1
|
Horn JA, Delgadillo DR, Mayer EA. Understanding Microbial Mediation of the Brain-Gut Axis. Gastroenterol Clin North Am 2025; 54:367-381. [PMID: 40348493 DOI: 10.1016/j.gtc.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bidirectional communications between the gut and the brain play an important role in the regulation of food intake, pain perception, mood, and cognitive function. The involved communication pathways are modulated by signals generated by the gut microbiome. Alterations in these communications have been implicated in several chronic brain and gut disorders, including food addiction, mood disorders, neurodevelopmental and neurodegenerative disorders, and functional and inflammatory bowel disorders. The gut microbiome holds great promise for the development of novel therapies normalizing altered brain-gut interactions.
Collapse
Affiliation(s)
- Jill A Horn
- Department of Population and Public Health Sciences, Keck School of Medicine at USC, 1845 N Soto Street, Los Angeles, CA 90032, USA
| | - Desiree R Delgadillo
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 42-210, MC737818, Los Angeles, CA 90095-73787, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress & Resilience; UCLA Vatche & Tamar Manoukian Division of Digestive Diseases, Goodman Luskin Microbiome Center, UCLA.
| |
Collapse
|
2
|
Upadhyay V, Ortega EF, Ramirez Hernandez LA, Alexander M, Kaur G, Trepka K, Rock RR, Shima RT, Cheshire WC, Alipanah-Lechner N, Calfee CS, Matthay MA, Lee JV, Goga A, Jain IH, Turnbaugh PJ. Gut bacterial lactate stimulates lung epithelial mitochondria and exacerbates acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645052. [PMID: 40196632 PMCID: PMC11974820 DOI: 10.1101/2025.03.24.645052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is an often fatal critical illness where lung epithelial injury leads to intrapulmonary fluid accumulation. ARDS became widespread during the COVID-19 pandemic, motivating a renewed effort to understand the complex etiology of this disease. Rigorous prior work has implicated lung endothelial and epithelial injury in response to an insult such as bacterial infection; however, the impact of microorganisms found in other organs on ARDS remains unclear. Here, we use a combination of gnotobiotic mice, cell culture experiments, and re-analyses of a large metabolomics dataset from ARDS patients to reveal that gut bacteria impact lung cellular respiration by releasing metabolites that alter mitochondrial activity in lung epithelium. Colonization of germ-free mice with a complex gut microbiota stimulated lung mitochondrial gene expression. A single human gut bacterial species, Bifidobacterium adolescentis, was sufficient to replicate this effect, leading to a significant increase in mitochondrial membrane potential in lung epithelial cells. We then used genome sequencing and mass spectrometry to confirm that B. adolescentis produces L -lactate, which was sufficient to increase mitochondrial activity in lung epithelial cells. Finally, we found that serum lactate was significantly associated with disease severity in patients with ARDS from the Early Assessment of Renal and Lung Injury (EARLI) cohort. Together, these results emphasize the importance of more broadly characterizing the microbial etiology of ARDS and other lung diseases given the ability of gut bacterial metabolites to remotely control lung cellular respiration. Our discovery of a single bacteria-metabolite pair provides a proof-of-concept for systematically testing other microbial metabolites and a mechanistic biomarker that could be pursued in future clinical studies. Furthermore, our work adds to the growing literature linking the microbiome to mitochondrial function, raising intriguing questions as to the bidirectional communication between our endo- and ecto-symbionts.
Collapse
|
3
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Hitzler SUJ, Fernández-Fernández C, Montaño DE, Dietschmann A, Gresnigt MS. Microbial adaptive pathogenicity strategies to the host inflammatory environment. FEMS Microbiol Rev 2025; 49:fuae032. [PMID: 39732621 PMCID: PMC11737513 DOI: 10.1093/femsre/fuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024] Open
Abstract
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, these microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction. An inappropriate deployment of pathogenicity mechanisms will alert host defence mechanisms that aim to eradicate the pathogen. Thus, these adaptations require tight regulation to guarantee nutritional access without eliciting strong immune activation. To work efficiently, the immune system relies on a complex signalling network, involving a myriad of immune mediators, some of which are quite directly associated with imminent danger for the pathogen. To manipulate the host immune system, viruses have evolved cytokine receptors and viral cytokines. However, among bacteria and fungi, selected pathogens have evolved the capacity to use these inflammatory response-specific signals to regulate their pathogenicity. In this review, we explore how bacterial and fungal pathogens can sense the immune system and use adaptive pathogenicity strategies to evade and escape host defence to ensure their persistence in the host.
Collapse
Affiliation(s)
- Sophia U J Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Candela Fernández-Fernández
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| |
Collapse
|
5
|
Zahir A, Okorie PA, Nwobasi VN, David EI, Nwankwegu RO, Azi F. Harnessing Microbial Signal Transduction Systems in Natural and Synthetic Consortia for Biotechnological Applications. Biotechnol Appl Biochem 2024. [PMID: 39740178 DOI: 10.1002/bab.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/24/2024] [Indexed: 01/02/2025]
Abstract
Signal transduction is crucial for communication and cellular response in microbial communities. Consortia rely on it for effective communication, responding to changing environmental conditions, establishing community structures, and performing collective behaviors. Microbial signal transduction can be through quorum sensing (QS), two-component signal transduction systems, biofilm formation, nutrient sensing, chemotaxis, horizontal gene transfer stress response, and so forth. The consortium uses small signaling molecules in QS to regulate gene expression and coordinate intercellular communication and behaviors. Biofilm formation allows cells to adhere and aggregate, promoting species interactions and environmental stress resistance. Chemotaxis enables directional movement toward or away from chemical gradients, promoting efficient resource utilization and community organization within the consortium. In recent years, synthetic microbial consortia have gained attention for their potential applications in biotechnology and bioremediation. Understanding signal transduction in natural and synthetic microbial consortia is important for gaining insights into community dynamics, evolution, and ecological function. It can provide strategies for biotechnological innovation for enhancing biosensors, biodegradation, bioenergy efficiency, and waste reduction. This review provides compelling insight that will advance our understanding of microbial signal transduction dynamics and its role in orchestrating microbial interactions, which facilitate coordination, cooperation, gene expression, resource allocation, and trigger specific responses that determine community success.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Department of Food Science and Technology, Faculty of Veterinary Sciences, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Peter A Okorie
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Veronica N Nwobasi
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Esther I David
- Department of Home Economics, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Rita O Nwankwegu
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
6
|
Cotoia A, Charitos IA, Corriero A, Tamburrano S, Cinnella G. The Role of Macronutrients and Gut Microbiota in Neuroinflammation Post-Traumatic Brain Injury: A Narrative Review. Nutrients 2024; 16:4359. [PMID: 39770985 PMCID: PMC11677121 DOI: 10.3390/nu16244359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Traumatic brain injury (TBI) represents a multifaceted pathological condition resulting from external forces that disrupt neuronal integrity and function. This narrative review explores the intricate relationship between dietary macronutrients, gut microbiota (GM), and neuroinflammation in the TBI. We delineate the dual aspects of TBI: the immediate mechanical damage (primary injury) and the subsequent biological processes (secondary injury) that exacerbate neuronal damage. Dysregulation of the gut-brain axis emerges as a critical factor in the neuroinflammatory response, emphasizing the role of the GM in mediating immune responses. Recent evidence indicates that specific macronutrients, including lipids, proteins, and probiotics, can influence microbiota composition and in turn modulate neuroinflammation. Moreover, specialized dietary interventions may promote resilience against secondary insults and support neurological recovery post-TBI. This review aims to synthesize the current preclinical and clinical evidence on the potential of dietary strategies in mitigating neuroinflammatory pathways, suggesting that targeted nutrition and gut health optimization could serve as promising therapeutic modalities in TBI management.
Collapse
Affiliation(s)
- Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Istitute” of Bari, 70124 Bari, Italy;
- Doctoral School on Applied Neurosciences, Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Alberto Corriero
- Department of Interdisciplinary Medicine-ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Stefania Tamburrano
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| | - Gilda Cinnella
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| |
Collapse
|
7
|
Wan J, Gao X, Liu F. Regulatory role of the Cpx ESR in bacterial behaviours. Virulence 2024; 15:2404951. [PMID: 39292643 PMCID: PMC11790278 DOI: 10.1080/21505594.2024.2404951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
The envelope demarcates the boundary between bacterial cell and its environment, providing a place for bacteria to transport nutrients and excrete metabolic waste, while buffering external environmental stress. Envelope stress responses (ESRs) are important tools for bacteria to sense and repair envelope damage. In this review, we discussed evidence that indicates the important role of the Cpx ESR in pathogen-host interactions, including environmental stress sensing and responses, modulation of bacterial virulence, antimicrobial resistance, and inter-kingdom signaling.
Collapse
Affiliation(s)
- Jiajia Wan
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Feng Liu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
9
|
Rea Hernández PA, Ramírez-Paz-Y-Puente GA, Montes-García F, Vázquez-Cruz C, Sanchez-Alonso P, Cobos-Justo ME, Zenteno E, Negrete-Abascal E. Epinephrine and norepinephrine regulate the expression of virulence factors in Gallibacterium anatis. Microb Pathog 2024; 196:106987. [PMID: 39374885 DOI: 10.1016/j.micpath.2024.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Gallibacterium anatis is a member of the Pasteurellaceae family and is an opportunistic pathogen that causes gallibacteriosis in chickens. Stress plays a relevant role in promoting the development of pathogenicity in G. anatis. Epinephrine (E) and norepinephrine (NE) are relevant to stress; however, their effects on G. anatis have not been elucidated. In this work, we evaluated the effects of E and NE on the growth, biofilm formation, expression of adhesins, and proteases of two G. anatis strains, namely, the hemolytic 12656-12 and the nonhemolytic F149T biovars. E (10 μM/mL) and NE (30 and 50 μM/mL) increased the growth of G. anatis 12656-12 by 20 % and 25 %, respectively. E did not affect the growth of F149T, whereas 40 μM/mL NE decreased bacterial growth by 25 %. E and NE at a dose of 30-50 μM/mL upregulated five fibrinogen adhesins in the 12565-12 strain, whereas no effect was observed in the F149T strain. NE increased proteolytic activity in both strains, whereas E diminished proteolytic activity in the 12656-12 strain. E and NE reduced biofilm formation (30 %) and increased Congo red binding (15 %) in both strains. QseBC is the E and NE two-component detection system most common in bacteria. The qseC gene, which is the E and NE receptor in bacteria, was identified in the genomic DNA of the 12565-12 and F149TG. anatis strains via PCR amplification. Our results suggest that QseC can detect host changes in E and NE concentrations and that catecholamines can modulate the expression of several virulence factors in G. anatis.
Collapse
Affiliation(s)
- Pablo A Rea Hernández
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | - Gerardo A Ramírez-Paz-Y-Puente
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | - Fernando Montes-García
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | | | | | | | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Mexico
| | - Erasmo Negrete-Abascal
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico.
| |
Collapse
|
10
|
Tyus D, Leslie JL, Naz F, Uddin MJ, Thompson B, Petri WA. The sympathetic nervous system drives hyperinflammatory responses to Clostridioides difficile infection. Cell Rep Med 2024; 5:101771. [PMID: 39368481 PMCID: PMC11513855 DOI: 10.1016/j.xcrm.2024.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired infections in the United States, known for triggering severe disease by hyperactivation of the host response. In this study, we determine the impact of the sympathetic nervous system (SNS) on CDI disease severity. Mouse models of CDI are administered inhibitors of SNS activity prior to CDI. Chemical sympathectomy or pharmacological inhibition of norepinephrine synthesis greatly reduces mortality and disease severity in the CDI model. Pharmacological blockade or genetic ablation of the alpha 2 adrenergic receptor ameliorates intestinal inflammation, disease severity, and mortality rate. These results underscore the role of the SNS and the alpha 2 adrenergic receptor in CDI pathogenesis and suggest that targeting neural systems could be a promising approach to therapy in severe disease.
Collapse
Affiliation(s)
- David Tyus
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jhansi L Leslie
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Farha Naz
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Md Jashim Uddin
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brandon Thompson
- Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - William A Petri
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA; Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
11
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
12
|
Shatunova S, Aktar R, Peiris M, Lee JYP, Vetter I, Starobova H. The role of the gut microbiome in neuroinflammation and chemotherapy-induced peripheral neuropathy. Eur J Pharmacol 2024; 979:176818. [PMID: 39029779 DOI: 10.1016/j.ejphar.2024.176818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most debilitating adverse effects caused by chemotherapy drugs such as paclitaxel, oxaliplatin and vincristine. It is untreatable and often leads to the discontinuation of cancer therapy and a decrease in the quality of life of cancer patients. It is well-established that neuroinflammation and the activation of immune and glial cells are among the major drivers of CIPN. However, these processes are still poorly understood, and while many chemotherapy drugs alone can drive the activation of these cells and consequent neuroinflammation, it remains elusive to what extent the gut microbiome influences these processes. In this review, we focus on the peripheral mechanisms driving CIPN, and we address the bidirectional pathways by which the gut microbiome communicates with the immune and nervous systems. Additionally, we critically evaluate literature addressing how chemotherapy-induced dysbiosis and the consequent imbalance in bacterial products may contribute to the activation of immune and glial cells, both of which drive neuroinflammation and possibly CIPN development, and how we could use this knowledge for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Svetlana Shatunova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jia Yu Peppermint Lee
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia; The School of Pharmacy, The University of Queensland, Woollsiana, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
13
|
Markus V. Gut bacterial quorum sensing molecules and their association with inflammatory bowel disease: Advances and future perspectives. Biochem Biophys Res Commun 2024; 724:150243. [PMID: 38857558 DOI: 10.1016/j.bbrc.2024.150243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Inflammatory Bowel Disease (IBD) is an enduring inflammatory disease of the gastrointestinal tract (GIT). The complexity of IBD, its profound impact on patient's quality of life, and its burden on healthcare systems necessitate continuing studies to elucidate its etiology, refine care strategies, improve treatment outcomes, and identify potential targets for novel therapeutic interventions. The discovery of a connection between IBD and gut bacterial quorum sensing (QS) molecules has opened exciting opportunities for research into IBD pathophysiology. QS molecules are small chemical messengers synthesized and released by bacteria based on population density. These chemicals are sensed not only by the microbial species but also by host cells and are essential in gut homeostasis. QS molecules are now known to interact with inflammatory pathways, therefore rendering them potential therapeutic targets for IBD management. Given these intriguing developments, the most recent research findings in this area are herein reviewed. First, the global burden of IBD and the disruptions of the gut microbiota and intestinal barrier associated with the disease are assessed. Next, the general QS mechanism and signaling molecules in the gut are discussed. Then, the roles of QS molecules and their connection with IBD are elucidated. Lastly, the review proposes potential QS-based therapeutic targets for IBD, offering insights into the future research trajectory in this field.
Collapse
Affiliation(s)
- Victor Markus
- Near East University, Faculty of Medicine, Department of Medical Biochemistry, Nicosia, TRNC Mersin 10, Turkey.
| |
Collapse
|
14
|
Li Y, Zhang S, Chen Z, Huang W, Huang Y, Fang H, Liu Q. Evolution of quorum sensing process and their regulatory role on biochemical metabolism during the organic loading rate increase in dry anaerobic digestion. CHEMOSPHERE 2024; 363:142954. [PMID: 39069103 DOI: 10.1016/j.chemosphere.2024.142954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The organic loading rate (OLR) is a critical parameter affecting the stability of dry anaerobic digestion (AD) of kitchen waste (KW), and significantly impacting the variations in physicochemical parameters and microbial communities. However, the evolution of quorum sensing (QS) and their role on anaerobic biochemical metabolism during the increase in OLR in dry AD remain unknown. Therefore, this study systematically elucidated the matter through multi-omics analysis based on a pilot-scale dry AD of KW. The results demonstrated that fluctuations in the OLR significantly influenced the microbial QS in dry AD. When the OLR ≤4.0 g·VS/L·d, the system operated stably, and methane production increased. The enrichment of Proteobacteria was crucial for sustaining high levels of functional genes associated with various types of QS, including acyl-homoserine lactones (AI-1), autoinducer-2 (AI-2), autoinducer-3 (AI-3), and gamma-aminobutyric acid (GABA). This enabled cooperative communication among microbes under low OLR. Furthermore, most genes associated with these QS processes positively affected hydrolysis, acidogenesis, and methanogenesis. When the OLR increased to 6.0 g·VS/L·d, the fatty acids and hydrogen partial pressure increased significantly. The autoinducing peptides (AIP)-type became the predominant QS and was positively correlated with fatty acids abundance. Syntrophaceticus and Syntrophomonas may promote syntrophic oxidation of acetate at high OLR through AIP-type QS. These findings provided new insights into the QS processes of microbes during dry AD of KW and a theoretical foundation for optimizing biochemical metabolic processes in dry AD through QS.
Collapse
Affiliation(s)
- Yanzeng Li
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China.
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weizhao Huang
- Xiamen Xinyuan Environmental Service Co., LTD., Xiamen, 361000, China
| | - Yunfeng Huang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China
| | - Hongda Fang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China
| | - Qin Liu
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China
| |
Collapse
|
15
|
Majdi C, Meffre P, Benfodda Z. Recent advances in the development of bacterial response regulators inhibitors as antibacterial and/or antibiotic adjuvant agent: A new approach to combat bacterial resistance. Bioorg Chem 2024; 150:107606. [PMID: 38968903 DOI: 10.1016/j.bioorg.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.
Collapse
|
16
|
Noda M, Noguchi S, Danshiitsoodol N, Hara T, Sugiyama M. Non-pathogenic Heyndrickxia coagulans (Bacillus coagulans) 29-2E inhibits the virulence of pathogenic Salmonella Typhimurium by quorum-sensing regulation. J Biosci Bioeng 2024; 137:445-452. [PMID: 38553372 DOI: 10.1016/j.jbiosc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 05/20/2024]
Abstract
Bacteria produce and release small signal molecules, autoinducers, as an indicator of their cell density. The system, called a quorum-sensing (QS) system, is used to control not only virulence factors but also antibiotic production, sporulation, competence, and biofilm formation in bacteria. Different from antibiotics, QS inhibitors are expected to specifically repress the virulence factors in pathogenic bacteria without inhibiting growth or bactericidal effects. Therefore, since QS inhibitors have little risk of antibiotic-resistant bacteria emergence, they have been proposed as promising anti-bacterial agents. In the present study, we aimed to find new QS inhibitors that prohibit the signaling cascade of autoinducer 3 (AI-3) recognized by a QseCB two-component system that regulates some virulence factors of pathogens, such as enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica subsp. enterica serovar Typhimurium. We have established the method for QS-inhibitor screening using a newly constructed plasmid pLES-AQSA. E. coli DH5α transformed with the pLES-AQSA can produce β-galactosidase that converts 5-bromo-4-chloro-3-indolyl β-d-galactopyranoside (X-gal) into blue pigment (5-bromo-4-chloro-indoxyl) under the control of the QseCB system. By screening, Heyndrickxia coagulans (formerly Bacillus coagulans) 29-2E was found to produce an exopolysaccharide (EPS)-like water-soluble polymer that prohibits QseCB-mediated β-galactosidase production without antibacterial activities. Further, the simultaneous injection of the 29-2E strain significantly improves the survival rate of Salmonella Typhimurium-infected silkworm larvae (from 0% to 83.3%), suggesting that the substance may be a promising inhibitor against the virulence of pathogens without risk of the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Shino Noguchi
- Department of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Toshinori Hara
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Kasumi 1-2-3 Minami-ku, Hiroshima 734-8551, Japan
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
17
|
Brannon JR, Reasoner SA, Bermudez TA, Comer SL, Wiebe MA, Dunigan TL, Beebout CJ, Ross T, Bamidele A, Hadjifrangiskou M. Mapping niche-specific two-component system requirements in uropathogenic Escherichia coli. Microbiol Spectr 2024; 12:e0223623. [PMID: 38385738 PMCID: PMC10986536 DOI: 10.1128/spectrum.02236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify-for the first time-a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.IMPORTANCEWhile two-component system (TCS) signaling has been investigated at depth in model strains of Escherichia coli, there have been no studies to elucidate-at a systems level-which TCSs are important during infection by pathogenic Escherichia coli. Here, we report the generation of a markerless TCS deletion library in a uropathogenic E. coli (UPEC) isolate that can be leveraged for dissecting the role of TCS signaling in different aspects of pathogenesis. We use this library to demonstrate, for the first time in UPEC, that niche-specific colonization is guided by distinct TCS groups.
Collapse
Affiliation(s)
- John R. Brannon
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth A. Reasoner
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomas A. Bermudez
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah L. Comer
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michelle A. Wiebe
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taryn L. Dunigan
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor J. Beebout
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tamia Ross
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adebisi Bamidele
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Rosay T, Jimenez AG, Sperandio V. Glucuronic acid confers colonization advantage to enteric pathogens. Proc Natl Acad Sci U S A 2024; 121:e2400226121. [PMID: 38502690 PMCID: PMC10990124 DOI: 10.1073/pnas.2400226121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Glucuronidation is a detoxification process to eliminate endo- and xeno-biotics and neurotransmitters from the host circulation. Glucuronosyltransferase binds these compounds to glucuronic acid (GlcA), deactivating them and allowing their elimination through the gastrointestinal (GI) tract. However, the microbiota produces β-glucuronidases that release GlcA and reactivate these compounds. Enteric pathogens such as enterohemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium sense and utilize galacturonic acid (GalA), an isomer of GlcA, to outcompete the microbiota promoting gut colonization. However, the role of GlcA in pathogen colonization has not been explored. Here, we show that treatment of mice with a microbial β-glucuronidase inhibitor (GUSi) decreased C. rodentium's colonization of the GI tract, without modulating bacterial virulence or host inflammation. Metagenomic studies indicated that GUSi did not change the composition of the intestinal microbiota in these animals. GlcA confers an advantage for pathogen expansion through its utilization as a carbon source. Congruently mutants unable to catabolize GlcA depict lower GI colonization compared to wild type and are not sensitive to GUSi. Germfree mice colonized with a commensal E. coli deficient for β-glucuronidase production led to a decrease of C. rodentium tissue colonization, compared to animals monocolonized with an E. coli proficient for production of this enzyme. GlcA is not sensed as a signal and doesn't activate virulence expression but is used as a metabolite. Because pathogens can use GlcA to promote their colonization, inhibitors of microbial β-glucuronidases could be a unique therapeutic against enteric infections without disturbing the host or microbiota physiology.
Collapse
Affiliation(s)
- Thibaut Rosay
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Angel G. Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Vanessa Sperandio
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
19
|
Phan MD, Schirra HJ, Nhu NTK, Peters KM, Sarkar S, Allsopp LP, Achard MES, Kappler U, Schembri MA. Combined functional genomic and metabolomic approaches identify new genes required for growth in human urine by multidrug-resistant Escherichia coli ST131. mBio 2024; 15:e0338823. [PMID: 38353545 PMCID: PMC10936160 DOI: 10.1128/mbio.03388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 03/14/2024] Open
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.
Collapse
Affiliation(s)
- Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Horst Joachim Schirra
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M. Peters
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Sohinee Sarkar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Luke P. Allsopp
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maud E. S. Achard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Petakh P, Oksenych V, Kamyshna I, Boisak I, Lyubomirskaya K, Kamyshnyi O. Exploring the complex interplay: gut microbiome, stress, and leptospirosis. Front Microbiol 2024; 15:1345684. [PMID: 38476949 PMCID: PMC10927737 DOI: 10.3389/fmicb.2024.1345684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Leptospirosis, a re-emerging zoonotic disease, remains a significant global health concern, especially amid floods and disasters such as the Kakhovka Dam destruction. As is known, the stress that occurs in the conditions of military conflicts among civilian and military personnel significantly affects susceptibility to infectious diseases and possibly even influences their course. This review aims to explore how the gut microbiome and stress mediators (such as catecholamines and corticosteroids) might impact the leptospirosis disease course. The review opens new horizons for research by elucidating the connections between the gut microbiome, stress, and leptospirosis.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Boisak
- Department of Childhood Diseases, Uzhhorod National University, Uzhhorod, Ukraine
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical and Pharmaceuticals University, Zaporizhzhia, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
21
|
John MS, Chinnappan M, Artami M, Bhattacharya M, Keogh RA, Kavanaugh J, Sharma T, Horswill AR, Harris-Tryon TA. Androgens at the skin surface regulate S. aureus pathogenesis through the activation of agr quorum sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579753. [PMID: 38370751 PMCID: PMC10871326 DOI: 10.1101/2024.02.10.579753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Staphylococcus aureus, the most frequent cause of skin infections, is more common in men than women and selectively colonizes the skin during inflammation. Yet, the specific cues that drive infection in these settings remain unclear. Here we show that the host androgens testosterone and dihydrotestosterone promote S. aureus pathogenesis and skin infection. Without the secretion of these hormones, skin infection in vivo is limited. Testosterone activates S. aureus virulence in a concentration dependent manner through stimulation of the agr quorum sensing system, with the capacity to circumvent other inhibitory signals in the environment. Taken together, our work defines a previously uncharacterized inter-kingdom signal between the skin and the opportunistic pathogen S. aureus and identifies the mechanism of sex-dependent differences in S. aureus skin infection. One-Sentence Summary Testosterone promotes S. aureus pathogenesis through activation of the agr quorum sensing system.
Collapse
|
22
|
Beurel E. Stress in the microbiome-immune crosstalk. Gut Microbes 2024; 16:2327409. [PMID: 38488630 PMCID: PMC10950285 DOI: 10.1080/19490976.2024.2327409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
23
|
Sun J, Wen S, Wang Z, Liu W, Lin Y, Gu J, Mao W, Xu X, He Q, Cai X. Glaesserella parasuis QseBC two-component system senses epinephrine and regulates capD expression. Microbiol Spectr 2023; 11:e0150823. [PMID: 37882555 PMCID: PMC10714720 DOI: 10.1128/spectrum.01508-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/16/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The key bacterial pathogen Glaesserella parasuis, which can cause Glässer's disease, has caused significant financial losses to the swine industry worldwide. Capsular polysaccharide (CPS) is an important virulence factor for bacteria, providing the ability to avoid recognition and killing by the host immune system. Exploring the alteration of CPS synthesis in G. parasuis in response to epinephrine stimulation can lay the groundwork for revealing the pathogenic mechanism of G. parasuis as well as providing ideas for Glässer's disease control.
Collapse
Affiliation(s)
- Ju Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Siting Wen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhichao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiayun Gu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiting Mao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuwang Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
24
|
Ellermann M. Emerging mechanisms by which endocannabinoids and their derivatives modulate bacterial populations within the gut microbiome. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11359. [PMID: 38389811 PMCID: PMC10880783 DOI: 10.3389/adar.2023.11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
Bioactive lipids such as endocannabinoids serve as important modulators of host health and disease through their effects on various host functions including central metabolism, gut physiology, and immunity. Furthermore, changes to the gut microbiome caused by external factors such as diet or by disease development have been associated with altered endocannabinoid tone and disease outcomes. These observations suggest the existence of reciprocal relationships between host lipid signaling networks and bacterial populations that reside within the gut. Indeed, endocannabinoids and their congeners such as N-acylethanolamides have been recently shown to alter bacterial growth, functions, physiology, and behaviors, therefore introducing putative mechanisms by which these bioactive lipids directly modulate the gut microbiome. Moreover, these potential interactions add another layer of complexity to the regulation of host health and disease pathogenesis that may be mediated by endocannabinoids and their derivatives. This mini review will summarize recent literature that exemplifies how N-acylethanolamides and monoacylglycerols including endocannabinoids can impact bacterial populations in vitro and within the gut microbiome. We also highlight exciting preclinical studies that have engineered gut bacteria to synthesize host N-acylethanolamides or their precursors as potential strategies to treat diseases that are in part driven by aberrant lipid signaling, including obesity and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
25
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| |
Collapse
|
26
|
Fernandez-Ciruelos B, Potmis T, Solomin V, Wells JM. Cross-talk between QseBC and PmrAB two-component systems is crucial for regulation of motility and colistin resistance in Enteropathogenic Escherichia coli. PLoS Pathog 2023; 19:e1011345. [PMID: 38060591 PMCID: PMC10729948 DOI: 10.1371/journal.ppat.1011345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
The quorum sensing two-component system (TCS) QseBC has been linked to virulence, motility and metabolism regulation in multiple Gram-negative pathogens, including Enterohaemorrhagic Escherichia coli (EHEC), Uropathogenic E. coli (UPEC) and Salmonella enterica. In EHEC, the sensor histidine kinase (HK) QseC detects the quorum sensing signalling molecule AI-3 and also acts as an adrenergic sensor binding host epinephrine and norepinephrine. Downstream changes in gene expression are mediated by phosphorylation of its cognate response regulator (RR) QseB, and 'cross-talks' with non-cognate regulators KdpE and QseF to activate motility and virulence. In UPEC, cross-talk between QseBC and TCS PmrAB is crucial in the regulation and phosphorylation of QseB RR that acts as a repressor of multiple pathways, including motility. Here, we investigated QseBC regulation of motility in the atypical Enteropathogenic E. coli (EPEC) strain O125ac:H6, causative agent of persistent diarrhoea in children, and its possible cross-talk with the KdpDE and PmrAB TCS. We showed that in EPEC QseB acts as a repressor of genes involved in motility, virulence and stress response, and in absence of QseC HK, QseB is likely activated by the non-cognate PmrB HK, similarly to UPEC. We show that in absence of QseC, phosphorylated QseB activates its own expression, and is responsible for the low motility phenotypes seen in a QseC deletion mutant. Furthermore, we showed that KdpD HK regulates motility in an independent manner to QseBC and through a third unidentified party different to its own response regulator KdpE. We showed that PmrAB has a role in iron adaptation independent to QseBC. Finally, we showed that QseB is the responsible for activation of colistin and polymyxin B resistance genes while PmrA RR acts by preventing QseB activation of these resistance genes.
Collapse
Affiliation(s)
- Blanca Fernandez-Ciruelos
- Host-Microbe Interactomics Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Tasneemah Potmis
- Host-Microbe Interactomics Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Vitalii Solomin
- Organic Synthesis Methodology Group, Latvian Institute of Organic Synthesis (LIOS), Riga, Latvia
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| |
Collapse
|
27
|
Thiroux A, Berjeaud JM, Villéger R, Crépin A. Effect of endocrine disruptors on bacterial virulence. Front Cell Infect Microbiol 2023; 13:1292233. [PMID: 38029256 PMCID: PMC10657830 DOI: 10.3389/fcimb.2023.1292233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
For several decades, questions have been raised about the effects of endocrine disruptors (ED) on environment and health. In humans, EDs interferes with hormones that are responsible for the maintenance of homeostasis, reproduction and development and therefore can cause developmental, metabolic and reproductive disorders. Because of their ubiquity in the environment, EDs can adversely impact microbial communities and pathogens virulence. At a time when bacterial resistance is inevitably emerging, it is necessary to understand the effects of EDs on the behavior of pathogenic bacteria and to identify the resulting mechanisms. Increasing studies have shown that exposure to environmental EDs can affect bacteria physiology. This review aims to highlight current knowledge of the effect of EDs on the virulence of human bacterial pathogens and discuss the future directions to investigate bacteria/EDs interaction. Given the data presented here, extended studies are required to understand the mechanisms by which EDs could modulate bacterial phenotypes in order to understand the health risks.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Poitiers, France
| | | | | | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Poitiers, France
| |
Collapse
|
28
|
Purtov YA, Ozoline ON. Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors. Int J Mol Sci 2023; 24:15863. [PMID: 37958845 PMCID: PMC10647483 DOI: 10.3390/ijms242115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Hormones and neurotransmitters are important components of inter-kingdom signaling systems that ensure the coexistence of eukaryotes with their microbial community. Their ability to affect bacterial physiology, metabolism, and gene expression was evidenced by various experimental approaches, but direct penetration into bacteria has only recently been reported. This opened the possibility of considering neuromodulators as potential effectors of bacterial ligand-dependent regulatory proteins. Here, we assessed the validity of this assumption for the neurotransmitters epinephrine, dopamine, and norepinephrine and two hormones (melatonin and serotonin). Using flexible molecular docking for transcription factors with ligand-dependent activity, we assessed the ability of neuromodulators to occupy their effector binding sites. For many transcription factors, including the global regulator of carbohydrate metabolism, CRP, and the key regulator of lactose assimilation, LacI, this ability was predicted based on the analysis of several 3D models. By occupying the ligand binding site, neuromodulators can sterically hinder the interaction of the target proteins with the natural effectors or even replace them. The data obtained suggest that the direct modulation of the activity of at least some bacterial transcriptional factors by neuromodulators is possible. Therefore, the natural hormonal background may be a factor that preadapts bacteria to the habitat through direct perception of host signaling molecules.
Collapse
Affiliation(s)
- Yuri A. Purtov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
29
|
Niu L, Gao M, Wen S, Wang F, Shangguan H, Guo Z, Zhang R, Ge J. Effects of Catecholamine Stress Hormones Norepinephrine and Epinephrine on Growth, Antimicrobial Susceptibility, Biofilm Formation, and Gene Expressions of Enterotoxigenic Escherichia coli. Int J Mol Sci 2023; 24:15646. [PMID: 37958634 PMCID: PMC10649963 DOI: 10.3390/ijms242115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant contributor to diarrhea. To determine whether ETEC-catecholamine hormone interactions contribute to the development of diarrhea, we tested the effects of catecholamine hormones acting on ETEC in vitro. The results showed that in the presence of norepinephrine (NE) and epinephrine (Epi), the growth of 9 out of 10 ETEC isolates was promoted, the MICs of more than 60% of the isolates to 6 antibiotics significantly increased, and the biofilm formation ability of 10 ETEC isolates was also promoted. In addition, NE and Epi also significantly upregulated the expression of the virulence genes feaG, estA, estB, and elt. Transcriptome analysis revealed that the expression of 290 genes was affected by NE. These data demonstrated that catecholamine hormones may augment the diarrhea caused by ETEC.
Collapse
Affiliation(s)
- Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| | - Shanshan Wen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| |
Collapse
|
30
|
Moraskie M, Roshid MHO, O'Connor G, Artola Zavala T, Dikici E, Zingg JM, Deo S, Daunert S. Engineered biosensors for the quorum sensing molecule 3,5-dimethyl-pyrazine-2-ol (DPO) reveal its presence in humans, animals, and bacterial species beyond Vibrio cholerae. Biosens Bioelectron 2023; 237:115494. [PMID: 37419073 DOI: 10.1016/j.bios.2023.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
A biosensor was engineered to enable the study of the novel quorum sensing molecule (QSM), 3,5-dimethylpyrazin-2-ol (DPO), employed by Vibrio cholerae to regulate biofilm formation and virulence factor production. Investigations into bacterial quorum sensing (QS), a form of communication based on the production and detection of QSMs to coordinate gene expression in a population dependent manner, offer a unique window to study the molecular underpinnings of microbial behavior and host interactions. Herein, we report the construction of an engineered microbial whole-cell bioluminescent biosensing system that incorporates the recognition of the VqmA regulatory protein of Vibrio cholerae with the bioluminescent reporting signal of luciferase for the selective, sensitive, stable, and reproducible detection of DPO in a variety of samples. Importantly, using our newly developed biosensor our studies demonstrate the detection of DPO in rodent and human samples. Employing our developed biosensor should help enable elucidation of microbial behavior at the molecular level and its impact in health and disease.
Collapse
Affiliation(s)
- Michael Moraskie
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute-BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Md Harun Or Roshid
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute-BioNIUM, University of Miami, Miami, FL, 33136, USA; Department of Chemistry, University of Miami, Miami, FL, 33146, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute-BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Teresa Artola Zavala
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute-BioNIUM, University of Miami, Miami, FL, 33136, USA; Universidad Francisco de Vitoria, Madrid, Spain
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute-BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute-BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute-BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute-BioNIUM, University of Miami, Miami, FL, 33136, USA; Department of Chemistry, University of Miami, Miami, FL, 33146, USA; The Miami Clinical and Translational Science Institute, University of Miami, Miami, FL, 33146, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33146, USA.
| |
Collapse
|
31
|
Luzardo-Ocampo I, Ocampo-Ruiz AL, Dena-Beltrán JL, Martínez de la Escalera G, Clapp C, Macotela Y. The Diversity of Gut Microbiota at Weaning Is Altered in Prolactin Receptor-Null Mice. Nutrients 2023; 15:3447. [PMID: 37571383 PMCID: PMC10420910 DOI: 10.3390/nu15153447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Maternal milk supports offspring development by providing microbiota, macronutrients, micronutrients, immune factors, and hormones. The hormone prolactin (PRL) is an important milk component with protective effects against metabolic diseases. Because maternal milk regulates microbiota composition and adequate microbiota protect against the development of metabolic diseases, we aimed to investigate whether PRL/PRL receptor signaling regulates gut microbiota composition in newborn mice at weaning. 16SrRNA sequencing of feces and bioinformatics analysis was performed to evaluate gut microbiota in PRL receptor-null mice (Prlr-KO) at weaning (postnatal day 21). The normalized colon and cecal weights were higher and lower, respectively, in the Prlr-KO mice relative to the wild-type mice (Prlr-WT). Relative abundances (Simpson Evenness Index), phylogenetic diversity, and bacterial concentrations were lower in the Prlr-KO mice. Eleven bacteria species out of 470 differed between the Prlr-KO and Prlr-WT mice, with two genera (Anaerotruncus and Lachnospiraceae) related to metabolic disease development being the most common in the Prlr-KO mice. A higher metabolism of terpenoids and polyketides was predicted in the Prlr-KO mice compared to the Prlr-WT mice, and these metabolites had antimicrobial properties and were present in microbe-associated pathogenicity. We concluded that the absence of the PRL receptor altered gut microbiota, resulting in lower abundance and richness, which could contribute to metabolic disease development.
Collapse
Affiliation(s)
| | | | | | | | | | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico; (I.L.-O.); (A.L.O.-R.); (J.L.D.-B.); (G.M.d.l.E.); (C.C.)
| |
Collapse
|
32
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
33
|
Brannon JR, Reasoner SA, Bermudez TA, Dunigan TL, Wiebe MA, Beebout CJ, Ross T, Bamidele A, Hadjifrangiskou M. Mapping Niche-specific Two-Component System Requirements in Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541942. [PMID: 37292752 PMCID: PMC10245908 DOI: 10.1101/2023.05.23.541942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify - for the first time - a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.
Collapse
Affiliation(s)
- John R. Brannon
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A. Reasoner
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tomas A. Bermudez
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taryn L. Dunigan
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle A. Wiebe
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Connor J. Beebout
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tamia Ross
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adebisi Bamidele
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
34
|
Medina-Rodriguez EM, Cruz AA, De Abreu JC, Beurel E. Stress, inflammation, microbiome and depression. Pharmacol Biochem Behav 2023:173561. [PMID: 37148918 DOI: 10.1016/j.pbb.2023.173561] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/13/2022] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Psychiatric disorders are mental illnesses involving changes in mood, cognition and behavior. Their prevalence has rapidly increased in the last decades. One of the most prevalent psychiatric disorders is major depressive disorder (MDD), a debilitating disease lacking efficient treatments. Increasing evidence shows that microbial and immunological changes contribute to the pathophysiology of depression and both are modulated by stress. This bidirectional relationship constitutes the brain-gut axis involving various neuroendocrine, immunological, neuroenterocrine and autonomic pathways. The present review covers the most recent findings on the relationships between stress, the gut microbiome and the inflammatory response and their contribution to depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, United States of America; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States of America.
| | - Alyssa A Cruz
- Department of Psychiatry and Behavioral Sciences, United States of America
| | | | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, United States of America; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| |
Collapse
|
35
|
Luqman A. The orchestra of human bacteriome by hormones. Microb Pathog 2023; 180:106125. [PMID: 37119938 DOI: 10.1016/j.micpath.2023.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Human microbiome interact reciprocally with the host. Recent findings showed the capability of microorganisms to response towards host signaling molecules, such as hormones. Studies confirmed the complex response of bacteria in response to hormones exposure. These hormones impact many aspects on bacteria, such as the growth, metabolism, and virulence. The effects of each hormone seem to be species-specific. The most studied hormones are cathecolamines also known as stress hormones that consists of epinephrine, norepinephrine and dopamine. These hormones affect the growth of bacteria either inhibit or enhance by acting like a siderophore. Epinephrine and norepinephrine have also been reported to activate QseBC, a quorum sensing in Gram-negative bacteria and eventually enhances the virulence of pathogens. Other hormones were also reported to play a role in shaping human microbiome composition and affect their behavior. Considering the complex response of bacteria on hormones, it highlights the necessity to take the impact of hormones on bacteria into account in studying human health in relation to human microbiome.
Collapse
Affiliation(s)
- Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
| |
Collapse
|
36
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
37
|
Study on the interaction between grain polyphenols and intestinal microorganisms: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
38
|
Zhu Y, Dou Q, Du L, Wang Y. QseB/QseC: a two-component system globally regulating bacterial behaviors. Trends Microbiol 2023:S0966-842X(23)00046-X. [PMID: 36849330 DOI: 10.1016/j.tim.2023.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
QseB/QseC is a two-component system that is involved in the regulation of multiple bacterial behaviors by regulating quorum sensing, bacterial pathogenicity, and antibiotic resistance. Thus, QseB/QseC could provide a target for new antibiotic development. Recently, QseB/QseC has been found to confer survival advantages to environmental bacteria under stress conditions. The molecular mechanistic understanding of QseB/QseC has become an active area of research and revealed some emerging themes, including a deeper understanding of QseB/QseC regulation in different pathogens and environmental bacteria, the functional difference of QseB/QseC among species, and the possibility of analyzing QseB/QseC evolution. Here, we discuss the progression of QseB/QseC studies and describe several unresolved issues and future directions. Resolving these issues is among the challenges of future QseB/QseC studies.
Collapse
Affiliation(s)
- Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qin Dou
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
39
|
Meethai C, Vanaporn M, Intarak N, Lerdsittikul V, Withatanung P, Janesomboon S, Vattanaviboon P, Chareonsudjai S, Wilkinson T, Stevens MP, Stevens JM, Korbsrisate S. Analysis of the role of the QseBC two-component sensory system in epinephrine-induced motility and intracellular replication of Burkholderia pseudomallei. PLoS One 2023; 18:e0282098. [PMID: 36821630 PMCID: PMC9949665 DOI: 10.1371/journal.pone.0282098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Burkholderia pseudomallei is a facultative intracellular bacterial pathogen that causes melioidosis, a severe invasive disease of humans. We previously reported that the stress-related catecholamine hormone epinephrine enhances motility of B. pseudomallei, transcription of flagellar genes and the production of flagellin. It has been reported that the QseBC two-component sensory system regulates motility and virulence-associated genes in other Gram-negative bacteria in response to stress-related catecholamines, albeit disparities between studies exist. We constructed and whole-genome sequenced a mutant of B. pseudomallei with a deletion spanning the predicted qseBC homologues (bpsl0806 and bpsl0807). The ΔqseBC mutant exhibited significantly reduced swimming and swarming motility and reduced transcription of fliC. It also exhibited a defect in biofilm formation and net intracellular survival in J774A.1 murine macrophage-like cells. While epinephrine enhanced bacterial motility and fliC transcription, no further reduction in these phenotypes was observed with the ΔqseBC mutant in the presence of epinephrine. Plasmid-mediated expression of qseBC suppressed bacterial growth, complicating attempts to trans-complement mutant phenotypes. Our data support a role for QseBC in motility, biofilm formation and net intracellular survival of B. pseudomallei, but indicate that it is not essential for epinephrine-induced motility per se.
Collapse
Affiliation(s)
- Chatruthai Meethai
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narin Intarak
- Department of Physiology, Faculty of Dentistry, Genomics and Precision, Chulalongkorn University, Bangkok, Thailand
| | - Varintip Lerdsittikul
- Microbiology Laboratory, Faculty of Veterinary Science, Veterinary Diagnostic Center, Mahidol University, Nakhon Pathom, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Toby Wilkinson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Joanne M. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (JMS); (SK)
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail: (JMS); (SK)
| |
Collapse
|
40
|
Markus V, Paul AA, Teralı K, Özer N, Marks RS, Golberg K, Kushmaro A. Conversations in the Gut: The Role of Quorum Sensing in Normobiosis. Int J Mol Sci 2023; 24:ijms24043722. [PMID: 36835135 PMCID: PMC9963693 DOI: 10.3390/ijms24043722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
An imbalance in gut microbiota, termed dysbiosis, has been shown to affect host health. Several factors, including dietary changes, have been reported to cause dysbiosis with its associated pathologies that include inflammatory bowel disease, cancer, obesity, depression, and autism. We recently demonstrated the inhibitory effects of artificial sweeteners on bacterial quorum sensing (QS) and proposed that QS inhibition may be one mechanism behind such dysbiosis. QS is a complex network of cell-cell communication that is mediated by small diffusible molecules known as autoinducers (AIs). Using AIs, bacteria interact with one another and coordinate their gene expression based on their population density for the benefit of the whole community or one group over another. Bacteria that cannot synthesize their own AIs secretly "listen" to the signals produced by other bacteria, a phenomenon known as "eavesdropping". AIs impact gut microbiota equilibrium by mediating intra- and interspecies interactions as well as interkingdom communication. In this review, we discuss the role of QS in normobiosis (the normal balance of bacteria in the gut) and how interference in QS causes gut microbial imbalance. First, we present a review of QS discovery and then highlight the various QS signaling molecules used by bacteria in the gut. We also explore strategies that promote gut bacterial activity via QS activation and provide prospects for the future.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
| | - Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, Nicosia 99258, Cyprus
| | - Nazmi Özer
- Department of Biochemistry, Faculty of Pharmacy, Girne American University, Kyrenia 99428, Cyprus
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Karina Golberg
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| |
Collapse
|
41
|
Wu P, Wang Q, Yang Q, Feng X, Liu X, Sun H, Yan J, Kang C, Liu B, Liu Y, Yang B. A Novel Role of the Two-Component System Response Regulator UvrY in Enterohemorrhagic Escherichia coli O157:H7 Pathogenicity Regulation. Int J Mol Sci 2023; 24:ijms24032297. [PMID: 36768620 PMCID: PMC9916836 DOI: 10.3390/ijms24032297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen causing severe diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. The signal-sensing capability of EHEC O157:H7 at specific host colonization sites via different two-component systems (TCSs) is closely related to its pathogenicity during infection. However, the types of systems involved and the regulatory mechanisms are not fully understood. Here, we investigated the function of the TCS BarA/UvrY regulator UvrY in the pathogenicity regulation of EHEC O157:H7. Our results showed that UvrY acts as a positive regulator of EHEC O157:H7 for cellular adherence and mouse colonization through the transcriptional activation of the locus for enterocyte effacement (LEE) pathogenic genes. Furthermore, this regulation is mediated by the LEE island master regulator, Ler. Our results highlight the significance of UvrY in EHEC O157:H7 pathogenicity and underline the unknown importance of BarA/UvrY in colonization establishment and intestinal adaptability during infection.
Collapse
Affiliation(s)
- Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
- Correspondence: (Y.L.); (B.Y.)
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Correspondence: (Y.L.); (B.Y.)
| |
Collapse
|
42
|
Klomp T, Jahr H, Abdelbary MMH, Conrads G. Evaluation of hydrocortisone as a strain-dependent growth-regulator of Porphyromonasgingivalis. Anaerobe 2023; 80:102698. [PMID: 36681234 DOI: 10.1016/j.anaerobe.2023.102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Porphyromonas gingivalis is an oral key pathogen and known to be very diverse in geno- and phenotypes. It is a fastidious bacterium with low O2-tolerance and 3-7 days of incubation are necessary. With growing interest in the field of microbial endocrinology we explored the potential growth-stimulating effect of hydrocortisone (HC, synonym cortisol) on P. gingivalis cultures. MATERIAL AND METHODS Six different P. gingivalis strains were pre-incubated in supplemented Brain-Heart-Infusion broth under appropriate conditions for 24 h, diluted and transferred into microplates. A newly developed and semi-automated spectrophotometric measurement in triplicate, applying a SpectraMax i3x microplate reader at an optical density of 600 nm, was conducted to test growth differences between test group (exposed to a supplement of either 1.25, 2.5, 5, 10, or 20 μg/ml of hydrocortisone) and control group over 48 h of anaerobic incubation (O2 ≤ 1%). Furthermore, strains were also incubated on HC-supplemented blood agar to test for a possible growth-stimulating effect on solid media. RESULTS HC significantly stimulated the lag-phase growth of four out of six P. gingivalis strains. Our data suggest a concentration-dependent growth stimulatory effect of HC between 2.5 and 5 μg/ml, while below 1.25 μg/ml and above 10 μg/ml HC either did not stimulate or inhibited growth. CONCLUSIONS HC could reduce the incubation time when isolating P. gingivalis from clinical samples and could boost low biomass cultivations especially during their lag-phase. The growth-modulating effect might be via modulation of virulence factors/quorum sensing gene expression or by reactive oxygen species(ROS)-capturing during early stages of bacterial growth. Further experiments are necessary to explain the mechanism behind our observations.
Collapse
Affiliation(s)
- Tim Klomp
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany; Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen and Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Aachen, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany.
| |
Collapse
|
43
|
QseBC regulates in vitro and in vivo virulence of Aeromonas hydrophila in response to norepinephrine. Microb Pathog 2023; 174:105914. [PMID: 36455751 DOI: 10.1016/j.micpath.2022.105914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/08/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
The inter-kingdom communication between host and pathogenic bacteria mediated by the host hormones epinephrine (Epi)/norepinephrine (NE)/autoinducer-3 (AI-3) and transduced by the bacterial two-component signal transduction system QseBC has been well demonstrated in mammalian pathogens. Aeromonas hydrophila, a common opportunistic pathogen in freshwater aquaculture, responds to NE by increased bacterial growth and enhanced virulence. However, the underlying mechanisms remain poorly understood. Our study demonstrated that deletion of qseB and qseC significantly inhibited NE-promoted growth, biofilm formation, and hemolytic activity of A. hydrophila. The adhesion ability of ΔqseB and ΔqseC to J774a.1 cells was significantly decreased compared with the wild-type strain in the presence and absence of NE, whereas NE still enhanced the adhesion ability of the mutant and wild-type strains with a similar effect, suggesting that NE-enhanced cell adhesion was independent of QseBC. Moreover, QseBC did not affect the swimming and swarming motility of A. hydrophila with or without NE. Quantitative real-time PCR analyses revealed the down-regulated expression of some virulence-related genes (hly, ast, act, aerA) in each mutant compared with the wild-type strain in the presence of NE. Tilapia infection experiments indicated that deletion of qseB or qseC weakened NE-promoted virulence of A. hydrophila. In conclusion, our study suggests that NE stimulates the growth, biofilm formation, and hemolytic activity of A. hydrophila and enhances the virulence of the pathogen in fish via the QseBC system.
Collapse
|
44
|
Begum N, Mandhare A, Tryphena KP, Srivastava S, Shaikh MF, Singh SB, Khatri DK. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front Aging Neurosci 2022; 14:1048333. [PMID: 36583185 PMCID: PMC9794020 DOI: 10.3389/fnagi.2022.1048333] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Gut-brain axis is a dynamic, complex, and bidirectional communication network between the gut and brain. Changes in the microbiota-gut-brain axis are responsible for developing various metabolic, neurodegenerative, and neuropsychiatric disorders. According to clinical and preclinical findings, the gut microbiota is a significant regulator of the gut-brain axis. In addition to interacting with intestinal cells and the enteric nervous system, it has been discovered that microbes in the gut can modify the central nervous system through metabolic and neuroendocrine pathways. The metabolites of the gut microbiome can modulate a number of diseases by inducing epigenetic alteration through DNA methylation, histone modification, and non-coding RNA-associated gene silencing. Short-chain fatty acids, especially butyrate, are well-known histone deacetylases inhibitors. Similarly, other microbial metabolites such as folate, choline, and trimethylamine-N-oxide also regulate epigenetics mechanisms. Furthermore, various studies have revealed the potential role of microbiome dysbiosis and epigenetics in the pathophysiology of depression. Hence, in this review, we have highlighted the role of gut dysbiosis in epigenetic regulation, causal interaction between host epigenetic modification and the gut microbiome in depression and suggest microbiome and epigenome as a possible target for diagnosis, prevention, and treatment of depression.
Collapse
Affiliation(s)
- Nusrat Begum
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aniket Mandhare
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Kamatham Pushpa Tryphena
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,*Correspondence: Saurabh Srivastava,
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,Mohd Farooq Shaikh,
| | - Shashi Bala Singh
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,Dharmendra Kumar Khatri,
| |
Collapse
|
45
|
Shaw C, Hess M, Weimer BC. Two-component systems regulate bacterial virulence in response to the host gastrointestinal environment and metabolic cues. Virulence 2022; 13:1666-1680. [PMID: 36128741 PMCID: PMC9518994 DOI: 10.1080/21505594.2022.2127196] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Two-component systems are ubiquitous signaling mechanisms in bacteria that enable intracellular changes from extracellular cues. These bacterial regulatory systems couple external stimuli to control genetic expression via an autophosphorylation cascade that transduces membrane signals to intracellular locations, thereby allowing bacteria to rapidly adapt to the changing environmental conditions. Well known to control basic cellular processes, it is evident that two-component systems also exercise control over virulence traits, such as motility, secretion systems, and stress responses that impact the complex cascade of networks that alter virulence traits. In the gastrointestinal system, cues for activation of virulence-related two-component systems include metal ions, host-derived metabolites, and gut conditions. The diversity and origin of these cues suggest that the host can exert control over enteric pathogenicity via regulation in the gastrointestinal system. With the rise in multi-drug resistant pathogens, the potential control of pathogenicity with host cues via two-component systems presents a potential alternative to antimicrobials. Though the signaling mechanism itself is well studied, to date there is no systematic review compiling the host-associated cues of two-component systems and virulence traits. This review highlights the direct link between the host gastrointestinal environment and pathogenicity by focusing on two-component systems that are associated with the genetic expression of virulence traits, and that are activated by host-derived cues. The direct link between the host gastrointestinal environment, metabolites, and pathogenicity established in this review both underscores the importance of host-derived cues on bacterial activity and presents an enticing therapeutic target in the fight against antimicrobial resistant pathogens.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Animal Science, Systems Microbiology & Natural Products Laboratory, University of California, Davis, USA
| | - Matthias Hess
- Department of Animal Science, Systems Microbiology & Natural Products Laboratory, University of California, Davis, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California, Davis, CA, USA
| |
Collapse
|
46
|
Falà AK, Álvarez-Ordóñez A, Filloux A, Gahan CGM, Cotter PD. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front Microbiol 2022; 13:1002185. [PMID: 36504831 PMCID: PMC9733432 DOI: 10.3389/fmicb.2022.1002185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Human gut and food microbiomes interact during digestion. The outcome of these interactions influences the taxonomical composition and functional capacity of the resident human gut microbiome, with potential consequential impacts on health and disease. Microbe-microbe interactions between the resident and introduced microbiomes, which likely influence host colonisation, are orchestrated by environmental conditions, elements of the food matrix, host-associated factors as well as social cues from other microorganisms. Quorum sensing is one example of a social cue that allows bacterial communities to regulate genetic expression based on their respective population density and has emerged as an attractive target for therapeutic intervention. By interfering with bacterial quorum sensing, for instance, enzymatic degradation of signalling molecules (quorum quenching) or the application of quorum sensing inhibitory compounds, it may be possible to modulate the microbial composition of communities of interest without incurring negative effects associated with traditional antimicrobial approaches. In this review, we summarise and critically discuss the literature relating to quorum sensing from the perspective of the interactions between the food and human gut microbiome, providing a general overview of the current understanding of the prevalence and influence of quorum sensing in this context, and assessing the potential for therapeutic targeting of quorum sensing mechanisms.
Collapse
Affiliation(s)
- A. Kate Falà
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland,*Correspondence: Paul D. Cotter,
| |
Collapse
|
47
|
Cuesta S, Burdisso P, Segev A, Kourrich S, Sperandio V. Gut colonization by Proteobacteria alters host metabolism and modulates cocaine neurobehavioral responses. Cell Host Microbe 2022; 30:1615-1629.e5. [PMID: 36323315 PMCID: PMC9669251 DOI: 10.1016/j.chom.2022.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Gut-microbiota membership is associated with diverse neuropsychological outcomes, including substance use disorders (SUDs). Here, we use mice colonized with Citrobacter rodentium or the human γ-Proteobacteria commensal Escherichia coli HS as a model to examine the mechanistic interactions between gut microbes and host responses to cocaine. We find that cocaine exposure increases intestinal norepinephrine levels that are sensed through the bacterial adrenergic receptor QseC to promote intestinal colonization of γ-Proteobacteria. Colonized mice show enhanced host cocaine-induced behaviors. The neuroactive metabolite glycine, a bacterial nitrogen source, is depleted in the gut and cerebrospinal fluid of colonized mice. Systemic glycine repletion reversed, and γ-Proteobacteria mutated for glycine uptake did not alter the host response to cocaine. γ-Proteobacteria modulated glycine levels are linked to cocaine-induced transcriptional plasticity in the nucleus accumbens through glutamatergic transmission. The mechanism outline here could potentially be exploited to modulate reward-related brain circuits that contribute to SUDs.
Collapse
Affiliation(s)
- Santiago Cuesta
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Paula Burdisso
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) and Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Rosario, Santa Fe, Argentina
| | - Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; The Center of Excellence in Research on Orphan Diseases - Foundation Courtois, Université du Québec à Montréal, Montréal, QC, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Vanessa Sperandio
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
49
|
Raj K, Singh S, Chib S, Mallan S. Microbiota- Brain-Gut-Axis Relevance to Parkinson's Disease: Potential Therapeutic Effects of Probiotics. Curr Pharm Des 2022; 28:3049-3067. [PMID: 36200207 DOI: 10.2174/1381612828666221003112300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common type of neurogenerative disease among middleaged and older people, characterized by aggregation of alpha-synuclein and dopaminergic neuron loss. The microbiota- gut-brain axis is a dynamic bidirectional communication network and is involved in the pathogenesis of PD. The aggregation of misfolded protein alpha-synuclein is a neuropathological characteristic of PD, originates in the gut and migrates to the central nervous system (CNS) through the vagus nerve and olfactory bulb. The change in the architecture of gut microbiota increases the level short-chain fatty acids (SCFAs) and other metabolites, acting on the neuroendocrine system and modulating the concentrations of gamma-Aminobutyric acid (GABA), serotonin, and other neurotransmitters. It also alters the vagus and intestinal signalling, influencing the brain and behaviour by activating microglia and systemic cytokines. Both experimental and clinical reports indicate the role of intestinal dysbiosis and microbiota host interaction in neurodegeneration. Probiotics are live microorganisms that modify the gut microbiota in the small intestine to avoid neurological diseases. Probiotics have been shown in clinical and preclinical studies to be effective in the treatment of PD by balancing the gut microbiota. In this article, we described the role of gut-microbiota in the pathogenesis of PD. The article aims to explore the mechanistic strategy of the gut-brain axis and its relation with motor impairment and the use of probiotics to maintain gut microbial flora and prevent PD-like symptoms.
Collapse
Affiliation(s)
- Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Sudhanshu Mallan
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
50
|
Abstract
Bacteria have evolved many different signal transduction systems to sense and respond to changing environmental conditions. Signal integration is mainly achieved by signal recognition at extracytosolic ligand-binding domains (LBDs) of receptors. Hundreds of different LBDs have been reported, and our understanding of their sensing properties is growing. Receptors must function over a range of environmental pH values, but there is little information available on the robustness of sensing as a function of pH. Here, we have used isothermal titration calorimetry to determine the pH dependence of ligand recognition by nine LBDs that cover all major LBD superfamilies, of periplasmic solute-binding proteins, and cytosolic LBDs. We show that periplasmic LBDs recognize ligands over a very broad pH range, frequently stretching over eight pH units. This wide pH range contrasts with a much narrower pH response range of the cytosolic LBDs analyzed. Many LBDs must be dimeric to bind ligands, and analytical ultracentrifugation studies showed that the LBD of the Tar chemoreceptor forms dimers over the entire pH range tested. The pH dependences of Pseudomonas aeruginosa motility and chemotaxis were bell-shaped and centered at pH 7.0. Evidence for pH robustness of signaling in vivo was obtained by Förster Resonance Energy Transfer (FRET) measurements of the chemotaxis pathway responses in Escherichia coli. Bacteria have evolved several strategies to cope with extreme pH, such as periplasmic chaperones for protein refolding. The intrinsic pH resistance of periplasmic LBDs appears to be another strategy that permits bacteria to survive under adverse conditions.
Collapse
|