1
|
Tan Y, Xu L, Zhu M, Zhao Y, Wei H, Wei W. Unraveling Morphological, Physiological, and Transcriptomic Alterations Underlying the Formation of Little Leaves in Phytoplasma-Infected Sweet Cherry Trees. PLANT DISEASE 2025; 109:373-383. [PMID: 39295135 DOI: 10.1094/pdis-04-24-0862-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Phytoplasmas are minute phytopathogenic bacteria that induce excessive vegetative growth, known as witches' broom (WB), in many infected plant species during the later stages of infection. The WB structure is characterized by densely clustered little (small) leaves, which are frequently accompanied by chlorosis (yellowing). The mechanisms behind the formation of little leaves within WB structures (LL-WB) are poorly understood. To address this gap, the LL-WB formation was extensively studied using sweet cherry virescence (SCV) phytoplasma-infected sweet cherry plants. Based on morphological examinations, signs of premature leaf senescence were observed in LL-WB samples, including reduced leaf size, chlorosis, and alterations in shape. Subsequent physiological analyses indicated decreased sucrose and glucose levels and changes in hormone concentrations in LL-WB samples. Additionally, the transcriptomic analysis revealed impaired ribosome biogenesis and DNA replication. As an essential process in protein production, the compromised ribosome biogenesis and the inhibited DNA replication led to cell cycle arrest, thus affecting leaf morphogenesis and further plant development. Moreover, the expression of marker genes involved in premature leaf senescence was significantly altered. These results indicate a complicated interplay between the development of leaves, premature leaf senescence, and pathogen-induced stress responses in SCV phytoplasma-infected sweet cherry trees. The results of this study provide insight into understanding the underlying molecular mechanisms driving the formation of little leaves and interactions between plants and pathogens. The findings might help control phytoplasma diseases in sweet cherry cultivation.
Collapse
Affiliation(s)
- Yue Tan
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Li Xu
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Min Zhu
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, U.S.A
| | - Hairong Wei
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, U.S.A
| |
Collapse
|
2
|
Pan J, Dong Y, Zou Z, Gu T, Chen L, Li K, Wang L, Shi Q. Serum proteome profiling of plateau acclimatization in men using Olink proteomics approach. Physiol Rep 2024; 12:e70091. [PMID: 39725655 DOI: 10.14814/phy2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 12/28/2024] Open
Abstract
Plateau acclimatization involves adaptive changes in the body's neurohumoral regulation and metabolic processes due to hypoxic conditions at high altitudes. This study utilizes Olink targeted proteomics to analyze serum protein expression differences in Han Chinese individuals acclimatized for 6 months-1 year at 4500 and 5300 m altitudes, compared to those residing at sea level. The objective is to elucidate the proteins' roles in tissue and cellular adaptation to hypoxia. We identified 54 metabolism-related differentially expressed proteins (DEPs) in the serum of the high-altitude group versus the sea-level group, comprising 20 significantly upregulated and 34 downregulated proteins. Notably, 2 proteins were upregulated and 11 downregulated at both 4500 and 5300 m altitudes. The top three protein correlations among DEPs included CRKL with CA13, RNASE3 with NADK, and NADK with APEX1, alongside APLP1 with CTSH, CTSH with SOST, and CTSH with NT-proBNP in inverse correlations. KEGG enrichment analysis indicated significant DEP involvement in various metabolic pathways, particularly those associated with hypoxic cellular metabolism like glycolysis/gluconeogenesis and the HIF-1 signaling pathway. Correlation with clinical phenotypes showed positive associations of SOST, RNASE3, CA13, NADK, and CRKL with SaO2 and negative correlations with Hemoglobin and Hematocrit; ALDH1A1 positively correlated with Triglyceride; and SDC4 inversely correlated with Uric acid levels. This study provides insights into specific DEPs linked to metabolic adaptations in high-altitude acclimatized individuals, offering a foundation for understanding acclimatization mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Jingyu Pan
- Medical College of Shihezi University, Urumqi, Xinjiang, China
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Yue Dong
- The Second Department of Cadre Health Care, Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhihao Zou
- Department of Neurosurgery, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Tianyan Gu
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ling Chen
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Kai Li
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Li Wang
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Qinghai Shi
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Rane DV, García-Calvo L, Kristiansen KA, Bruheim P. Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions. Metabolites 2024; 14:607. [PMID: 39590843 PMCID: PMC11596675 DOI: 10.3390/metabo14110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Nicotinamide adenine dinucleotide (NAD+), its precursors, and its derivatives (collectively NADome) play a crucial role in cellular processes and maintain redox homeostasis. Understanding the dynamics of these metabolic pools and redox reactions can provide valuable insights into metabolic functions, especially cellular regulation and stress response mechanisms. The accurate quantification of these metabolites is challenging due to the interconversion between the redox forms. Methods: Our laboratory previously developed a zwitterionic hydrophilic interaction liquid chromatography (zic-HILIC)-tandem mass spectrometry method for the quantification of five essential pyridine nucleotides, including NAD+ derivatives and it's reduced forms, with 13C isotope dilution and matrix-matched calibration. In this study, we have improved the performance of the chromatographic method and expanded its scope to twelve analytes for a comprehensive view of NAD+ biosynthesis and utilization. The analytical method was validated and applied to investigate Escherichia coli BL21 under varying oxygen supplies including aerobic, microaerobic, and anaerobic conditions. Conclusions: The intracellular absolute metabolite concentrations ranged over four orders of magnitude with NAD+ as the highest abundant, while its precursors were much less abundant. The composition of the NADome at oxygen-limited conditions aligned more with that in the anaerobic conditions rather than in the aerobic phase. Overall, the NADome was quite homeostatic and E. coli rapidly, but in a minor way, adapted the metabolic activity to the challenging shift in the growth conditions and achieved redox balance. Our findings demonstrate that the zic-HILIC-MS/MS method is sensitive, accurate, robust, and high-throughput, providing valuable insights into NAD+ metabolism and the potential significance of these metabolites in various biological contexts.
Collapse
Affiliation(s)
| | | | | | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway; (D.V.R.); (K.A.K.)
| |
Collapse
|
4
|
Li K, Lv Y, Wu R, Yu Z, Liang Y, Yu Z, Liang R, Tang L, Chen H, Fan Z. Fungicidal Activity of Novel 6-Isothiazol-5-ylpyrimidin-4-amine-Containing Compounds Targeting Complex I Reduced Nicotinamide Adenine Dinucleotide Oxidoreductase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22082-22091. [PMID: 39322984 DOI: 10.1021/acs.jafc.4c07259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
To discover novel inhibitors of the complex I reduced nicotinamide adenine dinucleotide (NADH) oxidoreductase as fungicides, a series of 6-isothiazol-5-ylpyrimidin-4-amine-containing compounds were designed using a computer-aided pesticide design method and splicing of substructures from diflumetorim and isotianil. In vitro fungicidal bioassays indicated that compounds T17-T24 showed high inhibitory activity against Rhizoctonia solani with an effective concentration (EC50) value falling between 2.20 and 23.85 μg/mL, which were more active than or equivalent to the lead diflumetorim with its EC50 of 19.80 μg/mL. In vivo antifungal bioassays demonstrated that, at a concentration of 200 μg/mL, T7 and T21 showed higher inhibition against Pseudoperonospora cubensis than all other compounds, while T23 exhibited the highest inhibition against Sphaerotheca fuliginea. T23 showed an approximately twofold lower inhibition potency against R. solani complex I NADH oxidoreductase than diflumetorim. Molecular docking and transcriptomic analyses indicated that T23 and diflumetorim both might share the same mode of action, targeting NADH oxidoreductase. T23 as a good fungicidal candidate against R. solani is worthy of further investigation.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - You Lv
- College of Agricultural and Biological Engineering, Heze University, No. 2269, Daxue Road, Mudan District, Heze, Shandong 274015, P. R. China
| | - Rongzhang Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yulin Liang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zecong Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ruobing Liang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hongyu Chen
- Department of Nephrology, the Second Medical Center of PLA General Hospital, National Clinical Research Centre for Geriatric Diseases, Beijing 100853, China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Leseigneur C, Mondange L, Pizarro-Cerdá J, Dussurget O. Staphylococcus aureus NAD kinase is required for envelop and antibiotic stress responses. Microbes Infect 2024; 26:105334. [PMID: 38556158 DOI: 10.1016/j.micinf.2024.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/09/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Global burden of infectious diseases and antimicrobial resistance are major public health issues calling for innovative control measures. Bacterial NAD kinase (NADK) is a crucial enzyme for production of NADP(H) and growth. In Staphylococcus aureus, NADK promotes pathogenesis by supporting production of key virulence determinants. Here, we find that knockdown of NADK by CRISPR interference sensitizes S. aureus to osmotic stress and to stresses induced by antibiotics targeting the envelop as well as replication, transcription and translation. Thus, NADK represents a promising target for the development of inhibitors which could be used in combination with current antibiotics.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Institut Pasteur, Université Paris Cité, Microbiology Department, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Lou Mondange
- Institut Pasteur, Université Paris Cité, Microbiology Department, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France; Institut de Recherche Biomédicale des Armées, Microbiology and Infectious Diseases Department, Bacteriology Unit, 91220 Brétigny-sur-Orge, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, Microbiology Department, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, Microbiology Department, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
6
|
Chen Y, Ying Y, Lalsiamthara J, Zhao Y, Imani S, Li X, Liu S, Wang Q. From bacteria to biomedicine: Developing therapies exploiting NAD + metabolism. Bioorg Chem 2024; 142:106974. [PMID: 37984103 DOI: 10.1016/j.bioorg.2023.106974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) serves as a critical cofactor in cellular metabolism and redox reactions. Bacterial pathways rely on NAD+ participation, where its stability and concentration govern essential homeostasis and functions. This review delves into the role and metabolic regulation of NAD+ in bacteria, highlighting its influence on physiology and virulence. Notably, we explore enzymes linked to NAD+ metabolism as antibacterial drug targets and vaccine candidates. Moreover, we scrutinize NAD+'s medical potential, offering insights for its application in biomedicine. This comprehensive assessment informs future research directions in the dynamic realm of NAD+ and its biomedical significance.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yuanyuan Ying
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Xin Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Sijing Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Qingjing Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
7
|
Favate JS, Skalenko KS, Chiles E, Su X, Yadavalli SS, Shah P. Linking genotypic and phenotypic changes in the E. coli long-term evolution experiment using metabolomics. eLife 2023; 12:RP87039. [PMID: 37991493 PMCID: PMC10665018 DOI: 10.7554/elife.87039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the long-term evolution experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.
Collapse
Affiliation(s)
- John S Favate
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New JerseyPiscatawayUnited States
| | - Kyle S Skalenko
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Eric Chiles
- Cancer Institute of New JerseyNew BrunswickUnited States
| | - Xiaoyang Su
- Cancer Institute of New JerseyNew BrunswickUnited States
| | - Srujana Samhita Yadavalli
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Premal Shah
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New JerseyPiscatawayUnited States
| |
Collapse
|
8
|
Favate JS, Skalenko KS, Chiles E, Su X, Yadavalli SS, Shah P. Linking genotypic and phenotypic changes in the E. coli Long-Term Evolution Experiment using metabolomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528756. [PMID: 36874203 PMCID: PMC9985142 DOI: 10.1101/2023.02.15.528756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the Long-Term Evolution Experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass-spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.
Collapse
Affiliation(s)
- John S. Favate
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey, USA
| | - Kyle S. Skalenko
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Waksman Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Eric Chiles
- Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Srujana S. Yadavalli
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Waksman Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
9
|
Vitelli M, Tamer IM, Pritzker M, Budman H. Modeling the effect of oxidative stress on Bordetella pertussis fermentations. Biotechnol Prog 2023; 39:e3335. [PMID: 36799126 DOI: 10.1002/btpr.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
A mathematical model is proposed for Bordetella pertussis with the main goal to better understand and describe the relation between cell growth, oxidative stress and NADPH levels under different oxidative conditions. The model is validated with flask experiments conducted under different conditions of oxidative stress induced by high initial glutamate concentrations, low initial inoculum and secondary culturing following exposure to starvation. The model exhibited good accuracy when calibrated and validated for the different experimental conditions. From comparisons of model predictions to data with different model mechanisms, it was concluded that intracellular reactive oxidative species only have an indirect effect on growth rate by reacting with NADPH and thereby reducing the amount of NADPH that is available for growth.
Collapse
Affiliation(s)
- Michael Vitelli
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | | | - Mark Pritzker
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Hector Budman
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| |
Collapse
|
10
|
Suryatin Alim G, Suzuki T, Honda K. Cell-Free Production and Regeneration of Cofactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:29-49. [PMID: 37306696 DOI: 10.1007/10_2023_222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cofactors, such as adenosine triphosphate, nicotinamide adenine dinucleotide, and coenzyme A, are involved in nearly 50% of enzymatic reactions and widely used in biocatalytic production of useful chemicals. Although commercial production of cofactors has been mostly dependent on extraction from microbial cells, this approach has a theoretical limitation to achieve a high-titer, high-yield production of cofactors owing to the tight regulation of cofactor biosynthesis in living cells. Besides the cofactor production, their regeneration is also a key challenge to enable continuous use of costly cofactors and improve the feasibility of enzymatic chemical manufacturing. Construction and implementation of enzyme cascades for cofactor biosynthesis and regeneration in a cell-free environment can be a promising approach to these challenges. In this chapter, we present the available tools for cell-free cofactor production and regeneration, the pros and cons, and how they can contribute to promote the industrial application of enzymes.
Collapse
Affiliation(s)
- Gladwin Suryatin Alim
- Department of Chemistry, University of Basel, Basel, Switzerland
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Takuma Suzuki
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Rahimova R, Nogaret P, Huteau V, Gelin M, Clément DA, Labesse G, Pochet S, Blanc-Potard AB, Lionne C. Structure-based design, synthesis and biological evaluation of a NAD + analogue targeting Pseudomonas aeruginosa NAD kinase. FEBS J 2023; 290:482-501. [PMID: 36036789 PMCID: PMC10087438 DOI: 10.1111/febs.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023]
Abstract
Multidrug resistance is a major public health problem that requires the urgent development of new antibiotics and therefore the identification of novel bacterial targets. The activity of nicotinamide adenine dinucleotide kinase, NADK, is essential in all bacteria tested so far, including many human pathogens that display antibiotic resistance leading to the failure of current treatments. Inhibiting NADK is therefore a promising and innovative antibacterial strategy since there is currently no drug on the market targeting this enzyme. Through a fragment-based drug design approach, we have recently developed a NAD+ -competitive inhibitor of NADKs, which displayed in vivo activity against Staphylococcus aureus. Here, we show that this compound, a di-adenosine derivative, is inactive against the NADK enzyme from the Gram-negative bacteria Pseudomonas aeruginosa (PaNADK). This lack of activity can be explained by the crystal structure of PaNADK, which was determined in complex with NADP+ in this study. Structural analysis led us to design and synthesize a benzamide adenine dinucleoside analogue, active against PaNADK. This novel compound efficiently inhibited PaNADK enzymatic activity in vitro with a Ki of 4.6 μm. Moreover, this compound reduced P. aeruginosa infection in vivo in a zebrafish model.
Collapse
Affiliation(s)
- Rahila Rahimova
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - Pauline Nogaret
- Laboratory of Pathogen Host Interactions (LPHI), Université de Montpellier, CNRS UMR 5235, France
| | - Valérie Huteau
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - David A Clément
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - Sylvie Pochet
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | | | - Corinne Lionne
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| |
Collapse
|
12
|
Oka SI, Titus AS, Zablocki D, Sadoshima J. Molecular properties and regulation of NAD + kinase (NADK). Redox Biol 2022; 59:102561. [PMID: 36512915 PMCID: PMC9763689 DOI: 10.1016/j.redox.2022.102561] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) kinase (NADK) phosphorylates NAD+, thereby producing nicotinamide adenine dinucleotide phosphate (NADP). Both NADK genes and the NADP(H)-producing mechanism are evolutionarily conserved among archaea, bacteria, plants and mammals. In mammals, NADK is activated by phosphorylation and protein-protein interaction. Recent studies conducted using genetically altered models validate the essential role of NADK in cellular redox homeostasis and metabolism in multicellular organisms. Here, we describe the evolutionary conservation, molecular properties, and signaling mechanisms and discuss the pathophysiological significance of NADK.
Collapse
Affiliation(s)
| | | | | | - Junichi Sadoshima
- Rutgers New Jersey Medical School Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, NJ, 07101, USA.
| |
Collapse
|
13
|
Willett E, Jiang V, Koder RL, Banta S. NAD + Kinase Enzymes Are Reversible, and NAD + Product Inhibition Is Responsible for the Observed Irreversibility of the Human Enzyme. Biochemistry 2022; 61:1862-1873. [PMID: 35984481 DOI: 10.1021/acs.biochem.2c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NAD+ kinase (NADK) is the only known enzyme capable of phosphorylating NAD(H) to NADP(H) and therefore it plays a crucial role in maintaining NAD(P)(H) homeostasis. All domains of life contain at least one NADK gene, and the commonly investigated isoforms have been measured, or assumed, to be functionally irreversible. In 1977, the kinetics of native pigeon liver NADK were thoroughly investigated, and it was reported to exhibit reversible activity, such that ATP and NAD+ can be formed from ADP and NADP+. We hypothesized that the reverse activity of the pigeon enzyme may enable compensation of the high picolinic acid carboxylase (PC) activity present in pigeon livers, which inhibits NAD+ biosynthesis from dietary tryptophan. Here, we report the characterization of four recombinantly expressed NADKs and explore their reversible activities. Duck and cat livers have higher PC activity than pigeon livers, and the recombinant duck and cat NADKs exhibit high activity in the reverse direction. The human NADK has an affinity for NAD+ that is ∼600 times higher than the pigeon, duck, and cat isoforms, and we conclude that NAD+ serves as a potent product inhibitor for the reverse activity of the human NADK, which accounts for the observed irreversible behavior. These results demonstrate that while all four NADKs are reversible, the reverse activity of the human enzyme alone is impeded via product inhibition. This mechanism─the conversion of a reversible to a unidirectional reaction by product inhibition─may be valuable in future metabolic engineering applications.
Collapse
Affiliation(s)
- Emma Willett
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Virginia Jiang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York 10031, United States.,Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, New York 10016, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
14
|
Du J, Estrella M, Solorio-Kirpichyan K, Jeffrey PD, Korennykh A. Structure of human NADK2 reveals atypical assembly and regulation of NAD kinases from animal mitochondria. Proc Natl Acad Sci U S A 2022; 119:e2200923119. [PMID: 35733246 PMCID: PMC9245612 DOI: 10.1073/pnas.2200923119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
All kingdoms of life produce essential nicotinamide dinucleotide NADP(H) using NAD kinases (NADKs). A panel of published NADK structures from bacteria, eukaryotic cytosol, and yeast mitochondria revealed similar tetrameric enzymes. Here, we present the 2.8-Å structure of the human mitochondrial kinase NADK2 with a bound substrate, which is an exception to this uniformity, diverging both structurally and biochemically from NADKs. We show that NADK2 harbors a unique tetramer disruptor/dimerization element, which is conserved in mitochondrial kinases of animals (EMKA) and absent from other NADKs. EMKA stabilizes the NADK2 dimer but prevents further NADK2 oligomerization by blocking the tetramerization interface. This structural change bears functional consequences and alters the activation mechanism of the enzyme. Whereas tetrameric NADKs undergo cooperative activation via oligomerization, NADK2 is a constitutively active noncooperative dimer. Thus, our data point to a unique regulation of NADP(H) synthesis in animal mitochondria achieved via structural adaptation of the NADK2 kinase.
Collapse
Affiliation(s)
- Jin Du
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Michael Estrella
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
15
|
Leseigneur C, Boucontet L, Duchateau M, Pizarro-Cerda J, Matondo M, Colucci-Guyon E, Dussurget O. NAD kinase promotes Staphylococcus aureus pathogenesis by supporting production of virulence factors and protective enzymes. eLife 2022; 11:e79941. [PMID: 35723663 PMCID: PMC9208755 DOI: 10.7554/elife.79941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is the primary electron donor for reductive reactions that are essential for the biosynthesis of major cell components in all organisms. Nicotinamide adenine dinucleotide kinase (NADK) is the only enzyme that catalyzes the synthesis of NADP(H) from NAD(H). While the enzymatic properties and physiological functions of NADK have been thoroughly studied, the role of NADK in bacterial pathogenesis remains unknown. Here, we used CRISPR interference to knock down NADK gene expression to address the role of this enzyme in Staphylococcus aureus pathogenic potential. We find that NADK inhibition drastically decreases mortality of zebrafish infected with S. aureus. Furthermore, we show that NADK promotes S. aureus survival in infected macrophages by protecting bacteria from antimicrobial defense mechanisms. Proteome-wide data analysis revealed that production of major virulence-associated factors is sustained by NADK. We demonstrate that NADK is required for expression of the quorum-sensing response regulator AgrA, which controls critical S. aureus virulence determinants. These findings support a key role for NADK in bacteria survival within innate immune cells and the host during infection.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| | - Laurent Boucontet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Unité Macrophages et Développement de l’ImmunitéParisFrance
| | - Magalie Duchateau
- Institut Pasteur, Université Paris Cité, CNRS USR2000, Unité de Spectrométrie de Masse pour la Biologie, Plateforme de protéomiqueParisFrance
| | - Javier Pizarro-Cerda
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS USR2000, Unité de Spectrométrie de Masse pour la Biologie, Plateforme de protéomiqueParisFrance
| | - Emma Colucci-Guyon
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Unité Macrophages et Développement de l’ImmunitéParisFrance
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| |
Collapse
|
16
|
Salmonella Central Carbon Metabolism Enhances Bactericidal Killing by Fluoroquinolone Antibiotics. Antimicrob Agents Chemother 2022; 66:e0234421. [PMID: 35658490 DOI: 10.1128/aac.02344-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficacy of killing by bactericidal antibiotics has been reported to depend in large part on the ATP levels, with low levels of ATP leading to increased persistence after antibiotic challenge. Here, we show that an atp operon deletion strain of Salmonella enterica serovar Typhimurium lacking the ATP synthase was at least 10-fold more sensitive to killing by the fluoroquinolone antibiotic ciprofloxacin and yet showed either increased survival or no significant difference compared with the wild-type strain when challenged with aminoglycoside or β-lactam antibiotics, respectively. The increased cell killing and reduced bacterial survival (persistence) after fluoroquinolone challenge were found to involve metabolic compensation for the loss of the ATP synthase through central carbon metabolism reactions and increased NAD(P)H levels. We conclude that the intracellular ATP levels per se do not correlate with bactericidal antibiotic persistence to fluoroquinolone killing; rather, the central carbon metabolic pathways active at the time of challenge and the intracellular target of the antibiotic determine the efficacy of treatment.
Collapse
|
17
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
18
|
Abstract
Metabolism relies on a small class of molecules (coenzymes) that serve as universal donors and acceptors of key chemical groups and electrons. Although metabolic networks crucially depend on structurally redundant coenzymes [e.g., NAD(H) and NADP(H)] associated with different enzymes, the criteria that led to the emergence of this redundancy remain poorly understood. Our combination of modeling and structural and sequence analysis indicates that coenzyme redundancy may not be essential for metabolism but could rather constitute an evolved strategy promoting efficient usage of enzymes when biochemical reactions are near equilibrium. Our work suggests that early metabolism may have operated with fewer coenzymes and that adaptation for metabolic efficiency may have driven the rise of coenzyme diversity in living systems. Coenzymes distribute a variety of chemical moieties throughout cellular metabolism, participating in group (e.g., phosphate and acyl) and electron transfer. For a variety of reactions requiring acceptors or donors of specific resources, there often exist degenerate sets of molecules [e.g., NAD(H) and NADP(H)] that carry out similar functions. Although the physiological roles of various coenzyme systems are well established, it is unclear what selective pressures may have driven the emergence of coenzyme redundancy. Here, we use genome-wide metabolic modeling approaches to decompose the selective pressures driving enzymatic specificity for either NAD(H) or NADP(H) in the metabolic network of Escherichia coli. We found that few enzymes are thermodynamically constrained to using a single coenzyme, and in principle a metabolic network relying on only NAD(H) is feasible. However, structural and sequence analyses revealed widespread conservation of residues that retain selectivity for either NAD(H) or NADP(H), suggesting that additional forces may shape specificity. Using a model accounting for the cost of oxidoreductase enzyme expression, we found that coenzyme redundancy universally reduces the minimal amount of protein required to catalyze coenzyme-coupled reactions, inducing individual reactions to strongly prefer one coenzyme over another when reactions are near thermodynamic equilibrium. We propose that protein minimization generically promotes coenzyme redundancy and that coenzymes typically thought to exist in a single pool (e.g., coenzyme A [CoA]) may exist in more than one form (e.g., dephospho-CoA).
Collapse
|
19
|
Homolak J, Babic Perhoc A, Knezovic A, Kodvanj I, Virag D, Osmanovic Barilar J, Riederer P, Salkovic-Petrisic M. Is Galactose a Hormetic Sugar? An Exploratory Study of the Rat Hippocampal Redox Regulatory Network. Mol Nutr Food Res 2021; 65:e2100400. [PMID: 34453395 DOI: 10.1002/mnfr.202100400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/24/2021] [Indexed: 01/22/2023]
Abstract
SCOPE Galactose, a ubiquitous monosaccharide with incompletely understood physiology is often exploited for inducing oxidative-stress mediated aging in animals. Recent research demonstrates that galactose can conserve cellular function during periods of starvation and prevent/alleviate cognitive deficits in a rat model of sporadic Alzheimer's disease. The present aim is to examine the acute effects of oral galactose on the redox regulatory network (RRN). METHODS AND RESULTS Rat plasma and hippocampal RRNs are analyzed upon acute orogastric gavage of galactose (200 mg kg-1 ). No systemic RRN disbalance is observed; however, a mild pro-oxidative shift accompanied by a paradoxical increment in tissue reductive capacity suggesting overcompensation of endogenous antioxidant systems is observed in the hippocampus. Galactose-induced increment of reductive capacity is accompanied by inflation of the hippocampal pool of nicotinamide adenine dinucleotide phosphates indicating ROS detoxification through disinhibition of the oxidative pentose phosphate pathway flux, reduced neuronal activity, and upregulation of Leloir pathway gatekeeper enzyme galactokinase-1. CONCLUSION Based on the observed findings, and in the context of previous work on galactose, a hormetic hypothesis of galactose is proposed suggesting that the protective effects may be inseparable from its pro-oxidative action at the biochemical level.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Clinic and Polyclinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany.,University of Southern Denmark Odense, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
20
|
Rosa TLSA, Marques MAM, DeBoard Z, Hutchins K, Silva CAA, Montague CR, Yuan T, Amaral JJ, Atella GC, Rosa PS, Mattos KA, VanderVen BC, Lahiri R, Sampson NS, Brennan PJ, Belisle JT, Pessolani MCV, Berrêdo-Pinho M. Reductive Power Generated by Mycobacterium leprae Through Cholesterol Oxidation Contributes to Lipid and ATP Synthesis. Front Cell Infect Microbiol 2021; 11:709972. [PMID: 34395315 PMCID: PMC8355898 DOI: 10.3389/fcimb.2021.709972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3β-hydroxysteroid dehydrogenase (3β-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3β-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3β-HSD activity with the 17β-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3β-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.
Collapse
Affiliation(s)
- Thabatta L S A Rosa
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria Angela M Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Zachary DeBoard
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kelly Hutchins
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Carlos Adriano A Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Christine R Montague
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Julio J Amaral
- Laboratório de Química Biológica, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia S Rosa
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, Bauru, Brazil
| | - Katherine A Mattos
- Departmento de Controle de Qualidade, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Ramanuj Lahiri
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Patrick J Brennan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Maria Cristina V Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Schild T, McReynolds MR, Shea C, Low V, Schaffer BE, Asara JM, Piskounova E, Dephoure N, Rabinowitz JD, Gomes AP, Blenis J. NADK is activated by oncogenic signaling to sustain pancreatic ductal adenocarcinoma. Cell Rep 2021; 35:109238. [PMID: 34133937 PMCID: PMC12076440 DOI: 10.1016/j.celrep.2021.109238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic adaptations and the signaling events that control them promote the survival of pancreatic ductal adenocarcinoma (PDAC) at the fibrotic tumor site, overcoming stresses associated with nutrient and oxygen deprivation. Recently, rewiring of NADPH production has been shown to play a key role in this process. NADPH is recycled through reduction of NADP+ by several enzymatic systems in cells. However, de novo NADP+ is synthesized only through one known enzymatic reaction, catalyzed by NAD+ kinase (NADK). In this study, we show that oncogenic KRAS promotes protein kinase C (PKC)-mediated NADK phosphorylation, leading to its hyperactivation, thus sustaining both NADP+ and NADPH levels in PDAC cells. Together, our data show that increased NADK activity is an important adaptation driven by oncogenic signaling. Our findings indicate that NADK could serve as a much-needed therapeutic target for PDAC.
Collapse
Affiliation(s)
- Tanya Schild
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Christie Shea
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Tri-institutional PhD Program in Chemical Biology, New York, NY 10021, USA
| | - Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bethany E Schaffer
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Elena Piskounova
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA; Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
22
|
Kawai-Yamada M, Miyagi A, Sato Y, Hosoi Y, Hashida SN, Ishikawa T, Yamaguchi M. Altered metabolism of chloroplastic NAD kinase-overexpressing Arabidopsis in response to magnesium sulfate supplementation. PLANT SIGNALING & BEHAVIOR 2021; 16:1844509. [PMID: 33210985 PMCID: PMC7781788 DOI: 10.1080/15592324.2020.1844509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD)/NAD phosphate (NADPH) is essential for numerous redox reactions and serve as co-factors in multiple metabolic processes in all organisms. NAD kinase (NADK) is an enzyme involved in the synthesis of NADP+ from NAD+ and ATP. Arabidopsis NADK2 (AtNADK2) is a chloroplast-localizing enzyme that provides recipients of reducing power in photosynthetic electron transfer. When Arabidopsis plants were grown on MS medium supplemented with 5 mM MgSO4, an AtNADK2-overexpressing line exhibited higher glutathione and total sulfur accumulation than control plants. Metabolomic analysis of major amino acids and organic acids using capillary electrophoresis-mass spectrometry demonstrated that overexpression of AtNADK2 affected a range of metabolic processes in response to MgSO4 supplementation.
Collapse
Affiliation(s)
- Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Japan
| | - Yuki Sato
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Japan
| | - Yuki Hosoi
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Japan
| | - Shin-Nosuke Hashida
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Japan
| |
Collapse
|
23
|
MURATA K. Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:479-498. [PMID: 34629356 PMCID: PMC8553519 DOI: 10.2183/pjab.97.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Polyphosphate [poly(P)] is described as a homopolymer of inorganic phosphates. Nicotinamide adenine dinucleotide kinase (NAD kinase) catalyzes the phosphorylation of NAD+ to NADP+ in the presence of ATP (ATP-NAD kinase). Novel NAD kinase that explicitly phosphorylates NAD+ to NADP+ using poly(P), besides ATP [ATP/poly(P)-NAD kinase], was found in bacteria, in particular, Gram-positive bacteria, and the gene encoding ATP/poly(P)-NAD kinase was also newly identified in Mycobacterium tuberculosis H37Rv. Both NAD kinases required multi-homopolymeric structures for activity expression. The enzymatic and genetic results, combined with their primary and tertiary structures, have led to the discovery of a long-awaited human mitochondrial NAD kinase. This discovery showed that the NAD kinase is a bacterial type of ATP/poly(P)-NAD kinase. These pioneering findings, i.e., ATP/poly(P)-NAD kinase, NAD kinase gene, and human mitochondrial NAD kinase, have significantly enhanced research on the biochemistry, molecular biology, and evolutionary biology of NAD kinase, mitochondria, and poly(P), including some biotechnological knowledge applicable to NADP+ production.
Collapse
|
24
|
Sun Z, Gong C, Ren J, Zhang X, Wang G, Liu Y, Ren Y, Zhao Y, Yu Q, Wang Y, Hou J. Toxicity of nickel and cobalt in Japanese flounder. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114516. [PMID: 32283401 DOI: 10.1016/j.envpol.2020.114516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Nickel and cobalt are essential elements that become toxic at high concentrations. Little is known about nickel and cobalt toxicity in aquatic animals. This study aimed to investigate acute and chronic toxicity of nickel and cobalt in Japanese flounder (Paralichthys olivaceous), with emphasis on oxidative stress reactions, histopathological changes, and differences in gene expression. The lethal concentration for 50% mortality (LC50) in 3 and 8 cm Japanese flounder exposed to nickel for 96 h was found to be 86.2 ± 0.018 and 151.3 ± 0.039 mg/L; for cobalt exposure, LC50 was 47.5 ± 0.015 and 180.4 ± 0.034 mg/L, respectively. Chronic nickel and cobalt exposure caused different degrees of oxidative enzyme activity changes in gill, liver, and muscle tissues. Erythrocyte deformations were detected after acute or chronic exposure to nickel and cobalt. the nickel and cobalt exposure also caused pathological changes such as spherical swelling over other gill patches, rod-like proliferations in the gill patch epithelial cell layer, and disorder in hepatocyte arrangement, cell swelling, and cytoplasm loosening. RNA-Seq indicated that there were 184 upregulated and 185 downregulated genes in the liver of Japanese flounder exposed to 15 mg/L nickel for 28 d. For cobalt, 920 upregulated and 457 downregulated genes were detected. Among these differentially expressed genes, 162 were shared by both nickel and cobalt exposure. In both nickel and cobalt, pathways including fatty acid elongation, steroid biosynthesis, unsaturated fatty acid biosynthesis, fatty acid metabolism, PPAR signaling, and ferroptosis were significantly enriched. Taken together, these results aided our understanding of the toxicity of nickel and cobalt in aquatic animals.
Collapse
Affiliation(s)
- Zhaohui Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, 100141, China; Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Chunguang Gong
- Ocean Collage, Agricultural University of Hebei, Qinhuangdao, 066009, China
| | - Jiangong Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Xiaoyan Zhang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Guixing Wang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufeng Liu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuqin Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yaxian Zhao
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Qinghai Yu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufen Wang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Jilun Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, 100141, China; Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China.
| |
Collapse
|
25
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
26
|
Abstract
IMPACT STATEMENT NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD's biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.
Collapse
Affiliation(s)
- John Wr Kincaid
- Department of Nutrition, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nathan A Berger
- 151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biochemistry, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Medicine, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Science, Health and Society, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Wang X, Li BB, Ma TT, Sun LY, Tai L, Hu CH, Liu WT, Li WQ, Chen KM. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC PLANT BIOLOGY 2020; 20:11. [PMID: 31910821 PMCID: PMC6947874 DOI: 10.1186/s12870-019-2234-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND NAD kinases (NADKs) are the only known enzymes that directly phosphorylate NAD(H) to generate NADP(H) in different subcellular compartments. They participate in multiple life activities, such as modulating the NADP/NAD ratio, maintaining the intracellular redox balance and responding to environmental stresses. However, the functions of individual NADK in plants are still under investigation. Here, a rice NADK, namely, OsNADK1, was identified, and its functions in plant growth regulation and stress tolerance were analysed by employing a series of transgenic plant lines. RESULTS OsNADK1 is a cytosol-localized NADK in rice. It was expressed in all rice tissues examined, and its transcriptional expression could be stimulated by a number of environmental stress treatments. Compared with wild-type (WT) rice, the mutant plant osnadk1 in which OsNADK1 was knocked out was a dwarf at the heading stage and had decreased NADP(H)/NAD(H), ascorbic acid (ASA)/dehydroascorbate (DHA) and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios, which led to increased oxidation states in the rice cells and sensitivity to drought. Moreover, certain stress-related genes showed differential expression patterns in osnadk1 under both normal growth and drought-stress conditions compared with WT. Among these genes, OsDREB1B and several WRKY family transcription factors, e.g., OsWRKY21 and OsWRKY42, showed correlated co-expression patterns with OsNADK1 in osnadk1 and the plants overexpressing or underexpressing OsNADK1, implying roles for these transcription factors in OsNADK1-mediated processes. In addition, overexpression of OsNADK1 enhanced the drought tolerance of rice plants, whereas loss of function of the gene reduced the tolerance. Furthermore, the proline content was dramatically increased in the leaves of the OsNADK1-overexpressing lines under drought conditions. CONCLUSIONS Altogether, the results suggest that an OsNADK1-mediated intracellular redox balance is involved in the tolerance of rice plants to drought.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 Hubei China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tian-Tian Ma
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Liang-Yu Sun
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Life Science and Agriculture, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
28
|
Enzymatic Characteristics of a Polyphosphate/ATP-NAD Kinase, PanK, from Myxococcus xanthus. Curr Microbiol 2019; 77:173-178. [PMID: 31741028 DOI: 10.1007/s00284-019-01810-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
Abstract
NAD kinase is a crucial enzyme for production of NADP+. Myxococcus xanthus is a gram-negative soil bacterium that forms fruiting bodies and spores under starvation, and it accumulates polyphosphate (poly(P)) during early development. We found that M. xanthus NAD kinase (PanK) utilized both ATP and poly(P) as phosphoryl donors; therefore, PanK was designated as a poly(P)/ATP-NAD kinase. Unlike other poly(P)/ATP-NAD kinases, PanK hardly exhibited NADH kinase activity. The NAD kinase activity of PanK was inhibited by NADPH, but not NADH. Replacement of Thr-90 in the GGDGT motif of PanK with Asn decreased both ATP- and poly(P)-dependent NAD kinase activities; however, poly(P)-dependent NAD kinase activity was further decreased by approximately 6- to 10-fold compared with ATP-dependent NAD kinase activity, suggesting that Thr-90 in the GGDGT motif of PanK may be important for poly(P) utilization. PanK preferred ATP and short-chain poly(P) as phosphoryl donors. The Km of PanK for ATP, poly(P)4, and poly(P)10-15 was 0.66 mM, 0.08 mM, and 0.71 mM, respectively, and the catalytic efficiency (kcat/Km) for poly(P)4 was 2.4-fold higher than that for ATP, suggesting that M. xanthus under starvation conditions may be able to efficiently generate NADP+ using PanK, ATP, and poly(P).
Collapse
|
29
|
Zavatti V, Budman H, Legge RL, Tamer M. Impact of oxidative stress on protein production by Bordetella pertussis for vaccine production. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Tai L, Li BB, Nie XM, Zhang PP, Hu CH, Zhang L, Liu WT, Li WQ, Chen KM. Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:681. [PMID: 31275331 PMCID: PMC6593290 DOI: 10.3389/fpls.2019.00681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 05/02/2023]
Abstract
Calcium (Ca2+) signaling and nicotinamide adenine dinucleotide (NAD) signaling are two basic signal regulation pathways in organisms, playing crucial roles in signal transduction, energy metabolism, stress tolerance, and various developmental processes. Notably, calmodulins (CaMs) and NAD kinases (NADKs) are important hubs for connecting these two types of signaling networks, where CaMs are the unique activators of NADKs. NADK is a key enzyme for NADP (including NADP+ and NADPH) biosynthesis by phosphorylating NAD (including NAD+ and NADH) and therefore, maintains the balance between NAD pool and NADP pool through an allosteric regulation mode. In addition, the two respective derivatives from NAD+ (substrate of NADK) and NADP+ (product of NADK), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), have been considered to be the important messengers for intracellular Ca2+ homeostasis which could finally influence the combination between CaM and NADK, forming a feedback regulation mechanism. In this review article, we briefly summarized the major research advances related to the feedback regulation pathway, which is activated by the interaction of CaM and NADK during plant development and signaling. The theories and fact will lay a solid foundation for further studies related to CaM and NADK and their regulatory mechanisms as well as the NADK-mediated NAD signaling behavior in plant development and response to stress.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
- Department of General Biology, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Sedoheptulose-1,7-bisphospate Accumulation and Metabolic Anomalies in Hepatoma Cells Exposed to Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5913635. [PMID: 30755786 PMCID: PMC6348915 DOI: 10.1155/2019/5913635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
We have previously shown that GSH depletion alters global metabolism of cells. In the present study, we applied a metabolomic approach for studying the early changes in metabolism in hydrogen peroxide- (H2O2-) treated hepatoma cells which were destined to die. Levels of fructose 1,6-bisphosphate and an unusual metabolite, sedoheptulose 1,7-bisphosphate (S-1,7-BP), were elevated in hepatoma Hep G2 cells. Deficiency in G6PD activity significantly reduced S-1,7-BP formation, suggesting that S-1,7-BP is formed in the pentose phosphate pathway as a response to oxidative stress. Additionally, H2O2 treatment significantly increased the level of nicotinamide adenine dinucleotide phosphate (NADP+) and reduced the levels of ATP and NAD+. Severe depletion of ATP and NAD+ in H2O2-treated Hep G2 cells was associated with cell death. Inhibition of PARP-mediated NAD+ depletion partially protected cells from death. Comparison of metabolite profiles of G6PD-deficient cells and their normal counterparts revealed that changes in GSH and GSSG per se do not cause cell death. These findings suggest that the failure of hepatoma cells to maintain energy metabolism in the midst of oxidative stress may cause cell death.
Collapse
|
32
|
Veskoukis AS, Margaritelis NV, Kyparos A, Paschalis V, Nikolaidis MG. Spectrophotometric assays for measuring redox biomarkers in blood and tissues: the NADPH network. Redox Rep 2018; 23:47-56. [PMID: 29088980 PMCID: PMC6748689 DOI: 10.1080/13510002.2017.1392695] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+/NADH) along with its phosphorylated form (NADP+/NADPH) are two molecules ubiquitously present in all organisms, and they play key roles as cofactors in fundamental catabolic and anabolic processes, respectively. The oxidation of NADPH to NADP+ initiates a cascade of reactions, where a network of molecules is implicated. The molecules of this cascade form a network with eminent translational potential in redox metabolism. A special point of interest is that spectrophotometric assays have been developed both for NADH/NADPH and the molecules directly regulated by them. Therefore, crucial molecules of the NADPH-dependent redox network can be measured, and the results can be used to assess the bioenergetic and/or oxidative stress status. The main aim of this review is to collectively present the NADPH-related molecules, namely NADPH, NADH, NAD+ kinase, NADPH oxidase, peroxiredoxin, thioredoxin, thioredoxin reductase, and nitric oxide synthase, that can be measured in blood and tissues with the use of a spectrophotometer, which is probably the most simple, inexpensive and widely used tool in biochemistry. We are providing the researchers with reliable and valid spectrophotometric assays for the measurement of the most important biomarkers of the NADPH network in blood and other tissues, thus allowing the opportunity to follow the redox changes in response to a stimulus.
Collapse
Affiliation(s)
- Aristidis S. Veskoukis
- Department of Biochemistry and
Biotechnology, University of Thessaly, Larissa,
Greece
- Department of Physical Education and
Sports Science at Serres, Aristotle University of
Thessaloniki, Serres, Greece
| | - Nikos V. Margaritelis
- Department of Physical Education and
Sports Science at Serres, Aristotle University of
Thessaloniki, Serres, Greece
- Intensive Care Unit, 424 General Military
Hospital of Thessaloniki, Thessaloniki,
Greece
| | - Antonios Kyparos
- Department of Physical Education and
Sports Science at Serres, Aristotle University of
Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport
Science, National and Kapodistrian University of Athens,
Athens, Greece
- Department of Health Sciences, School of
Sciences, European University Cyprus, Nicosia,
Cyprus
| | - Michalis G. Nikolaidis
- Department of Physical Education and
Sports Science at Serres, Aristotle University of
Thessaloniki, Serres, Greece
| |
Collapse
|
33
|
Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proc Natl Acad Sci U S A 2018; 115:E11761-E11770. [PMID: 30409802 DOI: 10.1073/pnas.1814912115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria are emerging as attractive organisms for sustainable bioproduction. We previously described Synechococcus elongatus UTEX 2973 as the fastest growing cyanobacterium known. Synechococcus 2973 exhibits high light tolerance and an increased photosynthetic rate and produces biomass at three times the rate of its close relative, the model strain Synechococcus elongatus 7942. The two strains differ at 55 genetic loci, and some of these loci must contain the genetic determinants of rapid photoautotrophic growth and improved photosynthetic rate. Using CRISPR/Cpf1, we performed a comprehensive mutational analysis of Synechococcus 2973 and identified three specific genes, atpA, ppnK, and rpaA, with SNPs that confer rapid growth. The fast-growth-associated allele of each gene was then used to replace the wild-type alleles in Synechococcus 7942. Upon incorporation, each allele successively increased the growth rate of Synechococcus 7942; remarkably, inclusion of all three alleles drastically reduced the doubling time from 6.8 to 2.3 hours. Further analysis revealed that our engineering effort doubled the photosynthetic productivity of Synechococcus 7942. We also determined that the fast-growth-associated allele of atpA yielded an ATP synthase with higher specific activity, while that of ppnK encoded a NAD+ kinase with significantly improved kinetics. The rpaA SNPs cause broad changes in the transcriptional profile, as this gene is the master output regulator of the circadian clock. This pioneering study has revealed the molecular basis for rapid growth, demonstrating that limited genetic changes can dramatically improve the growth rate of a microbe by as much as threefold.
Collapse
|
34
|
Abstract
SIGNIFICANCE The nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and NADP+/reduced NADP+ (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD+-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. CRITICAL ISSUES The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. FUTURE DIRECTIONS Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD+ precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Rui-Sheng Wang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
35
|
Wordofa GG, Kristensen M. Tolerance and metabolic response of Pseudomonas taiwanensis VLB120 towards biomass hydrolysate-derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:199. [PMID: 30034525 PMCID: PMC6052574 DOI: 10.1186/s13068-018-1192-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/06/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Bio-conversion of lignocellulosic biomass to high-value products offers numerous benefits; however, its development is hampered by chemical inhibitors generated during the pretreatment process. A better understanding of how microbes naturally respond to those inhibitors is valuable in the process of designing microorganisms with improved tolerance. Pseudomonas taiwanensis VLB120 is a natively tolerant strain that utilizes a wide range of carbon sources including pentose and hexose sugars. To this end, we investigated the tolerance and metabolic response of P. taiwanensis VLB120 towards biomass hydrolysate-derived inhibitors including organic acids (acetic acid, formic acid, and levulinic acid), furans (furfural, 5-hydroxymethylfurfural), and phenols (vanillin). RESULTS The inhibitory effect of the tested compounds varied with respect to lag phase, specific growth rate, and biomass yield compared to the control cultures grown under the same conditions without addition of inhibitors. However, P. taiwanensis was able to oxidize vanillin and furfural to vanillic acid and 2-furoic acid, respectively. Vanillic acid was further metabolized, whereas 2-furoic acid was secreted outside the cells and remained in the fermentation broth without further conversion. Acetic acid and formic acid were completely consumed from the fermentation broth, while concentration of levulinic acid remained constant throughout the fermentation process. Analysis of free intracellular metabolites revealed varying levels when P. taiwanensis VLB120 was exposed to inhibitory compounds. This resulted in increased levels of ATP to export inhibitors from the cell and NADPH/NADP ratio that provides reducing power to deal with the oxidative stress caused by the inhibitors. Thus, adequate supply of these metabolites is essential for the survival and reproduction of P. taiwanensis in the presence of biomass-derived inhibitors. CONCLUSIONS In this study, the tolerance and metabolic response of P. taiwanensis VLB120 to biomass hydrolysate-derived inhibitors was investigated. P. taiwanensis VLB120 showed high tolerance towards biomass hydrolysate-derived inhibitors compared to most wild-type microbes reported in the literature. It adopts different resistance mechanisms, including detoxification, efflux, and repair, which require additional energy and resources. Thus, targeting redox and energy metabolism in strain engineering may be a successful strategy to overcome inhibition during biomass hydrolysate conversion and lead to development of more robust strains.
Collapse
Affiliation(s)
- Gossa G. Wordofa
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Mette Kristensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
36
|
Li BB, Wang X, Tai L, Ma TT, Shalmani A, Liu WT, Li WQ, Chen KM. NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development. FRONTIERS IN PLANT SCIENCE 2018; 9:379. [PMID: 29662499 PMCID: PMC5890153 DOI: 10.3389/fpls.2018.00379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/07/2018] [Indexed: 05/03/2023]
Abstract
NAD(H) and NADP(H) are essential co-enzymes which dominantly control a number of fundamental biological processes by acting as reducing power and maintaining the intracellular redox balance of all life kingdoms. As the only enzymes that catalyze NAD(H) and ATP to synthesize NADP(H), NAD Kinases (NADKs) participate in many essential metabolic reactions, redox sensitive regulation, photosynthetic performance and also reactive oxygen species (ROS) homeostasis of cells and therefore, play crucial roles in both development and stress responses of plants. NADKs are highly conserved enzymes in amino acid sequences but have multiple subcellular localization and diverse functions. They may function as monomers, dimers or multimers in cells but the enzymatic properties in plants are not well elucidated yet. The activity of plant NADK is regulated by calcium/calmodulin and plays crucial roles in photosynthesis and redox co-enzyme control. NADK genes are expressed in almost all tissues and developmental stages of plants with specificity for different members. Their transcripts can be greatly stimulated by a number of environmental factors such as pathogenic attack, irritant applications and abiotic stress treatments. Using transgenic approaches, several studies have shown that NADKs are involved in chlorophyll synthesis, photosynthetic efficiency, oxidative stress protection, hormone metabolism and signaling regulation, and therefore contribute to the growth regulation and stress tolerance of plants. In this review, the enzymatic properties and functional mechanisms of plant NADKs are thoroughly investigated based on literature and databases. The results obtained here are greatly advantageous for further exploration of NADK function in plants.
Collapse
|
37
|
Wang C, Xin F, Kong X, Zhao J, Dong W, Zhang W, Ma J, Wu H, Jiang M. Enhanced isopropanol-butanol-ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant Clostridium acetobutylicum XY16. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:12. [PMID: 29410706 PMCID: PMC5782381 DOI: 10.1186/s13068-018-1024-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/13/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND The formation of by-products, mainly acetone in acetone-butanol-ethanol (ABE) fermentation, significantly affects the solvent yield and downstream separation process. In this study, we genetically engineered Clostridium acetobutylicum XY16 isolated by our lab to eliminate acetone production and altered ABE to isopropanol-butanol-ethanol (IBE). Meanwhile, process optimization under pH control strategies and supplementation of calcium carbonate were adopted to investigate the interaction between the reducing force of the metabolic networks and IBE production. RESULTS After successful introduction of secondary alcohol dehydrogenase into C. acetobutylicum XY16, the recombinant XY16 harboring pSADH could completely eliminate acetone production and convert it into isopropanol, indicating great potential for large-scale production of IBE mixtures. Especially, pH could significantly improve final solvent titer through regulation of NADH and NADPH levels in vivo. Under the optimal pH level of 4.8, the total IBE production was significantly increased from 3.88 to 16.09 g/L with final 9.97, 4.98 and 1.14 g/L of butanol, isopropanol, and ethanol. Meanwhile, NADH and NADPH levels were maintained at optimal levels for IBE formation compared to the control one without pH adjustment. Furthermore, calcium carbonate could play dual roles as both buffering agency and activator for NAD kinase (NADK), and supplementation of 10 g/L calcium carbonate could finally improve the IBE production to 17.77 g/L with 10.51, 6.02, and 1.24 g/L of butanol, isopropanol, and ethanol. CONCLUSION The complete conversion of acetone into isopropanol in the recombinant C. acetobutylicum XY16 harboring pSADH could alter ABE to IBE. pH control strategies and supplementation of calcium carbonate were effective in obtaining high IBE titer with high isopropanol production. The analysis of redox cofactor perturbation indicates that the availability of NAD(P)H is the main driving force for the improvement of IBE production.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Xiangping Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
| | - Jie Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| |
Collapse
|
38
|
Prasad UV, Vasu D, Gowtham RR, Pradeep CK, Swarupa V, Yeswanth S, Choudhary A, Sarma PVGK. Cloning, Expression and Characterization of NAD Kinase from Staphylococcus aureus Involved in the Formation of NADP (H): A Key Molecule in the Maintaining of Redox Status and Biofilm Formation. Adv Biomed Res 2017; 6:97. [PMID: 28828348 PMCID: PMC5549544 DOI: 10.4103/2277-9175.211833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Staphylococcus aureus has the ability to form biofilms on any niches, a key pathogenic factor of this organism and this phenomenon is directly related to the concentration of NADPH. The formation of NADP is catalyzed by NAD kinase (NADK) and this gene of S. aureus ATCC 12600 was cloned, sequenced, expressed and characterized. MATERIALS AND METHODS The NADK gene was polymerase chain reaction amplified from the chromosomal DNA of S. aureus ATCC 12600 and cloned in pQE 30 vector, sequenced and expressed in Escherichia coli DH5α. The pure protein was obtained by passing through nickel metal chelate agarose column. The enzyme kinetics of the enzyme and biofilm assay of the S. aureus was carried out in both aerobic and anaerobic conditions. The kinetics was further confirmed by the ability of the substrates to dock to the NADK structure. RESULTS The recombinant NADK exhibited single band with a molecular weight of 31kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the gene sequence (GenBank: JN645814) revealed presence of only one kind of NADK in all S. aureus strains. The enzyme exhibited very high affinity for NAD compared to adenosine triphosphate concurring with the docking results. A root-mean-square deviation value 14.039Å observed when NADK structure was superimposed with its human counterpart suggesting very low homology. In anaerobic conditions, higher biofilm units were found with decreased NADK activity. CONCLUSION The results of this study suggest increased NADPH concentration in S. aureus plays a vital role in the biofilm formation and survival of this pathogen in any environmental conditions.
Collapse
Affiliation(s)
- U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - D Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - R Rishi Gowtham
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Ch Krishna Pradeep
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - S Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Abhijit Choudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| |
Collapse
|
39
|
Abstract
Reactive oxygen species (ROS) are important signaling molecules that act through the oxidation of nucleic acids, proteins, and lipids. Several hallmarks of cancer, including uncontrolled proliferation, angiogenesis, and genomic instability, are promoted by the increased ROS levels commonly found in tumor cells. To counteract excessive ROS accumulation, oxidative stress, and death, cancer cells tightly regulate ROS levels by enhancing scavenging enzymes, which are dependent on the reducing cofactor nicotinamide adenine dinucleotide phosphate (NADPH). This review focuses on mitochondrial ROS homeostasis with a description of six pathways of NADPH production in mitochondria and a discussion of the possible strategies of pharmacological intervention to selectively eliminate cancer cells by increasing their ROS levels.
Collapse
Affiliation(s)
- Francesco Ciccarese
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology - IRCCS, Padua, Italy
| |
Collapse
|
40
|
Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 2017; 62. [PMID: 28226194 DOI: 10.1111/jpi.12401] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
Recent reports have uncovered the multifunctional role of melatonin in plant physiological responses under optimal and suboptimal environmental conditions. In this study, we explored whether melatonin pretreatment could provoke priming effects in alfalfa (Medicago sativa L.) plants subsequently exposed to prolonged drought stress (7 days), by withholding watering. Results revealed that the rhizospheric application of melatonin (10 μmol L-1 ) remarkably enhanced the drought tolerance of alfalfa plants, as evidenced by the observed plant tolerant phenotype, as well as by the higher levels of chlorophyll fluorescence and stomatal conductance, compared with nontreated drought-stressed plants. In addition, lower levels of lipid peroxidation (MDA content) as well as of both H2 O2 and NO contents in primed compared with nonprimed stressed plants suggest that melatonin pretreatment resulted in the systemic mitigation of drought-induced nitro-oxidative stress. Nitro-oxidative homeostasis was achieved by melatonin through the regulation of reactive oxygen (SOD, GR, CAT, APX) and nitrogen species (NR, NADHde) metabolic enzymes at the enzymatic and/or transcript level. Moreover, melatonin pretreatment resulted in the limitation of cellular redox disruption through the regulation of the mRNA levels of antioxidant and redox-related components (ADH, AOX, GST7, GST17), as well via osmoprotection through the regulation of proline homeostasis, at both the enzymatic (P5CS) and gene expression level (P5CS, P5CR). Overall, novel results highlight the importance of melatonin as a promising priming agent for the enhancement of plant tolerance to drought conditions through the regulation of nitro-oxidative and osmoprotective homeostasis.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Giannis Chatzimichail
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Rafaella Xenofontos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jan J Pavlou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Evangelia Panagiotou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Natural Recourses, Nicosia, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
41
|
Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans. Extremophiles 2017; 21:399-407. [PMID: 28083699 DOI: 10.1007/s00792-016-0913-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD+, NADH, NADP+, and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P)+ in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.
Collapse
|
42
|
Enhanced production of poly-3-hydroxybutyrate by recombinant Escherichia coli containing NAD kinase and phbCAB operon. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0194-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Xu M, Qin J, Rao Z, You H, Zhang X, Yang T, Wang X, Xu Z. Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microb Cell Fact 2016; 15:15. [PMID: 26785743 PMCID: PMC4719700 DOI: 10.1186/s12934-016-0414-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/08/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Corynebacterium crenatum SYPA 5 is the industrial strain for L-arginine production. Poly-β-hydroxybutyrate (PHB) is a kind of biopolymer stored as bacterial reserve materials for carbon and energy. The introduction of the PHB synthesis pathway into several strains can regulate the global metabolic pathway. In addition, both the pathways of PHB and L-arginine biosynthesis in the cells are NADPH-dependent. NAD kinase could upregulate the NADPH concentration in the bacteria. Thus, it is interesting to investigate how both PHB and NAD kinase affect the L-arginine biosynthesis in C. crenatum SYPA 5. RESULTS C. crenatum P1 containing PHB synthesis pathway was constructed and cultivated in batch fermentation for 96 h. The enzyme activities of the key enzymes were enhanced comparing to the control strain C. crenatum SYPA 5. More PHB was found in C. crenatum P1, up to 12.7 % of the dry cell weight. Higher growth level and enhanced glucose consumptions were also observed in C. crenatum P1. With respect to the yield of L-arginine, it was 38.54 ± 0.81 g/L, increasing by 20.6 %, comparing to the control under the influence of PHB accumulation. For more NADPH supply, C. crenatum P2 was constructed with overexpression of NAD kinase based on C. crenatum P1. The NADPH concentration was increased in C. crenatum P2 comparing to the control. PHB content reached 15.7 % and 41.11 ± 1.21 g/L L-arginine was obtained in C. crenatum P2, increased by 28.6 %. The transcription levels of key L-arginine synthesis genes, argB, argC, argD and argJ in recombinant C. crenatum increased 1.9-3.0 times compared with the parent strain. CONCLUSIONS Accumulation of PHB by introducing PHB synthesis pathway, together with up-regulation of coenzyme level by overexpressing NAD kinase, enables the recombinant C. crenatum to serve as high-efficiency cell factories in the long-time L-arginine fermentation. Furthermore, batch cultivation of the engineered C. crenatum revealed that it could accumulate both extracellular L-arginine and intracellular PHB simultaneously. All of these have a potential biotechnological application as a strategy for high-yield L-arginine.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Jingru Qin
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Hengyi You
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Xiaoyuan Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
44
|
Bilan DS, Shokhina AG, Lukyanov SA, Belousov VV. [Main Cellular Redox Couples]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:385-402. [PMID: 26615634 DOI: 10.1134/s1068162015040044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the living cells maintain the continuous flow of electrons, which provides them by energy. Many of the compounds are presented in a cell at the same time in the oxidized and reduced states, forming the active redox couples. Some of the redox couples, such as NAD+/NADH, NADP+/NADPH, oxidized/reduced glutathione (GSSG/GSH), are universal, as they participate in adjusting of many cellular reactions. Ratios of the oxidized and reduced forms of these compounds are important cellular redox parameters. Modern research approaches allow setting the new functions of the main redox couples in the complex organization of cellular processes. The following information is about the main cellular redox couples and their participation in various biological processes.
Collapse
|
45
|
Abstract
Universal and ubiquitous redox cofactors, nicotinamide adenine dinucleotide (NAD) and its phosphorylated analog (NADP), collectively contribute to approximately 12% of all biochemical reactions included in the metabolic model of Escherichia coli K-12. A homeostasis of the NAD pool faithfully maintained by the cells results from a dynamic balance in a network of NAD biosynthesis, utilization, decomposition, and recycling pathways that is subject to tight regulation at various levels. A brief overview of NAD utilization processes is provided in this review, including some examples of nonredox utilization. The review focuses mostly on those aspects of NAD biogenesis and utilization in E. coli and Salmonella that emerged within the past 12 years. The first pyridine nucleotide cycle (PNC) originally identified in mammalian systems and termed the Preiss-Handler pathway includes a single-step conversion of niacin (Na) to NaMN by nicotinic acid phosphoribosyltransferase (PncB). In E. coli and many other prokaryotes, this enzyme, together with nicotinamide deamidase (PncA), compose the major pathway for utilization of the pyridine ring in the form of amidated (Nm) or deamidated (Na) precursors. The existence of various regulatory mechanisms and checkpoints that control the NAD biosynthetic machinery reflects the importance of maintaining NAD homeostasis in a variety of growth conditions. Among the most important regulatory mechanisms at the level of individual enzymes are a classic feedback inhibition of NadB, the first enzyme of NAD de novo biosynthesis, by NAD and a metabolic regulation of NadK by reduced cofactors.
Collapse
|
46
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
47
|
Patel VP, Chu CT. Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson's disease. Exp Neurol 2014; 257:170-81. [PMID: 24792244 PMCID: PMC4141566 DOI: 10.1016/j.expneurol.2014.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/31/2022]
Abstract
The microtubule (MT) system is important for many aspects of neuronal function, including motility, differentiation, and cargo trafficking. Parkinson's disease (PD) is associated with increased oxidative stress and alterations in the integrity of the axodendritic tree. To study dynamic mechanisms underlying the neurite shortening phenotype observed in many PD models, we employed the well-characterized oxidative parkinsonian neurotoxin, 6-hydroxydopamine (6OHDA). In both acute and chronic sub-lethal settings, 6OHDA-induced oxidative stress elicited significant alterations in MT dynamics, including reductions in MT growth rate, increased frequency of MT pauses/retractions, and increased levels of tubulin acetylation. Interestingly, 6OHDA decreased the activity of tubulin deacetylases, specifically sirtuin 2 (SIRT2), through more than one mechanism. Restoration of tubulin deacetylase function rescued the changes in MT dynamics and prevented neurite shortening in neuron-differentiated, 6OHDA-treated cells. These data indicate that impaired tubulin deacetylation contributes to altered MT dynamics in oxidatively-stressed cells, conferring key insights for potential therapeutic strategies to correct MT-related deficits contributing to neuronal aging and disease.
Collapse
Affiliation(s)
- Vivek P Patel
- Department of Pathology, Division of Neuropathology, 3550 Terrace St., University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, 3550 Terrace St., University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; The Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
Abstract
Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity and functional divergence of the NADK family in plants. Conclusions These findings will facilitate further studies of the NADK family and provide valuable information for functional validation of this family in plants.
Collapse
|
49
|
Conferring the ability to utilize inorganic polyphosphate on ATP-specific NAD kinase. Sci Rep 2014; 3:2632. [PMID: 24022322 PMCID: PMC3769651 DOI: 10.1038/srep02632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/22/2013] [Indexed: 11/08/2022] Open
Abstract
NAD kinase (NADK) is a crucial enzyme for production of NADP⁺. ATP-specific NADK prefers ATP to inorganic polyphosphate [poly(P)] as a phosphoryl donor, whereas poly(P)/ATP-NADK utilizes both ATP and poly(P), and is employed in industrial mass production of NADP⁺. Poly(P)/ATP-NADKs are distributed throughout Gram-positive bacteria and Archaea, whereas ATP-specific NADKs are found in Gram-negative α- and γ-proteobacteria and eukaryotes. In this study, we succeeded in conferring the ability to utilize poly(P) on γ-proteobacterial ATP-specific NADKs through a single amino-acid substitution; the substituted amino-acid residue is therefore important in determining the phosphoryl-donor specificity of γ-proteobacterial NADKs. We also demonstrate that a poly(P)/ATP-NADK created through this method is suitable for the poly(P)-dependent mass production of NADP⁺. Moreover, based on our results, we provide insight into the evolution of bacterial NADKs, in particular, how NADKs evolved from poly(P)/ATP-NADKs into ATP-specific NADKs.
Collapse
|
50
|
Ostaszewska M, Juszczuk IM, Kołodziejek I, Rychter AM. Long-term sulphur starvation of Arabidopsis thaliana modifies mitochondrial ultrastructure and activity and changes tissue energy and redox status. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:549-558. [PMID: 24655391 DOI: 10.1016/j.jplph.2013.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Sulphur, as a constituent of amino acids (cysteine and methionine), iron-sulphur clusters, proteins, membrane sulpholipids, glutathione, glucosinolates, coenzymes, and auxin precursors, is essential for plant growth and development. Absence or low sulphur concentration in the soil results in severe growth retardation. Arabidopsis thaliana plants grown hydroponically for nine weeks on Knop nutrient medium without sulphur showed morphological symptoms of sulphur deficiency. The purpose of our study was to investigate changes that mitochondria undergo and the role of the highly branched respiratory chain in survival during sulphur deficiency stress. Ultrastructure analysis of leaf mesophyll cells of sulphur-deficient Arabidopsis showed heterogeneity of mitochondria; some of them were not altered, but the majority had swollen morphology. Dilated mitochondria displayed a lower matrix density and fewer cristae compared to control mitochondria. Disintegration of the inner and outer membranes of some mitochondria from the leaves of sulphur-deficient plants was observed. On the contrary, chloroplast ultrastructure was not affected. Sulphur deficiency changed the respiratory activity of tissues and isolated mitochondria; Complex I and IV capacities and phosphorylation rates were lower, but external NAD(P)H dehydrogenase activity increased. Higher external NAD(P)H dehydrogenase activity corresponded to increased cell redox level with doubled NADH/NAD ratio in the leaf and root tissues. Sulphur deficiency modified energy status in the tissues of Arabidopsis plants. The total concentration of adenylates (expressed as ATP+ADP), measured in the light, was lower in the leaves and roots of sulphur-deficient plants than in the controls, which was mainly due to the severely decreased ATP levels. We show that the changes in mitochondrial ultrastructure are compensated by the modifications in respiratory chain activity. Although mitochondria of Arabidopsis tissues are affected by sulphur deficiency, their metabolic and structural features, which readily reach new homeostasis, make these organelles crucial for adaptation of plants to survive sulphur deficiency.
Collapse
Affiliation(s)
- Monika Ostaszewska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Izabela M Juszczuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Izabella Kołodziejek
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna M Rychter
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|