1
|
Shey RA, Ghogomu SM, Nebangwa DN, Shintouo CM, Yaah NE, Yengo BN, Nkemngo FN, Esoh KK, Tchatchoua NMT, Mbachick TT, Dede AF, Lemoge AA, Ngwese RA, Asa BF, Ayong L, Njemini R, Vanhamme L, Souopgui J. Rational design of a novel multi-epitope peptide-based vaccine against Onchocerca volvulus using transmembrane proteins. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1046522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Almost a decade ago, it was recognized that the global elimination of onchocerciasis by 2030 will not be feasible without, at least, an effective prophylactic and/or therapeutic vaccine to complement chemotherapy and vector control strategies. Recent advances in computational immunology (immunoinformatics) have seen the design of novel multi-epitope onchocerciasis vaccine candidates which are however yet to be evaluated in clinical settings. Still, continued research to increase the pool of vaccine candidates, and therefore the chance of success in a clinical trial remains imperative. Here, we designed a multi-epitope vaccine candidate by assembling peptides from 14 O. volvulus (Ov) proteins using an immunoinformatics approach. An initial 126 Ov proteins, retrieved from the Wormbase database, and at least 90% similar to orthologs in related nematode species of economic importance, were screened for localization, presence of transmembrane domain, and antigenicity using different web servers. From the 14 proteins retained after the screening, 26 MHC-1 and MHC-II (T-cell) epitopes, and linear B-lymphocytes epitopes were predicted and merged using suitable linkers. The Mycobacterium tuberculosis Resuscitation-promoting factor E (RPFE_MYCTU), which is an agonist of TLR4, was then added to the N-terminal of the vaccine candidate as a built-in adjuvant. Immune simulation analyses predicted strong B-cell and IFN-γ based immune responses which are necessary for protection against O. volvulus infection. Protein-protein docking and molecular dynamic simulation predicted stable interactions between the 3D structure of the vaccine candidate and human TLR4. These results show that the designed vaccine candidate has the potential to stimulate both humoral and cellular immune responses and should therefore be subject to further laboratory investigation.
Collapse
|
2
|
Co-Administration of Adjuvanted Recombinant Ov-103 and Ov-RAL-2 Vaccines Confer Protection against Natural Challenge in A Bovine Onchocerca ochengi Infection Model of Human Onchocerciasis. Vaccines (Basel) 2022; 10:vaccines10060861. [PMID: 35746469 PMCID: PMC9229719 DOI: 10.3390/vaccines10060861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, is a neglected tropical disease mainly of sub-Saharan Africa. Worldwide, an estimated 20.9 million individuals live with infection and a further 205 million are at risk of disease. Current control methods rely on mass drug administration of ivermectin to kill microfilariae and inhibit female worm fecundity. The identification and development of efficacious vaccines as complementary preventive tools to support ongoing elimination efforts are therefore an important objective of onchocerciasis research. We evaluated the protective effects of co-administering leading O. volvulus-derived recombinant vaccine candidates (Ov-103 and Ov-RAL-2) with subsequent natural exposure to the closely related cattle parasite Onchocerca ochengi. Over a 24-month exposure period, vaccinated calves (n = 11) were shown to acquire infection and microfilaridermia at a significantly lower rate compared to unvaccinated control animals (n = 10). Furthermore, adult female worm burdens were negatively correlated with anti-Ov-103 and Ov-RAL-2 IgG1 and IgG2 responses. Peptide arrays identified several Ov-103 and Ov-RAL-2-specific epitopes homologous to those identified as human B-cell and helper T-cell epitope candidates and by naturally-infected human subjects in previous studies. Overall, this study demonstrates co-administration of Ov-103 and Ov-RAL-2 with Montanide™ ISA 206 VG is highly immunogenic in cattle, conferring partial protection against natural challenge with O. ochengi. The strong, antigen-specific IgG1 and IgG2 responses associated with vaccine-induced protection are highly suggestive of a mixed Th1/Th2 associated antibody responses. Collectively, this evidence suggests vaccine formulations for human onchocerciasis should aim to elicit similarly balanced Th1/Th2 immune responses.
Collapse
|
3
|
Zhan B, Bottazzi ME, Hotez PJ, Lustigman S. Advancing a Human Onchocerciasis Vaccine From Antigen Discovery to Efficacy Studies Against Natural Infection of Cattle With Onchocerca ochengi. Front Cell Infect Microbiol 2022; 12:869039. [PMID: 35444961 PMCID: PMC9015098 DOI: 10.3389/fcimb.2022.869039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Human onchocerciasis is a devastating neglected tropical disease caused by infection of the filarial nematode Onchocerca volvulus. The infection can cause irreversible visual impairment or blindness and stigmatizing dermatitis. More than 32 million people were estimated to be infected with O. volvulus in Africa, and 385,000 suffered from blindness. Even though the implementation of mass drug administration (MDA) with ivermectin has reduced the global prevalence of onchocerciasis, O. volvulus infection remains challenging to control because MDA with ivermectin cannot be implemented in endemic areas co-endemic with loiasis due to the risk of severe adverse events. There is also emerging drug resistance to ivermectin that further complicates the elimination of onchocerciasis. Thus, the development of a vaccine that would induce protective immunity and reduce infection burden is essential. Efforts to develop prophylactic and/or therapeutic vaccines for onchocerciasis have been explored since the late 1980s by many researchers and entities, and here we summarize the recent advances made in the development of vaccines against the infection of O. volvulus and onchocerciasis.
Collapse
Affiliation(s)
- Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
4
|
Abraham D, Graham-Brown J, Carter D, Gray SA, Hess JA, Makepeace BL, Lustigman S. Development of a recombinant vaccine against human onchocerciasis. Expert Rev Vaccines 2021; 20:1459-1470. [PMID: 34488533 DOI: 10.1080/14760584.2021.1977125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Human onchocerciasis caused by the filarial nematode parasite Onchocerca volvulus remains a major cause of debilitating disease infecting millions primarily in Sub-Saharan Africa. The development of a prophylactic vaccine, along with mass drug administration, would facilitate meeting the goal of onchocerciasis elimination by 2030. AREAS COVERED Models used to study immunity to Onchocerca include natural infection of cattle with Onchocerca ochengi and O. volvulus infective third-stage larvae implanted within diffusion chambers in mice. A vaccine, comprised of two adjuvanted recombinant antigens, induced protective immunity in genetically diverse mice suggesting that it will function similarly in diverse human populations. These antigens were recognized by immune humans and also induced protective immunity against Brugia malayi. We describe the development of a fusion protein composed of the two vaccine antigens with the plan to test the vaccine in cows and non-human primates as a prelude to the initiation of phase 1 clinical trials. EXPERT OPINION The adjuvanted O. volvulus vaccine composed of two antigens Ov-103 and Ov-RAL-2 was shown to be consistently effective at inducing protective immunity using multiple immune mechanisms. The vaccine is ready for further evaluation in other animal models before moving to clinical trials in humans.
Collapse
Affiliation(s)
- David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Graham-Brown
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | | - Jessica A Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|
5
|
Genetic Analyses and Genome-Wide Association Studies on Pathogen Resistance of Bos taurus and Bos indicus Cattle Breeds in Cameroon. Genes (Basel) 2021; 12:genes12070976. [PMID: 34206759 PMCID: PMC8307268 DOI: 10.3390/genes12070976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Autochthonous taurine and later introduced zebu cattle from Cameroon differ considerably in their resistance to endemic pathogens with little to no reports of the underlying genetic make-up. Breed history and habitat variations are reported to contribute significantly to this diversity worldwide, presumably in Cameroon as well, where locations diverge in climate, pasture, and prevalence of infectious agents. In order to investigate the genetic background, the genotypes of 685 individuals of different Cameroonian breeds were analysed by using the BovineSNP50v3 BeadChip. The variance components including heritability were estimated and genome-wide association studies (GWAS) were performed. Phenotypes were obtained by parasitological screening and categorised in Tick-borne pathogens (TBP), gastrointestinal nematodes (GIN), and onchocercosis (ONC). Estimated heritabilities were low for GIN and TBP (0.079 (se = 0.084) and 0.109 (se = 0.103) respectively) and moderate for ONC (0.216 (se = 0.094)). Further than revealing the quantitative nature of the traits, GWAS identified putative trait-associated genomic regions on five chromosomes, including the chromosomes 11 and 18 for GIN, 20 and 24 for TBP, and 12 for ONC. The results imply that breeding for resistant animals in the cattle population from Northern Cameroon might be possible for the studied pathogens; however, further research in this field using larger datasets will be required to improve the resistance towards pathogen infections, propose candidate genes or to infer biological pathways, as well as the genetic structures of African multi-breed populations.
Collapse
|
6
|
Emodepside targets SLO-1 channels of Onchocerca ochengi and induces broad anthelmintic effects in a bovine model of onchocerciasis. PLoS Pathog 2021; 17:e1009601. [PMID: 34077488 PMCID: PMC8202924 DOI: 10.1371/journal.ppat.1009601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/14/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Onchocerciasis (river blindness), caused by the filarial worm Onchocerca volvulus, is a neglected tropical disease mostly affecting sub-Saharan Africa and is responsible for >1.3 million years lived with disability. Current control relies almost entirely on ivermectin, which suppresses symptoms caused by the first-stage larvae (microfilariae) but does not kill the long-lived adults. Here, we evaluated emodepside, a semi-synthetic cyclooctadepsipeptide registered for deworming applications in companion animals, for activity against adult filariae (i.e., as a macrofilaricide). We demonstrate the equivalence of emodepside activity on SLO-1 potassium channels in Onchocerca volvulus and Onchocerca ochengi, its sister species from cattle. Evaluation of emodepside in cattle as single or 7-day treatments at two doses (0.15 and 0.75 mg/kg) revealed rapid activity against microfilariae, prolonged suppression of female worm fecundity, and macrofilaricidal effects by 18 months post treatment. The drug was well tolerated, causing only transiently increased blood glucose. Female adult worms were mostly paralyzed; however, some retained metabolic activity even in the multiple high-dose group. These data support ongoing clinical development of emodepside to treat river blindness.
Collapse
|
7
|
Hotterbeekx A, Perneel J, Vieri MK, Colebunders R, Kumar-Singh S. The Secretome of Filarial Nematodes and Its Role in Host-Parasite Interactions and Pathogenicity in Onchocerciasis-Associated Epilepsy. Front Cell Infect Microbiol 2021; 11:662766. [PMID: 33996633 PMCID: PMC8113626 DOI: 10.3389/fcimb.2021.662766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Filarial nematodes secrete bioactive molecules which are of interest as potential mediators for manipulating host biology, as they are readily available at the host-parasite interface. The adult parasites can survive for years in the mammalian host, due to their successful modulation of the host immune system and most of these immunomodulatory strategies are based on soluble mediators excreted by the parasite. The secretome of filarial nematodes is a key player in both infection and pathology, making them an interesting target for further investigation. This review summarises the current knowledge regarding the components of the excretory-secretory products (ESPs) of filarial parasites and their bioactive functions in the human host. In addition, the pathogenic potential of the identified components, which are mostly proteins, in the pathophysiology of onchocerciasis-associated epilepsy is discussed.
Collapse
Affiliation(s)
- An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Jolien Perneel
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Melissa Krizia Vieri
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | | | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Ngwasiri NN, Brattig NW, Ndjonka D, Liebau E, Paguem A, Leusder D, Kingsley MT, Eisenbarth A, Renz A, Daniel AM. Galectins from Onchocerca ochengi and O. volvulus and their immune recognition by Wistar rats, Gudali zebu cattle and human hosts. BMC Microbiol 2021; 21:5. [PMID: 33407120 PMCID: PMC7788699 DOI: 10.1186/s12866-020-02064-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background During the last two decades research on animal filarial parasites, especially Onchocerca ochengi, infecting cattle in savanna areas of Africa revealed that O. ochengi as an animal model has biological features that are similar to those of O. volvulus, the aetiological agent of human onchocerciasis. There is, however, a paucity of biochemical, immunological and pathological data for O. ochengi. Galectins can be generated by parasites and their hosts. They are multifunctional molecules affecting the interaction between filarial parasites and their mammalian hosts including immune responses. This study characterized O. ochengi galectin, verified its immunologenicity and established its immune reactivity and that of Onchocerca volvulus galectin. Results The phylogenetic analysis showed the high degree of identity between the identified O. ochengi and the O. volvulus galectin-1 (ß-galactoside-binding protein-1) consisting only in one exchange of alanine for serine. O. ochengi galectin induced IgG antibodies during 28 days after immunization of Wistar rats. IgG from O. ochengi-infected cattle and O. volvulus-infected humans cross-reacted with the corresponding galectins. Under the applied experimental conditions in a cell proliferation test, O. ochengi galectin failed to significantly stimulate peripheral blood mononuclear cells (PBMCs) from O. ochengi-infected cattle, regardless of their parasite load. Conclusion An O. ochengi galectin gene was identified and the recombinantly expressed protein was immunogenic. IgG from Onchocerca-infected humans and cattle showed similar cross-reaction with both respective galectins. The present findings reflect the phylogenetic relationship between the two parasites and endorse the appropriateness of the cattle O. ochengi model for O. volvulus infection research. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02064-3.
Collapse
Affiliation(s)
| | - Norbert W Brattig
- Department Molecular Medicine, Bernhard Nocht Institute of Tropical Medicine, Hamburg, Germany
| | | | - Eva Liebau
- University of Muenster, Münster, Germany
| | - Archile Paguem
- University of Ngaoundéré, Ngaoundéré, Cameroon.,Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Department of Veterinary Medicine, University of Buea, Buea, Cameroon
| | | | - Manchang Tanyi Kingsley
- Department of Veterinary Medicine, University of Buea, Buea, Cameroon.,Veterinary Research Laboratory, IRAD Wakwa Regional Centre, Ngaoundéré, Cameroon
| | - Albert Eisenbarth
- Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Programme Onchocercoses, Station of the University of Tübingen, Ngaoundéré, Cameroon
| | - Alfons Renz
- Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Programme Onchocercoses, Station of the University of Tübingen, Ngaoundéré, Cameroon
| | | |
Collapse
|
9
|
Campillo JT, Chesnais CB, Pion SDS, Gardon J, Kamgno J, Boussinesq M. Individuals living in an onchocerciasis focus and treated three-monthly with ivermectin develop fewer new onchocercal nodules than individuals treated annually. Parasit Vectors 2020; 13:258. [PMID: 32414398 PMCID: PMC7229600 DOI: 10.1186/s13071-020-04126-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Little information is available on the effect of ivermectin on the third- and fourth-stage larvae of Onchocerca volvulus. To assess a possible prophylactic effect of ivermectin on this parasite, we compared the effects of different ivermectin regimens on the acquisition of onchocercal nodules. METHODS We analyzed data from a controlled randomized clinical trial of ivermectin conducted in the Mbam Valley (Cameroon) between 1994 and 1998 in a cohort of onchocerciasis infected individuals. The number of nodules that appeared between the start and the end of the clinical trial was analyzed, using ANOVA and multivariable Poisson regressions, between four treatment arms: 150 µg/kg annually, 800 µg/kg annually, 150 µg/kg 3-monthly, and 800 µg/kg 3-monthly. RESULTS The mean number of nodules that appeared during the trial was reduced by 17.7% in subjects treated 3-monthly compared to those treated annually (regardless of the dose). Poisson regression model, adjusting on subject's age and weight, initial number of nodules and intensity of O. volvulus infection in his village of residence, confirmed that the incidence of new nodules was reduced in 3-monthly treatment arms compared to annually treatment arms, and that the dosage of ivermectin does not seem to influence this effect. Furthermore, the number of newly acquired nodules was positively associated with the initial number of nodules. Analysis of disappearance of nodules did not show any significant difference between the treatment groups. CONCLUSIONS To our knowledge, these results suggest for the first time in humans, that ivermectin has a partial prophylactic effect on O. volvulus. Three-monthly treatment seems more effective than annual treatment to prevent the appearance of nodules.
Collapse
Affiliation(s)
- Jérémy T Campillo
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, 911 avenue Agropolis, P.O. Box 64501, 34394, Montpellier Cedex 5, France
| | - Cédric B Chesnais
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, 911 avenue Agropolis, P.O. Box 64501, 34394, Montpellier Cedex 5, France
| | - Sébastien D S Pion
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, 911 avenue Agropolis, P.O. Box 64501, 34394, Montpellier Cedex 5, France
| | - Jacques Gardon
- Hydrosciences Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Michel Boussinesq
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, 911 avenue Agropolis, P.O. Box 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
10
|
Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, Asa BF, Ngale FN, Vanhamme L, Souopgui J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep 2019; 9:4409. [PMID: 30867498 PMCID: PMC6416346 DOI: 10.1038/s41598-019-40833-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Onchocerciasis is a parasitic disease with high socio-economic burden particularly in sub-Saharan Africa. The elimination plan for this disease has faced numerous challenges. A multi-epitope prophylactic/therapeutic vaccine targeting the infective L3 and microfilaria stages of the parasite's life cycle would be invaluable to achieve the current elimination goal. There are several observations that make the possibility of developing a vaccine against this disease likely. For example, despite being exposed to high transmission rates of infection, 1 to 5% of people have no clinical manifestations of the disease and are thus considered as putatively immune individuals. An immuno-informatics approach was applied to design a filarial multi-epitope subunit vaccine peptide consisting of linear B-cell and T-cell epitopes of proteins reported to be potential novel vaccine candidates. Conservation of the selected proteins and predicted epitopes in other parasitic nematode species suggests that the generated chimera could be helpful for cross-protection. The 3D structure was predicted, refined, and validated using bioinformatics tools. Protein-protein docking of the chimeric vaccine peptide with the TLR4 protein predicted efficient binding. Immune simulation predicted significantly high levels of IgG1, T-helper, T-cytotoxic cells, INF-γ, and IL-2. Overall, the constructed recombinant putative peptide demonstrated antigenicity superior to current vaccine candidates.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Kevin Kum Esoh
- Department of Biochemistry, Faculty of Science, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Neba Derrick Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Cabirou Mounchili Shintouo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Nkemngo Francis Nongley
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Bertha Fru Asa
- Department of Public Health and Hygiene, Faculty of Health Science, University of Buea, Buea, Cameroon
| | - Ferdinand Njume Ngale
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
11
|
Akoua-Koffi C, Beermann S, Calvignac-Spencer S, Couacy-Hymann E, De Nys H, Ehlers B, Gillespie T, Gilbert J, Gogarten JF, Laney SJ, Lankester F, Leendertz FH, Makepeace B, Nitsche A, Pauli G, Pauly M, Skjerve E, Stern D, Thamm R, Travis D, Unwin S, Wittig R, Wittiger L. Obituary: Siv Aina Jensen Leendertz (Born Siv Aina Jensen: 1973–2018). INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Babayan SA, Sinclair A, Duprez JS, Selman C. Chronic helminth infection burden differentially affects haematopoietic cell development while ageing selectively impairs adaptive responses to infection. Sci Rep 2018; 8:3802. [PMID: 29491449 PMCID: PMC5830876 DOI: 10.1038/s41598-018-22083-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/13/2018] [Indexed: 02/08/2023] Open
Abstract
Throughout the lifespan of an individual, the immune system undergoes complex changes while facing novel and chronic infections. Helminths, which infect over one billion people and impose heavy livestock productivity losses, typically cause chronic infections by avoiding and suppressing host immunity. Yet, how age affects immune responses to lifelong parasitic infection is poorly understood. To disentangle the processes involved, we employed supervised statistical learning techniques to identify which factors among haematopoietic stem and progenitor cells (HSPC), and both innate and adaptive responses regulate parasite burdens and how they are affected by host age. Older mice harboured greater numbers of the parasites’ offspring than younger mice. Protective immune responses that did not vary with age were dominated by HSPC, while ageing specifically eroded adaptive immunity, with reduced numbers of naïve T cells, poor T cell responsiveness to parasites, and impaired antibody production. We identified immune factors consistent with previously-reported immune responses to helminths, and also revealed novel interactions between helminths and HSPC maturation. Our approach thus allowed disentangling the concurrent effects of ageing and infection across the full maturation cycle of the immune response and highlights the potential of such approaches to improve understanding of the immune system within the whole organism.
Collapse
Affiliation(s)
- Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK. .,Moredun Research Institute, Pentlands Science Park, Penicuik, UK.
| | - Amy Sinclair
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jessica S Duprez
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK.,School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
13
|
Lustigman S, Makepeace BL, Klei TR, Babayan SA, Hotez P, Abraham D, Bottazzi ME. Onchocerca volvulus: The Road from Basic Biology to a Vaccine. Trends Parasitol 2017; 34:64-79. [PMID: 28958602 DOI: 10.1016/j.pt.2017.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022]
Abstract
Human onchocerciasis - commonly known as river blindness - is one of the most devastating yet neglected tropical diseases, leaving many millions in sub-Saharan Africa blind and/or with chronic disabilities. Attempts to eliminate onchocerciasis, primarily through the mass drug administration of ivermectin, remains challenging and has been heightened by the recent news that drug-resistant parasites are developing in some populations after years of drug treatment. Needed, and needed now, in the fight to eliminate onchocerciasis are new tools, such as preventive and therapeutic vaccines. This review summarizes the progress made to advance the onchocerciasis vaccine from the research laboratory into the clinic.
Collapse
Affiliation(s)
- Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY, USA.
| | - Benjamin L Makepeace
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Thomas R Klei
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow and Moredun Research Institute, Glasgow, UK
| | - Peter Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Carithers DS. Examining the role of macrolides and host immunity in combatting filarial parasites. Parasit Vectors 2017; 10:182. [PMID: 28410595 PMCID: PMC5391593 DOI: 10.1186/s13071-017-2116-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
Macrocyclic lactones (MLs), specifically the avermectins and milbemycins, are known for their effectiveness against a broad spectrum of disease-causing nematodes and arthropods in humans and animals. In most nematodes, drugs in this class induce paralysis, resulting in starvation, impaired ability to remain associated with their anatomical environment, and death of all life stages. Initially, this was also thought to be the ML mode of action against filarial nematodes, but researchers have not been able to validate these characteristic effects of immobilization/starvation of MLs in vitro, even at higher doses than are possible in vivo. Relatively recently, ML receptor sites exclusively located proximate to the excretory-secretory (ES) apparatus were identified in Brugia malayi microfilaria and an ML-induced suppression of secretory protein release by B. malayi microfilariae was demonstrated in vitro. It is hypothesized here that suppression of these ES proteins prevents the filarial worm from interfering with the host's complement cascade, reducing the ability of the parasite to evade the immune system. Live microfilariae and/or larvae, thus exposed, are attacked and presented to the host's innate immune mechanisms and are ultimately killed by the immune response, not the ML drug. These live, exposed filarial worms stimulate development of innate, cellular and humoral immune responses that when properly stimulated, are capable of clearing all larvae or microfilariae present in the host, regardless of their individual sensitivity to MLs. Additional research in this area can be expected to improve our understanding of the relationships among filarial worms, MLs, and the host immune system, which likely would have implications in filarial disease management in humans and animals.
Collapse
Affiliation(s)
- Doug S Carithers
- Boehringer Ingelheim, 3239 Satellite Boulevard, Duluth, GA, 30096, USA.
| |
Collapse
|
15
|
25 Years of the Onchocerca ochengi Model. Trends Parasitol 2016; 32:966-978. [PMID: 27665524 DOI: 10.1016/j.pt.2016.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 01/12/2023]
Abstract
Although of limited veterinary significance, Onchocerca ochengi has become famous as a natural model or 'analogue' of human onchocerciasis (river blindness), which is caused by Onchocerca volvulus. On the basis of both morphological and molecular criteria, O. ochengi is the closest extant relative of O. volvulus and shares several key natural history traits with the human pathogen. These include exploitation of the same group of insect vectors (blackflies of the Simulium damnosum complex) and formation of collagenous nodules with a similar histological structure to human nodules. Here, we review the contribution of this natural system to drug and vaccine discovery efforts, as well as to our basic biological understanding of Onchocerca spp., over the past quarter-century.
Collapse
|
16
|
Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, McSorley HJ, Kengne-Ouafo JA, Chounna-Ndongmo PW, Wanji S, Enyong PA, Taylor DW, Blaxter ML, Wastling JM, Tanya VN, Makepeace BL. Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle. Mol Cell Proteomics 2016; 15:2554-75. [PMID: 27226403 PMCID: PMC4974336 DOI: 10.1074/mcp.m115.055640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.
Collapse
Affiliation(s)
- Stuart D Armstrong
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Dong Xia
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Germanus S Bah
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Ritesh Krishna
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Henrietta F Ngangyung
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - E James LaCourse
- ‖Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Henry J McSorley
- **The Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4JT
| | - Jonas A Kengne-Ouafo
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | | | - Samuel Wanji
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | - Peter A Enyong
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon; §§Tropical Medicine Research Station, Kumba, Cameroon
| | - David W Taylor
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ¶¶Division of Pathway Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- ‖‖Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jonathan M Wastling
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ‡‡‡The National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L3 5RF, UK
| | - Vincent N Tanya
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Benjamin L Makepeace
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| |
Collapse
|
17
|
Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection. PLoS Negl Trop Dis 2016; 10:e0004586. [PMID: 27045170 PMCID: PMC4821550 DOI: 10.1371/journal.pntd.0004586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Methodology and Principle Findings Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Conclusion Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted. Onchocerciasis and Lymphatic filariasis (LF) are debilitating neglected tropical diseases (NTDs). Practical challenges in implementation of mass drug administration (MDA) such as prolonged treatment regime requirements and the possible emergence of drug resistance will likely impede the elimination of these NTDs. Hence, the availability of an efficacious prophylactic vaccine would be an invaluable tool. The objective of the present studies was to use the B. malayi-gerbil model of filariasis as a surrogate system to test the efficacy of filarial molecules as vaccine targets for an onchocerciasis vaccine. The vaccine efficacy of Onchocerca volvulus recombinant proteins Ov-RAL-2 and Ov-103 was recently demonstrated using a mouse diffusion chamber model. In this communication, we provide encouraging results on the vaccine efficacy of Bm-RAL-2 and Bm-103, individually or in combination. Our data demonstrate that vaccination with Bm-RAL-2 and Bm-103 concurrently and as a fusion protein confers not only a consistent and significant protection against B. malayi infection in gerbils, but also reduces the fecundity of female worms as demonstrated in embryogram analyses. Our results support the contention that Ov-RAL-2 and Ov-103 are excellent onchocerciasis vaccine candidates and that further investigations leading to their development as a vaccine are warranted.
Collapse
|
18
|
Steisslinger V, Korten S, Brattig NW, Erttmann KD. DNA vaccine encoding the moonlighting protein Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) leads to partial protection in a mouse model of human filariasis. Vaccine 2015; 33:5861-5867. [PMID: 26320419 DOI: 10.1016/j.vaccine.2015.07.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/30/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
River blindness, caused by the filarial parasite Onchocerca volvulus, is a major socio-economic and public health problem in Sub-Saharan Africa. In January 2015, The Onchocerciasis Vaccine for Africa (TOVA) Initiative has been launched with the aim of providing new tools to complement mass drug administration (MDA) of ivermectin, thereby promoting elimination of onchocerciasis in Africa. In this context we here present Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) as a possible DNA vaccine candidate. We report that in a laboratory model for filariasis, immunization with Ov-GAPDH led to a significant reduction of adult worm load and microfilaraemia in BALB/c mice after challenge infection with the filarial parasite Litomosoides sigmodontis. Mice were either vaccinated with Ov-GAPDH.DNA plasmid (Ov-pGAPDH.DNA) alone or in combination with recombinantly expressed Ov-GAPDH protein (Ov-rGAPDH). During the following challenge infection of immunized and control mice with L. sigmodontis, those formulations which included the DNA plasmid, led to a significant reduction of adult worm loads (up to 57% median reduction) and microfilaraemia (up to 94% reduction) in immunized animals. In a further experiment, immunization with a mixture of four overlapping, synthetic Ov-GAPDH peptides (Ov-GAPDHpept), with alum as adjuvant, did not significantly reduce worm loads. Our results indicate that DNA vaccination with Ov-GAPDH has protective potential against filarial challenge infection in the mouse model. This suggests a transfer of the approach into the cattle Onchocerca ochengi model, where it is possible to investigate the effects of this vaccination in the context of a natural host-parasite relationship.
Collapse
Affiliation(s)
- Vera Steisslinger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | - Simone Korten
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany; Department of Infection Medicine, Laboratory Lademannbogen Medical Service Center GmbH (Sonic Healthcare Group), Lademannbogen 61-63, D-22339 Hamburg, Germany
| | - Norbert W Brattig
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | - Klaus D Erttmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany.
| |
Collapse
|
19
|
Bah GS, Tanya VN, Makepeace BL. Immunotherapy with mutated onchocystatin fails to enhance the efficacy of a sub-lethal oxytetracycline regimen against Onchocerca ochengi. Vet Parasitol 2015; 212:25-34. [PMID: 26100152 DOI: 10.1016/j.vetpar.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/30/2015] [Accepted: 06/06/2015] [Indexed: 11/26/2022]
Abstract
Human onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, has been successfully controlled by a single drug, ivermectin, for over 25 years. Ivermectin prevents the disease symptoms of severe itching and visual impairment by killing the microfilarial stage, but does not eliminate the adult parasites, necessitating repeated annual treatments. Mass drug administration with ivermectin does not always break transmission in forest zones and is contraindicated in individuals heavily co-infected with Loa loa, while reports of reduced drug efficacy in Ghana and Cameroon may signal the development of resistance. An alternative treatment for onchocerciasis involves targeting the essential Wolbachia symbiont with tetracycline or its derivatives, which are adulticidal. However, implementation of antibiotic therapy has not occurred on a wide scale due to the prolonged treatment regimen required (several weeks). In the bovine Onchocerca ochengi system, it has been shown previously that prolonged oxytetracycline therapy increases eosinophil counts in intradermal nodules, which kill the adult worms by degranulating on their surface. Here, in an "immunochemotherapeutic" approach, we sought to enhance the efficacy of a short, sub-lethal antibiotic regimen against O. ochengi by prior immunotherapy targeting onchocystatin, an immunomodulatory protein located in the adult female worm cuticle. A key asparagine residue in onchocystatin was mutated to ablate immunomodulatory activity, which has been demonstrated previously to markedly improve the protective efficacy of this vaccine candidate when used as an immunoprophylactic. The immunochemotherapeutic regimen was compared with sub-lethal oxytetracycline therapy alone; onchocystatin immunotherapy alone; a gold-standard prolonged, intermittent oxytetracycline regimen; and no treatment (negative control) in naturally infected Cameroonian cattle. Readouts were collected over one year and comprised adult worm viability, dermal microfilarial density, anti-onchocystatin IgG in sera, and eosinophil counts in nodules. Only the gold-standard antibiotic regimen achieved significant killing of adult worms, a profound reduction in microfilarial load, and a sustained increase in local tissue eosinophilia. A small but statistically significant elevation in anti-onchocystatin IgG was observed for several weeks after immunisation in the immunotherapy-only group, but the antibody response in the immunochemotherapy group was more variable. At 12 weeks post-treatment, only a transient and non-significant increase in eosinophil counts was apparent in the immunochemotherapy group. We conclude that the addition of onchocystatin immunotherapy to a sub-lethal antibiotic regimen is insufficient to induce adulticidal activity, although with booster immunisations or the targeting of additional filarial immunomodulatory proteins, the efficacy of this strategy could be strengthened.
Collapse
Affiliation(s)
- Germanus S Bah
- Institute of Infection & Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool Science Park IC2, Liverpool L3 5RF, UK; Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP 65 Ngaoundéré, Adamawa Region, Cameroon
| | - Vincent N Tanya
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP 65 Ngaoundéré, Adamawa Region, Cameroon; Cameroon Academy of Sciences, BP 1457 Yaoundé, Centre Region, Cameroon
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool Science Park IC2, Liverpool L3 5RF, UK.
| |
Collapse
|
20
|
Abstract
Helminth parasites infect over one fourth of the human population and are highly prevalent in livestock worldwide. In model systems, parasites are strongly immunomodulatory, but the immune system can be driven to expel them by prior vaccination. However, no vaccines are currently available for human use. Recent advances in vaccination with recombinant helminth antigens have been successful against cestode infections of livestock and new vaccines are being tested against nematode parasites of animals. Numerous vaccine antigens are being defined for a wide range of helminth parasite species, but greater understanding is needed to define the mechanisms of vaccine-induced immunity, to lay a rational platform for new vaccines and their optimal design. With human trials underway for hookworm and schistosomiasis vaccines, a greater integration between veterinary and human studies will highlight the common molecular and mechanistic pathways, and accelerate progress towards reducing the global health burden of helminth infection.
Collapse
|
21
|
Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model. Int J Parasitol 2014; 44:637-46. [PMID: 24907553 DOI: 10.1016/j.ijpara.2014.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/21/2023]
Abstract
Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunisation protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans.
Collapse
|
22
|
Morris CP, Evans H, Larsen SE, Mitre E. A comprehensive, model-based review of vaccine and repeat infection trials for filariasis. Clin Microbiol Rev 2013; 26:381-421. [PMID: 23824365 PMCID: PMC3719488 DOI: 10.1128/cmr.00002-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY Filarial worms cause highly morbid diseases such as elephantiasis and river blindness. Since the 1940s, researchers have conducted vaccine trials in 27 different animal models of filariasis. Although no vaccine trial in a permissive model of filariasis has provided sterilizing immunity, great strides have been made toward developing vaccines that could block transmission, decrease pathological sequelae, or decrease susceptibility to infection. In this review, we have organized, to the best of our ability, all published filaria vaccine trials and reviewed them in the context of the animal models used. Additionally, we provide information on the life cycle, disease phenotype, concomitant immunity, and natural immunity during primary and secondary infections for 24 different filaria models.
Collapse
Affiliation(s)
- C. Paul Morris
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly Evans
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sasha E. Larsen
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Babayan SA, Allen JE, Taylor DW. Future prospects and challenges of vaccines against filariasis. Parasite Immunol 2012; 34:243-53. [PMID: 22150082 DOI: 10.1111/j.1365-3024.2011.01350.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Filarial infections remain a major public health and socio-economic problem across the tropics, despite considerable effort to reduce disease burden or regionally eliminate the infection with mass drug administration programmes. The sustainability of these programmes is now open to question owing to a range of issues, not least of which is emerging evidence for drug resistance. Vaccination, if developed appropriately, remains the most cost-effective means of long-term disease control. The rationale for the feasibility of vaccination against filarial parasites including onchocerciasis (river blindness, Onchocerca volvulus) and lymphatic filariasis (Wuchereria bancrofti or Brugia malayi) is founded on evidence from both humans and animal models for the development of protective immunity. Nonetheless, enormous challenges need to be faced in terms of overcoming parasite-induced suppression without inducing pathology as well as the need to both recognize and tackle evolutionary and ecological obstacles to successful vaccine development. Nonetheless, new technological advances in addition to systems biology approaches offer hope that optimal immune responses can be induced that will prevent infection, disease and/or transmission.
Collapse
Affiliation(s)
- Simon A Babayan
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
24
|
Huang B, Li T, Alonso-Gonzalez L, Gorre R, Keatley S, Green A, Turner P, Kallingappa PK, Verma V, Oback B. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 2011; 6:e24501. [PMID: 21912700 PMCID: PMC3166309 DOI: 10.1371/journal.pone.0024501] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/11/2011] [Indexed: 12/17/2022] Open
Abstract
Authentic induced pluripotent stem cells (iPSCs), capable of giving rise to all cell types of an adult animal, are currently only available in mouse. Here, we report the first generation of bovine iPSC-like cells following transfection with a novel virus-free poly-promoter vector. This vector contains the bovine cDNAs for OCT4, SOX2, KLF4 and c-MYC, each controlled by its own independent promoter. Bovine fibroblasts were cultured without feeders in a chemically defined medium containing leukaemia inhibitory factor (LIF) and inhibitors of MEK1/2 and glycogen synthase kinase-3 signaling (‘2i’). Non-invasive real-time kinetic profiling revealed a different response of bovine vs human and mouse cells to culture in 2i/LIF. In bovine, 2i was necessary and sufficient to induce the appearance of tightly packed alkaline phosphatase-positive iPSC-like colonies. These colonies formed in the absence of DNA synthesis and did not expand after passaging. Following transfection, non-proliferative primary colonies expressed discriminatory markers of pluripotency, including endogenous iPSC factors, CDH1, DPPA3, NANOG, SOCS3, ZFP42, telomerase activity, Tra-1-60/81 and SSEA-3/4, but not SSEA-1. This indicates that they had initiated a self-sustaining pluripotency programme. Bovine iPSC-like cells maintained a normal karyotype and differentiated into derivatives of all three germ layers in vitro and in teratomas. Our study demonstrates that conversion into induced pluripotency can occur in quiescent cells, following a previously undescribed route of direct cell reprogramming. This identifies a major species-specific barrier for generating iPSCs and provides a chemically defined screening platform for factors that induce proliferation and maintain pluripotency of embryo-derived pluripotent stem cells in livestock.
Collapse
Affiliation(s)
- Ben Huang
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Tong Li
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
- Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Lucia Alonso-Gonzalez
- Children's Cancer Research Group, Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | | | - Sarah Keatley
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Andria Green
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Pavla Turner
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | | - Vinod Verma
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Björn Oback
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
- * E-mail:
| |
Collapse
|
25
|
Hansen RDE, Trees AJ, Bah GS, Hetzel U, Martin C, Bain O, Tanya VN, Makepeace BL. A worm's best friend: recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi. Proc Biol Sci 2010; 278:2293-302. [PMID: 21177682 PMCID: PMC3119012 DOI: 10.1098/rspb.2010.2367] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Onchocerca ochengi, a filarial parasite of cattle, represents the closest relative of the human pathogen, Onchocerca volvulus. Both species harbour Wolbachia endosymbionts and are remarkable in that adult female worms remain viable but sessile for many years while surrounded by host cells and antibodies. The basis of the symbiosis between filariae and Wolbachia is thought to be metabolic, although a role for Wolbachia in immune evasion has received little attention. Neutrophils are attracted to Wolbachia, but following antibiotic chemotherapy they are replaced by eosinophils that degranulate on the worm cuticle. However, it is unclear whether the eosinophils are involved in parasite killing or if they are attracted secondarily to dying worms. In this study, cattle infected with Onchocerca ochengi received adulticidal regimens of oxytetracycline or melarsomine. In contrast to oxytetracycline, melarsomine did not directly affect Wolbachia viability. Eosinophil degranulation increased significantly only in the oxytetracycline group; whereas nodular gene expression of bovine neutrophilic chemokines was lowest in this group. Moreover, intense eosinophil degranulation was initially associated with worm vitality, not degeneration. Taken together, these data offer strong support for the hypothesis that Wolbachia confers longevity on O. ochengi through a defensive mutualism, which diverts a potentially lethal effector cell response.
Collapse
Affiliation(s)
- Rowena D E Hansen
- Liverpool School of Tropical Medicine, School of Veterinary Science and Institute of Infection and Global Health, University of Liverpool, , Liverpool L69 7ZJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bergquist R, Lustigman S. Control of important helminthic infections vaccine development as part of the solution. ADVANCES IN PARASITOLOGY 2010; 73:297-326. [PMID: 20627146 DOI: 10.1016/s0065-308x(10)73010-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Among the tools available for the control of helminth infections, chemotherapy has come to totally dominate the field. In the veterinary field, development of drug resistance has appeared but this is not (yet) a problem in the control of human diseases. Although there is no vaccine commercially available for any human parasitic infection yet, recent progress in vaccine development is making this a future possibility for several diseases. The goal of chemotherapy is to alleviate infection and morbidity in the definitive host, or reduce transmission, while the effect of available vaccine candidates would mainly be to influence transmission through targeting the intermediate or reservoir host, when the infection is zoonotic. Apart from this general scheme, there are also vaccine candidates targeting the parasites in the definitive host, in particular the early developmental stages, which should reduce the risk of drug failure. Since the biological targets in most cases are different, vaccination would be synergistic with drug therapy. This review covers diseases caused by helminthes in both humans and animals and includes examples of diseases caused by cestodes, nematodes and trematodes. The focus is on infections for which vaccine development has been undertaken for a long time, resulting in products that could realistically become integrated into control strategies in the near future.
Collapse
|
27
|
Transforming growth factor-beta expression by host cells is elicited locally by the filarial nematode Onchocerca volvulus in hyporeactive patients independently from Wolbachia. Microbes Infect 2010; 12:555-64. [PMID: 20359544 DOI: 10.1016/j.micinf.2010.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/25/2010] [Accepted: 03/14/2010] [Indexed: 11/26/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a key cytokine in immune regulation, cell differentiation, development, wound healing, and tissue remodelling. It mediates immunosuppression in filarial infections facilitating parasite persistence, while attenuating immunopathology, which is induced by migrating microfilariae. Immunosuppression rises with parasite burden, but it remains unknown whether filariae elicit local release of immunosuppressive cytokines. Therefore, using immunohistology, we investigated the expression of stable, released latent TGF-beta1 in subcutaneous nodules from highly infected, hyporeactive onchocerciasis patients, harbouring adult Onchocerca volvulus. Since many cell types produce TGF-beta, we elucidated the cellular source, distribution and dependency on the worms' sex, productivity and vitality. We found TGF-beta1 to be abundantly expressed by T cells, plasma/B cells, macrophages, mast cells, fibrocytes, and vascular endothelial cells, particularly in onchocercomas with productive or previously productive females, damaged, dead and resorbed adult worms or microfilariae. We conclude TGF-beta to be antigen induced by the filariae since expression was scarce around subcutaneous arthropods or cholesterol crystals in onchocercomas. Enhanced expression after ivermectin or endobacteria-depleting doxycycline treatment indicates induction to depend on filariae and not on Wolbachia endobacteria. TGF-beta(+) cells were reduced in HIV co-infection. This finding of local and sustained TGF-beta induction by vital and dead filariae, untreated and after treatment, adds new aspects to immunomodulation by helminths.
Collapse
|
28
|
Abstract
INTRODUCTION The neglected tropical diseases (NTDs) are infectious diseases that principally impact the world's poorest people. They have been neglected for decades, initially as part of a general disregard for the developing world, and more recently due to the intensity of focus on HIV/AIDS, tuberculosis and malaria. SOURCES OF DATA Primary research and review articles were selected for inclusion using searches of PubMed and our existing collections. RESULTS There have been recent notable successes in NTD control. Dracunculiasis is approaching eradication. Leprosy and onchocerciasis are in decline. There are ambitious plans to eliminate trachoma and lymphatic filariasis. Investment in NTD control has high rates of economic return. CONCLUSION Although there are proven strategies to control several NTDs, these diseases continue to cause a massive burden of morbidity. There is urgent need for more basic and operational research, drug and vaccine development, and greater prioritization by governments and international agencies.
Collapse
Affiliation(s)
- Nick Feasey
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St., London, UK
| | | | | | | |
Collapse
|
29
|
Makepeace BL, Jensen SA, Laney SJ, Nfon CK, Njongmeta LM, Tanya VN, Williams SA, Bianco AE, Trees AJ. Immunisation with a multivalent, subunit vaccine reduces patent infection in a natural bovine model of onchocerciasis during intense field exposure. PLoS Negl Trop Dis 2009; 3:e544. [PMID: 19901988 PMCID: PMC2770122 DOI: 10.1371/journal.pntd.0000544] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 10/07/2009] [Indexed: 11/19/2022] Open
Abstract
Human onchocerciasis, caused by the filarial nematode Onchocerca volvulus, is controlled almost exclusively by the drug ivermectin, which prevents pathology by targeting the microfilariae. However, this reliance on a single control tool has led to interest in vaccination as a potentially complementary strategy. Here, we describe the results of a trial in West Africa to evaluate a multivalent, subunit vaccine for onchocerciasis in the naturally evolved host-parasite relationship of Onchocerca ochengi in cattle. Naïve calves, reared in fly-proof accommodation, were immunised with eight recombinant antigens of O. ochengi, administered separately with either Freund's adjuvant or alum. The selected antigens were orthologues of O. volvulus recombinant proteins that had previously been shown to confer protection against filarial larvae in rodent models and, in some cases, were recognised by serum antibodies from putatively immune humans. The vaccine was highly immunogenic, eliciting a mixed IgG isotype response. Four weeks after the final immunisation, vaccinated and adjuvant-treated control calves were exposed to natural parasite transmission by the blackfly vectors in an area of Cameroon hyperendemic for O. ochengi. After 22 months, all the control animals had patent infections (i.e., microfilaridermia), compared with only 58% of vaccinated cattle (P = 0.015). This study indicates that vaccination to prevent patent infection may be an achievable goal in onchocerciasis, reducing both the pathology and transmissibility of the infection. The cattle model has also demonstrated its utility for preclinical vaccine discovery, although much research will be required to achieve the requisite target product profile of a clinical candidate. River blindness, or onchocerciasis, is caused by a parasitic worm (Onchocerca volvulus) that is transmitted by blood-feeding blackflies, which breed in fast-flowing rivers. More than 37 million people are infected and may experience visual impairment and/or severe dermatitis. Control of onchocerciasis is largely dependent on a single drug, ivermectin. Whilst this is extremely effective at killing the worms' offspring (microfilariae) and preventing symptoms, ivermectin does not eliminate the long-lived adult parasites or always stop transmission. Consequently, treatments must be repeated for many years, and drug resistance may be emerging. Against this background, a vaccine against onchocerciasis would provide an important additional tool to sustain effective control. In this study, we evaluated eight worm antigens as vaccine components in cattle, which are often parasitized by O. ochengi (the closest relative of O. volvulus) in West Africa. Twelve uninfected animals received all eight antigens and were exposed to natural transmission of O. ochengi alongside 13 unvaccinated cattle. After almost two years, 92% of vaccinated animals had acquired adult worms, but only 58% were positive for microfilariae; whereas 100% of unvaccinated animals harboured both parasite stages. This suggests that a vaccine against microfilariae to prevent development of disease in humans may be achievable.
Collapse
Affiliation(s)
- Benjamin L. Makepeace
- Veterinary Parasitology Group, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Siv Aina Jensen
- Veterinary Parasitology Group, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Sandra J. Laney
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Charles K. Nfon
- Veterinary Parasitology Group, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
- Institut de Recherche Agricole pour le Développement, Wakwa, Adamawa Region, Cameroon
| | - Leo M. Njongmeta
- Veterinary Parasitology Group, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Vincent N. Tanya
- Institut de Recherche Agricole pour le Développement, Wakwa, Adamawa Region, Cameroon
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Albert E. Bianco
- Veterinary Parasitology Group, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Alexander J. Trees
- Veterinary Parasitology Group, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Abstract
Filarial parasites are able to survive for many years in their host, with suppression of the host's immune response being one major survival strategy of the parasite. However, knowledge on molecules that induce these pathways is limited. Additionally, molecules that induce inflammation, thereby leading to severe pathology, such as elephantiasis, are also not fully identified. This article assesses the findings of a recently published analysis of stage-specific excretory-secretory proteins by sodium dodecylsulfate-polyacrylamide gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. In total, 228 proteins with known and unknown functions were identified and compared with genomic, expressed sequence tags and proteomic databases. We discuss the key findings of this article for implications on filarial parasitism, as well as for a potential use for new therapeutics.
Collapse
Affiliation(s)
- Sabine Specht
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany.
| | | |
Collapse
|
31
|
Allen JE, Adjei O, Bain O, Hoerauf A, Hoffmann WH, Makepeace BL, Schulz-Key H, Tanya VN, Trees AJ, Wanji S, Taylor DW. Of mice, cattle, and humans: the immunology and treatment of river blindness. PLoS Negl Trop Dis 2008; 2:e217. [PMID: 18446236 PMCID: PMC2323618 DOI: 10.1371/journal.pntd.0000217] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
River blindness is a seriously debilitating disease caused by the filarial parasite Onchocerca volvulus, which infects millions in Africa as well as in South and Central America. Research has been hampered by a lack of good animal models, as the parasite can only develop fully in humans and some primates. This review highlights the development of two animal model systems that have allowed significant advances in recent years and hold promise for the future. Experimental findings with Litomosoides sigmodontis in mice and Onchocerca ochengi in cattle are placed in the context of how these models can advance our ability to control the human disease.
Collapse
Affiliation(s)
- Judith E. Allen
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ohene Adjei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Odile Bain
- Museum National d'Histoire Naturelle, Paris, France
| | | | | | - Benjamin L. Makepeace
- Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | | | - Vincent N. Tanya
- Institut de Recherche Agricole pour le Développement, Ngaoundéré, Cameroon
| | - Alexander J. Trees
- Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Samuel Wanji
- Research Foundation in Tropical Diseases and Environment, Buea, Cameroon
| | - David W. Taylor
- Centre for Infectious Diseases, Royal (Dick) School for Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Mai CS, Hamm DM, Banla M, Agossou A, Schulz-Key H, Heuschkel C, Soboslay PT. Onchocerca volvulus-specific antibody and cytokine responses in onchocerciasis patients after 16 years of repeated ivermectin therapy. Clin Exp Immunol 2007; 147:504-12. [PMID: 17302900 PMCID: PMC1810490 DOI: 10.1111/j.1365-2249.2006.03312.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The recommended control option against onchocerciasis is repeated ivermectin treatment, which will need to be implemented for decades, and it remains unknown how repeated ivermectin therapy might affect immunity against Onchocerca volvulus in the long term. O. volvulus-specific antibody reactivity and cellular cytokine production were investigated in onchocerciasis patients receiving ivermectin (150 microg/kg) annually for 16 years. In treated patients, the T helper type 2 (Th2) cytokine interleukin (IL)-5 and T regulatory IL-10 in response to O. volvulus antigen (OvAg) and bacteria-derived Streptolysin O (SL-O) diminished to levels found in infection-free endemic controls; also, cellular release of Th1-type interferon (IFN)-gamma at 16 years post initial ivermectin treatment (p.i.t.) approached control levels. In ivermectin-treated onchocerciasis patients, IL-5 production in responses to the mitogen phytohaemagglutinin (PHA) decreased, but IL-10 in response PHA increased, and neither attained the cytokine production levels of endemic controls. At 16 years p.i.t., O. volvulus-specific IgG1 and IgG4 subclass reactivity still persisted at higher levels in onchocerciasis patients than in O. volvulus exposed but microfilariae-free endemic controls. In addition, cytokine responses remained depressed in onchocerciasis patients infected concurrently with Mansonella perstans and Necator americanus or Entamoeba histolytica/dispar. Thus, long-term ivermectin therapy of onchocerciasis may not suffice to re-establish fully a balanced Th1 and Th2 immune responsiveness in O. volvulus microfilariae-negative individuals. Such deficient reconstitution of immune competence may be due to an as yet continuing and uncontrolled reinfection with O. volvulus, but parasite co-infections can also bias and may prevent the development of such immunity.
Collapse
Affiliation(s)
- C S Mai
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Borchert N, Becker-Pauly C, Wagner A, Fischer P, Stöcker W, Brattig NW. Identification and characterization of onchoastacin, an astacin-like metalloproteinase from the filaria Onchocerca volvulus. Microbes Infect 2007; 9:498-506. [PMID: 17347015 DOI: 10.1016/j.micinf.2007.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
The tissue-invasive nematode Onchocerca volvulus causes skin and eye pathology in human onchocerciasis. While the adult females reside sessile in subcutaneous nodules, the microfilariae are abundantly released from the nodules, males and juvenile worms migrate through the host tissue. Matrix-degrading metallo- and serine proteinases have been detected in excretory-secretory worm products that may be essential for migration of the mobile stages. In this study, a 1713bp long cDNA encoding for a putative proteinase of O. volvulus has been isolated. The predicted protein sequence includes a signal peptide indicating secretion to the extracellular space, a propeptide, an astacin-like protease domain, an EGF-like and a CUB-domain, thereby identifying the protein as a member of the astacin family of zinc endopeptidases. Onchoastacin, Ov-AST-1, is most closely related to a subfamily comprising nematode astacins including Caenorhabditis and Ancylostoma. Ov-AST-1 was expressed as a recombinant protein in baculovirus-infected insect cells and exhibited enzymatic activity. The exposure of onchoastacin to the host immune system is indicated by demonstration of IgG reacting with the recombinant Ov-AST-1 and with two peptides of the protein. Since a homologous metalloproteinase is part of a promising hookworm vaccine, Ov-AST-1 may be a candidate for intervention strategies in filarial infections.
Collapse
Affiliation(s)
- Nadine Borchert
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Krueger A, Fischer P, Morales-Hojas R. Molecular phylogeny of the filaria genus Onchocerca with special emphasis on Afrotropical human and bovine parasites. Acta Trop 2007; 101:1-14. [PMID: 17174932 DOI: 10.1016/j.actatropica.2006.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Filarial parasites of the genus Onchocerca are found in a broad spectrum of ungulate hosts. One species, O. volvulus, is a human parasite that can cause severe disease (onchocerciasis or 'river blindness'). The phylogenetic relationships and the bionomics of many of the nearly 30 known species remain dubious. Here, the phylogeny of 11 species representing most major lineages of the genus is investigated by analysing DNA sequences from three mitochondrial genes (ND5, 12S and 16S rRNA) and portions of the intergenic spacer of the nuclear 5s rRNA. Special emphasis is given to a clade containing a yet unassigned specimen from Uganda (O. sp. 'Siisa'), which appears to be intermediate between O. volvulus and O. ochengi. While the latter can be differentiated by the O-150 tandem repeat commonly used for molecular diagnostics, O. volvulus and O. sp.'Siisa' cannot be differentiated by this marker. In addition, a worm specimen from an African bushbuck appears to be closely related to the bovine O. dukei and represents the basal taxon of the human/bovine clade. At the base of the genus, our data suggest O. flexuosa (red deer), O. ramachandrini (warthog) and O. armillata (cow) to be the representatives of ancient lineages. The results provide better insight into the evolution and zoogeography of Onchocerca. They also have epidemiological and taxonomic implications by providing a framework for more accurate molecular diagnosis of filarial larvae in vectors.
Collapse
MESH Headings
- Africa South of the Sahara
- Animals
- Base Sequence
- Cattle
- Cattle Diseases/parasitology
- DNA, Helminth/chemistry
- DNA, Helminth/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Humans
- Molecular Sequence Data
- NADH Dehydrogenase/chemistry
- NADH Dehydrogenase/genetics
- Onchocerca/classification
- Onchocerca/genetics
- Onchocerciasis/parasitology
- Onchocerciasis/veterinary
- Phylogeny
- Polymerase Chain Reaction
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- A Krueger
- Department of Molecular Parasitology, and Federal Forces Department for Tropical Medicine at the Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany.
| | | | | |
Collapse
|