1
|
Liu J, Yang B, Hu D, Yuan N, Li W, Feng Z, Su Y, Zhang D, Yang X, Zhang B. Lineage Tracking Dissects the Fate of Neonatal iNKT Cells Later in Life. Immunology 2025; 175:103-111. [PMID: 39957432 DOI: 10.1111/imm.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/31/2024] [Accepted: 01/29/2025] [Indexed: 02/18/2025] Open
Abstract
Invariant natural killer T (iNKT) cells in peripheral tissues are from different waves ranged from foetal, neonatal to adult ages. However, it is unclear how iNKT cells from different ages maintain in the periphery and what are their functionality. We found that in adult mice, neonate tracked-iNKT (NT-iNKT) cells are present in spleen, bone marrow, liver and lung, with a predominantly accumulation in the kidney. The NT-iNKT cells in the kidney are almost iNKT1 cells and express tissue-resident marker CD69. These cells also exhibit higher level of CD122 and possess a stronger proliferative capacity compared to adult tracked-iNKT (AT-iNKT) cells. Furthermore, we found that NT-iNKT cells potentially secrete more IFN-γ than AT-iNKT cells in vitro and in vivo (a-GalCer immunisation). Overall, our study sheds light on the peripheral behaviour and functionality of NT- and AT-iNKT cells, highlighting the potential role of NT-iNKT cells in the kidney during immune response.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Biao Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Danchen Hu
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ning Yuan
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes-Related to Diseases, Xi'an Jiaotong University, Xi'an, China
- Basic and Translational Research Laboratory of Immune-related Diseases, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes-Related to Diseases, Xi'an Jiaotong University, Xi'an, China
- Basic and Translational Research Laboratory of Immune-related Diseases, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes-Related to Diseases, Xi'an Jiaotong University, Xi'an, China
- Basic and Translational Research Laboratory of Immune-related Diseases, Xi'an, China
| |
Collapse
|
2
|
Lebrusant-Fernandez M, Ap Rees T, Jimeno R, Angelis N, Ng JC, Fraternali F, Li VSW, Barral P. IFN-γ-dependent regulation of intestinal epithelial homeostasis by NKT cells. Cell Rep 2024; 43:114948. [PMID: 39580798 PMCID: PMC11876105 DOI: 10.1016/j.celrep.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Intestinal homeostasis is maintained through the combined functions of epithelial and immune cells that collaborate to preserve the integrity of the intestinal barrier. However, the mechanisms by which immune cell populations regulate intestinal epithelial cell (IEC) homeostasis remain unclear. Here, we use a multi-omics approach to study the immune-epithelial crosstalk and identify CD1d-restricted natural killer T (NKT) cells as key regulators of IEC biology. We find that NKT cells are abundant in the proximal small intestine and show hallmarks of activation at steady state. Subsequently, NKT cells regulate the survival and the transcriptional and cellular composition landscapes of IECs in intestinal organoids, through interferon-γ (IFN-γ) and interleukin-4 secretion. In vivo, lack of NKT cells results in an increase in IEC turnover, while NKT cell activation leads to IFN-γ-dependent epithelial apoptosis. Our findings propose NKT cells as potent producers of cytokines that contribute to the regulation of IEC homeostasis.
Collapse
Affiliation(s)
- Marta Lebrusant-Fernandez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Tom Ap Rees
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Rebeca Jimeno
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | | | - Joseph C Ng
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | - Franca Fraternali
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - Patricia Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Wang Z, Wang M, Li Q, Wu Y, Ying T. High-Affinity Fully Human Anti-EpCAM Antibody with Biased IL-2 Exhibits Potent Antitumor Activity. Biomolecules 2024; 14:1399. [PMID: 39595576 PMCID: PMC11591715 DOI: 10.3390/biom14111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Monoclonal antibodies (mAbs) are widely used in cancer therapy but often show limited efficacy for solid tumors. Enhancing anti-tumor activity by fusing cytokines to tumor-targeting mAbs, which specifically activate immune cells within the tumor microenvironment, represents a promising strategy. However, the optimal design and therapeutic efficacy of antibody-cytokine fusion formats remain unclear. The epithelial cell adhesion molecule (EpCAM), frequently overexpressed in a variety of carcinomas, serves as the target for immunotherapies. In this study, we identified a fully human mAb targeting EpCAM, designated as m801, from a previously constructed phage-displayed fully human antibody library. By fusing m801 with an IL-2 variant (IL-2v) in two configurations, m801.2 (2 anti-EpCAM Fab + 1 IL-2v) and m801.3 (1 anti-EpCAM Fab + 1 IL-2v), we identified m801.2 as the lead candidate due to its superior biophysical properties, including high thermal stability, homogeneity, and low aggregation. Furthermore, m801.2 showed strong binding affinity to EpCAM, with KD values of 0.6 nM, and an EpCAM-expressing tumor cell line, comparable to the original IgG m801. Additionally, m801.2 exhibited IL-2 receptor β subunit (IL-2Rβ)-biased binding activity, with a KD of 27.3 nM, resulting in superior effective T cell activation. In an SW480 xenograft mice model, m801.2 significantly inhibited tumor growth and demonstrated high tolerability. These findings suggest a valuable framework for the future design of immunocytokine therapies.
Collapse
Affiliation(s)
- Zhi Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Mingkai Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Quanxiao Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
4
|
Lutshumba J, Wilcock DM, Monson NL, Stowe AM. Sex-based differences in effector cells of the adaptive immune system during Alzheimer's disease and related dementias. Neurobiol Dis 2023; 184:106202. [PMID: 37330146 PMCID: PMC10481581 DOI: 10.1016/j.nbd.2023.106202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Neurological conditions such as Alzheimer's disease (AD) and related dementias (ADRD) present with many challenges due to the heterogeneity of the related disease(s), making it difficult to develop effective treatments. Additionally, the progression of ADRD-related pathologies presents differently between men and women. With two-thirds of the population affected with ADRD being women, ADRD has presented itself with a bias toward the female population. However, studies of ADRD generally do not incorporate sex-based differences in investigating the development and progression of the disease, which is detrimental to understanding and treating dementia. Additionally, recent implications for the adaptive immune system in the development of ADRD bring in new factors to be considered as part of the disease, including sex-based differences in immune response(s) during ADRD development. Here, we review the sex-based differences of pathological hallmarks of ADRD presentation and progression, sex-based differences in the adaptive immune system and how it changes with ADRD, and the importance of precision medicine in the development of a more targeted and personalized treatment for this devastating and prevalent neurodegenerative condition.
Collapse
Affiliation(s)
- Jenny Lutshumba
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Nancy L Monson
- Department of Neurology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America; Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
5
|
Xu C, Li S, Fulford TS, Christo SN, Mackay LK, Gray DH, Uldrich AP, Pellicci DG, I Godfrey D, Koay HF. Expansion of MAIT cells in the combined absence of NKT and γδ-T cells. Mucosal Immunol 2023; 16:446-461. [PMID: 37182737 DOI: 10.1016/j.mucimm.2023.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, and γδT cells are collectively referred to as 'unconventional T cells' due to their recognition of non-peptide antigens and restriction to MHC-I-like molecules. However, the factors controlling their widely variable frequencies between individuals and organs are poorly understood. We demonstrated that MAIT cells are increased in NKT or γδT cell-deficient mice and highly expand in mice lacking both cell types. TCRα repertoire analysis of γδT cell-deficient thymocytes revealed altered Trav segment usage relative to wild-type thymocytes, highlighting retention of the Tcra-Tcrd locus from the 129 mouse strain used to generate Tcrd-/- mice. This resulted in a moderate increase in distal Trav segment usage, including Trav1, potentially contributing to increased generation of Trav1-Traj33+ MAIT cells in the Tcrd-/- thymus. Importantly, adoptively transferred MAIT cells underwent increased homeostatic proliferation within NKT/gdT cell-deficient tissues, with MAIT cell subsets exhibiting tissue-specific homing patterns. Our data reveal a shared niche for unconventional T cells, where competition for common factors may be exploited to collectively modulate these cells in the immune response. Lastly, our findings emphasise careful assessment of studies using NKT or γδT cell-deficient mice when investigating the role of unconventional T cells in disease.
Collapse
Affiliation(s)
- Calvin Xu
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Shihan Li
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Thomas S Fulford
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Daniel Hd Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
6
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
7
|
Darrigues J, Almeida V, Conti E, Ribot JC. The multisensory regulation of unconventional T cell homeostasis. Semin Immunol 2022; 61-64:101657. [PMID: 36370671 DOI: 10.1016/j.smim.2022.101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Unconventional T cells typically group γδ T cells, invariant Natural Killer T cells (NKT) and Mucosal Associated Invariant T (MAIT) cells. With their pre-activated status and biased tropism for non-lymphoid organs, they provide a rapid (innate-like) and efficient first line of defense against pathogens at strategical barrier sites, while they can also trigger chronic inflammation, and unexpectedly contribute to steady state physiology. Thus, a tight control of their homeostasis is critical to maintain tissue integrity. In this review, we discuss the recent advances of our understanding of the factors, from neuroimmune to inflammatory regulators, shaping the size and functional properties of unconventional T cell subsets in non-lymphoid organs. We present a general overview of the mechanisms common to these populations, while also acknowledging specific aspects of their diversity. We mainly focus on their maintenance at steady state and upon inflammation, highlighting some key unresolved issues and raising upcoming technical, fundamental and translational challenges.
Collapse
Affiliation(s)
- Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Vicente Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Eller Conti
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
8
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Baranek T, de Amat Herbozo C, Mallevaey T, Paget C. Deconstructing iNKT cell development at single-cell resolution. Trends Immunol 2022; 43:503-512. [PMID: 35654639 DOI: 10.1016/j.it.2022.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells are increasingly regarded as disease biomarkers and immunotherapeutic targets. However, a greater understanding of their biology is necessary to effectively target these cells in the clinic. The discovery of iNKT1/2/17 cell effector subsets was a milestone in our understanding of iNKT cell development and function. Recent transcriptomic studies have uncovered an even greater heterogeneity and challenge our understanding of iNKT cell ontogeny and effector differentiation. We propose a refined model whereby iNKT cells differentiate through a dynamic and continuous instructive process that requires the accumulation and integration of various signals within the thymus or peripheral tissues. Within this framework, we question the existence of true iNKT2 cells and discuss the parallels between mouse and human iNKT cells.
Collapse
Affiliation(s)
- Thomas Baranek
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France
| | - Carolina de Amat Herbozo
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thierry Mallevaey
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France.
| |
Collapse
|
10
|
Park JY, Won HY, DiPalma DT, Kim HK, Kim TH, Li C, Sato N, Hong C, Abraham N, Gress RE, Park JH. In vivo availability of the cytokine IL-7 constrains the survival and homeostasis of peripheral iNKT cells. Cell Rep 2022; 38:110219. [PMID: 35021100 DOI: 10.1016/j.celrep.2021.110219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2022] Open
Abstract
Understanding the homeostatic mechanism of invariant natural killer T (iNKT) cells is a critical issue in iNKT cell biology. Because interleukin (IL)-15 is required for the thymic generation of iNKT cells, IL-15 has also been considered necessary for the homeostasis of peripheral iNKT cells. Here, we delineated the in vivo cytokine requirement for iNKT cells, and we came to the surprising conclusion that IL-7, not IL-15, is the homeostatic cytokine for iNKT cells. Employing a series of experimental mouse models where the availability of IL-7 or IL-15 was manipulated in peripheral tissues, either by genetic tools or by adult thymectomy and cytokine pump installation, we demonstrate that the abundance of IL-7, and not IL-15, limits the size of the peripheral iNKT cell pool. These results redefine the cytokine requirement for iNKT cells and indicate competition for IL-7 between iNKT and conventional αβ T cells.
Collapse
Affiliation(s)
- Joo-Young Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA; Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul National University Dental Hospital, 101 Daehakno, Jongno-gu, Seoul 03080, South Korea.
| | - Hee Yeun Won
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA
| | - Devon T DiPalma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA
| | - Hye Kyung Kim
- Experimental Transplantation Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tae-Hyoun Kim
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA
| | - Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 626-870, South Korea
| | - Ninan Abraham
- Department of Microbiology and Immunology, and Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ronald E Gress
- Experimental Transplantation Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
12
|
Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Front Immunol 2021; 12:623280. [PMID: 33732245 PMCID: PMC7957058 DOI: 10.3389/fimmu.2021.623280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures negative selection of highly self-reactive T cells to establish central tolerance. Whether some of these TRAs could exert their canonical biological functions to shape thymic environment to regulate T cell development is unclear. Analyses of publicly available databases have revealed expression of transcripts at various levels of many cytokines and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type 1 innate like T cell development. Because type 1 innate like T cells are proinflammatory, our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like T cells to influence thymic environment.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kimberly S Schluns
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - John W Sleasman
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
13
|
Intra-lineage Plasticity and Functional Reprogramming Maintain Natural Killer Cell Repertoire Diversity. Cell Rep 2020; 29:2284-2294.e4. [PMID: 31747601 DOI: 10.1016/j.celrep.2019.10.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell repertoires are made up of phenotypically distinct subsets with different functional properties. The molecular programs involved in maintaining NK cell repertoire diversity under homeostatic conditions remain elusive. Here, we show that subset-specific NK cell proliferation kinetics correlate with mTOR activation, and global repertoire diversity is maintained through a high degree of intra-lineage subset plasticity during interleukin (IL)-15-driven homeostatic proliferation in vitro. Slowly cycling sorted KIR+CD56dim NK cells with an induced CD57 phenotype display increased functional potential associated with increased transcription of genes involved in adhesion and immune synapse formation. Rapidly cycling cells upregulate NKG2A, display a general loss of functionality, and a transcriptional signature associated with increased apoptosis/cellular stress, actin-remodeling, and nuclear factor κB (NF-κB) activation. These results shed light on the role of intra-lineage plasticity during NK cell homeostasis and suggest that the functional fate of the cell is tightly linked to the acquired phenotype and transcriptional reprogramming.
Collapse
|
14
|
Establishment and Maintenance of the Macrophage Niche. Immunity 2020; 52:434-451. [PMID: 32187515 DOI: 10.1016/j.immuni.2020.02.015] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
|
15
|
Abstract
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Collapse
|
16
|
Cruz Tleugabulova M, Zhao M, Lau I, Kuypers M, Wirianto C, Umaña JM, Lin Q, Kronenberg M, Mallevaey T. The Protein Phosphatase Shp1 Regulates Invariant NKT Cell Effector Differentiation Independently of TCR and Slam Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 202:2276-2286. [PMID: 30796181 DOI: 10.4049/jimmunol.1800844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Invariant NKT (iNKT) cells are innate lipid-reactive T cells that develop and differentiate in the thymus into iNKT1/2/17 subsets, akin to TH1/2/17 conventional CD4 T cell subsets. The factors driving the central priming of iNKT cells remain obscure, although strong/prolonged TCR signals appear to favor iNKT2 cell development. The Src homology 2 domain-containing phosphatase 1 (Shp1) is a protein tyrosine phosphatase that has been identified as a negative regulator of TCR signaling. In this study, we found that mice with a T cell-specific deletion of Shp1 had normal iNKT cell numbers and peripheral distribution. However, iNKT cell differentiation was biased toward the iNKT2/17 subsets in the thymus but not in peripheral tissues. Shp1-deficient iNKT cells were also functionally biased toward the production of TH2 cytokines, such as IL-4 and IL-13. Surprisingly, we found no evidence that Shp1 regulates the TCR and Slamf6 signaling cascades, which have been suggested to promote iNKT2 differentiation. Rather, Shp1 dampened iNKT cell proliferation in response to IL-2, IL-7, and IL-15 but not following TCR engagement. Our findings suggest that Shp1 controls iNKT cell effector differentiation independently of positive selection through the modulation of cytokine responsiveness.
Collapse
Affiliation(s)
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Irene Lau
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Clarissa Wirianto
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Juan Mauricio Umaña
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037; and
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
17
|
Tripathi P, Sedimbi SK, Singh AK, Löfbom L, Issazadeh-Navikas S, Weiss S, Förster I, Karlsson MCI, Yrlid U, Kadri N, Cardell SL. Innate and adaptive stimulation of murine diverse NKT cells result in distinct cellular responses. Eur J Immunol 2018; 49:443-453. [PMID: 30427069 PMCID: PMC6587840 DOI: 10.1002/eji.201847647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα‐chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll‐like receptor (TLR) ligand activation of TCR‐transgenic murine dNKT cells. IFN‐γ production by dNKT cells required dendritic cells (DC), cell‐to‐cell contact and presence of TLR ligands. TLR‐stimulated DC activated dNKT cells to secrete IFN‐γ in a CD1d‐, CD80/86‐ and type I IFN‐independent manner. In contrast, a requirement for IL‐12p40, and a TLR ligand‐selective dependence on IL‐18 or IL‐15 was observed. TLR ligand/DC stimulation provoked early secretion of pro‐inflammatory cytokines by both CD62L+ and CD62L− dNKT cells. However, proliferation was limited. In contrast, TCR/co‐receptor‐mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L− dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co‐receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Saikiran K Sedimbi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, Copenhagen, Denmark
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nadir Kadri
- Center of Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Manohar M, Kandikattu HK, Verma AK, Mishra A. IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G954-G965. [PMID: 30212254 PMCID: PMC6336943 DOI: 10.1152/ajpgi.00139.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatitis is an inflammatory disease characterized by the induction of several proinflammatory cytokines like interleukin (IL)-6, IL-8, IL-1β, and IL-1. Recently, the multifunctional innate cytokine IL-15 has been implicated in the protection of several diseases, including cancer. Tissue fibrosis is one of the major problems in successfully treating chronic pancreatitis pathogenesis. Therefore, we tested the hypothesis that recombinant IL-15 (rIL-15) treatment may induce innate tissue responses and its overexpression will improve the pathogenesis of cerulein-induced chronic pancreatitis, associated remodeling, and fibrosis. We observed atrophy of acinar cells, increased inflammation, and increased deposition of perivascular collagen, the upregulated protein level of transforming growth factor (TGF)-β1, α-smooth muscle actin (α-SMA), and collagen-1 in cerulein-induced chronic pancreatitis in mice. Furthermore, we reported that rIL-15 treatment protects mice from the cerulein-induced chronic pancreatitis pathogenesis, including acinar cell atrophy, and perivascular accumulation of tissue collagen followed by downregulation of profibrotic genes such as TGF-β1, α-SMA, collagen-1, collagen-3, and fibronectin in cerulein-induced chronic pancreatitis in mice. Mechanistically, we show that IL-15-mediated increase of interferon-γ-responsive invariant natural killer T (iNKT) cells in the blood and tissue protects cerulein-induced pancreatic pathogenesis in mice. Of note, a reduction in iNKT cells was also observed in human chronic pancreatitis compared with normal individuals. Taken together, these data suggest that IL-15 treatment may be a novel therapeutic strategy for treating chronic pancreatitis pathogenesis. NEW & NOTEWORTHY Pancreatic fibrosis is a major concern for the successful treatment of chronic pancreatitis and pancreatic cancer. Therefore, restriction in the progression of fibrosis is the promising approach to manage the pancreatitis pathogenesis. Herein, we present in vivo evidences that pharmacological treatment of recombinant interleukin-15 improves remodeling and fibrosis in cerulein-induced chronic pancreatitis in mice. Our observations indicate that interleukin-15 immunotherapy may be a possible and potential strategy for restricting the progression of fibrosis in chronic pancreatitis.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Alok Kumar Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
19
|
Zachariassen LF, Krych L, Rasmussen SH, Nielsen DS, Kot W, Holm TL, Hansen AK, Hansen CHF. Cesarean Section Induces Microbiota-Regulated Immune Disturbances in C57BL/6 Mice. THE JOURNAL OF IMMUNOLOGY 2018; 202:142-150. [DOI: 10.4049/jimmunol.1800666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
|
20
|
Recipient BCL2 inhibition and NK cell ablation form part of a reduced intensity conditioning regime that improves allo-bone marrow transplantation outcomes. Cell Death Differ 2018; 26:1516-1530. [PMID: 30420758 DOI: 10.1038/s41418-018-0228-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is used to treat over 15,000 patients with acute myeloid leukemia (AML) per year. Donor graft-versus-leukemia (GVL) effect can prevent AML relapse; however, alloSCT is limited by significant toxicity related to conditioning intensity, immunosuppression, opportunistic infections, and graft-versus-host disease (GVHD). Reducing the intensity of conditioning regimens prior to alloSCT has improved their tolerability, but does not alter the pattern of GVHD and has been associated with increased rates of graft rejection and relapse. Here, using a murine pre-clinical model, we describe a novel recipient conditioning approach combining reduced intensity conditioning with either genetic or pharmacological inhibition of NK cell numbers that permits efficient donor engraftment and promotes GVL without inducing GVHD. We show that NK cell-specific deletion of Bcl2 or Mcl1 in mice, or pharmacological inhibition of BCL2 impairs radio-resistant NK cell-mediated rejection of allogeneic engraftment and allows reduction of conditioning intensity below that associated with GVHD priming. The combination of reduced intensity conditioning and NK cell targeting in mice allowed successful donor T cell engraftment and protective immunity against AML while avoiding GVHD. These findings suggest that reduced conditioning in combination with targeted therapies against recipient NK cells may allow the delivery of effective alloSCT against AML while reducing the toxicities associated with more intensive conditioning including GVHD.
Collapse
|
21
|
Role of Common γ-Chain Cytokines in Lung Interleukin-22 Regulation after Acute Exposure to Aspergillus fumigatus. Infect Immun 2018; 86:IAI.00157-18. [PMID: 30104211 DOI: 10.1128/iai.00157-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022] Open
Abstract
Humans are constantly exposed to the opportunistic mold Aspergillus fumigatus, and disease caused by this pathogen is often determined by the magnitude of local and systemic immune responses. We have previously shown a protective role for interleukin-22 (IL-22) after acute A. fumigatus exposure. Here, employing IL-22Cre R26ReYFP reporter mice, we identified iNKT cells, γδ T cells, and type 3 innate lymphoid cells (ILC3s) as lung cell sources of IL-22 in response to acute A. fumigatus exposure. As these cells often utilize common γ-chain cytokines for their development or maintenance, we determined the role of IL-7, IL-21, and IL-15 in lung IL-22 induction and A. fumigatus lung clearance. We observed that IL-7, IL-21, and IL-15 were essential for, partially required for, or negatively regulated the production of IL-22, respectively. Deficiency in IL-7 and IL-21, but not IL-15R, resulted in impaired fungal clearance. Surprisingly, however, the absence of IL-7, IL-21, or IL-15R signaling had no effect on neutrophil recruitment. The levels of IL-1α, an essential anti-A. fumigatus proinflammatory cytokine, were increased in the absence of IL-7 and IL-15R but decreased in the absence of IL-21. IL-7 was responsible for maintaining lung iNKT cells and γδ T cells, whereas IL-21 was responsible for maintaining lung iNKT cells and ILC3s. In contrast, IL-15R deficiency had no effect on the absolute numbers of any IL-22 cell source, rather resulting in enhanced per cell production of IL-22 by iNKT cells and γδ T cells. Collectively, these results provide insight into how the IL-22 response in the lung is shaped after acute A. fumigatus exposure.
Collapse
|
22
|
Garner LC, Klenerman P, Provine NM. Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1478. [PMID: 30013556 PMCID: PMC6036249 DOI: 10.3389/fimmu.2018.01478] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are innate-like T cells that function at the interface between innate and adaptive immunity. They express semi-invariant T cell receptors (TCRs) and recognize unconventional non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respectively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cytokines and show direct cytotoxic activity. Consequently, they are essential for effective immunity, and alterations in their frequency and function are associated with numerous infectious, inflammatory, and malignant diseases. Due to their abundance in mice and the earlier development of reagents, iNKT cells have been more extensively studied than MAIT cells. This has led to the routine use of iNKT cells as a reference population for the study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells and iNKT cells show important phenotypic, functional, and developmental differences that are often overlooked. With the recent availability of new tools, most importantly MR1 tetramers, it is now possible to directly study MAIT cells to understand their biology. Therefore, it is timely to compare the phenotype, development, and function of MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show similarity or difference to iNKT cells. In addition, we discuss important avenues for future research within the MAIT cell field, especially where comparison to iNKT cells has proven less informative.
Collapse
Affiliation(s)
- Lucy C. Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
PDCD5 regulates iNKT cell terminal maturation and iNKT1 fate decision. Cell Mol Immunol 2018; 16:746-756. [PMID: 29921968 DOI: 10.1038/s41423-018-0059-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023] Open
Abstract
Invariant natural killer T1 (iNKT1) cells are characterized by the preferential expression of T-box transcription factor T-bet (encoded by Tbx21) and the production of cytokine IFN-γ, but the relationship between the developmental process and iNKT1 lineage diversification in the thymus remains elusive. We report in the present study a crucial role of programmed cell death 5 (PDCD5) in iNKT cell terminal maturation and iNKT1 fate determination. Mice with T cell-specific deletion of PDCD5 had decreased numbers of thymic and peripheral iNKT cells with a predominantly immature phenotype and defects in response to α-galactosylceramide. Loss of PDCD5 also selectively abolished the iNKT1 lineage by reducing T-bet expression in iNKT cells at an early thymic developmental stage (before CD44 upregulation). We further demonstrated that TOX2, one of the high mobility group proteins that was highly expressed in iNKT cells at stage 1 and could be stabilized by PDCD5, promoted the permissive histone H3K4me3 modification in the promoter region of Tbx21. These data indicate a pivotal and unique role of PDCD5/TOX2 in iNKT1 lineage determination. They also suggest that the fate of iNKT1 may be programmed at the developmental stage of iNKT cells in the thymus.
Collapse
|
24
|
Villarino AV, Sciumè G, Davis FP, Iwata S, Zitti B, Robinson GW, Hennighausen L, Kanno Y, O'Shea JJ. Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. J Exp Med 2017; 214:2999-3014. [PMID: 28916644 PMCID: PMC5626390 DOI: 10.1084/jem.20150907] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels.
Collapse
Affiliation(s)
- Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Giuseppe Sciumè
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Fred P Davis
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Shigeru Iwata
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Beatrice Zitti
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Mathias CB, Schramm CM, Guernsey LA, Wu CA, Polukort SH, Rovatti J, Ser-Dolansky J, Secor E, Schneider SS, Thrall RS, Aguila HL. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure. Clin Exp Allergy 2017; 47:639-655. [PMID: 28093832 PMCID: PMC5407912 DOI: 10.1111/cea.12886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple haematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+ T cells. We therefore hypothesized that IL-15-/- mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). OBJECTIVE To determine whether IL-15-/- mice have attenuated allergic responses in a mouse model of AAD. METHODS C57BL/6 wild-type (WT) and IL-15-/- mice were sensitized and challenged with ovalbumin (OVA), and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. RESULTS Here, we report that IL-15-/- mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+ T and B cells in the spleens and bronchoalveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα-/- animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+ T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15-/- animals to levels observed in WT mice, but had no further effects. CONCLUSION AND CLINICAL RELEVANCE These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+ T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice.
Collapse
Affiliation(s)
- Clinton B. Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Craig M. Schramm
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda A. Guernsey
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Carol A. Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Eric Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Roger S. Thrall
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
26
|
Effect of PD-1: PD-L1 in Invariant Natural Killer T-Cell Emigration and Chemotaxis Following Sepsis. Shock 2017; 45:534-9. [PMID: 26717105 DOI: 10.1097/shk.0000000000000553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Invariant natural killer T-cells (iNKT) are a subset of T-cells that play a regulatory role in sepsis. Following cecal ligation and puncture (CLP), iNKT cells emigrate from the liver and into the circulation and peritoneum in a manner dependent upon coinhibitory molecule Programmed Cell Death Receptor 1 (PD-1). We hypothesized that the effect of PD-1 on iNKT-cell emigration was dependent upon the direct PD-1:PD-L1 interaction, and that PD-1 and PD-L1 would play a role in chemotaxis and chemokine receptor expression. Adoptive transfer of Vybrant-labeled wild-type (WT) cells showed the donor iNKT cells migrated from the liver to the peritoneum following CLP, but PD-L1 deficient donor iNKT cells did not. In a chemotaxis assay, WT-iNKT cells chemotaxed to CXCL12, but PD-1 and PD-L1 deficient iNKT cells did not. Using flow cytometry to evaluate chemokine receptor expression, peritoneal iNKT expression of CXCR4 increased following CLP in the WT, PD-1, and PD-L1 deficient animals, and CXCR6 increased in the WT and PD-1 deficient animals. In conclusion here we document that the hepatic emigration of iNKT cells following CLP to the peritoneum appears dependent upon the direct PD-1:PD-L1 interaction; however, although PD-1 and PD-L1 appear to play a role in chemotaxis, this is unlikely a reflection of iNKT-cell chemokine receptor expression changes.
Collapse
|
27
|
Lin SJ, Huang YC, Cheng PJ, Lee PT, Hsiao HS, Kuo ML. Interleukin-15 enhances the expansion and function of natural killer T cells from adult peripheral and umbilical cord blood. Cytokine 2016; 76:348-355. [PMID: 26481260 DOI: 10.1016/j.cyto.2015.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) are innate-like non-conventional T cells restricted by the CD1d molecule that are unique in their ability to play a pivotal role in immune regulation. Deficient iNKT function has been reported in patients receiving umbilical cord blood (UCB) transplantation. We sought to determine the effect of interleukin (IL)-15 on α-galactosylceramide (α-GalCer)-expanded iNKT cell function from UCB and adult peripheral blood (APB) mononuclear cells (MNCs). Fresh APB and UCB MNCs were cultured with IL-15 (50 ng/ml) in the presence or absence of α-GalCer (100 ng/ml) for 10 days. Cells were harvested for examination of cell yield, apoptosis, cytokine production and cytotoxic function of Vα24(+)/Vβ11(+) iNKT cells. We observed that α-GalCer-expanded APB and UCB iNKT cells and such expansion was further enhanced with IL-15. The percentage of CD3(+)CD56(+) NKT-like cells in both APB and UCB MNCs was increased with IL-15 but not with α-GalCer. Apoptosis of UCB iNKT cells was ameliorated by IL-15. Although APB and UCB iNKT cells secreted lower IFN-γ, it could be enhanced with IL-15. The expression of perforin in APB iNKT cells can also be enhanced with IL-15. UCB Vα24(+)Vβ11(+) iNKT cells further augmented K562 cytotoxicity mediated by IL-15. Taken together, these results demonstrated the relative functional deficiencies of α-GalCer induced UCB iNKT cells, which can be ameliorated by IL-15. Our findings suggest a therapeutic benefit of IL-15 immunotherapy during the post-UCB transplant period when iNKT function remains poor.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ying-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics/Gynecology, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Pei-Tzu Lee
- Health Research Division, Chang Gung Children's Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsiu-Shan Hsiao
- Health Research Division, Chang Gung Children's Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
28
|
DeGottardi MQ, Okoye AA, Vaidya M, Talla A, Konfe AL, Reyes MD, Clock JA, Duell DM, Legasse AW, Sabnis A, Park BS, Axthelm MK, Estes JD, Reiman KA, Sekaly RP, Picker LJ. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1183-98. [PMID: 27430715 PMCID: PMC4976006 DOI: 10.4049/jimmunol.1600065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023]
Abstract
IL-15 has been implicated as a key regulator of T and NK cell homeostasis in multiple systems; however, its specific role in maintaining peripheral T and NK cell populations relative to other γ-chain (γc) cytokines has not been fully defined in primates. In this article, we address this question by determining the effect of IL-15 inhibition with a rhesusized anti-IL-15 mAb on T and NK cell dynamics in rhesus macaques. Strikingly, anti-IL-15 treatment resulted in rapid depletion of NK cells and both CD4(+) and CD8(+) effector memory T cells (TEM) in blood and tissues, with little to no effect on naive or central memory T cells. Importantly, whereas depletion of NK cells was nearly complete and maintained as long as anti-IL-15 treatment was given, TEM depletion was countered by the onset of massive TEM proliferation, which almost completely restored circulating TEM numbers. Tissue TEM, however, remained significantly reduced, and most TEM maintained very high turnover throughout anti-IL-15 treatment. In the presence of IL-15 inhibition, TEM became increasingly more sensitive to IL-7 stimulation in vivo, and transcriptional analysis of TEM in IL-15-inhibited monkeys revealed engagement of the JAK/STAT signaling pathway, suggesting alternative γc cytokine signaling may support TEM homeostasis in the absence of IL-15. Thus, IL-15 plays a major role in peripheral maintenance of NK cells and TEM However, whereas most NK cell populations collapse in the absence of IL-15, TEM can be maintained in the face of IL-15 inhibition by the activity of other homeostatic regulators, most likely IL-7.
Collapse
Affiliation(s)
- Maren Q DeGottardi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Mukta Vaidya
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Aarthi Talla
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Audrie L Konfe
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Matthew D Reyes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Joseph A Clock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Derick M Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Alfred W Legasse
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Amit Sabnis
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Byung S Park
- Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702; and
| | - Keith A Reiman
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126
| | | | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006;
| |
Collapse
|
29
|
Liu JJ, Hu XJ, Li ZR, Yan RH, Li D, Wang J, Shan H. In Vivo Bioluminescence Imaging of Transplanted Mesenchymal Stromal Cells and Their Rejection Mediated by Intrahepatic NK Cells. Mol Imaging Biol 2016; 19:31-40. [DOI: 10.1007/s11307-016-0962-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
An activation-induced IL-15 isoform is a natural antagonist for IL-15 function. Sci Rep 2016; 6:25822. [PMID: 27166125 PMCID: PMC4863161 DOI: 10.1038/srep25822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Interleukin 15 (IL-15) expression induces the secretion of inflammatory cytokines, inhibits the apoptosis of activated T cells and prolongs the survival of CD8+ memory T cells. Here we identified an IL-15 isoform lacking exon-6, IL-15ΔE6, generated by alternative splicing events of activated immune cells, including macrophages and B cells. In vitro study showed that IL-15ΔE6 could antagonize IL-15-mediated T cell proliferation. The receptor binding assay revealed that IL-15ΔE6 could bind to IL-15Rα and interfere with the binding between IL-15 and IL-15Rα. Over-expression of IL-15ΔE6 in the murine EAE model ameliorated the EAE symptoms of the mice. The clinical scores were significantly lower in the mice expressing IL-15ΔE6 than the control mice and the mice expressing IL-15. The inflammation and demyelination of the EAE mice expressing IL-15ΔE6 were less severe than the control group. Furthermore, flow cytometry analysis demonstrated that IL-15ΔE6 expression reduced the percentages of inflammatory T cells in the spleen and spinal cord, and inhibited the infiltration of macrophages to the CNS. Our results demonstrated that IL-15ΔE6 could be induced during immune activation and function as a negative feedback mechanism to dampen IL-15-mediated inflammatory events.
Collapse
|
31
|
Pulliam SR, Uzhachenko RV, Adunyah SE, Shanker A. Common gamma chain cytokines in combinatorial immune strategies against cancer. Immunol Lett 2015; 169:61-72. [PMID: 26597610 DOI: 10.1016/j.imlet.2015.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023]
Abstract
Common γ chain (γC) cytokines, namely IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 are important for the proliferation, differentiation, and survival of lymphocytes that display antitumor activity, thus stimulating considerable interest for the use of cytokines in cancer immunotherapy. In this review, we will focus on the γC cytokines that demonstrate the greatest potential for immunotherapy, IL-2, IL-7, IL-15, and IL-21. We will briefly cover their biological function, potential applications in cancer therapy, and update on their use in combinatorial immune strategies for eradicating tumors and hematopoietic malignancies.
Collapse
Affiliation(s)
- Stephanie R Pulliam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Roman V Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA.
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
O'Hagan KL, Zhao J, Pryshchep O, Wang CR, Phee H. Pak2 Controls Acquisition of NKT Cell Fate by Regulating Expression of the Transcription Factors PLZF and Egr2. THE JOURNAL OF IMMUNOLOGY 2015; 195:5272-84. [PMID: 26519537 DOI: 10.4049/jimmunol.1501367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/02/2015] [Indexed: 01/24/2023]
Abstract
NKT cells constitute a small population of T cells developed in the thymus that produce large amounts of cytokines and chemokines in response to lipid Ags. Signaling through the Vα14-Jα18 TCR instructs commitment to the NKT cell lineage, but the precise signaling mechanisms that instruct their lineage choice are unclear. In this article, we report that the cytoskeletal remodeling protein, p21-activated kinase 2 (Pak2), was essential for NKT cell development. Loss of Pak2 in T cells reduced stage III NKT cells in the thymus and periphery. Among different NKT cell subsets, Pak2 was necessary for the generation and function of NKT1 and NKT2 cells, but not NKT17 cells. Mechanistically, expression of Egr2 and promyelocytic leukemia zinc finger (PLZF), two key transcription factors for acquiring the NKT cell fate, were markedly diminished in the absence of Pak2. Diminished expression of Egr2 and PLZF were not caused by aberrant TCR signaling, as determined using a Nur77-GFP reporter, but were likely due to impaired induction and maintenance of signaling lymphocyte activation molecule 6 expression, a TCR costimulatory receptor required for NKT cell development. These data suggest that Pak2 controls thymic NKT cell development by providing a signal that links Egr2 to induce PLZF, in part by regulating signaling lymphocyte activation molecule 6 expression.
Collapse
Affiliation(s)
- Kyle L O'Hagan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jie Zhao
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Olga Pryshchep
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Chyung-Ru Wang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Hyewon Phee
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
33
|
Bortell N, Morsey B, Basova L, Fox HS, Marcondes MCG. Phenotypic changes in the brain of SIV-infected macaques exposed to methamphetamine parallel macrophage activation patterns induced by the common gamma-chain cytokine system. Front Microbiol 2015; 6:900. [PMID: 26441851 PMCID: PMC4568411 DOI: 10.3389/fmicb.2015.00900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
One factor in the development of neuroAIDS is the increase in the migration of pro-inflammatory CD8 T cells across the blood–brain barrier. Typically these cells are involved with keeping the viral load down. However, the persistence of above average numbers of CD8 T cells in the brain, not necessarily specific to viral peptides, is facilitated by the upregulation of IL15 from astrocytes, in the absence of IL2, in the brain environment. Both IL15 and IL2 are common gamma chain (γc) cytokines. Here, using the non-human primate model of neuroAIDS, we have demonstrated that exposure to methamphetamine, a powerful illicit drug that has been associated with HIV exposure and neuroAIDS severity, can cause an increase in molecules of the γc system. Among these molecules, IL15, which is upregulated in astrocytes by methamphetamine, and that induces the proliferation of T cells, may also be involved in driving an inflammatory phenotype in innate immune cells of the brain. Therefore, methamphetamine and IL15 may be critical in the development and aggravation of central nervous system immune-mediated inflammatory pathology in HIV-infected drug abusers.
Collapse
Affiliation(s)
- Nikki Bortell
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute La Jolla, CA, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | - Liana Basova
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute La Jolla, CA, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
34
|
Noma H, Eshima K, Satoh M, Iwabuchi K. Differential dependence on nuclear factor-κB-inducing kinase among natural killer T-cell subsets in their development. Immunology 2015; 146:89-99. [PMID: 25988531 PMCID: PMC4552504 DOI: 10.1111/imm.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/12/2015] [Indexed: 12/24/2022] Open
Abstract
Natural killer T cells (NKT cells) are comprised of several subsets. However, the possible differences in their developmental mechanisms have not been fully investigated. To evaluate the dependence of some NKT subpopulations on nuclear factor-κB-inducing kinase (NIK) for their generation, we analysed the differentiation of NKT cells, dividing them into subsets in various tissues of alymphoplasia (aly/aly), a mutant mouse strain that lacks functional NIK. The results indicated that the efficient differentiation of both invariant NKT (iNKT) and non-iNKT cells relied on NIK expression in non-haematopoietic cells; however, the dependence of non-iNKT cells was lower than that of iNKT cells. Especially, the differentiation of CD8(+) non-iNKT cells was markedly resistant to the aly mutation. The proportion of two other NKT cell subsets, NK1.1(+) γδ T cells and NK1.1(-) iNKT cells, was also significantly reduced in aly/aly mice, and this defect in their development was reversed in wild-type host mice given aly/aly bone marrow cells. In exerting effector functions, NIK in NKT-αβ cells appeared dispensable, as NIK-deficient NKT-αβ cells could secrete interleukin-4 or interferon-γ and exhibit cytolytic activity at a level comparable to that of aly/+ NKT-αβ cells. Collectively, these results imply that the NIK in thymic stroma may be critically involved in the differentiation of most NKT cell subsets (although the level of NIK dependence may vary among the subsets), and also that NIK in NKT-αβ cells may be dispensable for their effector function.
Collapse
Affiliation(s)
- Haruka Noma
- Department of Immunology, Kitasato University School of MedicineSagamihara, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of MedicineSagamihara, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of MedicineSagamihara, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of MedicineSagamihara, Japan
| |
Collapse
|
35
|
mTOR and its tight regulation for iNKT cell development and effector function. Mol Immunol 2015; 68:536-45. [PMID: 26253278 DOI: 10.1016/j.molimm.2015.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/09/2015] [Accepted: 07/19/2015] [Indexed: 12/26/2022]
Abstract
Invariant NKT (iNKT) cells, which express the invariant Vα14Jα18 TCR that recognizes lipid antigens, have the ability to rapidly respond to agonist stimulation, producing a variety of cytokines that can shape both innate and adaptive immunity. iNKT cells have been implicated in host defense against microbial infection, in anti-tumor immunity, and a multitude of diseases such as allergies, asthma, graft versus host disease, and obesity. Emerging evidence has demonstrated crucial role for mammalian target of rapamycin (mTOR) in immune cells, including iNKT. In this review we will discuss current understanding of how mTOR and its tight regulation control iNKT cell development, effector lineage differentiation, and function.
Collapse
|
36
|
Reconstitution models to evaluate natural killer T cell function in tumor control. Immunol Cell Biol 2015; 94:90-100. [DOI: 10.1038/icb.2015.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
|
37
|
Abstract
Asthma is an immune-mediated disease of the airways characterized by reversible airway obstruction, bronchial eosinophilic inflammation, and airway hyperresponsiveness (AHR). The immune dysregulation in asthma has been attributed to the involvement of diverse immune cells that contribute to the immunopathology of the disease. Natural killer (NK) cells play critical roles in host defense against viruses and various cancers. Accumulating evidence demonstrates additional important roles for these cells in T cell priming, dendritic cell maturation, and the development of inflammation, all of which have the potential to enhance or dampen allergic responses. The ability of NK cells to produce Th2-type cytokines and their pivotal role in combating respiratory infections which cause airway dysfunction in asthmatics further suggest that they may directly contribute to the immunopathogenesis of allergic airway disease. In this review, we examine emerging evidence and discuss the putative roles of NK cells in the sensitization, progression, and resolution of asthma.
Collapse
Affiliation(s)
- Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA, 01119, USA,
| |
Collapse
|
38
|
Aliyari Z, Khaziri N, Brazvan B, Saayah Melli M, Tayefi Nasrabadi H, Akbarzadeh A, Nozad Charoudeh H. Key immune cell cytokines have a significant role in the expansion of CD26 population of cord blood mononuclear cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1303-10. [DOI: 10.3109/21691401.2015.1029623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zeynab Aliyari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Khaziri
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Brazvan
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manizheh Saayah Melli
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
39
|
Slauenwhite D, Johnston B. Regulation of NKT Cell Localization in Homeostasis and Infection. Front Immunol 2015; 6:255. [PMID: 26074921 PMCID: PMC4445310 DOI: 10.3389/fimmu.2015.00255] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.
Collapse
Affiliation(s)
- Drew Slauenwhite
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada ; Beatrice Hunter Cancer Research Institute , Halifax, NS , Canada
| |
Collapse
|
40
|
Intracellular osteopontin regulates homeostasis and function of natural killer cells. Proc Natl Acad Sci U S A 2014; 112:494-9. [PMID: 25550515 DOI: 10.1073/pnas.1423011112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells play an essential role in the immune response to infection and cancer. After infection or during homeostatic expansion NK cells express a developmental program that includes a contraction phase followed by the formation of long-lived mature memory-like cells. Although this NK cell response pattern is well established, the underlying mechanisms that ensure efficient transition to long-lived NK cells remain largely undefined. Here we report that deficient expression of intracellular osteopontin (OPN-i) by NK cells results in defective responses to IL-15 associated with a substantial increase in the NK cell contraction phase of homeostatic expansion, defective expression of the Eomes transcription factor, and diminished responses to metastatic tumors. The OPN-i-deficient phenotype is accompanied by increased NK cell apoptosis, impaired transition from immature to mature NK cells, and diminished ability to develop memory-like NK cells that respond to mouse cytomegalovirus. Gene pathway analysis of OPN-i-deficient NK cells suggests that the mechanistic target of rapamycin pathway may connect OPN-i to Eomes and T-bet expression by mature NK cells following up-regulation of OPN-i after IL-15 stimulation. Identification of OPN-i as an essential molecular component for maintenance of functional NK cell expansion provides insight into the NK cell response and may provide the basis for improved approaches to immunotherapy for infectious disease and cancer.
Collapse
|
41
|
Webster KE, Kim HO, Kyparissoudis K, Corpuz TM, Pinget GV, Uldrich AP, Brink R, Belz GT, Cho JH, Godfrey DI, Sprent J. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival. Mucosal Immunol 2014; 7:1058-67. [PMID: 24448098 DOI: 10.1038/mi.2013.122] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
Natural killer T (NKT) cells are innate-like T cells that rapidly recognize pathogens and produce cytokines that shape the ensuing immune response. IL-17-producing NKT cells are enriched in barrier tissues, such as the lung, skin, and peripheral lymph nodes, and the factors that maintain this population in the periphery have not been elucidated. Here we show that NKT17 cells deviate from other NKT cells in their survival requirements. In contrast to conventional NKT cells that are maintained by IL-15, RORγt(+) NKT cells are IL-15 independent and instead rely completely on IL-7. IL-7 initiates a T-cell receptor-independent (TCR-independent) expansion of NKT17 cells, thus supporting their homeostasis. Without IL-7, survival is dramatically impaired, yet residual cells remain lineage committed with no downregulation of RORγt evident. Their preferential response to IL-7 does not reflect enhanced signaling through STAT proteins, but instead is modulated via the PI3K/AKT/mTOR signaling pathway. The ability to compete for IL-7 is dependent on high-density IL-7 receptor expression, which would promote uptake of low levels of IL-7 produced in the non-lymphoid sites of lung and skin. This dependence on IL-7 is also reported for RORγt(+) innate lymphoid cells and CD4(+) Th17 cells, and suggests common survival requirements for functionally similar cells.
Collapse
Affiliation(s)
- K E Webster
- 1] Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia [2] St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - H-O Kim
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - K Kyparissoudis
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - T M Corpuz
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - G V Pinget
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - A P Uldrich
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - R Brink
- 1] Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia [2] St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - G T Belz
- 1] Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - J-H Cho
- 1] Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia [2] St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - D I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - J Sprent
- 1] Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia [2] St Vincent's Clinical School, University of New South Wales, Sydney, Australia [3] Academy of Immunology and Microbiology, Institute for Basic Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
42
|
Abstract
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.
Collapse
Affiliation(s)
- Geok Choo Sim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laszlo Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Lion Biotechnologies, Woodland Hills, CA 91367, USA.
| |
Collapse
|
43
|
Larrea E, Riezu-Boj JI, Aldabe R, Guembe L, Echeverria I, Balasiddaiah A, Gastaminza P, Civeira MP, Sarobe P, Prieto J. Dysregulation of interferon regulatory factors impairs the expression of immunostimulatory molecules in hepatitis C virus genotype 1-infected hepatocytes. Gut 2014; 63:665-73. [PMID: 23787026 DOI: 10.1136/gutjnl-2012-304377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND IL-7 and IL-15 are produced by hepatocytes and are critical for the expansion and function of CD8 T cells. IL-15 needs to be presented by IL-15Rα for efficient stimulation of CD8 T cells. METHODS We analysed the hepatic levels of IL-7, IL-15, IL-15Rα and interferon regulatory factors (IRF) in patients with chronic hepatitis C (CHC) (78% genotype 1) and the role of IRF1 and IRF2 on IL-7 and IL-15Rα expression in Huh7 cells with or without hepatitis C virus (HCV) replicon. RESULTS Hepatic expression of both IL-7 and IL-15Rα, but not of IL-15, was reduced in CHC. These patients exhibited decreased hepatic IRF2 messenger RNA levels and diminished IRF2 staining in hepatocyte nuclei. We found that IRF2 controls basal expression of both IL-7 and IL-15Rα in Huh7 cells. IRF2, but not IRF1, is downregulated in cells with HCV genotype 1b replicon and this was accompanied by decreased expression of IL-7 and IL-15Rα, a defect reversed by overexpressing IRF2. Treating Huh7 cells with IFNα plus oncostatin M increased IL-7 and IL-15Rα mRNA more intensely than either cytokine alone. This effect was mediated by strong upregulation of IRF1 triggered by the combined treatment. Induction of IRF1, IL-7 and IL-15Rα by IFNα plus oncostatin M was dampened in replicon cells but the combination was more effective than either cytokine alone. CONCLUSIONS HCV genotype 1 infection downregulates IRF2 in hepatocytes attenuating hepatocellular expression of IL-7 and IL-15Rα. Our data reveal a new mechanism by which HCV abrogates specific T-cell responses and point to a novel therapeutic approach to stimulate anti-HCV immunity.
Collapse
Affiliation(s)
- Esther Larrea
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), , Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Larrea E, Echeverria I, Riezu-Boj JI, Aldabe R, Guembe L, Sola I, Civeira MP, Sarobe P, Prieto J. Characterization of the CD40L/Oncostatin M/Oncostatin M receptor axis as an antiviral and immunostimulatory system disrupted in chronic HCV infection. J Hepatol 2014; 60:482-9. [PMID: 24418171 DOI: 10.1016/j.jhep.2013.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Oncostatin M (OSM) is an inflammatory cytokine which interacts with a heterodimeric receptor formed by gp130 and either OSMRβ or LIFR. Here we have analysed OSM and its receptors in livers with chronic hepatitis C (CHC) and studied the factors that regulate this system. METHODS OSM, OSM receptors and OSM-target molecules were studied by immunohistochemistry and/or qPCR analysis in livers from CHC patients and controls. We determined the production of OSM by CD40L-stimulated antigen presenting cells (APC) and its biological effects on HuH7 cells containing HCV replicon (HuH7 Core-3'). RESULTS OSM was upregulated in livers with CHC and its production was mapped to CD11c+ cells. OSM levels correlated directly with inflammatory activity and CD40L expression. In vitro studies showed that OSM is released by APC upon interaction with activated CD4+ T cells in a CD40L-dependent manner. Culture of HuH7 Core-3' cells with supernatant from CD40L-stimulated APC repressed HCV replication and induced IL-7 and IL-15Rα. These effects were dampened by antibodies blocking OSM or gp130 and by silencing OSMRβ. In CHC livers OSMRβ and LIFR were significantly downregulated and their values correlated with those of OSM-induced molecules. Experiments in HuH7 cells showed that impaired STAT3 signaling and exposure to TGFβ1, two findings in CHC, are factors involved in repressing OSMRβ and LIFR, respectively. CONCLUSIONS OSM is a cytokine possessing vigorous antiviral and immunostimulatory properties which is released by APC upon interaction with CD40L present on activated CD4+ T cells. In livers with CHC, OSM is overexpressed but its biological activity appears to be hampered because of downregulation of its receptor subunits.
Collapse
Affiliation(s)
- Esther Larrea
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| | - Itziar Echeverria
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jose-I Riezu-Boj
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Rafael Aldabe
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Laura Guembe
- Department of Morphology, CIMA, University of Navarra, Pamplona, Spain
| | - Iosu Sola
- University Clinic of Navarra, University of Navarra, Pamplona, Spain
| | | | - Pablo Sarobe
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jesus Prieto
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; University Clinic of Navarra, University of Navarra, Pamplona, Spain; CIBERehd, University of Navarra, Pamplona, Spain.
| |
Collapse
|
45
|
Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, Marvel J, Yoh K, Takahashi S, Prinz I, de Bernard S, Buffat L, Walzer T. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. ACTA ACUST UNITED AC 2014; 211:563-77. [PMID: 24516120 PMCID: PMC3949572 DOI: 10.1084/jem.20131560] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Trail(+)DX5(-)Eomes(-) natural killer (NK) cells arise in the mouse fetal liver and persist in the adult liver. Their relationships with Trail(-)DX5(+) NK cells remain controversial. We generated a novel Eomes-GFP reporter murine model to address this question. We found that Eomes(-) NK cells are not precursors of classical Eomes(+) NK cells but rather constitute a distinct lineage of innate lymphoid cells. Eomes(-) NK cells are strictly dependent on both T-bet and IL-15, similarly to NKT cells. We observed that, in the liver, expression of T-bet in progenitors represses Eomes expression and the development of Eomes(+) NK cells. Reciprocally, the bone marrow (BM) microenvironment restricts T-bet expression in developing NK cells. Ectopic expression of T-bet forces the development of Eomes(-) NK cells, demonstrating that repression of T-bet is essential for the development of Eomes(+) NK cells. Gene profile analyses show that Eomes(-) NK cells share part of their transcriptional program with NKT cells, including genes involved in liver homing and NK cell receptors. Moreover, Eomes(-) NK cells produce a broad range of cytokines, including IL-2 and TNF in vitro and in vivo, during immune responses against vaccinia virus. Thus, mutually exclusive expression of T-bet and Eomes drives the development of different NK cell lineages with complementary functions.
Collapse
Affiliation(s)
- Cécile Daussy
- CIRI, International Center for Infectiology Research, Université de Lyon; 2 Institut National de la Santé et de la Recherche Médicale, U1111; 3 Ecole Normale Supérieure de Lyon; 4 Université Lyon 1, Centre International de Recherche en Infectiologie; and 5 Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
D'Cruz LM, Stradner MH, Yang CY, Goldrath AW. E and Id proteins influence invariant NKT cell sublineage differentiation and proliferation. THE JOURNAL OF IMMUNOLOGY 2014; 192:2227-36. [PMID: 24470501 PMCID: PMC3943952 DOI: 10.4049/jimmunol.1302904] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disease outcome is known to be influenced by defined subsets of invariant NKT (iNKT) cells residing in distinct locations within peripheral tissue. However, the factors governing the development of these unique iNKT sublineages during thymic development are unknown. In this study we explored the mechanism by which E protein transcription factors and their negative regulators, the Id proteins, control the development of iNKT sublineages after positive selection. We found that E proteins directly bound the promyelocytic leukemia zinc finger (PLZF) promoter and were required for expression of this lineage-defining transcription factor and for the maturation and expansion of thymic iNKT cells. Moreover, expression of the negative regulators of E proteins, Id2 and Id3, defined distinct iNKT cell sublineages. Id3 was expressed in PLZF(high) NKT2 cells and loss of Id3 allowed for increased thymic iNKT cell expansion and abundance of the PLZF(+) NKT2 sublineage. Id2 was expressed in T-BET(+) NKT1 cells, and both Id proteins were required for the formation of this sublineage. Thus, we provide insight into E and Id protein regulation of iNKT cell proliferation and differentiation to specific sublineages during development in the thymus.
Collapse
Affiliation(s)
- Louise M D'Cruz
- Division of Biology, University of California San Diego, La Jolla, CA 92093
| | | | | | | |
Collapse
|
47
|
Malaisé M, Rovira J, Renner P, Eggenhofer E, Sabet-Baktach M, Lantow M, Lang SA, Koehl GE, Farkas SA, Loss M, Agha A, Campistol JM, Schlitt HJ, Geissler EK, Kroemer A. KLRG1+ NK cells protect T-bet-deficient mice from pulmonary metastatic colorectal carcinoma. THE JOURNAL OF IMMUNOLOGY 2014; 192:1954-61. [PMID: 24415778 DOI: 10.4049/jimmunol.1300876] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We studied the developmental and functional mechanisms behind NK cell-mediated antitumor responses against metastatic colorectal carcinoma (CRC) in mice. In particular, we focused on investigating the significance of T-box transcription factors and the immunotherapeutic relevance of IL-15 in the development and function of tumor-reactive NK cells. Pulmonary CRC metastases were experimentally seeded via an adoptive i.v. transfer of luciferase-expressing CT26 CRC cells that form viewable masses via an in vivo imaging device; genetically deficient mice were used to dissect the antitumor effects of developmentally different NK cell subsets. IL-15 precomplexed to IL-15 receptor-α was used in immunotherapy experiments. We found that mice deficient for the T-box transcription factor T-bet lack terminally differentiated antitumor CD27(low)KLRG1(+) NK cells, leading to a terminal course of rapid-onset pulmonary CRC metastases. The importance of this NK cell subset for effective antitumor immunity was shown by adoptively transferring purified CD27(low)KLRG1(+) NK cells into T-bet-deficient mice and, thereby, restoring immunity against lung metastasis formation. Importantly, immunity to metastasis formation could also be restored in T-bet-deficient recipients by treating mice with IL-15 precomplexed to IL-15 receptor-α, which induced the development of eomesodermin(+)KLRG1(+) NK cells from existing NK cell populations. Thus, contingent upon their T-bet-dependent development and activation status, NK cells can control metastatic CRC in mice, which is highly relevant for the development of immunotherapeutic approaches in the clinic.
Collapse
Affiliation(s)
- Muriel Malaisé
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Engel I, Kronenberg M. Transcriptional control of the development and function of Vα14i NKT cells. Curr Top Microbiol Immunol 2014; 381:51-81. [PMID: 24839184 DOI: 10.1007/82_2014_375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The majority of T lymphocytes, sometimes referred to as as mainstream or conventional T cells, are characterized by a diverse T cell antigen receptor (TCR) repertoire. They require antigen priming in order to become memory cells capable of mounting a rapid effector response. It has become established, however, that there are several distinct T cell lineages that exhibit a memory phenotype in the absence of antigen priming, even as they differentiate in the thymus. These lymphocytes typically express a markedly restricted TCR repertoire and their rapid response kinetics has led to their being described as innate-like T cells. In addition, several of these subsets typically express surface markers commonly found on natural killer cells, which has led to the moniker natural killer T cells (NKT cells). This review will describe our current understanding of the unique ways whereby transcription factors control the development and function of an abundant and widely studied lineage of NKT cells that recognizes glycolipid antigens.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | |
Collapse
|
49
|
Role of invariant natural killer T cells in lipopolysaccharide-induced pregnancy loss. Cell Immunol 2013; 286:1-10. [DOI: 10.1016/j.cellimm.2013.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/27/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022]
|
50
|
Sørensen JØ, Buschard K, Brogren CH. The preventive role of type 2 NKT cells in the development of type 1 diabetes. APMIS 2013; 122:167-82. [PMID: 23992281 DOI: 10.1111/apm.12140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed.
Collapse
Affiliation(s)
- Jakob Ørskov Sørensen
- The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaloesvej 5, Copenhagen, Denmark
| | | | | |
Collapse
|