1
|
Puig-Gámez M, Van Attekum M, Theis T, Dick A, Park JE. Transcriptional signature of rapidly responding NK cells reveals S1P5 and CXCR4 as anti-tumor response disruptors. Sci Rep 2025; 15:10769. [PMID: 40155684 PMCID: PMC11953373 DOI: 10.1038/s41598-025-95211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Natural killer (NK) cells are prototypic cytotoxic innate lymphocytes that can kill target cells, such as tumor cells, in the absence of antigen-restriction. Peripheral NK cells exhibit a high degree of heterogeneity. Here, we set out to broadly assess intrinsic modulators of NK cell degranulation in an unbiased manner. We stimulated human primary blood-borne NK cells pre-treated with different cytokine regimens with the HCT116 human colon cancer cell line and used detection of lysosome-associated membrane glycoprotein 1 (LAMP1) as an identifier of rapid NK cell degranulation. RNA sequencing of FACS-sorted LAMP1hi NK cells showed CXCR4 and S1PR5 were top down-regulated genes. Using compounds that modulate activity of CXCR4 and S1P receptor family members S1P1 and S1P5, we confirmed they play an important immunosuppressive role in NK cell cytotoxicity. Mechanistically, engagement of CXCR4 and S1P1/5 receptors triggered phosphorylation of p42 and Ca2+ influx. CXCR4 activation promoted S1P5 upregulation and vice versa, and joint activation of both receptors amplified the defect NK cell degranulation. Intriguingly, in tumor samples the expression of both receptors and the synthesis of their ligands themselves appear to be coordinately regulated. Together, these data suggest that specifically and simultaneously targeting CXCR4 and S1P5 activity in the tumor microenvironment (TME) could be a beneficial strategy to unleash full cytotoxic potential of cytotoxic NK effector cells in the tumor.
Collapse
Affiliation(s)
- Marta Puig-Gámez
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Martijn Van Attekum
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Theodor Theis
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Alec Dick
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - John E Park
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany.
| |
Collapse
|
2
|
Zu Y, Ren Q, Zhang J, Su H, Lu Q, Song Y, Zhou J. Targeting CD5 chimeric antigen receptor-engineered natural killer cells against T-cell malignancies. Exp Hematol Oncol 2024; 13:104. [PMID: 39462383 PMCID: PMC11515150 DOI: 10.1186/s40164-024-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor engineered T cells (CAR-T) have demonstrated promising clinical efficacy in B-cell malignancies, and the approach has been extended to T-cell malignancies. However, the use of allogeneic T cells in CAR therapy poses a challenge due to the risk of graft-versus-host disease. Recently, natural killer (NK) cells have exhibited "off‑the‑shelf" availability. The nanobody-based CAR structures have attracted much attention for their therapeutic potential owing to the advantages of nanobody, including small size, optimal stability, high affinity and manufacturing feasibility. CD5, a common surface marker of malignant T cells, has three scavenger receptor cysteine-rich domains (D1-D3) in the extracellular region. The present study aims to construct "off‑the‑shelf" CAR-NK cells targeting the membrane-proximal domain of CD5 derived from nanobody against T-cell malignancies. METHODS Anti-CD5-D3 nanobody was screened by phage display technology, followed by constructing fourth-generation CAR plasmids ectopically producing IL-15 to generate CD5 CAR-NK cells derived from peripheral blood. And the second-generation CD5 CAR-T cells based on nanobody were generated, referred to as 5D.b CAR-T and 12 C.b CAR-T. Furthermore, CAR-NK cells without IL-15 (IL-15△ CAR-NK) were generated to assess the impact on cytotoxicity of CAR-NK cells. Cytotoxic activity against CD5+ hematologic malignant cell lines and normal T cells was exerted in vitro and NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt mouse model transplanted with Jurkat-Luc cells was used to evaluate the antitumor efficacy of CD5 CAR-NK cells in vivo. RESULTS Two nanobodies (5D and 12 C) competed for binding to the epitope of CD5-D3. 12 C CAR-NK cells were superior to 5D CAR-NK cells in antitumor potential and 12 C.b CAR-T cells exhibited superior cytotoxic activity than 5D CAR-T cells ex vivo. So, 12 C was regarded as the optimal nanobody. 12 C CAR-NK cells and IL-15△ CAR-NK cells exhibited robust cytotoxicity against CD5+ malignant cell lines and controlled disease progression in xenograft mouse model. 12 C CAR-NK cells demonstrated greater antitumor activity compared to that of IL-15△ CAR-NK cells in vitro and in vivo. CONCLUSIONS Taken together, the fourth-generation nanobody-derived anti-CD5 CAR-NK cells may be a promising therapeutic against T-cell malignancies.
Collapse
Affiliation(s)
- Yingling Zu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Quan Ren
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jishuai Zhang
- Shenzhen Pregene Biopharma Company, Ltd, Shenzhen, Guangdong, 518118, China
| | - Hongchang Su
- Shenzhen Pregene Biopharma Company, Ltd, Shenzhen, Guangdong, 518118, China
| | - Qiumei Lu
- Shenzhen Pregene Biopharma Company, Ltd, Shenzhen, Guangdong, 518118, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Jian Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, 450008, China.
| |
Collapse
|
3
|
Acharya S, Basar R, Daher M, Rafei H, Li P, Uprety N, Ensley E, Shanley M, Kumar B, Banerjee PP, Melo Garcia L, Lin P, Mohanty V, Kim KH, Jiang X, Pan Y, Li Y, Liu B, Nunez Cortes AK, Zhang C, Fathi M, Rezvan A, Montalvo MJ, Cha SL, Reyes-Silva F, Shrestha R, Guo X, Kundu K, Biederstadt A, Muniz-Feliciano L, Deyter GM, Kaplan M, Jiang XR, Liu E, Jain A, Roszik J, Fowlkes NW, Solis Soto LM, Raso MG, Khoury JD, Lin P, Vega F, Varadarajan N, Chen K, Marin D, Shpall EJ, Rezvani K. CD28 Costimulation Augments CAR Signaling in NK Cells via the LCK/CD3ζ/ZAP70 Signaling Axis. Cancer Discov 2024; 14:1879-1900. [PMID: 38900051 PMCID: PMC11452288 DOI: 10.1158/2159-8290.cd-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3ζ creates a platform that recruits critical kinases, such as lymphocyte-specific protein tyrosine kinase (LCK) and zeta-chain-associated protein kinase 70 (ZAP70), initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy. Significance: We demonstrated that incorporation of the T-cell-centric costimulatory molecule CD28, which is normally absent in mature natural killer (NK) cells, into the chimeric antigen receptor (CAR) construct recruits key kinases including lymphocyte-specific protein tyrosine kinase and zeta-chain-associated protein kinase 70 and results in enhanced CAR-NK cell persistence and sustained antitumor cytotoxicity.
Collapse
Affiliation(s)
- Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianli Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuchen Pan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyu Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
- CellChorus, Inc., Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa J. Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Sophia L Cha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes-Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rejeena Shrestha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingliang Guo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstadt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary M. Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Janos Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Patterson C, Hazime KS, Zelenay S, Davis DM. Prostaglandin E₂ impacts multiple stages of the natural killer cell antitumor immune response. Eur J Immunol 2024; 54:e2350635. [PMID: 38059519 DOI: 10.1002/eji.202350635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tumor immune escape is a major factor contributing to cancer progression and unresponsiveness to cancer therapies. Tumors can produce prostaglandin E2 (PGE2 ), an inflammatory mediator that directly acts on Natural killer (NK) cells to inhibit antitumor immunity. However, precisely how PGE2 influences NK cell tumor-restraining functions remains unclear. Here, we report that following PGE₂ treatment, human NK cells exhibited altered expression of specific activating receptors and a reduced ability to degranulate and kill cancer targets. Transcriptional analysis uncovered that PGE₂ also differentially modulated the expression of chemokine receptors by NK cells, inhibiting CXCR3 but increasing CXCR4. Consistent with this, PGE₂-treated NK cells exhibited decreased migration to CXCL10 but increased ability to migrate toward CXCL12. Using live cell imaging, we showed that in the presence of PGE2 , NK cells were slower and less likely to kill cancer target cells following conjugation. Imaging the sequential stages of NK cell killing revealed that PGE₂ impaired NK cell polarization, but not the re-organization of synaptic actin or the release of perforin itself. Together, these findings demonstrate that PGE₂ affects multiple but select NK cell functions. Understanding how cancer cells subvert NK cells is necessary to more effectively harness the cancer-inhibitory function of NK cells in treatments.
Collapse
Affiliation(s)
- Chloe Patterson
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | - Khodor S Hazime
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Santiago Zelenay
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Daniel M Davis
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
5
|
Pfeifer Serrahima J, Zhang C, Oberoi P, Bodden M, Röder J, Arndt C, Feldmann A, Kiefer A, Prüfer M, Kühnel I, Tonn T, Bachmann M, Wels WS. Multivalent adaptor proteins specifically target NK cells carrying a universal chimeric antigen receptor to ErbB2 (HER2)-expressing cancers. Cancer Immunol Immunother 2023; 72:2905-2918. [PMID: 36688995 PMCID: PMC10412657 DOI: 10.1007/s00262-023-03374-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Chimeric antigen receptor (CAR)-engineered immune effector cells constitute a promising approach for adoptive cancer immunotherapy. Nevertheless, on-target/off-tumor toxicity and immune escape due to antigen loss represent considerable challenges. These may be overcome by adaptor CARs that are selectively triggered by bispecific molecules that crosslink the CAR with a tumor-associated surface antigen. Here, we generated NK cells carrying a first- or second-generation universal CAR (UniCAR) and redirected them to tumor cells with so-called target modules (TMs) which harbor an ErbB2 (HER2)-specific antibody domain for target cell binding and the E5B9 peptide recognized by the UniCAR. To investigate differential effects of the protein design on activity, we developed homodimeric TMs with one, two or three E5B9 peptides per monomer, and binding domains either directly linked or separated by an IgG4 Fc domain. The adaptor molecules were expressed as secreted proteins in Expi293F cells, purified from culture supernatants and their bispecific binding to UniCAR and ErbB2 was confirmed by flow cytometry. In cell killing experiments, all tested TMs redirected NK cell cytotoxicity selectively to ErbB2-positive tumor cells. Nevertheless, we found considerable differences in the extent of specific cell killing depending on TM design and CAR composition, with adaptor proteins carrying two or three E5B9 epitopes being more effective when combined with NK cells expressing the first-generation UniCAR, while the second-generation UniCAR was more active in the presence of TMs with one E5B9 sequence. These results may have important implications for the further development of optimized UniCAR and target module combinations for cancer immunotherapy.
Collapse
Affiliation(s)
- Jordi Pfeifer Serrahima
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- Partner Site Frankfurt/Mainz, German Cancer Consortium (DKTK), Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- Partner Site Frankfurt/Mainz, German Cancer Consortium (DKTK), Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Malena Bodden
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Jasmin Röder
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anne Kiefer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Maren Prüfer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Ines Kühnel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, Germany
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, Germany
- National Center for Tumor Diseases (NCT) and Tumor Immunology, University Cancer Center (UCC) Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany.
- Partner Site Frankfurt/Mainz, German Cancer Consortium (DKTK), Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.
| |
Collapse
|
6
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
7
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
8
|
Kotzur R, Stein N, Kahlon S, Berhani O, Isaacson B, Mandelboim O. Eradication of CD48-positive tumors by selectively enhanced YTS cells harnessing the lncRNA NeST. iScience 2023; 26:107284. [PMID: 37609636 PMCID: PMC10440710 DOI: 10.1016/j.isci.2023.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Natural killer (NK) cells are currently used in clinical trials to treat tumors. However, such therapies still suffer from problems such as donor variability, reproducibility, and more, which prevent a wider use of NK cells therapeutics. Here we show a potential immunotherapy combining NK cell-mediated tumor eradiation and long non-coding (lnc) RNAs. We overexpressed the interferon (IFN) γ secretion-enhancing lncRNA nettoie Salmonella pas Theiler's (NeST) in the NK cell-like cell line YTS. YTS cells express the co-stimulatory receptor 2B4 whose main ligand is CD48. On YTS cells, 2B4 functions by direct activation. We showed that NeST overexpression in YTS cells resulted in increased IFNγ release upon interaction with CD48 (selectively enhanced (se)YTS cells). Following irradiation, the seYTS cells lost proliferation capacity but were still able to maintain their killing and IFNγ secretion capacities. Finally, we demonstrated that irradiated seYTS inhibit tumor growth in vivo. Thus, we propose seYTS cells as off-the-shelve therapy for CD48-expressing tumors.
Collapse
Affiliation(s)
- Rebecca Kotzur
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Natan Stein
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Shira Kahlon
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Batya Isaacson
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| |
Collapse
|
9
|
Stevens CR, Atkuri K, Menard DL, King LE, Neubert H, Goihberg P. Mass cytometry for the multiplexed quantification and characterization of target expression on circulating cells in whole blood. Cytometry A 2023; 103:631-645. [PMID: 36966446 DOI: 10.1002/cyto.a.24730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Characterization of target abundance on cells has broad translational applications. Among the approaches for assessing membrane target expression is quantification of the number of target-specific antibody (Ab) bound per cell (ABC). ABC determination on relevant cell subsets in complex and limited biological samples necessitates multidimensional immunophenotyping, for which the high-order multiparameter capabilities of mass cytometry provide considerable advantages. In the present study, we describe the implementation of CyTOF® for the concomitant quantification of membrane markers on diverse types of immune cells in human whole blood. Specifically, our protocol relies on establishing Bmax of Ab saturable binding on cells, then converted into ABC according to a metal's transmission efficiency and number of metal atoms per Ab. Using this method, we calculated ABC values for CD4 and CD8 within the expected range for circulating T cells and in concordance with the ABC obtained in the same samples by flow cytometry. Furthermore, we successfully conducted multiplex measurements of the ABC for CD28, CD16, CD32a, and CD64, on >15 immune cell subsets in human whole blood samples. We developed a high-dimensional data analysis workflow enabling semi-automated Bmax calculation in all examined cell subsets to facilitate ABC reporting across populations. In addition, we investigated impacts of the type of metal isotope and acquisition batch effect on the ABC evaluation with CyTOF®. In summary, our findings demonstrate mass cytometry is a valuable tool for concurrent quantitative analysis of multiple targets in specific and rare cell types, thus increasing the numbers of biomeasures obtained from a single sample.
Collapse
Affiliation(s)
- Chad R Stevens
- Biomarkers and Biomeasures, Biomedicine Design, Pfizer Inc, Andover, Massachusetts, USA
| | - Kondala Atkuri
- Biomarkers and Biomeasures, Biomedicine Design, Pfizer Inc, Andover, Massachusetts, USA
| | | | - Lindsay E King
- Biomarkers and Biomeasures, Biomedicine Design, Pfizer Inc, Andover, Massachusetts, USA
| | - Hendrik Neubert
- Biomarkers and Biomeasures, Biomedicine Design, Pfizer Inc, Andover, Massachusetts, USA
| | - Polina Goihberg
- Biomarkers and Biomeasures, Biomedicine Design, Pfizer Inc, Andover, Massachusetts, USA
| |
Collapse
|
10
|
Feng YB, Chen L, Chen FX, Yang Y, Chen GH, Zhou ZH, Xu CF. Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int J Immunopathol Pharmacol 2023; 37:3946320231161174. [PMID: 36848930 PMCID: PMC9974612 DOI: 10.1177/03946320231161174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Apigenin is a kind of flavonoid with many beneficial biological effects. It not only has direct cytotoxicity to tumor cells, but also can boost the antitumor effect of immune cells by modulating immune system. The purpose of this study was to investigate the proliferation of NK cells treated with apigenin and its cytotoxicity to pancreatic cancer cells in vitro, and explore its potential molecular mechanism. In this study, the effect of apigenin on NK cell proliferation and killing pancreatic cancer cells were measured by CCK-8 assay. Perforin, granzyme B (Gran B), CD107a, and NKG2D expressions of NK cells induced with apigenin were detected by flow cytometry (FCM). The mRNA expression of Bcl-2, Bax and protein expression of Bcl-2, Bax, p-ERK, and p-JNK in NK cells were evaluated by qRT-PCR and western blotting analysis, respectively. The results showed that appropriate concentration of apigenin could significantly promote the proliferation of NK cells in vitro and enhance the killing activity of NK cells against pancreatic cancer cells. The expressions of surface antigen NKG2D and intracellular antigen perforin and Gran B of NK cells were upregulated after treating with apigenin. Bcl-2 mRNA expression was increased, while Bax mRNA expression was decreased. Similarly, the expression of Bcl-2, p-JNK, and p-ERK protein was upregulated, and the expression of Bax protein was downregulated. The molecular mechanism of the immunopotentiation effects of apigenin may be that it up-regulates Bcl-2 and down-regulates Bax expression at the gene and protein levels to facilitate NK cell proliferation, and up-regulates the expression of perforin, Gran B, and NKG2D through the activation of JNK and ERK pathways to enhance NK cell cytotoxicity.
Collapse
Affiliation(s)
- Yong-Bo Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Jiangsu, China,Department of Gastroenterology, Nanjing Gaochun Hospital of Chinese Medicine, Jiangsu, China
| | - Ling Chen
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Fu-Xing Chen
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Yang Yang
- Department of Pharmacy, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Guo-Hua Chen
- Department of General Surgery, Nanjing Gaochun Hospital of Chinese Medicine, Jiangsu, China
| | - Zhong-Hai Zhou
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China,Zhong-Hai Zhou, Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, 236 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Chun-Fang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Jiangsu, China,Chun-Fang Xu, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi street, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
11
|
Pariani AP, Almada E, Hidalgo F, Borini-Etichetti C, Vena R, Marín L, Favre C, Goldenring JR, Cecilia Larocca M. Identification of a novel mechanism for LFA-1 organization during NK cytolytic response. J Cell Physiol 2023; 238:227-241. [PMID: 36477412 DOI: 10.1002/jcp.30921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.
Collapse
Affiliation(s)
- Alejandro P Pariani
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Evangelina Almada
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET-UNR, Rosario, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Carla Borini-Etichetti
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Leandra Marín
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - James R Goldenring
- Epithelial Biology Center and Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maria Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
12
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
13
|
Sabag B, Levy M, Kivelevitz J, Dashevsky N, Ben-Shmuel A, Puthenveetil A, Awwad F, Barda-Saad M. Actin Retrograde Flow Regulated by the Wiskott–Aldrich Syndrome Protein Drives the Natural Killer Cell Response. Cancers (Basel) 2022; 14:cancers14153756. [PMID: 35954420 PMCID: PMC9367451 DOI: 10.3390/cancers14153756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the crosstalk between natural killer (NK) cells and the tumor microenvironment (TME) has enhanced the potential of exploiting the interplay between activation and inhibition of NK cells for immunotherapy. This interaction is crucial for understanding how tumor cells escape NK cell immune surveillance. NK cell dysfunction is regulated by two molecular mechanisms, downregulated activating receptor ligand expression on the tumor cells, and upregulated inhibitory signals delivered to NK cells. Recent studies demonstrated the role of mechanotransduction in modulating NK cell responses in the TME. The immunological synapse represents a functional interface between the NK cell and its target, regulated by Actin Retrograde Flow (ARF), which drives the adhesion molecules and receptors toward the central zone of the immunological synapse (IS). Here, we further characterize the role of ARF in controlling the immune response of NK cells, using CRISPR/cas9-mediated Wiskott–Aldrich Syndrome protein (WASp) gene silencing of NK cells. We demonstrate that WASp regulates ARF velocity, affecting the conformation and function of the key NK inhibitory regulator, SH2-domain containing protein tyrosine phosphatase-1 (SHP-1), and consequently, the NK cell response. Our results demonstrate the potential of modulating the biophysical and intracellular regulation of NK activation as a promising approach for improving immunotherapy.
Collapse
|
14
|
Gong YY, Shao H, Li Y, Brafford P, Stine ZE, Sun J, Felsher DW, Orange JS, Albelda SM, Dang CV. Na +/H +-exchanger 1 enhances antitumor activity of engineered NK-92 natural killer cells. CANCER RESEARCH COMMUNICATIONS 2022; 2:842-856. [PMID: 36380966 PMCID: PMC9648415 DOI: 10.1158/2767-9764.crc-22-0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
Adoptive cell transfer (ACT) immunotherapy has remarkable efficacy against some hematological malignancies. However, its efficacy in solid tumors is limited by the adverse tumor microenvironment (TME) conditions, most notably that acidity inhibits T and natural killer (NK) cell mTOR complex 1 (mTORC1) activity and impairs cytotoxicity. In several reported studies, systemic buffering of tumor acidity enhanced the efficacy of immune checkpoint inhibitors. Paradoxically, we found in a c-Myc-driven hepatocellular carcinoma model that systemic buffering increased tumor mTORC1 activity, negating inhibition of tumor growth by anti-PD1 treatment. Therefore, in this proof-of-concept study, we tested the metabolic engineering of immune effector cells to mitigate the inhibitory effect of tumor acidity while avoiding side effects associated with systemic buffering. We first overexpressed an activated RHEB in the human NK cell line NK-92, thereby rescuing acid-blunted mTORC1 activity and enhancing cytolytic activity. Then, to directly mitigate the effect of acidity, we ectopically expressed acid extruder proteins. Whereas ectopic expression of carbonic anhydrase IX (CA9) moderately increased mTORC1 activity, it did not enhance effector function. In contrast, overexpressing a constitutively active Na+/H+-exchanger 1 (NHE1; SLC9A1) in NK-92 did not elevate mTORC1 but enhanced degranulation, target engagement, in vitro cytotoxicity, and in vivo antitumor activity. Our findings suggest the feasibility of overcoming the inhibitory effect of the TME by metabolically engineering immune effector cells, which can enhance ACT for better efficacy against solid tumors.
Collapse
Affiliation(s)
- Yao-Yu Gong
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Yu Li
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | | | | | - Jing Sun
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dean W. Felsher
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jordan S. Orange
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chi V. Dang
- The Wistar Institute, Philadelphia, Pennsylvania
- Ludwig Institute for Cancer Research, New York, New York
| |
Collapse
|
15
|
Sun H, Kim E, Ryu J, Lee H, Shin EA, Lee M, Lee H, Lee JH, Yoon JH, Song DG, Kim S, Lee JW. TM4SF5-mediated liver malignancy involves NK cell exhaustion-like phenotypes. Cell Mol Life Sci 2021; 79:49. [PMID: 34921636 PMCID: PMC8739317 DOI: 10.1007/s00018-021-04051-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Aberrant extracellular matrix and immune cell alterations within the tumor microenvironment promote the pathological progression of liver carcinogenesis. Although transmembrane 4 L six family member 5 (TM4SF5) is involved in liver fibrosis and cancer, its mechanism avoiding immune surveillance during carcinogenesis remains unknown. We investigated how TM4SF5-mediated signaling caused immune evasion using in vitro primary cells and in vivo liver tissues from genetic or chemically induced mouse models. TM4SF5-transgenic and diethylnitrosamine (DEN)-induced liver cancer mouse models exhibited fibrotic and cancerous livers, respectively, with enhanced TM4SF5, pY705STAT3, collagen I, and laminin γ2 levels. These TM4SF5-mediated effects were abolished by TM4SF5 inhibitor, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC). TM4SF5-dependent tumorigenesis involved natural killer (NK) cell exhaustion-like phenotypes including the reduction of NK cell number or function, which were blocked with TSAHC treatment. TM4SF5 expression in cancer cells downregulated stimulatory ligands and receptors for NK cell cytotoxicity, including SLAMF6, SLAMF7, MICA/B, and others. TM4SF5 suppression or inhibition reduced STAT3 signaling activity and recovered the receptor levels and NK cell surveillance, leading to reduced fibrotic and cancerous phenotypes, and longer survival. Altogether, these findings suggest that TM4SF5-mediated STAT3 activity for extracellular matrix modulation is involved in the progression of liver disease to HCC and that TM4SF5 appears to suppress NK cells during liver carcinogenesis.
Collapse
Affiliation(s)
- Hyunseung Sun
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunmi Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Ryu
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minhyeong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do, 25451, Republic of Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Characterization of IL-2 Stimulation and TRPM7 Pharmacomodulation in NK Cell Cytotoxicity and Channel Co-Localization with PIP 2 in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211879. [PMID: 34831634 PMCID: PMC8618557 DOI: 10.3390/ijerph182211879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multisystemic disorder responsible for significant disability. Although a unifying etiology for ME/CFS is uncertain, impaired natural killer (NK) cell cytotoxicity represents a consistent and measurable feature of this disorder. Research utilizing patient-derived NK cells has implicated dysregulated calcium (Ca2+) signaling, dysfunction of the phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent cation channel, transient receptor potential melastatin (TRPM) 3, as well as altered surface expression patterns of TRPM3 and TRPM2 in the pathophysiology of ME/CFS. TRPM7 is a related channel that is modulated by PIP2 and participates in Ca2+ signaling. Though TRPM7 is expressed on NK cells, the role of TRPM7 with IL-2 and intracellular signaling mechanisms in the NK cells of ME/CFS patients is unknown. This study examined the effect of IL-2 stimulation and TRPM7 pharmacomodulation on NK cell cytotoxicity using flow cytometric assays as well as co-localization of TRPM7 with PIP2 and cortical actin using confocal microscopy in 17 ME/CFS patients and 17 age- and sex-matched healthy controls. The outcomes of this investigation are preliminary and indicate that crosstalk between IL-2 and TRMP7 exists. A larger sample size to confirm these findings and characterization of TRPM7 in ME/CFS using other experimental modalities are warranted.
Collapse
|
17
|
Gutierrez-Guerrero A, Mancilla-Herrera I, Maravillas-Montero JL, Martinez-Duncker I, Veillette A, Cruz-Munoz ME. SLAMF7 selectively favors degranulation to promote cytotoxicity in human NK cells. Eur J Immunol 2021; 52:62-74. [PMID: 34693521 DOI: 10.1002/eji.202149406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
NK cells play an important role in immunity by recognizing and eliminating cells undergoing infection or malignant transformation. This role is dependent on the ability of NK cells to lyse targets cells in a perforin-dependent mechanism and by secreting inflammatory cytokines. Both effector functions are controlled by several cell surface receptors. The Signaling Lymphocyte Activation Molecule (SLAM) family of receptors plays an essential role in regulating NK cell activation. Several studies have demonstrated that SLAMF7 regulates NK cell activation. However, the molecular and cellular mechanisms by which SLAMF7 influences NK effector functions are unknown. Here, we present evidence that physiological ligation of SLAMF7 in human NK cells enhances the lysis of target cells expressing SLAMF7. This effect was dependent on the ability of SLAMF7 to promote NK cell degranulation rather than cytotoxic granule polarization or cell adhesion. Moreover, SLAMF7-dependent NK cell degranulation was predominantly dependent on PLC-γ when compared to PI3K. These data provide novel information on the cellular mechanism by which SLAMF7 regulates human NK cell activation. Finally, this study supports a model for NK cell activation where activated receptors contribute by regulating specific discrete cellular events rather than multiple cellular processes.
Collapse
Affiliation(s)
- Arturo Gutierrez-Guerrero
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.,Instituto de Investigación en Ciencias Básicas y Aplicadas, Mexico City, México
| | | | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Mexico City, México.,Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Andre Veillette
- Institute de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Mario E Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
18
|
Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10708. [PMID: 34682454 PMCID: PMC8535478 DOI: 10.3390/ijerph182010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
The transient receptor potential (TRP) superfamily of ion channels is involved in the molecular mechanisms that mediate neuroimmune interactions and activities. Recent advancements in neuroimmunology have identified a role for TRP cation channels in several neuroimmune disorders including amyotropic lateral sclerosis, multiple sclerosis, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating disorder with an obscure aetiology, hence considerable examination of its pathobiology is warranted. Dysregulation of TRP melastatin (TRPM) subfamily members and calcium signalling processes are implicated in the neurological, immunological, cardiovascular, and metabolic impairments inherent in ME/CFS. In this review, we present TRPM7 as a potential candidate in the pathomechanism of ME/CFS, as TRPM7 is increasingly recognized as a key mediator of physiological and pathophysiological mechanisms affecting neurological, immunological, cardiovascular, and metabolic processes. A focused examination of the biochemistry of TRPM7, the role of this protein in the aforementioned systems, and the potential of TRPM7 as a molecular mechanism in the pathophysiology of ME/CFS will be discussed in this review. TRPM7 is a compelling candidate to examine in the pathobiology of ME/CFS as TRPM7 fulfils several key roles in multiple organ systems, and there is a paucity of literature reporting on its role in ME/CFS.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Helene Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- Institut de Recherche Saint Louis, Université de Paris, INSERM U944 and CNRS UMR 7212, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| |
Collapse
|
19
|
Afolabi LO, Bi J, Chen L, Wan X. A natural product, Piperlongumine (PL), increases tumor cells sensitivity to NK cell killing. Int Immunopharmacol 2021; 96:107658. [PMID: 33887610 DOI: 10.1016/j.intimp.2021.107658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Natural Killer (NK) cells are components of innate immune surveillance against transformed cells. NK cell immunotherapy has attracted attention as a promising strategy for cancer treatment, whose antitumor effects, however, require further improvement. The use of small molecules with immunomodulatory potentials and selective tumor-killing possesses the potential to complement immunotherapy. This study demonstrated that Piperlongumine (PL), a natural alkaloid obtained from long pepper fruit, alone has antitumor and anti-proliferative potential on all the tested tumors in vitro. PL pretreatment of tumor cells also potentiates their susceptibility to NK cell cytolysis at the doses where NK cell functions were preserved. Importantly, PL suppresses both NK -sensitive MHC-I -deficient and MHC-I -sufficient tumor growth in vivo. Mechanistically, PL induces misfolded proteins, impedes autophagy, increases ROS and tumor conjugation with NK cells. Furthermore, PL enhances the expression of NK cell-activating receptors on NK cells and its ligands on tumor cells, possibly leading to increased susceptibility to NK cell killing. Our findings showed the antitumor and immunomodulatory potential of PL, which could be explored to complement NK cell immunotherapy for cancer treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/immunology
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Autophagy/drug effects
- Biological Products/immunology
- Biological Products/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cytotoxicity, Immunologic/drug effects
- Dioxolanes/immunology
- Dioxolanes/pharmacology
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms/drug therapy
- Neoplasms/immunology
- Reactive Oxygen Species/metabolism
- Receptors, Natural Killer Cell/drug effects
- Receptors, Natural Killer Cell/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Lukman O Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Jiacheng Bi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Liang Chen
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China.
| |
Collapse
|
20
|
Verron Q, Forslund E, Brandt L, Leino M, Frisk TW, Olofsson PE, Önfelt B. NK cells integrate signals over large areas when building immune synapses but require local stimuli for degranulation. Sci Signal 2021; 14:14/684/eabe2740. [PMID: 34035142 DOI: 10.1126/scisignal.abe2740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune synapses are large-scale, transient molecular assemblies that serve as platforms for antigen presentation to B and T cells and for target recognition by cytotoxic T cells and natural killer (NK) cells. The formation of an immune synapse is a tightly regulated, stepwise process in which the cytoskeleton, cell surface receptors, and intracellular signaling proteins rearrange into supramolecular activation clusters (SMACs). We generated artificial immune synapses (AIS) consisting of synthetic and natural ligands for the NK cell-activating receptors LFA-1 and CD16 by microcontact printing the ligands into circular-shaped SMAC structures. Live-cell imaging and analysis of fixed human NK cells in this reductionist system showed that the spatial distribution of activating ligands influenced the formation, stability, and outcome of NK cell synapses. Whereas engagement of LFA-1 alone promoted synapse initiation, combined engagement of LFA-1 and CD16 was required for the formation of mature synapses and degranulation. Organizing LFA-1 and CD16 ligands into donut-shaped AIS resulted in fewer long-lasting, symmetrical synapses compared to dot-shaped AIS. NK cells spreading evenly over either AIS shape exhibited similar arrangements of the lytic machinery. However, degranulation only occurred in regions containing ligands that therefore induced local signaling, suggesting the existence of a late checkpoint for degranulation. Our results demonstrate that the spatial organization of ligands in the synapse can affect its outcome, which could be exploited by target cells as an escape mechanism.
Collapse
Affiliation(s)
- Quentin Verron
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elin Forslund
- Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ludwig Brandt
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mattias Leino
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thomas W Frisk
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Per E Olofsson
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden. .,Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
22
|
Yang F, Zhao L, Wei Z, Yang Y, Liu J, Li Y, Tian X, Liu X, Lü X, Sui J. A Cross-Species Reactive TIGIT-Blocking Antibody Fc Dependently Confers Potent Antitumor Effects. THE JOURNAL OF IMMUNOLOGY 2020; 205:2156-2168. [PMID: 32887749 DOI: 10.4049/jimmunol.1901413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
The T cell immunoreceptor with Ig and ITIM domains (TIGIT) has been shown to exert inhibitory roles in antitumor immune responses. In this study, we report the development of a human mAb, T4, which recognizes both human and mouse TIGIT and blocks the interaction of TIGIT with its ligand CD155 in both species. The T4 Ab targets the segment connecting F and G strands of TIGIT's extracellular IgV domain, and we show in studies with mouse tumor models that the T4 Ab exerts strong antitumor activity and induces durable immune memory against various tumor types. Mechanistically, we demonstrate that the T4 Ab's antitumor effects are mediated via multiple immunological impacts, including a CD8+ T immune response and Fc-mediated effector functions, through NK cells that cause significant reduction in the frequency of intratumoral T regulatory cells (Tregs). Notably, this Treg reduction apparently activates additional antitumor CD8+ T cell responses, targeting tumor-shared Ags that are normally cryptic or suppressed by Tregs, thus conferring cross-tumor immune memory. Subsequent engineering for Fc variants of the T4 Ab with enhanced Fc-mediated effector functions yielded yet further improvements in antitumor efficacy. Thus, beyond demonstrating the T4 Ab as a promising candidate for the development of cancer immunotherapies, our study illustrates how the therapeutic efficacy of an anti-TIGIT Ab can be improved by enhancing Fc-mediated immune effector functions. Our insights about the multiple mechanisms of action of the T4 Ab and its Fc variants should help in developing new strategies that can realize the full clinical potential of anti-TIGIT Ab therapies.
Collapse
Affiliation(s)
- Fang Yang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Linlin Zhao
- National Institute of Biological Sciences, Beijing 102206, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, Beijing 102206, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yajing Yang
- National Institute of Biological Sciences, Beijing 102206, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Juan Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, Beijing 102206, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, College of Life Sciences, Peking University, Beijing 100871, China; and
| | - Xinxin Tian
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ximing Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xueyuan Lü
- National Institute of Biological Sciences, Beijing 102206, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing 102206, China; .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
23
|
Lu Z, Bi J, Wan X. Artemisinin sensitizes tumor cells to NK cell-mediated cytolysis. Biochem Biophys Res Commun 2020; 524:418-423. [PMID: 32007276 DOI: 10.1016/j.bbrc.2020.01.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
The antimalarial drug Artemisinin has been reported to possess direct anti-tumor effects on various types of tumor cells. However, its anti-tumor potential has not been fully revealed, and its effects on tumor susceptibility to immune surveillance by the host are still unknown. Natural killer (NK) cells are the first line in tumor surveillance by the host, and have been recognized as a promising target for tumor immunotherapy. Here, we reported that Artemisinin sensitized tumor cells to NK cell cytolysis. Both human K562 and Raji tumor cells, and mouse YAC-1 tumor cells were more susceptible to human or mouse NK cell cytolysis in vitro after Artemisinin pretreatment. Conjugation formation between tumor cells and NK cells was increased after pretreatment with Artemisinin. Such effects on tumor cells by Artemisinin might not be the results of tumor recognition by NK cells, since major ligands of NK cell surface receptors were not affected. Mechanistically, although Artemisinin didn't induce tumor cell apoptosis, Artemisinin enriched apoptosis-related gene sets in these tumor cells, which might predispose tumor cells to apoptosis upon NK cell cytolysis. Moreover, NK cell numbers, percentages, maturation and functions were preserved in the presence of Artemisinin in vitro, suggesting that Artemisinin displays detrimental effects only on tumor cells but not on immune cells. These data reveal a novel anti-tumor mechanism of Artemisinin and demonstrate that Artemisinin could be a promising drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Zhen Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiacheng Bi
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
24
|
Rohr M, Narasimhulu CA, Keewan E, Hamid S, Parthasarathy S. The dietary peroxidized lipid, 13-HPODE, promotes intestinal inflammation by mediating granzyme B secretion from natural killer cells. Food Funct 2020; 11:9526-9534. [DOI: 10.1039/d0fo02328k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dietary peroxidized lipid, 13-HPODE, stimulates natural killer cell granzyme B production and secretion, with potential implications for intestinal inflammation.
Collapse
Affiliation(s)
- Michael Rohr
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | | | - Esra'a Keewan
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | - Simran Hamid
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| |
Collapse
|
25
|
Gunesch JT, Angelo LS, Mahapatra S, Deering RP, Kowalko JE, Sleiman P, Tobias JW, Monaco-Shawver L, Orange JS, Mace EM. Genome-wide analyses and functional profiling of human NK cell lines. Mol Immunol 2019; 115:64-75. [PMID: 30054012 PMCID: PMC6345623 DOI: 10.1016/j.molimm.2018.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cell lines, including YTS, NK92, NK3.3, and NKL, represent excellent models for the study of human natural killer cells. While phenotypic and functional differences between these cell lines have been reported, a multi-parametric study, encompassing genomic, phenotypic, and functional assays, has not been performed. Here, using a combination of techniques including microarray and copy number analyses, flow cytometry, and functional assays, we provide in-depth genetic, functional, and phenotypic comparison of YTS, NK92, NK3.3, and NKL cell lines. Specifically, we found that while the cell lines shared similarities in enrichment of growth and survival pathways, they had differential expression of 557 genes, including genes related to NK cell development, survival, and function. In addition, we provide genetic and phenotypic analyses that demonstrate distinct developmental origins of NK92, YTS, and NKL cell lines. Specifically, NK92 has a phenotype associated with the CD56bright NK cell subset, while both YTS and NKL appear more CD56dim-like. Finally, by classifying cell lines based on their lytic potential, we identified genes differentially expressed between NK cell lines with high and low lytic function. Taken together, these data provide the first comprehensive genetic, phenotypic, and functional analyses of these commonly used NK cell lines and provides deeper understanding into their origins and function. This will ultimately improve their use as models for human NK cell biology.
Collapse
Affiliation(s)
- Justin T Gunesch
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA; Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Laura S Angelo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| | - Sanjana Mahapatra
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA; Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | - John W Tobias
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | | | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
26
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
27
|
Pandey R, Bakay M, Hain HS, Strenkowski B, Yermakova A, Kushner JA, Orange JS, Hakonarson H. The Autoimmune Disorder Susceptibility Gene CLEC16A Restrains NK Cell Function in YTS NK Cell Line and Clec16a Knockout Mice. Front Immunol 2019; 10:68. [PMID: 30774629 PMCID: PMC6367972 DOI: 10.3389/fimmu.2019.00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
CLEC16A locus polymorphisms have been associated with several autoimmune diseases. We overexpressed CLEC16A in YTS natural killer (NK) cells and observed reduced NK cell cytotoxicity and IFN-γ release, delayed dendritic cell (DC) maturation, decreased conjugate formation, cell-surface receptor downregulation and increased autophagy. In contrast, siRNA mediated knockdown resulted in increased NK cell cytotoxicity, reversal of receptor expression and disrupted mitophagy. Subcellular localization studies demonstrated that CLEC16A is a cytosolic protein that associates with Vps16A, a subunit of class C Vps-HOPS complex, and modulates receptor expression via autophagy. Clec16a knockout (KO) in mice resulted in altered immune cell populations, increased splenic NK cell cytotoxicity, imbalance of dendritic cell subsets, altered receptor expression, upregulated cytokine and chemokine secretion. Taken together, our findings indicate that CLEC16A restrains secretory functions including cytokine release and cytotoxicity and that a delicate balance of CLEC16A is needed for NK cell function and homeostasis.
Collapse
Affiliation(s)
- Rahul Pandey
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Heather S Hain
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Bryan Strenkowski
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anastasiya Yermakova
- Section of Immunology, Allergy, and Rheumatology, Department of Pediatric Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Jake A Kushner
- Section of Pediatric Diabetes and Endocrinology, Department of Pediatric Medicine, Endocrine-Metabolism, Texas Children's Hospital, Houston, TX, United States
| | - Jordan S Orange
- Section of Immunology, Allergy, and Rheumatology, Department of Pediatric Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy. Int J Mol Sci 2019; 20:ijms20020317. [PMID: 30646574 PMCID: PMC6358726 DOI: 10.3390/ijms20020317] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that can be activated rapidly to target abnormal and virus-infected cells without prior sensitization. With significant advancements in cell biology technologies, many NK cell lines have been established. Among these cell lines, NK-92 cells are not only the most widely used but have also been approved for clinical applications. Additionally, chimeric antigen receptor-modified NK-92 cells (CAR-NK-92 cells) have shown strong antitumor effects. In this review, we summarize established human NK cell lines and their biological characteristics, and highlight the applications of NK-92 cells and CAR-NK-92 cells in tumor immunotherapy.
Collapse
|
29
|
Kwon HJ, Lee H, Choi GE, Kwon SJ, Song AY, Kim SJ, Choi WS, Hwang SH, Kim SC, Kim HS. Ginsenoside F1 Promotes Cytotoxic Activity of NK Cells via Insulin-Like Growth Factor-1-Dependent Mechanism. Front Immunol 2018; 9:2785. [PMID: 30546365 PMCID: PMC6279892 DOI: 10.3389/fimmu.2018.02785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
Ginsenosides are the principal active components of ginseng and are considered attractive candidates for combination cancer therapy because they can kill tumors and have favorable safety profiles. However, the overall benefit of ginsenosides remains unclear, particularly in cancer immunosurveillance, considering the controversial results showing repression or promotion of immune responses. Here we identify a potentiating role of ginsenoside F1 (G-F1) in cancer surveillance by natural killer (NK) cells. Among 15 different ginsenosides, G-F1 most potently enhanced NK cell cytotoxicity in response to diverse activating receptors and cancer cells. G-F1 also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma that rely on NK cell activity. G-F1-treated NK cells exhibited elevated cytotoxic potential such as upregulation of cytotoxic mediators and of activation signals upon stimulation. NK cell potentiation by G-F1 was antagonized by insulin-like growth factor (IGF)-1 blockade and recapitulated by IGF-1 treatment, suggesting the involvement of IGF-1. Thus, our results suggest that G-F1 enhances NK cell function and may have chemotherapeutic potential in NK cell-based immunotherapy. We anticipate our results to be a starting point for further comprehensive studies of ginsenosides in the immune cells mediating cancer surveillance and the development of putative therapeutics.
Collapse
Affiliation(s)
- Hyung-Joon Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Heejae Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ah Young Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - So Jeong Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Woo Seon Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
30
|
Impaired cytolytic activity of asthma-associated natural killer cells is linked to dysregulated transcriptional program in energy metabolism. Mol Immunol 2018; 101:514-520. [PMID: 30145544 DOI: 10.1016/j.molimm.2018.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022]
Abstract
Natural killer (NK) cells are a cytotoxic subset of the innate lymphoid cells, playing essential roles in host defense against tumors and infections, which, however, are usually functionally compromised in chronic diseases. Atopic diseases, such as allergic asthma, characterized by type 2 immune responses, are usually associated with chronic inflammations. Whether asthma -associated immune environment affects the cytolytic function of NK cells has not been elucidated. Here, YTS, a human NK cell line, was exposed to serum from healthy donors or asthma patients for analysis of its cytolytic function. We found that, serum from asthma patients reduced the cytolytic activity of YTS cells against Raji human B lymphoblasts, in comparison with normal serum. The impairment of cytolytic activity of these YTS cells was accompanied with decreased degranulation potentials, weakened conjugation formation with Raji cells, and premature termination of ERK phosphorylation upon stimulation. Meanwhile, apoptosis or cell death of YTS cells was not increased after exposure to serum from asthma patients. Importantly, such impairment of cytolytic activity of asthma -associated YTS NK cells was accompanied with aberrantly enriched genes involved in oxidative phosphorylation. Taken together, these results demonstrate that the serum of asthma patients directly suppresses the cytolytic function of NK cells, possibly through dysregulation of energy metabolism in NK cells.
Collapse
|
31
|
Božič J, Stoka V, Dolenc I. Glucosamine prevents polarization of cytotoxic granules in NK-92 cells by disturbing FOXO1/ERK/paxillin phosphorylation. PLoS One 2018; 13:e0200757. [PMID: 30016365 PMCID: PMC6049946 DOI: 10.1371/journal.pone.0200757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Glucosamine (GlcN) is a naturally occurring derivative of glucose and an over-the-counter food additive. However, the mechanism underlying GlcN action on cells is unknown. In this study, we investigated the effect of GlcN on natural killer (NK) cells. We demonstrate that GlcN affects NK-92 cell cytotoxicity by altering the distribution of cathepsin C, a cysteine protease required for granzyme processing in cytotoxic granules. The relocation of cathepsin C due to GlcN was shown to be accompanied by a decrease in the intracellular enzyme activity and its extracellular secretion. Similarly, the relocation of endosomal aspartic cathepsin E was observed. Furthermore, we elucidated that repositioning of cathepsin C is a consequence of altered signaling pathways of cytotoxic granule movement. The inhibition of phosphorylation upstream and downstream of ERK by GlcN disturbed the polarized release of cytotoxic vesicles. Considerable changes in the ERK phosphorylation dynamics, but not in those of p38 kinase or JNK, were observed in the IL2-activated NK-92 cells. We found decreased phosphorylation of the transcription factor FOXO1 and simultaneous prolonged phosphorylation of ERK as well as its nuclear translocation. Additionally, a protein downstream of the ERK phosphorylation cascade, paxillin, was less phosphorylated, resulting in a diffuse distribution of cytotoxic granules. Taken together, our results suggest that dietary GlcN affects signaling pathway activation of NK-92 immune cells.
Collapse
Affiliation(s)
- Janja Božič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
- * E-mail: (ID); (VS)
| | - Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- * E-mail: (ID); (VS)
| |
Collapse
|
32
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
33
|
Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, Gagea M, Banerjee P, Cai R, Bdaiwi MH, Basar R, Muftuoglu M, Li L, Marin D, Wierda W, Keating M, Champlin R, Shpall E, Rezvani K. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 2018; 32:520-531. [PMID: 28725044 PMCID: PMC6063081 DOI: 10.1038/leu.2017.226] [Citation(s) in RCA: 577] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022]
Abstract
Chimeric antigen receptors (CARs) have been used to redirect the specificity of autologous T cells against leukemia and lymphoma with promising clinical results. Extending this approach to allogeneic T cells is problematic as they carry a significant risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are highly cytotoxic effectors, killing their targets in a non-antigen-specific manner without causing GVHD. Cord blood (CB) offers an attractive, allogeneic, off-the-self source of NK cells for immunotherapy. We transduced CB-derived NK cells with a retroviral vector incorporating the genes for CAR-CD19, IL-15 and inducible caspase-9-based suicide gene (iC9), and demonstrated efficient killing of CD19-expressing cell lines and primary leukemia cells in vitro, with marked prolongation of survival in a xenograft Raji lymphoma murine model. Interleukin-15 (IL-15) production by the transduced CB-NK cells critically improved their function. Moreover, iC9/CAR.19/IL-15 CB-NK cells were readily eliminated upon pharmacologic activation of the iC9 suicide gene. In conclusion, we have developed a novel approach to immunotherapy using engineered CB-derived NK cells, which are easy to produce, exhibit striking efficacy and incorporate safety measures to limit toxicity. This approach should greatly improve the logistics of delivering this therapy to large numbers of patients, a major limitation to current CAR-T-cell therapies.
Collapse
Affiliation(s)
- Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Yijiu Tong
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Barbara Savoldo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| | - Malini Mukherjee
- The Center for Human Immunobiology, Baylor College of Medicine, Houston, TX
| | - Jordan Orange
- The Center for Human Immunobiology, Baylor College of Medicine, Houston, TX
| | - Xinhai Wan
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Xinyan Lu
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | | | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, MD Anderson Cancer Center, Houston, TX
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Rong Cai
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | | | | | - Muharrem Muftuoglu
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - William Wierda
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Michael Keating
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
34
|
Duev-Cohen A, Bar-On Y, Glasner A, Berhani O, Ophir Y, Levi-Schaffer F, Mandelboim M, Mandelboim O. The human 2B4 and NTB-A receptors bind the influenza viral hemagglutinin and co-stimulate NK cell cytotoxicity. Oncotarget 2017; 7:13093-105. [PMID: 26919106 PMCID: PMC4914344 DOI: 10.18632/oncotarget.7597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Natural Killer (NK) cells are critical in the defense against viruses in general and against influenza in particular. We previously demonstrated that the activating NK cell receptor NKp46 is involved in the killing of influenza-virus infected cells through its interaction with viral hemagglutinin (HA). Furthermore, the recognition by NKp46 and consequent elimination of influenza infected cells were determined to be sialic-acid dependent. Here, we show that the human co-activating receptors 2B4 and NTB-A directly recognize the viral HA protein and co-stimulate killing by NK cells. We demonstrate that the 2B4/NTB-A-HA interactions require the sialylation of these receptors, and we identified the binding sites mediating these interactions. We also show that the virus counters these interactions through its neuraminidase (NA) protein. These results emphasize the critical role played by NK cells in eliminating influenza, a significant cause of worldwide morbidity and mortality.
Collapse
Affiliation(s)
- Alexandra Duev-Cohen
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Yotam Bar-On
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Ariella Glasner
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Orit Berhani
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Yael Ophir
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Public Health Services, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Ofer Mandelboim
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, Israel
| |
Collapse
|
35
|
Park SY, Yun S, Ryu BJ, Han AR, Lee SK. Trophoblasts regulate natural killer cells via control of interleukin-15 receptor signaling. Am J Reprod Immunol 2017; 78. [DOI: 10.1111/aji.12628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023] Open
Affiliation(s)
- Seo Y. Park
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Sohyun Yun
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Byung J. Ryu
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Ae R. Han
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Sung K. Lee
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| |
Collapse
|
36
|
Gil-Krzewska A, Murakami Y, Peruzzi G, O'Brien KJ, Merideth MA, Cullinane AR, Gahl WA, Coligan JE, Gochuico BR, Krzewski K. Natural killer cell activity and dysfunction in Hermansky-Pudlak syndrome. Br J Haematol 2016; 176:118-123. [PMID: 27766632 DOI: 10.1111/bjh.14390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 11/30/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) encompasses disorders with abnormal function of lysosomes and lysosome-related organelles, and some patients who develop immunodeficiency. The basic mechanisms contributing to immune dysfunction in HPS are ill-defined. We analysed natural killer (NK) cells from patients diagnosed with HPS-1, HPS-2, HPS-4, and an unreported HPS subtype. NK cells from an HPS-2 and an unreported HPS subtype share a similar cellular phenotype with defective granule release and cytotoxicity, but differ in cytokine exocytosis. Defining NK cell activity in several types of HPS provides insights into cellular defects of the disorder and understanding of mechanisms contributing to HPS pathogenesis.
Collapse
Affiliation(s)
- Aleksandra Gil-Krzewska
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Yousuke Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Giovanna Peruzzi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa A Merideth
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew R Cullinane
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Anatomy, College of Medicine, Howard University, Washington, DC, USA
| | - William A Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Bernadette R Gochuico
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
37
|
Quatrini L, Molfetta R, Zitti B, Peruzzi G, Fionda C, Capuano C, Galandrini R, Cippitelli M, Santoni A, Paolini R. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Sci Signal 2015; 8:ra108. [PMID: 26508790 DOI: 10.1126/scisignal.aab2724] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytotoxic lymphocytes share the presence of the activating receptor NK receptor group 2, member D (NKG2D) and the signaling-competent adaptor DNAX-activating protein 10 (DAP10), which together play an important role in antitumor immune surveillance. Ligand stimulation induces the internalization of NKG2D-DAP10 complexes and their delivery to lysosomes for degradation. In experiments with human NK cells and cell lines, we found that the ligand-induced endocytosis of NKG2D-DAP10 depended on the ubiquitylation of DAP10, which was also required for degradation of the internalized complexes. Moreover, through combined biochemical and microscopic analyses, we showed that ubiquitin-dependent receptor endocytosis was required for the activation of extracellular signal-regulated kinase (ERK) and NK cell functions, such as the secretion of cytotoxic granules and the inflammatory cytokine interferon-γ. These results suggest that NKG2D-DAP10 endocytosis represents a means to decrease cell surface receptor abundance, as well as to control signaling outcome in cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giovanna Peruzzi
- Istituto Italiano di Tecnologia, CLNS@Sapienza, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy. Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy. Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
38
|
Lettau M, Kabelitz D, Janssen O. Lysosome-Related Effector Vesicles in T Lymphocytes and NK Cells. Scand J Immunol 2015; 82:235-43. [DOI: 10.1111/sji.12337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Affiliation(s)
- M. Lettau
- Institute of Immunology; University Hospital Schleswig-Holstein Campus Kiel; Kiel Germany
| | - D. Kabelitz
- Institute of Immunology; University Hospital Schleswig-Holstein Campus Kiel; Kiel Germany
| | - O. Janssen
- Institute of Immunology; University Hospital Schleswig-Holstein Campus Kiel; Kiel Germany
| |
Collapse
|
39
|
Seong YJ, Sung PS, Jang YS, Choi YJ, Park BC, Park SH, Park YW, Shin EC. Activation of human natural killer cells by the soluble form of cellular prion protein. Biochem Biophys Res Commun 2015; 464:512-8. [PMID: 26159919 DOI: 10.1016/j.bbrc.2015.06.172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 01/19/2023]
Abstract
Cellular prion protein (PrP(C)) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP(C) in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP(C) protein on human natural killer (NK) cells. Recombinant soluble PrP(C) protein was generated by fusion of human PrP(C) with the Fc portion of human IgG1 (PrP(C)-Fc). PrP(C)-Fc binds to the surface of human NK cells, particularly to CD56(dim) NK cells. PrP(C)-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP(C)-Fc facilitated the IL-15-induced proliferation of NK cells. PrP(C)-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP(C)-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP(C)-Fc protein activates human NK cells via the ERK and JNK signaling pathways.
Collapse
Affiliation(s)
- Yeon-Jae Seong
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea; Hafis Clinic, Seoul, Republic of Korea
| | - Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young-Soon Jang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young Joon Choi
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Bum-Chan Park
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young Woo Park
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
40
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
41
|
Saunders PM, Vivian JP, Baschuk N, Beddoe T, Widjaja J, O'Connor GM, Hitchen C, Pymm P, Andrews DM, Gras S, McVicar DW, Rossjohn J, Brooks AG. The interaction of KIR3DL1*001 with HLA class I molecules is dependent upon molecular microarchitecture within the Bw4 epitope. THE JOURNAL OF IMMUNOLOGY 2014; 194:781-789. [PMID: 25480565 DOI: 10.4049/jimmunol.1402542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The killer cell Ig-like receptor 3DL1 (KIR3DL1) inhibits activation of NK cells upon interaction with HLA class I molecules such as HLA-B*57:01, which contains the Bw4 epitope spanning residues 77-83 (e.g., NLRIALR), and not with HLA allomorphs that possess the Bw6 motif (e.g., HLA-B*08:01), which differ at residues 77, 80, 81, 82, and 83. Although Bw4 residues Ile(80) and Arg(83) directly interact with KIR3DL1*001, their precise role in determining KIR3DL1-HLA-Bw4 specificity remains unclear. Recognition of HLA-B*57:01 by either KIR3DL1(+) NK cells or the NK cell line YTS transfected with KIR3DL1*001 was impaired by mutation of residues 80 and 83 of HLA-B*57:01 to the corresponding amino acids within the Bw6 motif. Conversely, the simultaneous introduction of three Bw4 residues at positions 80, 82, and 83 into HLA-B*08:01 conferred an interaction with KIR3DL1*001. Structural analysis of HLA-B*57:01, HLA-B*08:01, and mutants of each bearing substitutions at positions 80 and 83 revealed that Ile(80) and Arg(83) within the Bw4 motif constrain the conformation of Glu(76), primarily through a salt bridge between Arg(83) and Glu(76). This salt bridge was absent in HLA-Bw6 molecules as well as position 83 mutants of HLA-B*57:01. Mutation of the Bw4 residue Ile(80) also disrupted this salt bridge, providing further insight into the role that position 80 plays in mediating KIR3DL1 recognition. Thus, the strict conformation of HLA-Bw4 allotypes, held in place by the Glu(76)-Arg(83) interaction, facilitates KIR3DL1 binding, whereas Bw6 allotypes present a platform on the α1 helix that is less permissive for KIR3DL1 binding.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julian P Vivian
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Nikola Baschuk
- Cancer Immunology Program, Peter McCallum Cancer Institute, Melbourne, 3002 Australia
| | - Travis Beddoe
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geraldine M O'Connor
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Corinne Hitchen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Phillip Pymm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel M Andrews
- Cancer Immunology Program, Peter McCallum Cancer Institute, Melbourne, 3002 Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel W McVicar
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Boding L, Hansen AK, Meroni G, Johansen BB, Braunstein TH, Bonefeld CM, Kongsbak M, Jensen BAH, Woetmann A, Thomsen AR, Ødum N, von Essen MR, Geisler C. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol 2014; 44:3109-18. [DOI: 10.1002/eji.201344388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/27/2014] [Accepted: 07/08/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Lasse Boding
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Ann K. Hansen
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Germana Meroni
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”; Trieste Italy
| | - Bo B. Johansen
- Core Facility for Integrated Microscopy; University of Copenhagen; Copenhagen Denmark
| | - Thomas H. Braunstein
- Department of Biomedical Sciences; Danish National Research Foundation Centre for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| | - Charlotte M. Bonefeld
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Martin Kongsbak
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Benjamin A. H. Jensen
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Allan R. Thomsen
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Marina R. von Essen
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
43
|
Ciaglia E, Pisanti S, Picardi P, Laezza C, Sosa S, Tubaro A, Vitale M, Gazzerro P, Malfitano AM, Bifulco M. N6-isopentenyladenosine affects cytotoxic activity and cytokines production by IL-2 activated NK cells and exerts topical anti-inflammatory activity in mice. Pharmacol Res 2014; 89:1-10. [PMID: 25063359 DOI: 10.1016/j.phrs.2014.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 01/13/2023]
Abstract
N6-isopentenyladenosine (iPA) is a modified adenosine with an isopentenyl moiety derived from the mevalonate pathway which displays pleiotropic biological effects, including anti-tumor and anti-angiogenic activity. Previous evidence revealed a biphasic effect of iPA on phytohemagglutinin-stimulated lymphocytes, being pro-proliferative at low doses and anti-proliferative at high doses. Analogously, we have recently shown that low iPA concentrations (<1μM) increased the immune response of natural killer (NK) cells against cancer targets. In the present study, we evaluated the effect of iPA at high concentration (10μM) on IL-2-activated NK cells. iPA, inhibited NK cell proliferation and cytotoxicity against their conventional tumor target, human K562 cells. This inhibition was associated with decreased expression and functionality of NK cell activating receptors NKp44 and NKG2D as well as impaired cyto/chemokines secretion (RANTES, MIP-1α, TNF-α and IFN-γ). ERK/MAPK and STAT5 activation in IL-2-activated NK cells were inhibited by iPA. The results obtained in vitro were validated in vivo in the inflammatory murine model of croton oil-induced ear dermatitis. The topical application of iPA significantly reduced mouse ear oedema, thus suggesting anti-inflammatory properties of this molecule. These results show the ability of iPA to exert anti-inflammatory effects both in vitro and in vivo directly targeting NK cells, providing a novel pharmacological tool in those diseases characterized by a deregulated immune-response, such as cancer or inflammatory conditions.
Collapse
Affiliation(s)
- Elena Ciaglia
- Department of Medicine and Surgery, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| | - Simona Pisanti
- Department of Medicine and Surgery, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Paola Picardi
- Department of Medicine and Surgery, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, Via Pansini 5, 80131 Naples, Italy; Department of Biology and Cellular and Molecular Pathology, University of Naples Federico II, Via Pansini, 80131 Naples, Italy
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Mario Vitale
- Department of Medicine and Surgery, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Anna Maria Malfitano
- Department of Medicine and Surgery, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Maurizio Bifulco
- Department of Medicine and Surgery, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
44
|
Overcoming chemoresistance of small-cell lung cancer through stepwise HER2-targeted antibody-dependent cell-mediated cytotoxicity and VEGF-targeted antiangiogenesis. Sci Rep 2014; 3:2669. [PMID: 24036898 PMCID: PMC3773623 DOI: 10.1038/srep02669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/30/2013] [Indexed: 01/21/2023] Open
Abstract
Small-cell lung cancer (SCLC) easily recurs with a multidrug resistant phenotype. However, standard therapeutic strategies for relapsed SCLC remain unestablished. We found that human epidermal growth factor receptor 2 (HER2) is not only expressed in pretreated human SCLC specimens, but is also upregulated when HER2-positive SCLC cells acquire chemoresistance. Trastuzumab induced differential levels of antibody-dependent cell-mediated cytotoxicity (ADCC) to HER2-positive SCLC cells. Furthermore, as a mechanism of the differential levels of ADCC, we have revealed that coexpression of intracellular adhesion molecule (ICAM)-1 on SCLC cells is essential to facilitate and accelerate the trastuzumab-mediated ADCC. Although SN-38-resistant SCLC cells lacking ICAM-1 expression were still refractory to trastuzumab, their in vivo growth was significantly suppressed by bevacizumab treatment due to dependence on their distinctive and abundant production of vascular endothelial growth factor. Collectively, stepwise treatment with trastuzumab and bevacizumab is promising for the treatment of chemoresistant SCLC.
Collapse
|
45
|
Lagrue K, Carisey A, Oszmiana A, Kennedy PR, Williamson DJ, Cartwright A, Barthen C, Davis DM. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol Rev 2014; 256:203-21. [PMID: 24117823 DOI: 10.1111/imr.12107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells discriminate between healthy and unhealthy target cells through a balance of activating and inhibitory signals at direct intercellular contacts called immune synapses. Rearrangements in the cellular cytoskeleton have long been known to be critical in assembly of immune synapses. Here, through bringing together the vast literature on this subject, the number of different ways in which the cytoskeleton is important becomes evident. The dynamics of filamentous actin are critical in (i) creating the nanometer-scale organization of NK cell receptors, (ii) establishing cellular polarity, (iii) coordinating immune receptor and integrin-mediated signaling, and (iv) directing secretion of lytic granules and cytokines. The microtubule network also is important in the delivery of lytic granules and vesicles containing cytokines to the immune synapse. Together, these data establish that the cytoskeleton acts as a central regulator of this complex and dynamic process - and an enormous amount of NK cell biology is controlled through the cytoskeleton.
Collapse
Affiliation(s)
- Kathryn Lagrue
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK; Division of Cell and Molecular Biology, Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lima M, Spínola A, Fonseca S, Santos AH, Rodrigues J, Oliveira L, Queirós ML, Santos M, Gonçalves M, Lau C, Teixeira MDA, Gonçalves C, Marques C, Guerreiro M, Cunha M, Príncipe F, Coutinho J. Aggressive mature natural killer cell neoplasms: report on a series of 12 European patients with emphasis on flow cytometry based immunophenotype and DNA content of neoplastic natural killer cells. Leuk Lymphoma 2014; 56:103-12. [PMID: 24669939 DOI: 10.3109/10428194.2014.905772] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report 12 cases of aggressive natural killer (NK) cell neoplasms diagnosed in Portugal, with emphasis on flow cytometry. Ten patients had extranodal NK/T cell lymphoma, nasal type and two had aggressive NK cell leukemia, and seven were men and five were women, with a median age of 50 years. NK cells brightly expressed the CD56 adhesion molecule and CD94 lectin type killer receptor and had an activation-related HLA-DR+ CD45RA+ CD45RO+ immunophenotype, in most cases. In contrast, dim CD16 expression was found in a minor proportion of cases, whereas CD57 and the CD158a and CD158e1 killer immunoglobulin-like receptors were negative. One-third of cases showed a hyperploid DNA content and nearly all had a very high S-phase proliferative rate. The phenotypic features of the neoplastic NK cells would suggest that they represent the transformed counterpart of the CD56 + bright NK cells that circulate in normal blood.
Collapse
|
47
|
Mace EM, Dongre P, Hsu HT, Sinha P, James AM, Mann SS, Forbes LR, Watkin LB, Orange JS. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol Cell Biol 2014; 92:245-55. [PMID: 24445602 PMCID: PMC3960583 DOI: 10.1038/icb.2013.96] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cell-mediated cytotoxicity is governed by the formation of a lytic immune synapse in discrete regulated steps, which give rise to an extensive array of cellular checkpoints in accessing NK cell-mediated cytolytic defense. Appropriate progression through these cell biological steps is critical for the directed secretion of specialized secretory lysosomes and subsequent target cell death. Here we highlight recent discoveries in the formation of the NK cell cytolytic synapse as well as the molecular steps and cell biological checkpoints required for this essential host defense process.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Prachi Dongre
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Hsiang-Ting Hsu
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Papiya Sinha
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Shaina S Mann
- Case Western Reserve Medical School, Cleveland, OH, USA
| | - Lisa R Forbes
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Levi B Watkin
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
48
|
Galandrini R, Capuano C, Santoni A. Activation of Lymphocyte Cytolytic Machinery: Where are We? Front Immunol 2013; 4:390. [PMID: 24312097 PMCID: PMC3832890 DOI: 10.3389/fimmu.2013.00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/06/2013] [Indexed: 11/13/2022] Open
Abstract
Target cell recognition by cytotoxic lymphocytes implies the simultaneous engagement and clustering of adhesion and activating receptors followed by the activation of an array of signal transduction pathways. The cytotoxic immune synapse represents the highly specialized dynamic interface formed between the cytolytic effector and its target that allows temporal and spatial integration of signals responsible for a defined sequence of processes culminating with the polarized secretion of lytic granules. Over the last decades, much attention has been given to the molecular signals coupling receptor ligation to the activation of cytolytic machinery. Moreover, in the last 10 years the discovery of genetic defects affecting cytotoxic responses greatly boosted our knowledge on the molecular effectors involved in the regulation of discrete phases of cytotoxic process at post-receptor levels. More recently, the use of super resolution and total internal reflection fluorescence imaging technologies added new insights on the dynamic reorganization of receptor and signaling molecules at lytic synapse as well as on the relationship between granule dynamics and cytoskeleton remodeling. To date we have a solid knowledge of the molecular mechanisms governing granule movement and secretion, being not yet fully unraveled the machinery that couples early receptor signaling to the late stage of synapse remodeling and granule dynamics. Here we highlight recent advances in our understanding of the molecular mechanisms acting in the activation of cytolytic machinery, also discussing similarities and differences between Natural killer cells and cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Ricciarda Galandrini
- Department of Experimental Medicine, Istituto Pasteur-Fondazione Cenci-Bolognetti, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University , Rome , Italy
| | | | | |
Collapse
|
49
|
Pageon SV, Cordoba SP, Owen DM, Rothery SM, Oszmiana A, Davis DM. Superresolution microscopy reveals nanometer-scale reorganization of inhibitory natural killer cell receptors upon activation of NKG2D. Sci Signal 2013; 6:ra62. [PMID: 23882121 DOI: 10.1126/scisignal.2003947] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cell responses are regulated by a dynamic equilibrium between activating and inhibitory receptor signals at the immune synapse (or interface) with target cells. Although the organization of receptors at the immune synapse is important for appropriate integration of these signals, there is little understanding of this in detail, because research has been hampered by the limited resolution of light microscopy. Through the use of superresolution single-molecule fluorescence microscopy to reveal the organization of the NK cell surface at the single-protein level, we report that the inhibitory receptor KIR2DL1 is organized in nanometer-scale clusters at the surface of human resting NK cells. Nanoclusters of KIR2DL1 became smaller and denser upon engagement of the activating receptor NKG2D, establishing an unexpected crosstalk between activating receptor signals and the positioning of inhibitory receptors. These rearrangements in the nanoscale organization of surface NK cell receptors were dependent on the actin cytoskeleton. Together, these data establish that NK cell activation involves a nanometer-scale reorganization of surface receptors, which in turn affects models for signal integration and thresholds that control NK cell effector functions and NK cell development.
Collapse
Affiliation(s)
- Sophie V Pageon
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
50
|
Alvarez M, Sungur CM, Ames E, Anderson SK, Pomeroy C, Murphy WJ. Contrasting effects of anti-Ly49A due to MHC class I cis binding on NK cell-mediated allogeneic bone marrow cell resistance. THE JOURNAL OF IMMUNOLOGY 2013; 191:688-98. [PMID: 23752612 DOI: 10.4049/jimmunol.1300202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK subsets have activating and inhibitory receptors that bind MHC-I. Ly49A is a mouse inhibitory receptor that binds with high affinity to H2(d) in both a cis- and trans-manner. Ly49A cis-associations limit trans-interactions with H2(d)-expressing targets as well as mAb binding. We demonstrate that cis-interactions affect mAb effector functions. In vivo administration of anti-Ly49A depleted NK cells in H2(b) but not H2(d) mice. Despite lack of depletion, in vivo treatment with anti-Ly49A reduced NK killing capabilities and inhibited activation, partially due to its agonistic effect. These data explain the previously described in vivo effects on bone marrow allograft rejection observed with anti-Ly49A treatment in H2(d)-haplotype mice. However, prior treatment of mice with poly(I:C) or mouse CMV infection resulted in increased Ly49A expression and Ly49A(+) NK cell depletion in H2(d) mice. These data indicate that, although Ly49 mAbs can exert similar in vivo effects in mice with different MHC haplotypes, these effects are mediated via different mechanisms of action correlating with Ly49A expression levels and can be altered within the same strain contingent on stimuli. This illustrates the marked diversity of mAb effector functions due to the regulation of the level of expression of target Ags and responses by stimulatory incidents such as infection.
Collapse
Affiliation(s)
- Maite Alvarez
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|