitulation of the native niche microenvironment. By integrating experimental measurements with numerical models, we show that in mesenchymal stem cells grown inside a 3D synthetic niche both nuclear transport of a myogenic factor and the passive nuclear diffusion of a smaller inert protein are reduced. Our results also suggest that cell morphology modulates nuclear proteins import through a partition of the nuclear envelope surface, which is a thin but extremely permeable annular portion in cells cultured on 2D substrates. Therefore, our results support the hypothesis that in stem cell differentiation, the nuclear import of gene-regulating transcription factors is controlled by a strain-dependent nuclear envelope permeability, probably related to the reorganization of stretch-activated nuclear pore complexes.
Collapse
|
18
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
19
|
Lomakin AJ, Cattin CJ, Cuvelier D, Alraies Z, Molina M, Nader GPF, Srivastava N, Sáez PJ, Garcia-Arcos JM, Zhitnyak IY, Bhargava A, Driscoll MK, Welf ES, Fiolka R, Petrie RJ, De Silva NS, González-Granado JM, Manel N, Lennon-Duménil AM, Müller DJ, Piel M. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 2020; 370:eaba2894. [PMID: 33060332 PMCID: PMC8059074 DOI: 10.1126/science.aba2894] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
The microscopic environment inside a metazoan organism is highly crowded. Whether individual cells can tailor their behavior to the limited space remains unclear. In this study, we found that cells measure the degree of spatial confinement by using their largest and stiffest organelle, the nucleus. Cell confinement below a resting nucleus size deforms the nucleus, which expands and stretches its envelope. This activates signaling to the actomyosin cortex via nuclear envelope stretch-sensitive proteins, up-regulating cell contractility. We established that the tailored contractile response constitutes a nuclear ruler-based signaling pathway involved in migratory cell behaviors. Cells rely on the nuclear ruler to modulate the motive force that enables their passage through restrictive pores in complex three-dimensional environments, a process relevant to cancer cell invasion, immune responses, and embryonic development.
Collapse
Affiliation(s)
- A J Lomakin
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences (ÖAW), Vienna, Austria
- Medical University of Vienna (MUV), Vienna, Austria
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London, UK
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - C J Cattin
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - D Cuvelier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - Z Alraies
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
- Institut Curie, PSL Research University, INSERM, U 932, Paris, France
| | - M Molina
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London, UK
| | - G P F Nader
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - N Srivastava
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - P J Sáez
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - J M Garcia-Arcos
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - I Y Zhitnyak
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
- N.N. Blokhin Medical Research Center of Oncology, Moscow, Russia
| | - A Bhargava
- Institut Curie, PSL Research University, INSERM, U 932, Paris, France
| | - M K Driscoll
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R J Petrie
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - N S De Silva
- Institut Curie, PSL Research University, INSERM, U 932, Paris, France
| | - J M González-Granado
- LamImSys Lab, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - N Manel
- Institut Curie, PSL Research University, INSERM, U 932, Paris, France
| | | | - D J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - M Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| |
Collapse
|
20
|
Jiang W, Zhang C, Tran L, Wang SG, Hakim AD, Liu H. Engineering Nano-to-Micron-Patterned Polymer Coatings on Bioresorbable Magnesium for Controlling Human Endothelial Cell Adhesion and Morphology. ACS Biomater Sci Eng 2020; 6:3878-3898. [DOI: 10.1021/acsbiomaterials.0c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Larry Tran
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemical Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Sebo Gene Wang
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemistry, College of Natural and Agricultural Sciences, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ammar Dilshad Hakim
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan Liu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
21
|
Sun J, Chen J, Mohagheghian E, Wang N. Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation. SCIENCE ADVANCES 2020; 6:eaay9095. [PMID: 32270037 PMCID: PMC7112933 DOI: 10.1126/sciadv.aay9095] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/08/2020] [Indexed: 05/25/2023]
Abstract
Mechanical forces play important roles in development, physiology, and diseases, but how force is transduced into gene transcription remains elusive. Here, we show that transcription of transgene DHFR or endogenous genes egr-1 and Cav1 is rapidly up-regulated in response to cyclic forces applied via integrins at low frequencies but not at 100 Hz. Gene up-regulation does not follow the weak power law with force frequency. Force-induced transcription up-regulation at the nuclear interior is associated with demethylation of histone H3 lysine-9 trimethylation (H3K9me3), whereas no transcription up-regulation near the nuclear periphery is associated with H3K9me3 that inhibits Pol II recruitment to the promoter site. H3K9me3 demethylation induces Pol II recruitment and increases force-induced transcription of egr-1 and Cav1 at the nuclear interior and activates mechano-nonresponsive gene FKBP5 near the nuclear periphery, whereas H3K9me3 hypermethylation has opposite effects. Our findings demonstrate that rapid up-regulation of endogenous mechanoresponsive genes depends on H3K9me3 demethylation.
Collapse
Affiliation(s)
- Jian Sun
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Junwei Chen
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Erfan Mohagheghian
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Bu S, Yan S, Wang R, Xia P, Zhang K, Li G, Yin J. In Situ Precipitation of Cluster and Acicular Hydroxyapatite onto Porous Poly(γ-benzyl-l-glutamate) Microcarriers for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12468-12477. [PMID: 32091198 DOI: 10.1021/acsami.9b22559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone tissue engineering scaffold based on microcarriers provides an effective approach for the repair of irregular bone defects. The implantation of microcarriers by injection can reduce surgical trauma and fill various irregular shaped bone defects. Microcarriers with porous structure and osteogenic properties have shown great potential in promoting the repair of bone defects. In this study, two kinds of hydroxyapatite/poly-(γ-benzyl-l-glutamate) (HA/PBLG) microcarriers were constructed by emulsion/in situ precipitation method and their structures and properties were studied. First, PBLG porous microcarriers were prepared by an emulsion method. Surface carboxylation of PBLG microcarriers was performed to promote the deposition of HA on PBLG microcarriers. Next, the modified porous PBLG microcarriers were used as the matrix, combined with the in situ precipitation method; the cluster HA and acicular HA were precipitated onto the surface of porous microcarriers in the presence of ammonia water and tri(hydroxymethyl)aminomethane (Tris) solution, respectively. The micromorphology, composition, and element distribution of the two kinds of microcarriers were characterized by TEM, SEM, and AFM. Adipose stem cells (ADSCs) were cultured on the cluster HA/PBLG and acicular HA/PBLG microcarriers, respectively. ADSCs could grow and proliferate normally on both kinds of microcarriers wherein the acicular HA/PBLG microcarriers were more favorable for early cell adhesion and showed a beneficial effect on mineralization and osteogenic differentiation of ADSCs. Successful healing of a rabbit femur defect verified the bone regeneration ability of acicular HA/PBLG microcarriers.
Collapse
Affiliation(s)
- Shuai Bu
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Shifeng Yan
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Ruanfeng Wang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Pengfei Xia
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Guifei Li
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| |
Collapse
|
23
|
Veith A, Conway D, Mei L, Eskin SG, McIntire LV, Baker AB. Effects of Mechanical Forces on Cells and Tissues. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Jang YH, Jin X, Shankar P, Lee JH, Jo K, Lim KI. Molecular-Level Interactions between Engineered Materials and Cells. Int J Mol Sci 2019; 20:E4142. [PMID: 31450647 PMCID: PMC6747072 DOI: 10.3390/ijms20174142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Various recent experimental observations indicate that growing cells on engineered materials can alter their physiology, function, and fate. This finding suggests that better molecular-level understanding of the interactions between cells and materials may guide the design and construction of sophisticated artificial substrates, potentially enabling control of cells for use in various biomedical applications. In this review, we introduce recent research results that shed light on molecular events and mechanisms involved in the interactions between cells and materials. We discuss the development of materials with distinct physical, chemical, and biological features, cellular sensing of the engineered materials, transfer of the sensing information to the cell nucleus, subsequent changes in physical and chemical states of genomic DNA, and finally the resulting cellular behavior changes. Ongoing efforts to advance materials engineering and the cell-material interface will eventually expand the cell-based applications in therapies and tissue regenerations.
Collapse
Affiliation(s)
- Yoon-Ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea
| | - Xuelin Jin
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Prabakaran Shankar
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Kyubong Jo
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
25
|
Hedayatipour A, Aslanzadeh S, McFarlane N. CMOS based whole cell impedance sensing: Challenges and future outlook. Biosens Bioelectron 2019; 143:111600. [PMID: 31479988 DOI: 10.1016/j.bios.2019.111600] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 01/14/2023]
Abstract
With the increasing need for multi-analyte point-of-care diagnosis devices, cell impedance measurement is a promising technique for integration with other sensing modalities. In this comprehensive review, the theory underlying cell impedance sensing, including the history, complementary metal-oxide-semiconductor (CMOS) based implementations, and applications are critically assessed. Whole cell impedance sensing, also known as electric cell-substrate impedance sensing (ECIS) or electrical impedance spectroscopy (EIS), is an approach for studying and diagnosing living cells in in-vitro and in-vivo environments. The technique is popular since it is label-free, non-invasive, and low cost when compared to standard biochemical assays. CMOS cell impedance measurement systems have been focused on expanding their applications to numerous aspects of biological, environmental, and food safety applications. This paper presents and evaluates circuit topologies for whole cell impedance measurement. The presented review compares several existing CMOS designs, including the classification, measurement speed, and sensitivity of varying topologies.
Collapse
Affiliation(s)
- Ava Hedayatipour
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA.
| | - Shaghayegh Aslanzadeh
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Nicole McFarlane
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
26
|
Liu R, Liu Q, Pan Z, Liu X, Ding J. Cell Type and Nuclear Size Dependence of the Nuclear Deformation of Cells on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7469-7477. [PMID: 30226387 DOI: 10.1021/acs.langmuir.8b02510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While various cellular responses to materials have been published, little concerns the deformation of cell nuclei. Herein we fabricated a polymeric micropillar array of appropriate dimensions to trigger the significant self-deformation of cell nuclei and examined six cell types, which could be classified into cancerous cells (Hela and HepG2) versus healthy cells (HCvEpC, MC3T3-E1, NIH3T3, and hMSC) or epithelial-like cells (Hela, HepG2, and HCvEpC) versus fibroblast-like cells (MC3T3-E1, NIH3T3, and hMSC). While all of the cell types exhibited severe nuclear deformation on the poly(lactide- co-glycolide) (PLGA) micropillar array, the difference between the epithelial-like and fibroblast-like cells was much more significant than that between the cancerous and healthy cells. We also examined the statistics of nuclear shape indexes of cells with an inevitable dispersity of nuclear sizes. It was found that larger nuclei favored more significant deformation on the micropillar array for each cell type. In the same region of nuclear size, the parts of the epithelial-like cells exhibited more significant nuclear deformation than those of the fibroblast-like cells. Hence, this article reports the nuclear size dependence of the self-deformation of cell nuclei on micropillar arrays for the first time and meanwhile strengthens the cell-type dependence.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zhen Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
27
|
Abstract
Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
Collapse
Affiliation(s)
- Melanie Maurer
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| | - Jan Lammerding
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| |
Collapse
|
28
|
Chen Y, Wang D, Peng H, Chen X, Han X, Yu J, Wang W, Liang L, Liu Z, Zheng Y, Hu J, Yang L, Li J, Zhou H, Cui X, Li F. Epigenetically upregulated oncoprotein PLCE1 drives esophageal carcinoma angiogenesis and proliferation via activating the PI-PLCε-NF-κB signaling pathway and VEGF-C/ Bcl-2 expression. Mol Cancer 2019; 18:1. [PMID: 30609930 PMCID: PMC6320601 DOI: 10.1186/s12943-018-0930-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies. Neovascularization during tumorigenesis supplies oxygen and nutrients to proliferative tumor cells, and serves as a conduit for migration. Targeting oncogenes involved in angiogenesis is needed to treat organ-confined and locally advanced ESCC. Although the phospholipase C epsilon-1 (PLCE1) gene was originally identified as a susceptibility gene for ESCC, how PLCE1 is involved in ESCC is unclear. METHODS Matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used to measure the methylation status of the PLCE1 promoter region. To validate the underlying mechanism for PLCE1 in constitutive activation of the NF-κB signaling pathway, we performed studies using in vitro and in vivo assays and samples from 368 formalin-fixed esophageal cancer tissues and 215 normal tissues with IHC using tissue microarrays and the Cancer Genome Atlas dataset. RESULTS We report that hypomethylation-associated up-regulation of PLCE1 expression was correlated with tumor angiogenesis and poor prognosis in ESCC cohorts. PLCE1 can activate NF-κB through phosphoinositide-phospholipase C-ε (PI-PLCε) signaling pathway. Furthermore, PLCE1 can bind p65 and IκBα proteins, promoting IκBα-S32 and p65-S536 phosphorylation. Consequently, phosphorylated IκBα promotes nuclear translocation of p50/p65 and p65, as a transcription factor, can bind vascular endothelial growth factor-C and bcl-2 promoters, enhancing angiogenesis and inhibiting apoptosis in vitro. Moreover, xenograft tumors in nude mice proved that PLCE1 can induce angiogenesis, inhibit apoptosis, and increase tumor aggressiveness via the NF-κB signaling pathway in vivo. CONCLUSIONS Our findings not only provide evidence that hypomethylation-induced PLCE1 confers angiogenesis and proliferation in ESCC by activating PI-PLCε-NF-κB signaling pathway and VEGF-C/Bcl-2 expression, but also suggest that modulation of PLCE1 by epigenetic modification or a selective inhibitor may be a promising therapeutic approach for the treatment of ESCC.
Collapse
Affiliation(s)
- Yunzhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China.,The people's hospital of Suzhou National Hi-Tech District, Suzhou, 215010, China
| | - Dandan Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Xi Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Xueping Han
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jie Yu
- The people's hospital of Suzhou National Hi-Tech District, Suzhou, 215010, China
| | - Wenjie Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Lirong Liang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zheng Liu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jun Li
- Department of Ultrasound, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
29
|
Mechanosensitive channels and their functions in stem cell differentiation. Exp Cell Res 2018; 374:259-265. [PMID: 30500393 DOI: 10.1016/j.yexcr.2018.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Stem cells continuously perceive and respond to various environmental signals during development, tissue homeostasis, and pathological conditions. Mechanical force, one of the fundamental signals in the physical world, plays a vital role in the regulation of multiple functions of stem cells. The importance of cell adhesion to the extracellular matrix (ECM), cell-cell junctions, and a mechanoresponsive cell cytoskeleton has been under intensive study in the fields of stem cell biology and mechanobiology. However, the involvement of mechanosensitive (MS) ion channels in the mechanical regulation of stem cell activity has just begun to be realized. Here, we review the diversity and importance of mechanosensitive channels (MSCs), and discuss recently discovered functions of MSCs in stem cell regulation, especially in the determination of cell fate.
Collapse
|
30
|
Robertson SN, Campsie P, Childs PG, Madsen F, Donnelly H, Henriquez FL, Mackay WG, Salmerón-Sánchez M, Tsimbouri MP, Williams C, Dalby MJ, Reid S. Control of cell behaviour through nanovibrational stimulation: nanokicking. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170290. [PMID: 29661978 PMCID: PMC5915650 DOI: 10.1098/rsta.2017.0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 05/05/2023]
Abstract
Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or 'nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'.
Collapse
Affiliation(s)
- Shaun N Robertson
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| | - Paul Campsie
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| | - Peter G Childs
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona Madsen
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hannah Donnelly
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK
| | - William G Mackay
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Manuel Salmerón-Sánchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Monica P Tsimbouri
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Williams
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stuart Reid
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| |
Collapse
|
31
|
Mechanotransduction via the nuclear envelope: a distant reflection of the cell surface. Curr Opin Cell Biol 2017; 44:59-67. [DOI: 10.1016/j.ceb.2016.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
|
32
|
Pronephric tubule formation in zebrafish: morphogenesis and migration. Pediatr Nephrol 2017; 32:211-216. [PMID: 26942753 DOI: 10.1007/s00467-016-3353-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/14/2023]
Abstract
The nephron is the functional subunit of the vertebrate kidney and plays important osmoregulatory and excretory roles during embryonic development and in adulthood. Despite its central role in kidney function, surprisingly little is known about the molecular and cellular processes that control nephrogenesis. The zebrafish pronephric kidney, comprising two nephrons, provides a visually accessible and genetically tractable model system for a better understanding of nephron formation. Using this system, various developmental processes, including the commitment of mesoderm to a kidney fate, renal tubule proliferation, and migration, can be studied during nephrogenesis. Here, we discuss some of these processes in zebrafish with a focus on the pathways that influence renal tubule cell morphogenesis.
Collapse
|
33
|
The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation. Cell 2016; 165:1160-1170. [PMID: 27203112 DOI: 10.1016/j.cell.2016.04.016] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/18/2016] [Accepted: 04/01/2016] [Indexed: 01/14/2023]
Abstract
Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling.
Collapse
|
34
|
Raymond MJ, Ray P, Kaur G, Fredericks M, Singh AV, Wan LQ. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality. Cell Mol Bioeng 2016; 10:63-74. [PMID: 28360944 DOI: 10.1007/s12195-016-0467-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Michael J Raymond
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Poulomi Ray
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180; Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Gurleen Kaur
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Michael Fredericks
- Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Ajay V Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180; Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180; Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180; Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| |
Collapse
|
35
|
In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus. J Biomech 2016; 49:2625-2634. [PMID: 27298154 DOI: 10.1016/j.jbiomech.2016.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/20/2016] [Accepted: 05/24/2016] [Indexed: 01/14/2023]
Abstract
Cell adhesion is crucial for many types of cell, conditioning differentiation, proliferation, and protein synthesis. As a mechanical process, cell adhesion involves forces exerted by the cytoskeleton and transmitted by focal adhesions to extracellular matrix. These forces constitute signals that infer specific biological responses. Therefore, analyzing mechanotransduction during cell adhesion could lead to a better understanding of the mechanobiology of adherent cells. For instance this may explain how, the shape of adherent stem cells influences their differentiation or how the stiffness of the extracellular matrix affects adhesion strength. To assess the mechanical signals involved in cell adhesion, we computed intracellular forces using the Cytoskeleton Divided Medium model in endothelial cells adherent on micropost arrays of different stiffnesses. For each cell, focal adhesion location and forces measured by micropost deflection were used as an input for the model. The cytoskeleton and the nucleoskeleton were computed as systems of multiple tensile and compressive interactions. At the end of computation, the systems respected mechanical equilibrium while exerting the exact same traction force intensities on focal adhesions as the observed cell. The results indicate that not only the level of adhesion forces, but also the shape of the cell has an influence on intracellular tension and on nucleus strain. The combination of experimental micropost technology with the present CDM model constitutes a tool able to estimate the intracellular forces.
Collapse
|
36
|
Sundararaman A, Amirtham U, Rangarajan A. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation. J Biol Chem 2016; 291:14410-29. [PMID: 27226623 PMCID: PMC4938166 DOI: 10.1074/jbc.m116.731257] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells.
Collapse
Affiliation(s)
- Ananthalakshmy Sundararaman
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012 and
| | - Usha Amirtham
- the Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore-560030, India
| | - Annapoorni Rangarajan
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012 and
| |
Collapse
|
37
|
Manifacier I, Milan JL, Jeanneau C, Chmilewsky F, Chabrand P, About I. Computational Tension Mapping of Adherent Cells Based on Actin Imaging. PLoS One 2016; 11:e0146863. [PMID: 26812601 PMCID: PMC4728200 DOI: 10.1371/journal.pone.0146863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/21/2015] [Indexed: 01/14/2023] Open
Abstract
Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension.
Collapse
Affiliation(s)
- Ian Manifacier
- Aix-Marseille Université, ISM, CNRS, UMR 7287, Marseille, France
- APHM, Institute for Locomotion, Sainte-Marguerite Hospital, 13009, Marseille, France
- * E-mail:
| | - Jean-Louis Milan
- Aix-Marseille Université, ISM, CNRS, UMR 7287, Marseille, France
- APHM, Institute for Locomotion, Sainte-Marguerite Hospital, 13009, Marseille, France
| | | | - Fanny Chmilewsky
- Aix-Marseille Université, ISM, CNRS, UMR 7287, Marseille, France
| | - Patrick Chabrand
- Aix-Marseille Université, ISM, CNRS, UMR 7287, Marseille, France
- APHM, Institute for Locomotion, Sainte-Marguerite Hospital, 13009, Marseille, France
| | - Imad About
- Aix-Marseille Université, ISM, CNRS, UMR 7287, Marseille, France
| |
Collapse
|
38
|
Abstract
The cell nucleus is becoming increasingly recognized as a mechanosensitive organelle. Most research on nuclear mechanosignaling focuses on the nuclear lamina and coupled actin structures. In this commentary, we discuss the possibility that the nuclear membrane senses and transduces mechanical signals similar to the plasma membrane. We briefly summarize possible (i) pathophysiological sources of nuclear membrane tension, (ii) features that render nuclear membranes particularly suited for mechanotransduction, and (iii) molecular sensing mechanisms.
Collapse
Affiliation(s)
- Balázs Enyedi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
39
|
Staszewska I, Fischer I, Wiche G. Plectin isoform 1-dependent nuclear docking of desmin networks affects myonuclear architecture and expression of mechanotransducers. Hum Mol Genet 2015; 24:7373-89. [PMID: 26487297 PMCID: PMC4664173 DOI: 10.1093/hmg/ddv438] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/12/2015] [Indexed: 12/16/2022] Open
Abstract
Plectin is a highly versatile cytoskeletal protein that acts as a mechanical linker between intermediate filament (IF) networks and various cellular structures. The protein is crucial for myofiber integrity. Its deficiency leads to severe pathological changes in skeletal muscle fibers of patients suffering from epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). Skeletal muscle fibers express four major isoforms of plectin which are distinguished solely by alternative, relatively short, first exon-encoded N-terminal sequences. Each one of these isoforms is localized to a different subcellular compartment and plays a specific role in maintaining integrity and proper function(s) of myofibers. The unique role of individual isoforms is supported by distinct phenotypes of isoform-specific knockout mice and recently discovered mutations in first coding exons of plectin that lead to distinct, tissue-specific, pathological abnormalities in humans. In this study, we demonstrate that the lack of plectin isoform 1 (P1) in myofibers of mice leads to alterations of nuclear morphology, similar to those observed in various forms of MD. We show that P1-mediated targeting of desmin IFs to myonuclei is essential for maintenance of their typically spheroidal architecture as well as their proper positioning and movement along the myofiber. Furthermore, we show that P1 deficiency affects chromatin modifications and the expression of genes involved in various cellular functions, including signaling pathways mediating mechanotransduction. Mechanistically, P1 is shown to specifically interact with the myonuclear membrane-associated (BAR domain-containing) protein endophilin B. Our results open a new perspective on cytoskeleton-nuclear crosstalk via specific cytolinker proteins.
Collapse
Affiliation(s)
- Ilona Staszewska
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Irmgard Fischer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
40
|
Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 2015; 45:36-45. [DOI: 10.1016/j.biomaterials.2014.12.049] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 01/14/2023]
|
41
|
Turner LA, J. Dalby M. Nanotopography – potential relevance in the stem cell niche. Biomater Sci 2014; 2:1574-1594. [DOI: 10.1039/c4bm00155a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanotopographical cues observed in vivo (such as in the sinusoid and bone) closely resemble nanotopographies that in vitro have been shown to promote niche relevant stem cells behaviours; specifically, retention of multipotency and osteogenic differentiation on ordered and disordered nano-pits respectively. These and other observations highlight a potential role for nano topography in the stem cell niche.
Collapse
Affiliation(s)
- Lesley-Anne Turner
- Centre for Cell Engineering
- Institute of Molecular
- Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
| | - Matthew J. Dalby
- Centre for Cell Engineering
- Institute of Molecular
- Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
| |
Collapse
|
42
|
Chen Y, Sun Z, Li Y, Hong Y. Rapid osteogenic differentiation of mesenchymal stem cells on hydroxyapatite nanocrystal clusters-oriented nanotopography. RSC Adv 2014. [DOI: 10.1039/c4ra10027a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The randomly-oriented HAP nanocrystal clusters-constructed nanotopography, prepared via a nucleation-oriented aggregation–recrystallization process from the HAP slices, can dictate BM-MSCs to differentiate into osteogenic lineages rapidly.
Collapse
Affiliation(s)
- Ying Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu, P. R. China
| | - Zhihui Sun
- Department of Pharmacy of the First Hospital
- Jilin University
- Changchun 130012, P. R. China
| | - Yanyan Li
- Department of Pharmacy of the First Hospital
- Jilin University
- Changchun 130012, P. R. China
| | - Youliang Hong
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu, P. R. China
| |
Collapse
|
43
|
Zhang T, Birbrair A, Wang ZM, Taylor J, Messi ML, Delbono O. Troponin T nuclear localization and its role in aging skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2013; 35:353-370. [PMID: 22189912 PMCID: PMC3592954 DOI: 10.1007/s11357-011-9368-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Troponin T (TnT) is known to mediate the interaction between Tn complex and tropomyosin (Tm), which is essential for calcium-activated striated muscle contraction. This regulatory function takes place in the myoplasm, where TnT binds Tm. However, recent findings of troponin I and Tm nuclear translocation in Drosophila and mammalian cells imply other roles for the Tn-Tm complex. We hypothesized that TnT plays a nonclassical role through nuclear translocation. Immunoblotting with different antibodies targeting the NH2- or COOH-terminal region uncovered a pool of fast skeletal muscle TnT3 localized in the nuclear fraction of mouse skeletal muscle as either an intact or fragmented protein. Construction of TnT3-DsRed fusion proteins led to the further observation that TnT3 fragments are closely related to nucleolus and RNA polymerase activity, suggesting a role for TnT3 in regulating transcription. Functionally, overexpression of TnT3 fragments produced significant defects in nuclear shape and caused high levels of apoptosis. Interestingly, nuclear TnT3 and its fragments were highly regulated by aging, thus creating a possible link between the deleterious effects of TnT3 and sarcopenia. We propose that changes in nuclear TnT3 and its fragments cause the number of myonuclei to decrease with age, contributing to muscle damage and wasting.
Collapse
Affiliation(s)
- Tan Zhang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Alexander Birbrair
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Zhong-Min Wang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Jackson Taylor
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - María Laura Messi
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Osvaldo Delbono
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
44
|
Lovett DB, Shekhar N, Nickerson JA, Roux KJ, Lele TP. Modulation of Nuclear Shape by Substrate Rigidity. Cell Mol Bioeng 2013; 6:230-238. [PMID: 23914256 DOI: 10.1007/s12195-013-0270-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nucleus is mechanically coupled to the three cytoskeletal elements in the cell via linkages maintained by the LINC complex (for Linker of Nucleoskeleton to Cyto-skeleton). It has been shown that mechanical forces from the extracellular matrix (ECM) can be transmitted through the cytoskeleton to the nuclear surface. Here we quantified nuclear shape in NIH 3T3 fibroblasts on polyacrylamide gels with a controlled degree of cross-linking. On soft substrates with a Young's modulus of 0.4 kPa, the nucleus appeared rounded in its vertical cross-section, while on stiff substrates (308 kPa), the nucleus appears more flattened. Over-expression of dominant negative Klarsicht ANC-1 Syne Homology (KASH) domains, which disrupts the LINC complex, eliminated the sensitivity of nuclear shape to substrate rigidity; myosin inhibition had similar effects. GFP-KASH4 over-expression altered the rigidity dependence of cell motility and cell spreading. Taken together, our results suggest that nuclear shape is modulated by substrate rigidity-induced changes in actomyosin tension, and that a mechanically integrated nucleus-cytoskeleton is required for rigidity sensing. These results are significant because they suggest that substrate rigidity can potentially control nuclear function and hence cell function.
Collapse
Affiliation(s)
- David B Lovett
- Department of Chemical Engineering, University of Florida, Bldg. 723, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
45
|
Wu X, Wang S. Biomimetic calcium carbonate concentric microgrooves with tunable widths for promoting MC3T3-E1 cell functions. Adv Healthc Mater 2013. [PMID: 23184859 DOI: 10.1002/adhm.201200205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomimetic, self-assembled calcium carbonate (CaCO(3) ) concentric microgrooves with groove widths of 5.0 and 10 μm were fabricated through simply controlling incubation temperature. Mouse pre-osteoblastic MC3T3-E1 cells were cultured on flat and microgrooved substrates of CaCO(3) and their adhesion, spreading, proliferation, alkaline phosphatase activity, and calcium content were remarkably enhanced by the microgrooves, in particular, the narrower ones. Furthermore, focal adhesions and actin filaments of MC3T3-E1 cells could be aligned on both 5.0-μm and 10-μm-wide CaCO(3) grooves. Compared with the original round nuclei on the flat substrates and expanded round nuclei on the narrower microgrooves, the MC3T3-E1 cell nuclei on 10-μm-wide CaCO(3) grooves demonstrated preferred entrapment in the grooves and significant alignment with a smaller area after two-day culture.
Collapse
Affiliation(s)
- Xiaohui Wu
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
46
|
Purcell EK, Naim Y, Yang A, Leach MK, Velkey JM, Duncan RK, Corey JM. Combining topographical and genetic cues to promote neuronal fate specification in stem cells. Biomacromolecules 2012; 13:3427-38. [PMID: 23098293 PMCID: PMC3992984 DOI: 10.1021/bm301220k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is little remedy for the devastating effects resulting from neuronal loss caused by neural injury or neurodegenerative disease. Reconstruction of damaged neural circuitry with stem cell-derived neurons is a promising approach to repair these defects, but controlling differentiation and guiding synaptic integration with existing neurons remain significant unmet challenges. Biomaterial surfaces can present nanoscale topographical cues that influence neuronal differentiation and process outgrowth. By combining these scaffolds with additional molecular biology strategies, synergistic control over cell fate can be achieved. Here, we review recent progress in promoting neuronal fate using techniques at the interface of biomaterial science and genetic engineering. New data demonstrates that combining nanofiber topography with an induced genetic program enhances neuritogenesis in a synergistic fashion. We propose combining patterned biomaterial surface cues with prescribed genetic programs to achieve neuronal cell fates with the desired sublineage specification, neurochemical profile, targeted integration, and electrophysiological properties.
Collapse
Affiliation(s)
- Erin K Purcell
- University of Michigan, 1150 W. Medical Center Drive, 5323A Med Sci I, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 2012; 125:3061-73. [PMID: 22797927 DOI: 10.1242/jcs.093005] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Lavenus S, Trichet V, Le Chevalier S, Hoornaert A, Louarn G, Layrolle P. Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine (Lond) 2012; 7:967-80. [DOI: 10.2217/nnm.11.181] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aims: We aimed to study the interactions between human mesenchymal stem cells and the bone integration of nanostructured titanium implants. Materials & methods: Nanopores of 20, 30 and 50 nm were prepared by anodization of titanium at 5, 10 and 20 V in a mixture of fluorhydric and acetic acid. Ti 30 and 50 nanostructures promoted early osteoblastic gene differentiation of the human mesenchymal stem cells without osteogenic supplements. The osseointegration of nanostructured and control titanium implants was compared by implantation in rat tibias for 1 and 3 weeks. Results: The nanostructures significantly accelerated bone apposition and bone bonding strength in vivo in correlation with in vitro results. Conclusion: These findings demonstrate that specific nanostructures controlled the differentiation of cells and, thus, the integration of implants in tissues. These nanoporous titanium surfaces may be of considerable interest for dental and orthopedic implants. Original submitted 10 September 2011; Revised submitted 11 November 2011; Published online 6 March 2012
Collapse
Affiliation(s)
- Sandrine Lavenus
- Rensselaer Polytechnic Institute, Nanotecnology Center, Troy, NY 12180-3590, USA
| | - Valérie Trichet
- Inserm U957, Laboratory Physiopathology of Bone Resorption, Faculty of Medicine, University of Nantes, France
| | | | - Alain Hoornaert
- ERT 2004, Faculty of Dental Surgery, University of Nantes, Nantes, France
| | - Guy Louarn
- CNRS, Institut des Matériaux Jean Rouxel (IMN), University of Nantes, Nantes, France
| | - Pierre Layrolle
- Inserm U957, Laboratory Physiopathology of Bone Resorption, Faculty of Medicine, University of Nantes, France
| |
Collapse
|
49
|
Hwang Y, Barakat AI. Dynamics of mechanical signal transmission through prestressed stress fibers. PLoS One 2012; 7:e35343. [PMID: 22514731 PMCID: PMC3325979 DOI: 10.1371/journal.pone.0035343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/15/2012] [Indexed: 01/14/2023] Open
Abstract
Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows temporally oscillatory signals in the physiological frequency range to travel a long distance without significant decay due to material viscosity and/or cytosolic drag.
Collapse
Affiliation(s)
- Yongyun Hwang
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, École Polytechnique, CNRS UMR7646, Palaiseau, France
| | - Abdul I. Barakat
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, École Polytechnique, CNRS UMR7646, Palaiseau, France
- Mechanical & Aerospace Engineering, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Mattotti M, Alvarez Z, Ortega JA, Planell JA, Engel E, Alcántara S. Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA. Biomaterials 2011; 33:1759-70. [PMID: 22136716 DOI: 10.1016/j.biomaterials.2011.10.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/10/2011] [Indexed: 12/21/2022]
Abstract
Radial glia cells (RGC) are multipotent progenitors that generate neurons and glia during CNS development, and which also served as substrate for neuronal migration. After a lesion, reactive glia are the main contributor to CNS regenerative blockage, although some reactive astrocytes are also able to de-differentiate in situ into radial glia-like cells (RGLC), providing beneficial effects in terms of CNS recovery. Thus, the identification of substrate properties that potentiate the ability of astrocytes to transform into RGLC in response to a lesion might help in the development of implantable devices that improve endogenous CNS regeneration. Here we demonstrate that functional RGLC can be induced from in vitro matured astrocytes by using a precisely-sized micropatterned PMMA grooved scaffold, without added soluble or substrate adsorbed biochemical factors. RGLC were extremely organized and aligned on 2 μm line patterned PMMA and, like their embryonic counterparts, express nestin, the neuron-glial progenitor marker Pax6, and also proliferate, generate different intermediate progenitors and support and direct axonal growth and neuronal migration. Our results suggest that the introduction of line patterns in the size range of the RGC processes in implantable scaffolds might mimic the topography of the embryonic neural stem cell niche, driving endogenous astrocytes into an RGLC phenotype, and thus favoring the regenerative response in situ.
Collapse
Affiliation(s)
- Marta Mattotti
- Dpt. Material Science and Metallurgical Engineering, Technical University of Catalonia-UPC, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|