1
|
Gao S, Lin M, Zhao M, Yan J, Lu H, Zhan Y, Xin Y, Zeng F. Fraxinus mandshurica galacturonosyltransferase 1 and 12 play negative roles in cadmium tolerance via cell wall remodeling. Int J Biol Macromol 2025; 306:141510. [PMID: 40020828 DOI: 10.1016/j.ijbiomac.2025.141510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Cadmium (Cd) contamination poses critical risks to soil ecosystems, agricultural productivity, and human health. Fraxinus mandshurica, a widely cultivated tree species in landscaping and afforestation, exhibits heightened sensitivity to Cd toxicity. The cell wall, composed of various biological macromolecules, acts as a primary defense mechanism against Cd stress. Galacturonosyltransferase (GAUT) is crucial in cell wall component synthesis and biomass accumulation. However, the involvement of GAUT in metal stress resistance has remained unreported. In this study, FmGAUT1 and FmGAUT12 were obtained from F. mandshurica treated by Cd. Transgenic tobacco overexpressing FmGAUT1 and FmGAUT12 exhibited increased Cd sensitivity, as evidenced by inhibited plant height, reduced fresh weight, and increased reactive oxygen species (ROS) production. In overexpression plants, the cellulose and pectin contents in the cell wall decreased to 52.33 %-55.56 % and 4.30 %-5.17 %, respectively. The reduction in uronic acid, pectin (especially low-methylated pectin), cellulose, and hemicellulose content compromised cell wall binding ability to Cd. Furthermore, the translocation factor and related gene expression levels significantly declined in FmGAUT1 and FmGAUT12 overexpressing lines, resulting in excessive Cd accumulation (1.84-fold and 1.95-fold) in roots. Conversely, silencing FmGAUT1 and FmGAUT12 in F. mandshurica facilitated cell wall remodeling and improved Cd tolerance. These findings reveal the roles of GAUTs in metal stress responses and suggest their potential as targets for genetic improvement strategies to enhance Cd tolerance in plants.
Collapse
Affiliation(s)
- Shangzhu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Meihan Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mengfan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jialin Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Han Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ying Xin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Frankevich TA, Permyakova NV, Sidorchuk YV, Deineko EV. Impact of GAUT1 Gene Knockout on Cell Aggregation in Arabidopsis thaliana Suspension Culture. BIOTECH 2025; 14:2. [PMID: 39846551 PMCID: PMC11755664 DOI: 10.3390/biotech14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
The development of efficient producers of recombinant pharmaceuticals based on plant cell suspension cultures is a pressing challenge in modern applied science. A primary limitation of plant cell cultures is their relatively low yield of the target protein. One strategy to enhance culture productivity involves reducing cell aggregation. In order to minimize cell-to-cell adhesion in culture, we used Cas9 endonuclease to knock out the GAUT1 gene, which is a key gene of pectin biosynthesis in the genome of Arabidopsis thaliana. The resulting knockouts exhibited altered phenotypes and were unable to form viable plants. The suspension cell culture induced from seedlings bearing a homozygous deletion in the GAUT1 gene displayed darker coloration and an increased number of large aggregates compared to the control. The biomass accumulation rate showed no difference from the control, while the level of recombinant GFP protein accumulation was significantly reduced. Thus, our findings indicate that disruptions in pectin synthesis and the formation of larger aggregates in the suspension cell culture adversely affect the accumulation of the target recombinant protein. Alternative targets should be sought to reduce cell aggregation levels in plant cell cultures through genome editing.
Collapse
Affiliation(s)
| | - Natalya V. Permyakova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia; (T.A.F.); (Y.V.S.); (E.V.D.)
| | | | | |
Collapse
|
3
|
Zhang H, Xiao L, Qin S, Kuang Z, Wan M, Li Z, Li L. Heterogeneity in Mechanical Properties of Plant Cell Walls. PLANTS (BASEL, SWITZERLAND) 2024; 13:3561. [PMID: 39771259 PMCID: PMC11678144 DOI: 10.3390/plants13243561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle. While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due to the diverse polysaccharide composition and different development stages. Here, we review recent research advances, both methodological and experimental, that shed new light on the architecture of cell walls, with a focus on the mechanical heterogeneity of plant cell walls. Facilitated by advanced techniques and tools, especially atomic force microscopy (AFM), research efforts over the last decade have contributed to impressive progress in our understanding of how mechanical properties are associated with cell growth. In particular, the pivotal importance of pectin, the most complex wall polysaccharide, in wall mechanics is rapidly emerging. Pectin is regarded as an important determinant for establishing anisotropic growth patterns of elongating cells. Altogether, the diversity of plant cell walls can lead to heterogeneity in the mechanical properties, which will help to reveal how mechanical factors regulate plant cell growth and organ morphogenesis.
Collapse
Affiliation(s)
- He Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Liang Xiao
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Siying Qin
- School of Life Sciences, Peking University, Beijing 100871, China; (S.Q.); (Z.L.)
| | - Zheng Kuang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Miaomiao Wan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Zhan Li
- School of Life Sciences, Peking University, Beijing 100871, China; (S.Q.); (Z.L.)
| | - Lei Li
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| |
Collapse
|
4
|
Chen X, Lei T, Yan Y, Sun M, Zhong T, Wu B, Liu H, Zhang C, Sun F, Xi Y. Genetic Basis of Tillering Angle from Other Plants to Wheat: Current Progress and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:3237. [PMID: 39599446 PMCID: PMC11597981 DOI: 10.3390/plants13223237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Plant architecture is an important agronomic trait that impacts crop yield. The tiller angle is a critical aspect of the plant's structural organization, which is influenced by both internal and external factors. The genetic mechanisms underlying the tiller angle have been extensively investigated in other plants. However, research on wheat is relatively limited. Additionally, mechanics has emerged as a connection between biochemical signaling and the development of three-dimensional biological forms. It not only reveals how physical interactions at the cellular level influence overall morphogenesis but also elucidates the interplay between these mechanical processes and molecular signaling pathways that collectively determine plant morphology. This review examines the recent advancements in the study of tillering angle in wheat and other plants. It discusses progress in research ranging from observable characteristics to the regulation of genes, as well as the physiological and biochemical aspects, and the adaptability to environmental factors. In addition, this review also discusses the effects of mechanical on plant growth and development, and provides ideas for the study of mechanical regulation mechanism of tillering angle in wheat. Consequently, based on the research of other plants and combined with the genetic and mechanical principles, this approach offers novel insights and methodologies for studying tillering in wheat. This interdisciplinary research framework not only enhances our understanding of the mechanisms underlying wheat growth and development but may also uncover the critical factors that regulate tillering angle, thereby providing a scientific foundation for improving wheat yield and adaptability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yajun Xi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.C.)
| |
Collapse
|
5
|
Wang Y, Hu Y, Ren H, Zhao X, Yuan Z. Integrated transcriptomic, metabolomic, and functional analyses unravel the mechanism of bagging delaying fruit cracking of pomegranate (Punica granatum L.). Food Chem 2024; 451:139384. [PMID: 38692235 DOI: 10.1016/j.foodchem.2024.139384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The economic impact of fruit cracking in pomegranate products is substantial. In this study, we present the inaugural comprehensive analysis of transcriptome and metabolome in the outermost pericarp of pomegranate fruit in bagging conditions. Our investigation revealed a notable upregulation of differentially expressed genes (DEGs) associated with the calcium signaling pathway (76.92%) and xyloglucan endotransglucosylase/hydrolase (XTH) genes (87.50%) in the fruit peel of non-cracking fruit under bagging. Metabolomic analysis revealed that multiple phenolics, flavonoids, and tannins were identified in pomegranate. Among these, calmodulin-like 23 (PgCML23) exhibited a significant correlation with triterpenoids and demonstrated a marked upregulation under bagging treatment. The transgenic tomatoes overexpressing PgCML23 exhibited significantly higher cellulose content and xyloglucan endotransglucosylase (XET) enzyme activity in the pericarp at the red ripening stage compared to the wild type. Conversely, water-soluble pectin content, polygalacturonase (PG), and β-galactosidase (β-GAL) enzyme activities were significantly lower in the transgenic tomatoes. Importantly, the heterologous expression of PgCML23 led to a substantial reduction in the fruit cracking rate in tomatoes. Our findings highlight the reduction of fruit cracking in bagging conditions through the manipulation of PgCML23 expression.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yaping Hu
- Key Laboratory of Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Hongfang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Yin W, Yang H, Feng P, Qi P, Li B, Li Y, Huang Q, Peng Y, Wang N, Hu Y. Rapid function analysis of OsiWAK1 using a Dual-Luciferase assay in rice. Sci Rep 2024; 14:19412. [PMID: 39169077 PMCID: PMC11339413 DOI: 10.1038/s41598-024-69955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, the exploration of genetic resources in rice has significantly enhanced the efficacy of rice breeding. However, the exploration of genetic resources is hindered by the identification of candidate genes. To expedite the identification of candidate genes, this study examined tapetum programmed cell death-related genes OsiWAK1, OsPDT1, EAT1, TDR, and TIP2 to assess the efficacy of the Dual-Luciferase (Dual-LUC) assay in rapidly determining gene relationships. The study found that, in the Dual-LUC assay, OsiWAK1 and its various recombinant proteins exhibit comparable activation abilities on the EAT1 promoter, potentially indicating a false positive. However, the Dual-LUC assay can reveal that OsiWAK1 impacts both the function of its upstream regulatory factor OsPDT1 and the TDR/TIP2 transcription complex. By rapidly studying the relationship between diverse candidate genes and regulatory genes in a well-known trait via the Dual-LUC assay, this study provides a novel approach to expedite the determination of candidate genes such as genome-wide association study.
Collapse
Affiliation(s)
- Wuzhong Yin
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hongxia Yang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Pan Qi
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Biluo Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuanyuan Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qingxiong Huang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Youlin Peng
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| | - Yungao Hu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
7
|
Zhang Y, Sharma D, Liang Y, Downs N, Dolman F, Thorne K, Black IM, Pereira JH, Adams P, Scheller HV, O’Neill M, Urbanowicz B, Mortimer JC. Putative rhamnogalacturonan-II glycosyltransferase identified through callus gene editing which bypasses embryo lethality. PLANT PHYSIOLOGY 2024; 195:2551-2565. [PMID: 38739546 PMCID: PMC11288761 DOI: 10.1093/plphys/kiae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate cross-linking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect cross-linking and are lethal or severely impair growth. Thus, few genes involved in RG-II synthesis have been identified. Here, we developed a method to generate viable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in callus tissue via CRISPR/Cas9-mediated gene editing. We combined this with a candidate gene approach to characterize the male gametophyte defective 2 (MGP2) gene that encodes a putative family GT29 glycosyltransferase. Plants homozygous for this mutation do not survive. We showed that in the callus mutant cell walls, RG-II does not cross-link normally because it lacks 3-deoxy-D-manno-octulosonic acid (Kdo) and thus cannot form the α-L-Rhap-(1→5)-α-D-kdop-(1→sidechain). We suggest that MGP2 encodes an inverting RG-II CMP-β-Kdo transferase (RCKT1). Our discovery provides further insight into the role of sidechains in RG-II dimerization. Our method also provides a viable strategy for further identifying proteins involved in the biosynthesis of RG-II.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepak Sharma
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yan Liang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nick Downs
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fleur Dolman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kristen Thorne
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Malcolm O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Li Z, Li Z, Ji Y, Wang C, Wang S, Shi Y, Le J, Zhang M. The heat shock factor 20-HSF4-cellulose synthase A2 module regulates heat stress tolerance in maize. THE PLANT CELL 2024; 36:2652-2667. [PMID: 38573521 PMCID: PMC11218781 DOI: 10.1093/plcell/koae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Temperature shapes the geographical distribution and behavior of plants. Understanding the regulatory mechanisms underlying the plant heat stress response is important for developing climate-resilient crops, including maize (Zea mays). To identify transcription factors (TFs) that may contribute to the maize heat stress response, we generated a dataset of short- and long-term transcriptome changes following a heat treatment time course in the inbred line B73. Co-expression network analysis highlighted several TFs, including the class B2a heat shock factor (HSF) ZmHSF20. Zmhsf20 mutant seedlings exhibited enhanced tolerance to heat stress. Furthermore, DNA affinity purification sequencing and Cleavage Under Targets and Tagmentation assays demonstrated that ZmHSF20 binds to the promoters of Cellulose synthase A2 (ZmCesA2) and three class A Hsf genes, including ZmHsf4, repressing their transcription. We showed that ZmCesA2 and ZmHSF4 promote the heat stress response, with ZmHSF4 directly activating ZmCesA2 transcription. In agreement with the transcriptome analysis, ZmHSF20 inhibited cellulose accumulation and repressed the expression of cell wall-related genes. Importantly, the Zmhsf20 Zmhsf4 double mutant exhibited decreased thermotolerance, placing ZmHsf4 downstream of ZmHsf20. We proposed an expanded model of the heat stress response in maize, whereby ZmHSF20 lowers seedling heat tolerance by repressing ZmHsf4 and ZmCesA2, thus balancing seedling growth and defense.
Collapse
Affiliation(s)
- Ze Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zerui Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Ji
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shufang Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Lathe RS, McFarlane HE, Kesten C, Wang L, Khan GA, Ebert B, Ramírez-Rodríguez EA, Zheng S, Noord N, Frandsen K, Bhalerao RP, Persson S. NKS1/ELMO4 is an integral protein of a pectin synthesis protein complex and maintains Golgi morphology and cell adhesion in Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2321759121. [PMID: 38579009 PMCID: PMC11009649 DOI: 10.1073/pnas.2321759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.
Collapse
Affiliation(s)
- Rahul S. Lathe
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- Max-Planck Institute for Molecular Plant Physiology, Potsdam14476, Germany
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Heather E. McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ONM5S 3G5, Canada
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
| | - Christopher Kesten
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Liu Wang
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC3086, Australia
| | - Berit Ebert
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum44780, Germany
| | | | - Shuai Zheng
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Niels Noord
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Kristian Frandsen
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- Max-Planck Institute for Molecular Plant Physiology, Potsdam14476, Germany
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, University of AdelaideJoint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
11
|
Dai Y, Yuan H, Cao X, Liu Y, Xu Z, Jiang Z, White JC, Zhao J, Wang Z, Xing B. La 2O 3 Nanoparticles Can Cause Cracking of Tomato Fruit through Genetic Reconstruction. ACS NANO 2024; 18:7379-7390. [PMID: 38411928 DOI: 10.1021/acsnano.3c09083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
La2O3 nanoparticles (NPs) have shown great potential in agriculture, but cracking of plant sensitive tissue could occur during application, resulting in a poor appearance, facilitating entry for insects and fungi, and increasing economic losses. Herein, exocarp cracking mechanisms of tomato (Solanum lycopersicum L.) fruit in response to La2O3 NPs were investigated. Tomato plants were exposed to La2O3 NPs (0-40 mg/L, 90 days) by a split-root system under greenhouse condition. La2O3 NPs with high concentrations (25 and 40 mg/L) increased the obvious cracking of the fruit exocarp by 20.0 and 22.7%, respectively. After exposure to 25 mg/L La2O3 NPs, decreased thickness of the cuticle and cell wall and lower wax crystallization patterns of tomato fruit exocarp were observed. Biomechanical properties (e.g., firmness and stiffness) of fruit exocarp were decreased by 34.7 and 25.9%, respectively. RNA-sequencing revealed that the thinner cuticle was caused by the downregulation of cuticle biosynthesis related genes; pectin remodeling, including the reduction in homogalacturonan (e.g., LOC101264880) and rhamnose (e.g., LOC101248505), was responsible for the thinner cell wall. Additionally, genes related to water and abscisic acid homeostasis were significantly upregulated, causing the increases of water and soluble solid content of fruit and elevated fruit inner pressure. Therefore, the thinner fruit cuticle and cell wall combined with the higher inner pressure caused fruit cracking. This study improves our understanding of nanomaterials on important agricultural crops, including the structural reconstruction of fruit exocarp contributing to NPs-induced cracking at the molecular level.
Collapse
Affiliation(s)
- Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Hanyu Yuan
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Yinglin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zefeng Xu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Zhixiang Jiang
- School of Environmental Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Baruah IK, Shao J, Ali SS, Schmidt ME, Meinhardt LW, Bailey BA, Cohen SP. Cacao pod transcriptome profiling of seven genotypes identifies features associated with post-penetration resistance to Phytophthora palmivora. Sci Rep 2024; 14:4175. [PMID: 38378988 PMCID: PMC10879190 DOI: 10.1038/s41598-024-54355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
The oomycete Phytophthora palmivora infects the fruit of cacao trees (Theobroma cacao) causing black pod rot and reducing yields. Cacao genotypes vary in their resistance levels to P. palmivora, yet our understanding of how cacao fruit respond to the pathogen at the molecular level during disease establishment is limited. To address this issue, disease development and RNA-Seq studies were conducted on pods of seven cacao genotypes (ICS1, WFT, Gu133, Spa9, CCN51, Sca6 and Pound7) to better understand their reactions to the post-penetration stage of P. palmivora infection. The pod tissue-P. palmivora pathogen assay resulted in the genotypes being classified as susceptible (ICS1, WFT, Gu133 and Spa9) or resistant (CCN51, Sca6 and Pound7). The number of differentially expressed genes (DEGs) ranged from 1625 to 6957 depending on genotype. A custom gene correlation approach identified 34 correlation groups. De novo motif analysis was conducted on upstream promoter sequences of differentially expressed genes, identifying 76 novel motifs, 31 of which were over-represented in the upstream sequences of correlation groups and associated with gene ontology terms related to oxidative stress response, defense against fungal pathogens, general metabolism and cell function. Genes in one correlation group (Group 6) were strongly induced in all genotypes and enriched in genes annotated with defense-responsive terms. Expression pattern profiling revealed that genes in Group 6 were induced to higher levels in the resistant genotypes. An additional analysis allowed the identification of 17 candidate cis-regulatory modules likely to be involved in cacao defense against P. palmivora. This study is a comprehensive exploration of the cacao pod transcriptional response to P. palmivora spread after infection. We identified cacao genes, promoter motifs, and promoter motif combinations associated with post-penetration resistance to P. palmivora in cacao pods and provide this information as a resource to support future and ongoing efforts to breed P. palmivora-resistant cacao.
Collapse
Affiliation(s)
- Indrani K Baruah
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Jonathan Shao
- Statistics and Bioinformatics Group-Northeast Area, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Shahin S Ali
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
- ATCC (American Type Culture Collection), Gaithersburg, MD, 20877, USA
| | - Martha E Schmidt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Bryan A Bailey
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Stephen P Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
13
|
Xu E, Zou Y, Yang G, Zhang P, Ha MN, Mai Le Q, Zhang W, Chen X. The Golgi-localized transporter OsPML4 contributes to manganese homeostasis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111935. [PMID: 38049038 DOI: 10.1016/j.plantsci.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Manganese (Mn), an indispensable plant micronutrient, functions as a vital enzyme co-factor in numerous biochemical reactions. In rice, the Golgi-localized PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 3 (OsPML3), a member of the UNCHARACTERIZED PROTEIN FAMILY (UPF0016), plays a pivotal role in Mn homeostasis, particularly in rapidly developing tissues. This study focused on the functional characterization of another UPF0016 family member in rice, OsPML4, to elucidate its involvement in Mn homeostasis. OsPML4 had a 73% sequence identity with OsPML3 and exhibited expression in both shoots and roots, albeit at a lower transcriptional level than OsPML3. Furthermore, subcellular localization studies confirmed that OsPML4 localizes in the Golgi apparatus. Notably, heterologous expression of OsPML4 restored growth in the Mn uptake-deficient yeast strain Δsmf1 under Mn-limited conditions. Under Mn-deficient conditions, OsPML4 knockout exacerbated the decline in shoot dry weight and intensified necrosis in young leaves of OsPML3 knockout lines, which displayed stunted growth. The Mn concentration in OsPML3PML4 double knockout lines was lower than in wild-type (WT) and OsPML3 knockout lines. At the reproductive phase, OsPML3PML4 double knockout lines exhibited reduced fertility and grain yield compared to WT and OsPML3 knockout lines. Notably, reductions were observed in the deposition of cell wall polysaccharides and the content of Lea (Lewis A structure)-containing N-glycans in the young leaves of OsPML3PML4 double knockout lines, surpassing the reductions in WT and OsPML3 knockout lines. These findings underscore the significance of OsPML4 in Mn homeostasis in the Golgi apparatus, where it co-functions with OsPML3 to regulate cell wall polysaccharide deposition and late-stage Golgi N-glycosylation.
Collapse
Affiliation(s)
- Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China; Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
14
|
Yang Z, Chen W, Jia T, Shi H, Sun D. Integrated Transcriptomic and Metabolomic Analyses Identify Critical Genes and Metabolites Associated with Seed Vigor of Common Wheat. Int J Mol Sci 2023; 25:526. [PMID: 38203695 PMCID: PMC10779259 DOI: 10.3390/ijms25010526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Seed aging is a common physiological phenomenon during storage which has a great impact on seed quality. An in-depth analysis of the physiological and molecular mechanisms of wheat seed aging is of great significance for cultivating high-vigor wheat varieties. This study reveals the physiological mechanisms of wheat seed aging in two cultivars differing in seed vigor, combining metabolome and transcriptome analyses. Differences between cultivars were examined based on metabolomic differential analysis. Artificial aging had a significant impact on the metabolism of wheat seeds. A total of 7470 (3641 upregulated and 3829 downregulated) DEGs were detected between non-aging HT and LT seeds; however, 10,648 (4506 up and 6142 down) were detected between the two cultivars after aging treatment. Eleven, eight, and four key metabolic-related gene families were identified in the glycolysis/gluconeogenesis and TCA cycle pathways, starch and sucrose metabolism pathways, and galactose metabolism pathways, respectively. In addition, 111 up-regulated transcription factor genes and 85 down-regulated transcription factor genes were identified in the LT 48h group. A total of 548 metabolites were detected across all samples. Cultivar comparisons between the non-aged groups and aged groups revealed 46 (30 upregulated and 16 downregulated) and 62 (38 upregulated and 24 downregulated) DIMs, respectively. Network analysis of the metabolites indicated that glucarate O-phosphoric acid, L-methionine sulfoxide, isocitric acid, and Gln-Gly might be the most crucial DIMs between HT and LT. The main related metabolites were enriched in pathways such as glyoxylate and dicarboxylate metabolism, biosynthesis of secondary metabolites, fatty acid degradation, etc. However, metabolites that exhibited differences between cultivars were mainly enriched in carbon metabolism, the TCA cycle, etc. Through combined metabolome and transcriptome analyses, it was found that artificial aging significantly affected glycolysis/gluconeogenesis, pyruvate metabolism, and glyoxylate and dicarboxylate metabolism, which involved key genes such as ACS, F16P2, and PPDK1. We thus speculate that these genes may be crucial in regulating physiological changes in seeds during artificial aging. In addition, an analysis of cultivar differences identified pathways related to amino acid and polypeptide metabolism, such as cysteine and methionine metabolism, glutathione metabolism, and amino sugar and nucleotide sugar metabolism, involving key genes such as BCAT3, CHI1, GAUT1, and GAUT4, which may play pivotal roles in vigor differences between cultivars.
Collapse
Affiliation(s)
- Zhenrong Yang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Z.Y.); (T.J.); (H.S.)
| | - Weiguo Chen
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Tianxiang Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Z.Y.); (T.J.); (H.S.)
| | - Huawei Shi
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Z.Y.); (T.J.); (H.S.)
| | - Daizhen Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Z.Y.); (T.J.); (H.S.)
| |
Collapse
|
15
|
Kamel H, Geitmann A. Strength in numbers: An isoform variety of homogalacturonan modifying enzymes may contribute to pollen tube fitness. PLANT PHYSIOLOGY 2023; 194:67-80. [PMID: 37819032 DOI: 10.1093/plphys/kiad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Pectin is a major component of the cell wall in land plants. It plays crucial roles in cell wall assembly, cell growth, shaping, and signaling. The relative abundance of pectin in the cell wall is particularly high in rapidly growing organ regions and cell types. Homogalacturonan (HG), a polymer of 1,4-linked α-D-galacturonic acid, is a major pectin constituent in growing and dividing plant cells. In pollen tubes, an extremely rapidly growing cell type, HG is secreted at and inserted into the apical cell wall and is subject to further modification in muro by HG modifying enzymes (HGMEs). These enzymes, including pectin esterases and depolymerases, have multiple isoforms, some of which are specifically expressed in pollen. Given the importance of pectin chemistry for the fitness of pollen tubes, it is of interest to interrogate the potentially crucial roles these isoforms play in pollen germination and elongation. It is hypothesized that different HGME isoforms, through their action on apoplastic HG, may generate differential methylation and acetylation patterns endowing HG polysaccharides with specific, spatially and temporally varying properties that lead to a fine-tuned pattern of cell wall modification. In addition, these isoforms may be differentially activated and/or inhibited depending on the local conditions that may vary at subcellular resolution. In this Update we review the different HGME isoforms identified in recent years in Arabidopsis thaliana and postulate that the multiplicity of these isoforms may allow for specialized substrate recognition and conditional activation, leading to a sophisticated regulation scheme exemplified in the process that governs the dynamic properties of the cell wall in pollen tube growth.
Collapse
Affiliation(s)
- Hiba Kamel
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
16
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
17
|
Cai Y, Tang C, Lv S, Chen Q, Zhu X, Li X, Qi K, Xie Z, Zhang S, Wang P, Wu J. Elucidation of the GAUT gene family in eight Rosaceae species and function analysis of PbrGAUT22 in pear pollen tube growth. PLANTA 2023; 257:68. [PMID: 36853424 DOI: 10.1007/s00425-023-04103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The phylogenetic relationship and evolutionary history of the GAUT gene family were identified in 8 Rosaseae species. PbrGAUT22 was involved in controlling pollen tube growth by regulating the content of pectins. In plants, galacturonosyltransferases (GAUTs) were involved in homogalacturonan biosynthesis and functioned in maintaining pollen tube cell wall integrity. However, the feature and evolutionary history of the GAUT gene family in Rosaceae species and candidates in pear pollen tube growth remain unclear. Here, we identified 190 GAUT genes in 8 Rosaceae species, including Chinese white pear (Pyrus bretschneideri), European pear (Pyrus communis), apple (Malus × domestica), peach (Prunus persica), Japanese apricot (Prunus mume), sweet cherry (Prunus avium), woodland strawberry (Fragaria vesca) and black raspberry (Rubus occidentalis). Members in GAUT gene family were divided into 4 subfamilies according to the phylogenetic and structural analysis. Whole-genome duplication events and dispersed duplicates drove the expansion of the GAUT gene family. Among 23 pollen-expressed PbrGAUT genes in pear, PbrGAUT22 showed increased expression level during 1-6 h post-cultured pollen tubes. PbrGAUT22 was localized to the cytoplasm and plasma membrane. Knockdown of PbrGAUT22 expression in pollen tubes caused the decrease of pectin content and inhibited pear pollen tubes growth. Taken together, we investigated the identification and evolution of the GAUT gene family in Rosaceae species, and found that PbrGAUT22 played an essential role in the synthesis of pectin and the growth of pear pollen tubes.
Collapse
Affiliation(s)
- Yiling Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Shouzheng Lv
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| |
Collapse
|
18
|
Ge W, Lv M, Feng H, Wang X, Zhang B, Li K, Zhang J, Zou J, Ji R. Analysis of the role of BrRPP1 gene in Chinese cabbage infected by Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2023; 14:1082395. [PMID: 36760653 PMCID: PMC9905630 DOI: 10.3389/fpls.2023.1082395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The clubroot disease caused by Plasmodiophora brassicae (P. brassicae) poses a serious threat to the economic value of cruciferous crops, which is a serious problem to be solved worldwide. Some resistance genes to clubroot disease in Brassica rapa L. ssp pekinensis cause by P. brassicae have been located on different chromosomes. Among them, Rcr1 and Rcr2 were mapped to the common candidate gene Bra019410, but its resistance mechanism is not clear yet. METHODS In this experiment, the differences of BrRPP1 between the resistant and susceptible material of Chinese cabbage were analyzed by gene cloning and qRT-PCR. The gene function was verified by Arabidopsis homologous mutants. The expression site of BrRPP1 gene in cells was analyzed by subcellular localization. Finally, the candidate interaction protein of BrRPP1 was screened by yeast two-hybrid library. RESULTS The results showed that the cDNA sequence, upstream promoter sequence and expression level of BrRPP1 were quite different between the resistant and susceptible material. The resistance investigation found that the Arabidopsis mutant rpp1 was more susceptible to clubroot disease than the wild type, which suggested that the deletion of rpp1 reduces resistance of plant to clubroot disease. Subcellular location analysis confirmed that BrRPP1 was located in the nucleus. The interaction proteins of BrRPP1 screened from cDNA Yeast Library by yeast two-hybrid are mainly related to photosynthesis, cell wall modification, jasmonic acid signal transduction and programmed cell death. DISCUSSION BrRPP1 gene contains TIR-NBS-LRR domain and belongs to R gene. The cDNA and promoter sequence of BrRPP1 in resistant varieties was different from that in susceptible varieties led to the significant difference of the gene expression of BrRPP1 between the resistant varieties and the susceptible varieties. The high expression of BrRPP1 gene in resistant varieties enhanced the resistance of Chinese cabbage to P. brassicae, and the interaction proteins of BrRPP1 are mainly related to photosynthesis, cell wall modification, jasmonic acid signal transduction and programmed cell death. These results provide important clues for understanding the mechanism of BrRPP1 in the resistance of B. rapa to P. brassicae.
Collapse
|
19
|
Wang C, Chen Y, Cui C, Shan F, Zhang R, Lyu X, Lyu L, Chang H, Yan C, Ma C. Blue Light Regulates Cell Wall Structure and Carbohydrate Metabolism of Soybean Hypocotyl. Int J Mol Sci 2023; 24:1017. [PMID: 36674538 PMCID: PMC9864885 DOI: 10.3390/ijms24021017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Soybean stem elongation and thickening are related to cell wall composition. Plant morphogenesis can be influenced by blue light, which can regulate cell wall structure and composition, and affect stem growth and development. Here, using proteomics and metabolomics, differentially expressed proteins and metabolites of hypocotyls grown in the dark and under blue light were studied to clarify the effects of blue light on the cell wall structure and carbohydrate metabolism pathway of soybean hypocotyls. Results showed that 1120 differential proteins were upregulated and 797 differential proteins were downregulated under blue light treatment, while 63 differential metabolites were upregulated and 36 differential metabolites were downregulated. Blue light promoted the establishment of cell wall structure and composition by regulating the expression of both the enzymes and metabolites related to cell wall structural composition and nonstructural carbohydrates. Thus, under blue light, the cross-sectional area of the hypocotyl and xylem were larger, the longitudinal length of pith cells was smaller, elongation of the soybean hypocotyl was inhibited, and diameter was increased.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Amos RA, Atmodjo MA, Huang C, Gao Z, Venkat A, Taujale R, Kannan N, Moremen KW, Mohnen D. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. NATURE PLANTS 2022; 8:1289-1303. [PMID: 36357524 PMCID: PMC10115348 DOI: 10.1038/s41477-022-01270-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 06/10/2023]
Abstract
Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-α-D-GalA-(1,2)-α-L-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants.
Collapse
Affiliation(s)
- Robert A Amos
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melani A Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
21
|
Guo S, Wang M, Song X, Zhou G, Kong Y. The evolving views of the simplest pectic polysaccharides: homogalacturonan. PLANT CELL REPORTS 2022; 41:2111-2123. [PMID: 35986766 DOI: 10.1007/s00299-022-02909-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Pectin is an important component of cell wall polysaccharides and is important for normal plant growth and development. As a major component of pectin in the primary cell wall, homogalacturonan (HG) is a long-chain macromolecular polysaccharide composed of repeated α-1,4-D-GalA sugar units. At the same time, HG is synthesized in the Golgi apparatus in the form of methyl esterification and acetylation. It is then secreted into the plasmodesmata, where it is usually demethylated by pectin methyl esterase (PME) and deacetylated by pectin acetylase (PAE). The synthesis and modification of HG are involved in polysaccharide metabolism in the cell wall, which affects the structure and function of the cell wall and plays an important role in plant growth and development. This paper mainly summarizes the recent research on the biosynthesis, modification and the roles of HG in plant cell wall.
Collapse
Affiliation(s)
- Shuaiqiang Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xinxin Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, 257092, People's Republic of China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
22
|
Zhang D, Wang R, Han S, Li Z, Xiao J, Li Y, Wang L, Li S. Transcriptome Analysis of Sugarcane Young Leaves and Protoplasts after Enzymatic Digestion. Life (Basel) 2022; 12:1210. [PMID: 36013389 PMCID: PMC9410293 DOI: 10.3390/life12081210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 02/01/2023] Open
Abstract
Sugarcane somatic cell hybridization can break through the barrier of genetic incompatibility between distantly related species in traditional breeding. However, the molecular mechanisms of sugarcane protoplast regeneration and the conditions for protoplast preparation remain largely unknown. In this study, young sugarcane (ROC22) leaves were enzymatically digested, and the viability of protoplasts reached more than 90% after enzymatic digestion (Enzymatic combination: 2% cellulase + 0.5% pectinase + 0.1% dissociative enzyme + 0.3% hemicellulase, pH = 5.8). Transcriptome sequencing was performed on young sugarcane leaves and protoplasts after enzymatic digestion to analyze the differences in gene expression in somatic cells before and after enzymatic digestion. A total of 117,411 unigenes and 43,460 differentially expressed genes were obtained, of which 21,123 were up-regulated and 22,337 down-regulated. The GO terms for the 43,460 differentially expressed genes (DEGs) were classified into three main categories: biological process, cellular component and molecular function, which related to developmental process, growth, cell proliferation, transcription regulator activity, signal transducer activity, antioxidant activity, oxidative stress, kinase activity, cell cycle, cell differentiation, plant hormone signal transduction, and so on. After enzymatic digestion of young sugarcane leaves, the expressions of GAUT, CESA, PSK, CyclinB, CyclinA, CyclinD3 and cdc2 genes associated with plant regeneration were significantly down-regulated to 65%, 47%, 2%, 18.60%, 21.32%, 52% and 45% of young leaves, respectively. After enzymatic digestion, Aux/IAA expression was up-regulated compared with young leaves, and Aux/IAA expression was 3.53 times higher than that of young leaves. Compared with young leaves, these key genes were significantly changed after enzymatic digestion. These results indicate that the process of somatic enzymatic digestion process may affect the regeneration of heterozygous cells to a certain extent.
Collapse
Affiliation(s)
- Demei Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Rui Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Shijian Han
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Zhigang Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Jiming Xiao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Yangrui Li
- Guangxi Academy of Agricultural Sciences, 174 Daxue Rd., Nanning 530007, China
| | - Lingqiang Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Suli Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| |
Collapse
|
23
|
Yin W, Yang H, Wang Y, Feng P, Deng Y, Zhang L, He G, Wang N. Oryza sativa PECTIN DEFECTIVE TAPETUM1 affects anther development through a pectin-mediated signaling pathway in rice. PLANT PHYSIOLOGY 2022; 189:1570-1586. [PMID: 35511278 PMCID: PMC9237691 DOI: 10.1093/plphys/kiac172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 05/27/2023]
Abstract
Galacturonosyltransferase (GalAT) is required for the synthesis of pectin, an important component of plant cell walls that is also involved in signal transduction. Here, we describe the rice (Oryza sativa) male-sterile mutant O. sativa pectin-defective tapetum1 (ospdt1), in which GalAT is mutated. The ospdt1 mutant exhibited premature programmed cell death (PCD) of the tapetum and disordered pollen walls, resulting in aborted pollen grains. Pectin distribution in the anther sac was comparable between the mutant and the wild-type, suggesting that the structural pectin was not dramatically affected in ospdt1. Wall-associated kinases are necessary for the signal transduction of pectin, and the intracellular distribution of O. sativa indica WALL-ASSOCIATED KINASE1 (OsiWAK1), which binds pectic polysaccharides to its extracellular domain, was affected in ospdt1. OsiWAK1 RNA interference lines exhibited earlier tapetal PCD, similar to ospdt1. Furthermore, overexpression of OsiWAK1 in ospdt1 lines partially rescued the defects observed in ospdt1, suggesting that OsiWAK1 plays pivotal roles in the function of OsPDT1. These results suggest that the mutation of OsPDT1 does not dramatically affect structural pectin but affects components of the pectin-mediated signaling pathway, such as OsiWAK1, and causes male sterility.
Collapse
Affiliation(s)
- Wuzhong Yin
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongxia Yang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yantong Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yao Deng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lisha Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guanghua He
- Author for correspondence: (G.H.) and (N.W.)
| | - Nan Wang
- Author for correspondence: (G.H.) and (N.W.)
| |
Collapse
|
24
|
Du J, Anderson CT, Xiao C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. NATURE PLANTS 2022; 8:332-340. [PMID: 35411046 DOI: 10.1038/s41477-022-01120-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Homogalacturonan (HG) is the most abundant pectin subtype in plant cell walls. Although it is a linear homopolymer, its modification states allow for complex molecular encoding. HG metabolism affects its structure, chemical properties, mobility and binding capacity, allowing it to interact dynamically with other polymers during wall assembly and remodelling and to facilitate anisotropic cell growth, cell adhesion and separation, and organ morphogenesis. HGs have also recently been found to function as signalling molecules that transmit information about wall integrity to the cell. Here we highlight recent advances in our understanding of the dual functions of HG as a dynamic structural component of the cell wall and an initiator of intrinsic and environmental signalling. We also predict how HG might interconnect the cell wall, plasma membrane and intracellular components with transcriptional networks to regulate plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Identification and expression analysis of the PtGATL genes under different nitrogen and carbon dioxide treatments in Populus trichocarpa. 3 Biotech 2022; 12:67. [PMID: 35223353 PMCID: PMC8837729 DOI: 10.1007/s13205-022-03129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 01/23/2022] [Indexed: 11/01/2022] Open
Abstract
Pectin is one of the most important components of the plant cell wall. Galacturonosyltransferase-like (GATL) is an important enzyme involved in forming pectin in Arabidopsis thaliana. In this study, 12 PtGATL genes were identified and characterized based on the Populus trichocarpa genome using bioinformatics methods. The results showed that the PtGATLs contained four typical motifs, including DXD, LPPF, GLG, and HXXGXXKPW. According to phylogenetic analysis, PtGATLs were divided into six groups. Chromosome distribution and genome synteny analysis showed that there were 11 segmental-duplicated gene pairs with repeated fragments on chromosomes 2, 5, 7, 8, 10, and 14. Tissue-specific expression profiles indicated that these PtGATLs had different expression patterns. The transcription level of PtGATLs was regulated by different carbon dioxide and nitrogen concentrations. In conclusion, the identification and analysis of PtGATL genes in poplar provide important information on the gene function. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03129-y.
Collapse
|
26
|
Engle KA, Amos RA, Yang JY, Glushka J, Atmodjo M, Tan L, Huang C, Moremen KW, Mohnen D. Multiple Arabidopsis galacturonosyltransferases synthesize polymeric homogalacturonan by oligosaccharide acceptor-dependent or de novo synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1441-1456. [PMID: 34908202 PMCID: PMC8976717 DOI: 10.1111/tpj.15640] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/31/2023]
Abstract
Homogalacturonan (HG), the most abundant pectic glycan, functions as a cell wall structural and signaling molecule essential for plant growth, development and response to pathogens. HG exists as a component of pectic homoglycans, heteroglycans and glycoconjugates. HG is synthesized by members of the GALACTURONOSYLTRANSFERASE (GAUT) family. UDP-GalA-dependent homogalacturonan:galacturonosyltransferase (HG:GalAT) activity has previously been demonstrated for GAUTs 1, 4 and 11, as well as the GAUT1:GAUT7 complex. Here, we show that GAUTs 10, 13 and 14 are also HG:GalATs and that GAUTs 1, 10, 11, 13, 14 and 1:7 synthesize polymeric HG in vitro. Comparison of the in vitro HG:GalAT specific activities of the heterologously-expressed proteins demonstrates GAUTs 10 and 11 with the lowest, GAUT1 and GAUT13 with moderate, and GAUT14 and the GAUT1:GAUT7 complex with the highest HG:GalAT activity. GAUT13 and GAUT14 are also shown to de novo synthesize (initiate) HG synthesis in the absence of exogenous HG acceptors, an activity previously demonstrated for GAUT1:GAUT7. The rate of de novo HG synthesis by GAUT13 and GAUT14 is similar to their acceptor dependent HG synthesis, in contrast to GAUT1:GAUT7 for which de novo synthesis occurred at much lower rates than acceptor-dependent synthesis. The results suggest a unique role for de novo HG synthesis by GAUTs 13 and 14. The reducing end of GAUT13-de novo-synthesized HG has covalently attached UDP, indicating that UDP-GalA serves as both a donor and acceptor substrate during de novo HG synthesis. The functional significance of unique GAUT HG:GalAT catalytic properties in the synthesis of different pectin glycan or glycoconjugate structures is discussed.
Collapse
Affiliation(s)
- Kristen A. Engle
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Melani Atmodjo
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Chin Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
27
|
An Y, Lu W, Li W, Pan L, Lu M, Cesarino I, Li Z, Zeng W. Dietary Fiber in Plant Cell Walls—The Healthy Carbohydrates. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Dietary fiber (DF) is one of the major classes of nutrients for humans. It is widely distributed in the edible parts of natural plants, with the cell wall being the main DF-containing structure. The DF content varies significantly in different plant species and organs, and the processing procedure can have a dramatic effect on the DF composition of plant-based foods. Given the considerable nutritional value of DF, a deeper understanding of DF in food plants, including its composition and biosynthesis, is fundamental to the establishment of a daily intake reference of DF and is also critical to molecular breeding programs for modifying DF content. In the past decades, plant cell wall biology has seen dramatic progress, and such knowledge is of great potential to be translated into DF-related food science research and may provide future research directions for improving the health benefits of food crops. In this review, to spark interdisciplinary discussions between food science researchers and plant cell wall biologists, we focus on a specific category of DF—cell wall carbohydrates. We first summarize the content and composition of carbohydrate DF in various plant-based foods, and then discuss the structure and biosynthesis mechanism of each carbohydrate DF category, in particular the respective biosynthetic enzymes. Health impacts of DF are highlighted, and finally, future directions of DF research are also briefly outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | | | | |
Collapse
|
28
|
Mendes FA, Leitão ST, Correia V, Mecha E, Rubiales D, Bronze MR, Vaz Patto MC. Portuguese Common Bean Natural Variation Helps to Clarify the Genetic Architecture of the Legume's Nutritional Composition and Protein Quality. PLANTS (BASEL, SWITZERLAND) 2021; 11:26. [PMID: 35009030 PMCID: PMC8747538 DOI: 10.3390/plants11010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Common bean is a nutritious food legume widely appreciated by consumers worldwide. It is a staple food in Latin America, and a component of the Mediterranean diet, being an affordable source of protein with high potential as a gourmet food. Breeding for nutritional quality, including both macro and micronutrients, and meeting organoleptic consumers' preferences is a difficult task which is facilitated by uncovering the genetic basis of related traits. This study explored the diversity of 106 Portuguese common bean accessions, under two contrasting environments, to gain insight into the genetic basis of nutritional composition (ash, carbohydrates, fat, fiber, moisture, protein, and resistant starch contents) and protein quality (amino acid contents and trypsin inhibitor activity) traits through a genome-wide association study. Single-nucleotide polymorphism-trait associations were tested using linear mixed models accounting for the accessions' genetic relatedness. Mapping resolution to the gene level was achieved in 56% of the cases, with 102 candidate genes proposed for 136 genomic regions associated with trait variation. Only one marker-trait association was stable across environments, highlighting the associations' environment-specific nature and the importance of genotype × environment interaction for crops' local adaptation and quality. This study provides novel information to better understand the molecular mechanisms regulating the nutritional quality in common bean and promising molecular tools to aid future breeding efforts to answer consumers' concerns.
Collapse
Affiliation(s)
- Francisco A. Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
| | - Susana T. Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
| | - Verónica Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
- Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Elsa Mecha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
- iBET—Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157 Oeiras, Portugal
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, CSIC, Av. Menéndez Pidal, 14004 Cordova, Spain;
| | - Maria Rosário Bronze
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
- Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- iBET—Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
| |
Collapse
|
29
|
Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS One 2021; 16:e0261472. [PMID: 34914788 PMCID: PMC8675742 DOI: 10.1371/journal.pone.0261472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde conent were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.
Collapse
|
30
|
Guo H, Xiao C, Liu Q, Li R, Yan Z, Yao X, Hu H. Two galacturonosyltransferases function in plant growth, stomatal development, and dynamics. PLANT PHYSIOLOGY 2021; 187:2820-2836. [PMID: 34890462 PMCID: PMC8644590 DOI: 10.1093/plphys/kiab432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
The mechanical properties of guard cell (GC) walls are important for stomatal development and stomatal response to external stimuli. However, the molecular mechanisms of pectin synthesis and pectin composition controlling stomatal development and dynamics remain poorly explored. Here, we characterized the role of two Arabidopsis (Arabidopsis thaliana) galacturonosyltransferases, GAUT10 and GAUT11, in plant growth, stomatal development, and stomatal dynamics. GAUT10 and GAUT11 double mutations reduced pectin synthesis and promoted homogalacturonan (HG) demethylesterification and demethylesterified HG degradation, resulting in larger stomatal complexes and smaller pore areas, increased stomatal dynamics, and enhanced drought tolerance of plants. In contrast, increased GAUT10 or GAUT11 expression impaired stomatal dynamics and drought sensitivity. Genetic interaction analyses together with immunolabeling analyses suggest that the methylesterified HG level is important in stomatal dynamics, and pectin abundance with the demethylesterified HG level controls stomatal dimension and stomatal size. Our results provide insight into the molecular mechanism of GC wall properties in stomatal dynamics, and highlight the role of GAUT10 and GAUT11 in stomatal dimension and dynamics through modulation of pectin biosynthesis and distribution in GC walls.
Collapse
Affiliation(s)
- Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Liu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Yan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Signaling at Physical Barriers during Pollen-Pistil Interactions. Int J Mol Sci 2021; 22:ijms222212230. [PMID: 34830110 PMCID: PMC8622735 DOI: 10.3390/ijms222212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.
Collapse
|
32
|
Laggoun F, Ali N, Tourneur S, Prudent G, Gügi B, Kiefer-Meyer MC, Mareck A, Cruz F, Yvin JC, Nguema-Ona E, Mollet JC, Jamois F, Lehner A. Two Carbohydrate-Based Natural Extracts Stimulate in vitro Pollen Germination and Pollen Tube Growth of Tomato Under Cold Temperatures. FRONTIERS IN PLANT SCIENCE 2021; 12:552515. [PMID: 34691089 PMCID: PMC8529017 DOI: 10.3389/fpls.2021.552515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
To date, it is widely accepted by the scientific community that many agricultural regions will experience more extreme temperature fluctuations. These stresses will undoubtedly impact crop production, particularly fruit and seed yields. In fact, pollination is considered as one of the most temperature-sensitive phases of plant development and until now, except for the time-consuming and costly processes of genetic breeding, there is no immediate alternative to address this issue. In this work, we used a multidisciplinary approach using physiological, biochemical, and molecular techniques for studying the effects of two carbohydrate-based natural activators on in vitro tomato pollen germination and pollen tube growth cultured in vitro under cold conditions. Under mild and strong cold temperatures, these two carbohydrate-based compounds significantly enhanced pollen germination and pollen tube growth. The two biostimulants did not induce significant changes in the classical molecular markers implicated in pollen tube growth. Neither the number of callose plugs nor the CALLOSE SYNTHASE genes expression were significantly different between the control and the biostimulated pollen tubes when pollens were cultivated under cold conditions. PECTIN METHYLESTERASE (PME) activities were also similar but a basic PME isoform was not produced or inactive in pollen grown at 8°C. Nevertheless, NADPH oxidase (RBOH) gene expression was correlated with a higher number of viable pollen tubes in biostimulated pollen tubes compared to the control. Our results showed that the two carbohydrate-based products were able to reduce in vitro the effect of cold temperatures on tomato pollen tube growth and at least for one of them to modulate reactive oxygen species production.
Collapse
Affiliation(s)
- Ferdousse Laggoun
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
- Sanofi Pasteur, Val-de-Reuil, France
| | - Nusrat Ali
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Sabine Tourneur
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
- Laboratoire de Biologie et Pathologie Végétales, Université de Nantes, Université Bretagne Loire, Nantes, France
| | - Grégoire Prudent
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Bruno Gügi
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Marie-Christine Kiefer-Meyer
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Alain Mareck
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Florence Cruz
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Jean-Claude Mollet
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Frank Jamois
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Arnaud Lehner
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| |
Collapse
|
33
|
Peng JS, Zhang BC, Chen H, Wang MQ, Wang YT, Li HM, Cao SX, Yi HY, Wang H, Zhou YH, Gong JM. Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis. MOLECULAR PLANT 2021; 14:1640-1651. [PMID: 34171482 DOI: 10.1016/j.molp.2021.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/23/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Apoplastic iron (Fe) in roots represents an essential Fe storage pool. Reallocation of apoplastic Fe is of great importance to plants experiencing Fe deprivation, but how this reallocation process is regulated remains elusive, likely because of the highly complex cell wall structure and the limited knowledge about cell wall biosynthesis and modulation. Here, we present genetic and biochemical evidence to demonstrate that the Cdi-mediated galactosylation of rhamnogalacturonan-II (RG-II) is required for apoplastic Fe reallocation. Cdi is expressed in roots and up-regulated in response to Fe deficiency. It encodes a putative glycosyltransferase localized to the Golgi apparatus. Biochemical and mass spectrometry assays showed that Cdi catalyzes the transfer of GDP-L-galactose to the terminus of side chain A on RG-II. Disruption of Cdi essentially decreased RG-II dimerization and hence disrupted cell wall formation, as well as the reallocation of apoplastic Fe from roots to shoots. Further transcriptomic, Fourier transform infrared spectroscopy, and Fe desorption kinetic analyses coincidently suggested that Cdi mediates apoplastic Fe reallocation through extensive modulation of cell wall components and consequently the Fe adsorption capacity of the cell wall. Our study provides direct evidence demonstrating a link between cell wall biosynthesis and apoplastic Fe reallocation, thus indicating that the structure of the cell wall is important for efficient usage of the cell wall Fe pool.
Collapse
Affiliation(s)
- Jia-Shi Peng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ting Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hong-Mei Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shao-Xue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ying Yi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
34
|
Schultz JA, Coleman HD. Pectin and Xylan Biosynthesis in Poplar: Implications and Opportunities for Biofuels Production. FRONTIERS IN PLANT SCIENCE 2021; 12:712083. [PMID: 34490013 PMCID: PMC8418221 DOI: 10.3389/fpls.2021.712083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
A potential method by which society's reliance on fossil fuels can be lessened is via the large-scale utilization of biofuels derived from the secondary cell walls of woody plants; however, there remain a number of technical challenges to the large-scale production of biofuels. Many of these challenges emerge from the underlying complexity of the secondary cell wall. The challenges associated with lignin have been well explored elsewhere, but the dicot cell wall components of hemicellulose and pectin also present a number of difficulties. Here, we provide an overview of the research wherein pectin and xylan biosynthesis has been altered, along with investigations on the function of irregular xylem 8 (IRX8) and glycosyltransferase 8D (GT8D), genes putatively involved in xylan and pectin synthesis. Additionally, we provide an analysis of the evidence in support of two hypotheses regarding GT8D and conclude that while there is evidence to lend credence to these hypotheses, there are still questions that require further research and examination.
Collapse
|
35
|
Zhou C, Xu Q, He S, Ye W, Cao R, Wang P, Ling Y, Yan X, Wang Q, Zhang G. GTDB: an integrated resource for glycosyltransferase sequences and annotations. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5857526. [PMID: 32542364 PMCID: PMC7296393 DOI: 10.1093/database/baaa047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/03/2020] [Accepted: 05/21/2020] [Indexed: 11/15/2022]
Abstract
Glycosyltransferases (GTs), a large class of carbohydrate-active enzymes, adds glycosyl moieties to various substrates to generate multiple bioactive compounds, including natural products with pharmaceutical or agrochemical values. Here, we first collected comprehensive information on GTs, including amino acid sequences, coding region sequences, available tertiary structures, protein classification families, catalytic reactions and metabolic pathways. Then, we developed sequence search and molecular docking processes for GTs, resulting in a GTs database (GTDB). In the present study, 520 179 GTs from approximately 21 647 species that involved in 394 kinds of different reactions were deposited in GTDB. GTDB has the following useful features: (i) text search is provided for retrieving the complete details of a query by combining multiple identifiers and data sources; (ii) a convenient browser allows users to browse data by different classifications and download data in batches; (iii) BLAST is offered for searching against pre-defined sequences, which can facilitate the annotation of the biological functions of query GTs; and lastly, (iv) GTdock using AutoDock Vina performs docking simulations of several GTs with the same single acceptor and displays the results based on 3Dmol.js allowing easy view of models.
Collapse
Affiliation(s)
- Chenfen Zhou
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Qingwei Xu
- College of Computer, Hubei University of Education, 129 Second Gaoxin Road, Wuhan Hi-Tech Zone, Wu Han 430205, China
| | - Sheng He
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wei Ye
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Ruifang Cao
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Pengyu Wang
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Yunchao Ling
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Xuhui, Shanghai 200032, China
| | - Qingzhong Wang
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Guoqing Zhang
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| |
Collapse
|
36
|
Zhang B, Zhang C, Liu C, Fu A, Luan S. A Golgi-localized manganese transporter functions in pollen tube tip growth to control male fertility in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100178. [PMID: 34027392 PMCID: PMC8132125 DOI: 10.1016/j.xplc.2021.100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 05/12/2023]
Abstract
Manganese (Mn) serves as an essential cofactor for many enzymes in various compartments of a plant cell. Allocation of Mn among various organelles thus plays a central role in Mn homeostasis to support metabolic processes. We report the identification of a Golgi-localized Mn transporter (named PML3) that is essential for rapid cell elongation in young tissues such as emerging leaves and the pollen tube. In particular, the pollen tube defect in the pml3 loss-of-function mutant caused severe reduction in seed yield, a critical agronomic trait. Further analysis suggested that a loss of pectin deposition in the pollen tube might cause the pollen tube to burst and slow its elongation, leading to decreased male fertility. As the Golgi apparatus serves as the major hub for biosynthesis and modification of cell-wall components, PML3 may function in Mn homeostasis of this organelle, thereby controlling metabolic and/or trafficking processes required for pectin deposition in rapidly elongating cells.
Collapse
Affiliation(s)
- Bin Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chi Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Congge Liu
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
37
|
A Pipeline towards the Biochemical Characterization of the Arabidopsis GT14 Family. Int J Mol Sci 2021; 22:ijms22031360. [PMID: 33572987 PMCID: PMC7866395 DOI: 10.3390/ijms22031360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), β-1,6-galactotetraose (β-1,6-Gal4) and β-1,3-galactopentose (β-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the β-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.
Collapse
|
38
|
Qiu D, Xu S, Wang Y, Zhou M, Hong L. Primary Cell Wall Modifying Proteins Regulate Wall Mechanics to Steer Plant Morphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:751372. [PMID: 34868136 PMCID: PMC8635508 DOI: 10.3389/fpls.2021.751372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/27/2021] [Indexed: 05/14/2023]
Abstract
Plant morphogenesis involves multiple biochemical and physical processes inside the cell wall. With the continuous progress in biomechanics field, extensive studies have elucidated that mechanical forces may be the most direct physical signals that control the morphology of cells and organs. The extensibility of the cell wall is the main restrictive parameter of cell expansion. The control of cell wall mechanical properties largely determines plant cell morphogenesis. Here, we summarize how cell wall modifying proteins modulate the mechanical properties of cell walls and consequently influence plant morphogenesis.
Collapse
Affiliation(s)
- Dengying Qiu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Shouling Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lilan Hong
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Lilan Hong,
| |
Collapse
|
39
|
Zabotina OA, Zhang N, Weerts R. Polysaccharide Biosynthesis: Glycosyltransferases and Their Complexes. FRONTIERS IN PLANT SCIENCE 2021; 12:625307. [PMID: 33679837 PMCID: PMC7933479 DOI: 10.3389/fpls.2021.625307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.
Collapse
|
40
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Characterization, biological evaluation and molecular docking of mulberry fruit pectin. Sci Rep 2020; 10:21789. [PMID: 33311512 PMCID: PMC7732840 DOI: 10.1038/s41598-020-78086-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Contemplating the exemplary benefits of pectin on human health, we precisely characterized and evaluated the antibacterial and anticancer activities from purified Mulberry Fruit Pectins (MFP). Here, we tested BR-2 and S-13 varieties of mulberry fruit pectins against six bacterial strains and two human cancer cell lines (HT-29 and Hep G-2), using MIC and an in vitro cell-based assay respectively. The BR-2 mulberry fruit pectin performs superior to S-13 by inhibiting strong bacterial growth (MIC = 500–1000 μg/mL) against tested bacterial strains and cytotoxic activities at the lowest concentration (10 µg/ml) against the Hep G-2 cell line. However, both tested drugs failed to exhibit cytotoxicity on the human colon cancer cell line (HT-29). Based on molecular interaction through docking, pectin binds effectively with the receptors (1e3g, 3t0c, 5czz, 6j7l, 6v40, 5ibs, 5zsy, and 6ggb) and proven to be a promising antimicrobial and anti-cancer agents. The pursuit of unexploited drugs from mulberry fruit pectin will potentially combat against bacterial and cancer diseases. Finally, future perspectives of MFP for the treatment of many chronic diseases will help immensely due to their therapeutic properties.
Collapse
|
42
|
Du J, Kirui A, Huang S, Wang L, Barnes WJ, Kiemle SN, Zheng Y, Rui Y, Ruan M, Qi S, Kim SH, Wang T, Cosgrove DJ, Anderson CT, Xiao C. Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis. THE PLANT CELL 2020; 32:3576-3597. [PMID: 32883711 PMCID: PMC7610292 DOI: 10.1105/tpc.20.00252] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023]
Abstract
Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Shixin Huang
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lianglei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - William J Barnes
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah N Kiemle
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yunzhen Zheng
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yue Rui
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Mei Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Seong H Kim
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Daniel J Cosgrove
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
43
|
Han X, An Y, Zhou Y, Liu C, Yin W, Xia X. Comparative transcriptome analyses define genes and gene modules differing between two Populus genotypes with contrasting stem growth rates. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:139. [PMID: 32782475 PMCID: PMC7415184 DOI: 10.1186/s13068-020-01758-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/29/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Wood provides an important biomass resource for biofuel production around the world. The radial growth of tree stems is central to biomass production for forestry and biofuels, but it is challenging to dissect genetically because it is a complex trait influenced by many genes. In this study, we adopted methods of physiology, transcriptomics and genetics to investigate the regulatory mechanisms of tree radial growth and wood development. RESULTS Physiological comparison showed that two Populus genotypes presented different rates of radial growth of stems and accumulation of woody biomass. A comparative transcriptional network approach was used to define and characterize functional differences between two Populus genotypes. Analyses of transcript profiles from wood-forming tissue of the two genotypes showed that 1542, 2295 and 2110 genes were differentially expressed in the pre-growth, fast-growth and post-growth stages, respectively. The co-expression analyses identified modules of co-expressed genes that displayed distinct expression profiles. Modules were further characterized by correlating transcript levels with genotypes and physiological traits. The results showed enrichment of genes that participated in cell cycle and division, whose expression change was consistent with the variation of radial growth rates. Genes related to secondary vascular development were up-regulated in the faster-growing genotype in the pre-growth stage. We characterized a BEL1-like (BELL) transcription factor, PeuBELL15, which was up-regulated in the faster-growing genotype. Analyses of transgenic Populus overexpressing as well as CRISPR/Cas9-induced mutants for BELL15 showed that PeuBELL15 improved accumulation of glucan and lignin, and it promoted secondary vascular growth by regulating the expression of genes relevant for cellulose synthases and lignin biosynthesis. CONCLUSIONS This study illustrated that active division and expansion of vascular cambium cells and secondary cell wall deposition of xylem cells contribute to stem radial increment and biomass accumulation, and it identified relevant genes for these complex growth traits, including a BELL transcription factor gene PeuBELL15. This provides genetic resources for improving and breeding elite genotypes with fast growth and high wood biomass.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Yi An
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
44
|
Conservation and Divergence in Duplicated Fiber Coexpression Networks Accompanying Domestication of the Polyploid Gossypium hirsutum L. G3-GENES GENOMES GENETICS 2020; 10:2879-2892. [PMID: 32586849 PMCID: PMC7407458 DOI: 10.1534/g3.120.401362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gossypium hirsutum L. (Upland cotton) has an evolutionary history involving inter-genomic hybridization, polyploidization, and subsequent domestication. We analyzed the developmental dynamics of the cotton fiber transcriptome accompanying domestication using gene coexpression networks for both joint and homoeologous networks. Remarkably, most genes exhibited expression for at least one homoeolog, confirming previous reports of widespread gene usage in cotton fibers. Most coexpression modules comprising the joint network are preserved in each subgenomic network and are enriched for similar biological processes, showing a general preservation of network modular structure for the two co-resident genomes in the polyploid. Interestingly, only one fifth of homoeologs co-occur in the same module when separated, despite similar modular structures between the joint and homoeologous networks. These results suggest that the genome-wide divergence between homoeologous genes is sufficient to separate their co-expression profiles at the intermodular level, despite conservation of intramodular relationships within each subgenome. Most modules exhibit D-homoeolog expression bias, although specific modules do exhibit A-homoeolog bias. Comparisons between wild and domesticated coexpression networks revealed a much tighter and denser network structure in domesticated fiber, as evidenced by its fewer modules, 13-fold increase in the number of development-related module member genes, and the poor preservation of the wild network topology. These results demonstrate the amazing complexity that underlies the domestication of cotton fiber.
Collapse
|
45
|
Gigli-Bisceglia N, Engelsdorf T, Hamann T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol Life Sci 2020; 77:2049-2077. [PMID: 31781810 PMCID: PMC7256069 DOI: 10.1007/s00018-019-03388-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
The walls surrounding the cells of all land-based plants provide mechanical support essential for growth and development as well as protection from adverse environmental conditions like biotic and abiotic stress. Composition and structure of plant cell walls can differ markedly between cell types, developmental stages and species. This implies that wall composition and structure are actively modified during biological processes and in response to specific functional requirements. Despite extensive research in the area, our understanding of the regulatory processes controlling active and adaptive modifications of cell wall composition and structure is still limited. One of these regulatory processes is the cell wall integrity maintenance mechanism, which monitors and maintains the functional integrity of the plant cell wall during development and interaction with environment. It is an important element in plant pathogen interaction and cell wall plasticity, which seems at least partially responsible for the limited success that targeted manipulation of cell wall metabolism has achieved so far. Here, we provide an overview of the cell wall polysaccharides forming the bulk of plant cell walls in both monocotyledonous and dicotyledonous plants and the effects their impairment can have. We summarize our current knowledge regarding the cell wall integrity maintenance mechanism and discuss that it could be responsible for several of the mutant phenotypes observed.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Timo Engelsdorf
- Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043, Marburg, Germany
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
46
|
Parra R, Paredes MA, Labrador J, Nunes C, Coimbra MA, Fernandez-Garcia N, Olmos E, Gallardo M, Gomez-Jimenez MC. Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission. PLANT & CELL PHYSIOLOGY 2020; 61:814-825. [PMID: 32016408 DOI: 10.1093/pcp/pcaa009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Cell wall modification is integral to many plant developmental processes where cells need to separate, such as abscission. However, changes in cell wall composition during natural fruit abscission are poorly understood. In olive (Olea europaea L.), some cultivars such as 'Picual' undergo massive natural fruit abscission after fruit ripening. This study investigates the differences in cell wall polysaccharide composition and the localization of pectins and arabinogalactan protein (AGP) in the abscission zone (AZ) during cell separation to understand fruit abscission control in 'Picual' olive. To this end, immunogold labeling employing a suite of monoclonal antibodies to cell wall components (JIM13, LM5, LM6, LM19 and LM20) was investigated in olive fruit AZ. Cell wall polysaccharide extraction revealed that the AZ cell separation is related to the de-esterification and degradation of pectic polysaccharides. Moreover, ultrastructural localization showed that both esterified and unesterified homogalacturonans (HGs) localize mainly in the AZ cell walls, including the middle lamella and tricellular junction zones. Our results indicate that unesterified HGs are likely to contribute to cell separation in the olive fruit AZ. Similarly, immunogold labeling demonstrated a decrease in both galactose-rich and arabinose-rich pectins in AZ cell walls during ripe fruit abscission. In addition, AGPs were localized in the cell wall, plasma membrane and cytoplasm of AZ cells with lower levels of AGPs during ripe fruit abscission. This detailed temporal profile of the cell wall polysaccharide composition, and the pectins and AGP immunolocalization in the olive fruit AZ, offers new insights into cell wall remodeling during ripe fruit abscission.
Collapse
Affiliation(s)
- Ruben Parra
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Miguel A Paredes
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Cláudia Nunes
- Department of Chemistry, University of Aveiro, Aveiro P-3810-193, Portugal
| | - Manuel A Coimbra
- Department of Chemistry, University of Aveiro, Aveiro P-3810-193, Portugal
| | - Nieves Fernandez-Garcia
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain
| | - Mercedes Gallardo
- Department of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende, s/n, Vigo 36310, Spain
| | - Maria C Gomez-Jimenez
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
47
|
Gao D, Sun W, Wang D, Dong H, Zhang R, Yu S. A xylan glucuronosyltransferase gene exhibits pleiotropic effects on cellular composition and leaf development in rice. Sci Rep 2020; 10:3726. [PMID: 32111928 PMCID: PMC7048734 DOI: 10.1038/s41598-020-60593-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Leaf chlorophyll content is an important physiological indicator of plant growth, metabolism and nutritional status, and it is highly correlated with leaf nitrogen content and photosynthesis. In this study, we report the cloning and identification of a xylan glucuronosyltransferase gene (OsGUX1) that affects relative chlorophyll content in rice leaf. Using a set of chromosomal segment substitution lines derived from a cross of wild rice accession ACC10 and indica variety Zhenshan 97 (ZS97), we identified numerous quantitative trait loci for relative chlorophyll content. One major locus of them for relative chlorophyll content was mapped to a 10.3-kb region that contains OsGUX1. The allele OsGUX1AC from ACC10 significantly decreases nitrogen content and chlorophyll content of leaf compared with OsGUX1ZS from ZS97. The overexpression of OsGUX1 reduced chlorophyll content, and the suppression of this gene increased chlorophyll content of rice leaf. OsGUX1 is located in Golgi apparatus, and highly expressed in seedling leaf and the tissues in which primary cell wall synthesis occurring. Our experimental data indicate that OsGUX1 is responsible for addition of glucuronic acid residues onto xylan and participates in accumulation of cellulose and hemicellulose in the cell wall deposition, thus thickening the primary cell wall of mesophyll cells, which might lead to reduced chlorophyll content in rice leaf. These findings provide insights into the association of cell wall components with leaf nitrogen content in rice.
Collapse
Affiliation(s)
- Dawei Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hualin Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
48
|
Genome-Wide Study of the GATL Gene Family in Gossypium hirsutum L. Reveals that GhGATL Genes Act on Pectin Synthesis to Regulate Plant Growth and Fiber Elongation. Genes (Basel) 2020; 11:genes11010064. [PMID: 31935825 PMCID: PMC7016653 DOI: 10.3390/genes11010064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023] Open
Abstract
Pectin is a major polysaccharide component that promotes plant growth and fiber elongation in cotton. In previous studies, the galacturonosyltransferase-like (GATL) gene family has been shown to be involved in pectin synthesis. However, few studies have been performed on cotton GATL genes. Here, a total of 33, 17, and 16 GATL genes were respectively identified in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum. In multiple plant species, phylogenetic analysis divided GATL genes into five groups named GATL-a to GATL-e, and the number of groups was found to gradually change over evolution. Whole genome duplication (WGD) and segmental duplication played a significant role in the expansion of the GATL gene family in G. hirsutum. Selection pressure analyses revealed that GATL-a and GATL-b groups underwent a great positive selection pressure during evolution. Moreover, the expression patterns revealed that most of highly expressed GhGATL genes belong to GATL-a and GATL-b groups, which have more segmental duplications and larger positive selection value, suggesting that these genes may play an important role in the evolution of cotton plants. We overexpressed GhGATL2, GhGATL9, GhGATL12, and GhGATL15 in Arabidopsis and silenced the GhGATL15 gene in cotton through a virus induced gene silencing assay (VIGS). The transgenic and VIGS lines showed significant differences in stem diameter, epidermal hair length, stamen length, seed size, and fiber length than the control plant. In addition, the pectin content test proved that the pectin was significantly increased in the transgenic lines and reduced in VIGS plants, demonstrating that GhGATL genes have similar functions and act on the pectin synthesis to regulate plant growth and fiber elongation. In summary, we performed a comprehensive analysis of GhGATL genes in G. hirsutum including evolution, structure and function, in order to better understand GhGATL genes in cotton for further studies.
Collapse
|
49
|
Lund CH, Stenbæk A, Atmodjo MA, Rasmussen RE, Moller IE, Erstad SM, Biswal AK, Mohnen D, Mravec J, Sakuragi Y. Pectin Synthesis and Pollen Tube Growth in Arabidopsis Involves Three GAUT1 Golgi-Anchoring Proteins: GAUT5, GAUT6, and GAUT7. FRONTIERS IN PLANT SCIENCE 2020; 11:585774. [PMID: 33072156 PMCID: PMC7533613 DOI: 10.3389/fpls.2020.585774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/31/2020] [Indexed: 05/14/2023]
Abstract
The major cell wall pectic glycan homogalacturonan (HG) is crucial for plant growth, development, and reproduction. HG synthesis occurs in the Golgi and is catalyzed by members of the galacturonosyltransferase (GAUT) family with GAUT1 being the archetypal and best studied family member. In Arabidopsis suspension culture cells and tobacco leaves, the Golgi localization of Arabidopsis GAUT1 has been shown to require protein-protein interactions with its homolog GAUT7. Here we show that in pollen tubes GAUT5 and GAUT6, homologs of GAUT7, also target GAUT1 to the Golgi apparatus. Pollen tube germination and elongation in double homozygous knock-out mutants (gaut5 gaut6, gaut5 gaut7, and gaut6 gaut7) are moderately impaired, whereas gaut5 -/- gaut6 -/- gaut7 +/- triple mutant is severely impaired and male infertile. Amounts and distributions of methylesterified HG in the pollen tube tip were severely distorted in the double and heterozygous triple mutants. A chimeric protein comprising GAUT1 and a non-cleavable membrane anchor domain was able to partially restore pollen tube germination and elongation and to reverse male sterility in the triple mutant. These results indicate that GAUT5, GAUT6, and GAUT7 are required for synthesis of native HG in growing pollen tubes and have critical roles in pollen tube growth and male fertility in Arabidopsis.
Collapse
Affiliation(s)
- Christian Have Lund
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Stenbæk
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Melani A. Atmodjo
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Randi Engelberth Rasmussen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Isabel E. Moller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ajaya Kumar Biswal
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Jozef Mravec,
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
50
|
Yang K, Yang L, Fan W, Long GQ, Xie SQ, Meng ZG, Zhang GH, Yang SC, Chen JW. Illumina-based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after-ripening process. PHYSIOLOGIA PLANTARUM 2019; 167:597-612. [PMID: 30548605 DOI: 10.1111/ppl.12904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is an economically and medicinally important plant of the family Araliacease, with seed dormancy being a key factor limiting the extended cultivation of P. notoginseng. The seeds belong to the morphophysiological dormancy (MPD) group, and it has also been described as the recalcitrant seed. To date, the molecular mechanism of dormancy release in the recalcitrant seed of P. notoginseng is unknown. In the present study, the transcript profiles of seeds from different after-ripening stages (0, 20, 40 and 60 days) were investigated using Illumina Hiseq 2500 technology. 91 979 946 clean reads were generated, and 81 575 unigenes were annotated in at least one database. In addition, the differentially expressed genes (DEGs) were identified by the pairwise comparisons. We screened out 2483 DEGs by the three key groups of 20 days vs 0 d, 40 d vs 0 d and 60 d vs 0 d. The DEGs were analyzed by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Meanwhile, we obtained 78 DEGs related to seeds dormancy release at different after-ripening stages of P. notoginseng, of which 15 DEGs were associated with abscisic acid and gibberellin. 26 DEGs that encode late embryogenesis abundant protein and antioxidant enzyme were correlated with desiccation tolerance in seeds. In summary, the results obtained here showed that PECTINESTERASE-2-LIKE, GA-INSENSITIVE, ENT-KAURENE SYNTHASE, PROTEIN PHOSPHATASE 2C, GIBBERELLIN 2-BETA-DIOXYGENASE, SUPEROXIDE DISMUTASE, L-ASCORBATE PEROXIDASE, CATALASE, LATE EMBRYOGENESIS ABUNDANT PROTEIN DC3 and DEHYDRIN 9 were potentially involved in dormancy release and desiccation sensitivity of P. notoginseng seeds. The data might provide a basis for researches on MPD.
Collapse
Affiliation(s)
- Kai Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Fan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Qiang Long
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shi-Qing Xie
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Hui Zhang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng-Chao Yang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|