1
|
Tam PPL, Masamsetti P. Functional attributes of the anterior mesendoderm in patterning the anterior neural structures during head formation in the mouse. Cells Dev 2025:203999. [PMID: 39880304 DOI: 10.1016/j.cdev.2025.203999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Induction of the neural ectoderm and the patterning of embryonic brain are the requisite organizing activity for head formation. Studies of loss-of-function mouse mutants that displayed a head truncation phenotype pointed to a key functional role of the anterior mesendoderm in anterior neural patterning. In this overview, we highlight the learning of the molecular attributes underpinning the formation of the anterior mesendoderm, the acquisition of ectoderm competence in the epiblast and the patterning of the embryonic brain during gastrulation and neurulation.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| |
Collapse
|
2
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. Dev Biol 2024; 515:67-78. [PMID: 38968988 PMCID: PMC11361279 DOI: 10.1016/j.ydbio.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in anterior regeneration and mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. We also show that SSDP2 and LDB1 function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we find new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions are likely LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
3
|
Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. Sci Rep 2023; 13:16671. [PMID: 37794075 PMCID: PMC10551014 DOI: 10.1038/s41598-023-43662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
Affiliation(s)
- Ailen S Cervino
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Mariano G Collodel
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Ivan A Lopez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Carolina Roa
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Toren E, Kepple JD, Coutinho KV, Poole SO, Deeba IM, Pierre TH, Liu Y, Bethea MM, Hunter CS. The SSBP3 co-regulator is required for glucose homeostasis, pancreatic islet architecture, and beta-cell identity. Mol Metab 2023; 76:101785. [PMID: 37536498 PMCID: PMC10448474 DOI: 10.1016/j.molmet.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE Transcriptional complex activity drives the development and function of pancreatic islet cells to allow for proper glucose regulation. Prior studies from our lab and others highlighted that the LIM-homeodomain transcription factor (TF), Islet-1 (Isl1), and its interacting co-regulator, Ldb1, are vital effectors of developing and adult β-cells. We further found that a member of the Single Stranded DNA-Binding Protein (SSBP) co-regulator family, SSBP3, interacts with Isl1 and Ldb1 in β-cells and primary islets (mouse and human) to impact β-cell target genes MafA and Glp1R in vitro. Members of the SSBP family stabilize TF complexes by binding directly to Ldb1 and protecting the complex from ubiquitin-mediated turnover. In this study, we hypothesized that SSBP3 has critical roles in pancreatic islet cell function in vivo, similar to the Isl1::Ldb1 complex. METHODS We first developed a novel SSBP3 LoxP allele mouse line, where Cre-mediated recombination imparts a predicted early protein termination. We bred this mouse with constitutive Cre lines (Pdx1- and Pax6-driven) to recombine SSBP3 in the developing pancreas and islet (SSBP3ΔPanc and SSBP3ΔIslet), respectively. We assessed glucose tolerance and used immunofluorescence to detect changes in islet cell abundance and markers of β-cell identity and function. Using an inducible Cre system, we also deleted SSBP3 in the adult β-cell, a model termed SSBP3Δβ-cell. We measured glucose tolerance as well as glucose-stimulated insulin secretion (GSIS), both in vivo and in isolated islets in vitro. Using islets from control and SSBP3Δβ-cell we conducted RNA-Seq and compared our results to published datasets for similar β-cell specific Ldb1 and Isl1 knockouts to identify commonly regulated target genes. RESULTS SSBP3ΔPanc and SSBP3ΔIslet neonates present with hyperglycemia. SSBP3ΔIslet mice are glucose intolerant by P21 and exhibit a reduction of β-cell maturity markers MafA, Pdx1, and UCN3. We observe disruptions in islet cell architecture with an increase in glucagon+ α-cells and ghrelin+ ε-cells at P10. Inducible loss of β-cell SSBP3 in SSBP3Δβ-cell causes hyperglycemia, glucose intolerance, and reduced GSIS. Transcriptomic analysis of 14-week-old SSBP3Δβ-cell islets revealed a decrease in β-cell function gene expression (Ins, MafA, Ucn3), increased stress and dedifferentiation markers (Neurogenin-3, Aldh1a3, Gastrin), and shared differentially expressed genes between SSBP3, Ldb1, and Isl1 in adult β-cells. CONCLUSIONS SSBP3 drives proper islet identity and function, where its loss causes altered islet-cell abundance and glucose homeostasis. β-Cell SSBP3 is required for GSIS and glucose homeostasis, at least partially through shared regulation of Ldb1 and Isl1 target genes.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica D Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristen V Coutinho
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samuel O Poole
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Iztiba M Deeba
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tanya H Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maigen M Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Salim S, Hussain S, Banu A, Gowda SBM, Ahammad F, Alwa A, Pasha M, Mohammad F. The ortholog of human ssDNA-binding protein SSBP3 influences neurodevelopment and autism-like behaviors in Drosophila melanogaster. PLoS Biol 2023; 21:e3002210. [PMID: 37486945 PMCID: PMC10399856 DOI: 10.1371/journal.pbio.3002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/03/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
1p32.3 microdeletion/duplication is implicated in many neurodevelopmental disorders-like phenotypes such as developmental delay, intellectual disability, autism, macro/microcephaly, and dysmorphic features. The 1p32.3 chromosomal region harbors several genes critical for development; however, their validation and characterization remain inadequate. One such gene is the single-stranded DNA-binding protein 3 (SSBP3) and its Drosophila melanogaster ortholog is called sequence-specific single-stranded DNA-binding protein (Ssdp). Here, we investigated consequences of Ssdp manipulations on neurodevelopment, gene expression, physiological function, and autism-associated behaviors using Drosophila models. We found that SSBP3 and Ssdp are expressed in excitatory neurons in the brain. Ssdp overexpression caused morphological alterations in Drosophila wing, mechanosensory bristles, and head. Ssdp manipulations also affected the neuropil brain volume and glial cell number in larvae and adult flies. Moreover, Ssdp overexpression led to differential changes in synaptic density in specific brain regions. We observed decreased levels of armadillo in the heads of Ssdp overexpressing flies, as well as a decrease in armadillo and wingless expression in the larval wing discs, implicating the involvement of the canonical Wnt signaling pathway in Ssdp functionality. RNA sequencing revealed perturbation of oxidative stress-related pathways in heads of Ssdp overexpressing flies. Furthermore, Ssdp overexpressing brains showed enhanced reactive oxygen species (ROS), altered neuronal mitochondrial morphology, and up-regulated fission and fusion genes. Flies with elevated levels of Ssdp exhibited heightened anxiety-like behavior, altered decisiveness, defective sensory perception and habituation, abnormal social interaction, and feeding defects, which were phenocopied in the pan-neuronal Ssdp knockdown flies, suggesting that Ssdp is dosage sensitive. Partial rescue of behavioral defects was observed upon normalization of Ssdp levels. Notably, Ssdp knockdown exclusively in adult flies did not produce behavioral and functional defects. Finally, we show that optogenetic manipulation of Ssdp-expressing neurons altered autism-associated behaviors. Collectively, our findings provide evidence that Ssdp, a dosage-sensitive gene in the 1p32.3 chromosomal region, is associated with various anatomical, physiological, and behavioral defects, which may be relevant to neurodevelopmental disorders like autism. Our study proposes SSBP3 as a critical gene in the 1p32.3 microdeletion/duplication genomic region and sheds light on the functional role of Ssdp in neurodevelopmental processes in Drosophila.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Sadam Hussain
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Swetha B. M. Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mujaheed Pasha
- HBKU Core Labs, Hamad Bin Khalifa University (HBKU): Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
6
|
Cervino AS, Collodel MG, Lopez IA, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537039. [PMID: 37090653 PMCID: PMC10120741 DOI: 10.1101/2023.04.15.537039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem-affinity purification from kidney-induced Xenopus animal caps, we identified s ingle- s tranded DNA b inding p rotein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
|
7
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527523. [PMID: 36798167 PMCID: PMC9934679 DOI: 10.1101/2023.02.07.527523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. SSDP2 and LDB1 also function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we show new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions may be LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
8
|
Abstract
The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Abstract
The Lim domain binding proteins (LDB1 and LDB2 in human and Chip in Drosophila) play critical roles in cell fate decisions through partnership with multiple Lim-homeobox and Lim-only proteins in diverse developmental systems including cardiogenesis, neurogenesis, and hematopoiesis. In mammalian erythroid cells, LDB1 dimerization supports long-range connections between enhancers and genes involved in erythropoiesis, including the β-globin genes. Single-stranded DNA binding proteins (SSBPs) interact specifically with the LDB/Chip conserved domain (LCCD) of LDB proteins and stabilize LDBs by preventing their proteasomal degradation, thus promoting their functions in gene regulation. The structural basis for LDB1 self-interaction and interface with SSBPs is unclear. Here we report a crystal structure of the human LDB1/SSBP2 complex at 2.8-Å resolution. The LDB1 dimerization domain (DD) contains an N-terminal nuclear transport factor 2 (NTF2)-like subdomain and a small helix 4-helix 5 subdomain, which together form the LDB1 dimerization interface. The 2 LCCDs in the symmetric LDB1 dimer flank the core DDs, with each LCCD forming extensive interactions with an SSBP2 dimer. The conserved linker between LDB1 DD and LCCD covers a potential ligand-binding pocket of the LDB1 NTF2-like subdomain and may serve as a regulatory site for LDB1 structure and function. Our structural and biochemical data provide a much-anticipated structural basis for understanding how LDB1 and the LDB1/SSBP interactions form the structural core of diverse complexes mediating cell choice decisions and long-range enhancer-promoter interactions.
Collapse
|
10
|
McMahon R, Sibbritt T, Salehin N, Osteil P, Tam PPL. Mechanistic insights from the LHX1-driven molecular network in building the embryonic head. Dev Growth Differ 2019; 61:327-336. [PMID: 31111476 DOI: 10.1111/dgd.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022]
Abstract
Development of an embryo is driven by a series of molecular instructions that control the differentiation of tissue precursor cells and shape the tissues into major body parts. LIM homeobox 1 (LHX1) is a transcription factor that plays a major role in the development of the embryonic head of the mouse. Loss of LHX1 function disrupts the morphogenetic movement of head tissue precursors and impacts on the function of molecular factors in modulating the activity of the WNT signaling pathway. LHX1 acts with a transcription factor complex to regulate the transcription of target genes in multiple phases of development and in a range of embryonic tissues of the mouse and Xenopus. Determining the interacting factors and transcriptional targets of LHX1 will be key to unraveling the ensemble of factors involved in head development and building a head gene regulatory network.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Tennille Sibbritt
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Nazmus Salehin
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
11
|
Espiritu EB, Crunk AE, Bais A, Hochbaum D, Cervino AS, Phua YL, Butterworth MB, Goto T, Ho J, Hukriede NA, Cirio MC. The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Sci Rep 2018; 8:16029. [PMID: 30375416 PMCID: PMC6207768 DOI: 10.1038/s41598-018-34038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abha Bais
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Hochbaum
- Universidad de Buenos Aires, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Ailen S Cervino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina. .,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Yin Z, Zhang K, Peng X, Jiang Z, Yuan W, Wang Y, Li Y, Ye X, Dong Y, Wan Y, Ni B, Zhu P, Fan X, Wu X, Mo X. SIVA1 Regulates the Stability of Single-Stranded DNA-Binding Protein 3 Isoforms. Mol Biol 2018. [DOI: 10.1134/s0026893318050163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Choi MR, Shin JM, Shin YA, Chang YH, Chang MY, Lim CA, Sohn KC, Seo YJ, Kim CD, Lee JH, Lee Y. Possible Role of Single Stranded DNA Binding Protein 3 on Skin Hydration by Regulating Epidermal Differentiation. Ann Dermatol 2018; 30:432-440. [PMID: 30065583 PMCID: PMC6029969 DOI: 10.5021/ad.2018.30.4.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/08/2022] Open
Abstract
Background Skin hydration is a common problem both in elderly and young people as dry skin may cause irritation, dermatological disorders, and wrinkles. While both genetic and environmental factors seem to influence skin hydration, thorough genetic studies on skin hydration have not yet been conducted. Objective We used a genome-wide association study (GWAS) to explore the genetic elements underlying skin hydration by regulating epidermal differentiation and skin barrier function. Methods A GWAS was conducted to investigate the genetic factors influencing skin hydration in 100 Korean females along with molecular studies of genes in human epidermal keratinocytes for functional study in vitro. Results Among several single nucleotide polymorphisms identified in GWAS, we focused on Single Stranded DNA Binding Protein 3 (SSBP3) which is associated with DNA replication and DNA damage repair. To better understand the role of SSBP3 in skin cells, we introduced a calcium-induced differentiation keratinocyte culture system model and found that SSBP3 was upregulated in keratinocytes in a differentiation dependent manner. When SSBP3 was overexpressed using a recombinant adenovirus, the expression of differentiation-related genes such as loricrin and involucrin was markedly increased. Conclusion Taken together, our results suggest that genetic variants in the intronic region of SSBP3 could be determinants in skin hydration of Korean females. SSBP3 represents a new candidate gene to evaluate the molecular basis of the hydration ability in individuals.
Collapse
Affiliation(s)
- Mi-Ra Choi
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung-Min Shin
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | - Min-Youl Chang
- Department of Bio-Cosmetic Science, Seowon University, Cheongju, Korea
| | - Cho-Ah Lim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
14
|
Liu J, Luo X, Xu Y, Gu J, Tang F, Jin Y, Li H. Single-stranded DNA binding protein Ssbp3 induces differentiation of mouse embryonic stem cells into trophoblast-like cells. Stem Cell Res Ther 2016; 7:79. [PMID: 27236334 PMCID: PMC4884356 DOI: 10.1186/s13287-016-0340-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrinsic factors and extrinsic signals which control unlimited self-renewal and developmental pluripotency in embryonic stem cells (ESCs) have been extensively investigated. However, a much smaller number of factors involved in extra-embryonic trophoblast differentiation from ESCs have been studied. In this study, we investigated the role of the single-stranded DNA binding protein, Ssbp3, for the induction of trophoblast-like differentiation from mouse ESCs. METHODS Gain- and loss-of-function experiments were carried out through overexpression or knockdown of Ssbp3 in mouse ESCs under self-renewal culture conditions. Expression levels of pluripotency and lineage markers were detected by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses. The global gene expression profile in Ssbp3-overexpressing cells was determined by affymetrix microarray. Gene ontology and pathway terms were analyzed and further validated by qRT-PCR and Western blotting. The methylation status of the Elf5 promoter in Ssbp3-overexpressing cells was detected by bisulfite sequencing. The trophoblast-like phenotype induced by Ssbp3 was also evaluated by teratoma formation and early embryo injection assays. RESULTS Forced expression of Ssbp3 in mouse ESCs upregulated expression levels of lineage-associated genes, with trophoblast cell markers being the highest. In contrast, depletion of Ssbp3 attenuated the expression of trophoblast lineage marker genes induced by downregulation of Oct4 or treatment with BMP4 and bFGF in ESCs. Interestingly, global gene expression profiling analysis indicated that Ssbp3 overexpression did not significantly alter the transcript levels of pluripotency-associated transcription factors. Instead, Ssbp3 promoted the expression of early trophectoderm transcription factors such as Cdx2 and activated MAPK/Erk1/2 and TGF-β pathways. Furthermore, overexpression of Ssbp3 reduced the methylation level of the Elf5 promoter and promoted the generation of teratomas with internal hemorrhage, indicative of the presence of trophoblast cells. CONCLUSIONS This study identifies Ssbp3, a single-stranded DNA binding protein, as a regulator for mouse ESCs to differentiate into trophoblast-like cells. This finding is helpful to understand the regulatory networks for ESC differentiation into extra-embryonic lineages.
Collapse
Affiliation(s)
- Jifeng Liu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinlong Luo
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Present address: KU Leuven Department of Development and Regeneration, Stem Cell Institute Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Yanli Xu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China.
| | - Hui Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China.
| |
Collapse
|
15
|
Lee B, Lee S, Agulnick AD, Lee JW, Lee SK. Single-stranded DNA binding proteins are required for LIM complexes to induce transcriptionally active chromatin and specify spinal neuronal identities. Development 2016; 143:1721-31. [PMID: 26965372 DOI: 10.1242/dev.131284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
LIM homeodomain factors regulate the development of many cell types. However, transcriptional coactivators that mediate their developmental function remain poorly defined. To address these, we examined how two related NLI-dependent LIM complexes, which govern the development of spinal motor neurons and V2a interneurons, activate the transcription in the embryonic spinal cord. We found that single-stranded DNA-binding proteins are recruited to these LIM complexes via NLI, and enhance their transcriptional activation potential. Ssdp1 and Ssdp2 (Ssdp1/2) are highly expressed in the neural tube and promote motor neuron differentiation in the embryonic spinal cord and P19 stem cells. Inhibition of Ssdp1/2 activity in mouse and chick embryos suppresses the generation of motor neurons and V2a interneurons. Furthermore, Ssdp1/2 recruit histone-modifying enzymes to the motor neuron-specifying LIM complex and trigger acetylation and lysine 4 trimethylation of histone H3, which are well-established chromatin marks for active transcription. Our results suggest that Ssdp1/2 function as crucial transcriptional coactivators for LIM complexes to specify spinal neuronal identities during development.
Collapse
Affiliation(s)
- Bora Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA Department of Cell, Developmental Biology and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | - Jae W Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA Department of Cell, Developmental Biology and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA Department of Cell, Developmental Biology and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
16
|
Costello I, Nowotschin S, Sun X, Mould AW, Hadjantonakis AK, Bikoff EK, Robertson EJ. Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development. Genes Dev 2016; 29:2108-22. [PMID: 26494787 PMCID: PMC4617976 DOI: 10.1101/gad.268979.115] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Costello et al. demonstrate that Smad4/Eomes-dependent Lhx1 expression in the epiblast marks the entire definitive endoderm lineage, the anterior mesendoderm, and midline progenitors. In proteomic experiments, they characterize a complex comprised of Lhx1, Otx2, and Foxa2 as well as the chromatin-looping protein Ldb1. Gene regulatory networks controlling functional activities of spatially and temporally distinct endodermal cell populations in the early mouse embryo remain ill defined. The T-box transcription factor Eomes, acting downstream from Nodal/Smad signals, directly activates the LIM domain homeobox transcription factor Lhx1 in the visceral endoderm. Here we demonstrate Smad4/Eomes-dependent Lhx1 expression in the epiblast marks the entire definitive endoderm lineage, the anterior mesendoderm, and midline progenitors. Conditional inactivation of Lhx1 disrupts anterior definitive endoderm development and impedes node and midline morphogenesis in part due to severe disturbances in visceral endoderm displacement. Transcriptional profiling and ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) experiments identified Lhx1 target genes, including numerous anterior definitive endoderm markers and components of the Wnt signaling pathway. Interestingly, Lhx1-binding sites were enriched at enhancers, including the Nodal-proximal epiblast enhancer element and enhancer regions controlling Otx2 and Foxa2 expression. Moreover, in proteomic experiments, we characterized a complex comprised of Lhx1, Otx2, and Foxa2 as well as the chromatin-looping protein Ldb1. These partnerships cooperatively regulate development of the anterior mesendoderm, node, and midline cell populations responsible for establishment of the left–right body axis and head formation.
Collapse
Affiliation(s)
- Ita Costello
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Xin Sun
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Arne W Mould
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Elizabeth K Bikoff
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Elizabeth J Robertson
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
17
|
Delprato A, Bonheur B, Algéo MP, Rosay P, Lu L, Williams RW, Crusio WE. Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice. GENES BRAIN AND BEHAVIOR 2015; 14:591-606. [PMID: 26449520 DOI: 10.1111/gbb.12259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/20/2015] [Accepted: 10/06/2015] [Indexed: 12/23/2022]
Abstract
Variation in hippocampal neuroanatomy correlates well with spatial learning ability in mice. Here, we have studied both hippocampal neuroanatomy and behavior in 53 isogenic BXD recombinant strains derived from C57BL/6J and DBA/2J parents. A combination of experimental, neuroinformatic and systems genetics methods was used to test the genetic bases of variation and covariation among traits. Data were collected on seven hippocampal subregions in CA3 and CA4 after testing spatial memory in an eight-arm radial maze task. Quantitative trait loci were identified for hippocampal structure, including the areas of the intra- and infrapyramidal mossy fibers (IIPMFs), stratum radiatum and stratum pyramidale, and for a spatial learning parameter, error rate. We identified multiple loci and gene variants linked to either structural differences or behavior. Gpc4 and Tenm2 are strong candidate genes that may modulate IIPMF areas. Analysis of gene expression networks and trait correlations highlight several processes influencing morphometrical variation and spatial learning.
Collapse
Affiliation(s)
- A Delprato
- University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France.,BioScience Project, Wakefield, MA, USA
| | - B Bonheur
- University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France
| | - M-P Algéo
- University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France
| | - P Rosay
- University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France
| | - L Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - W E Crusio
- University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France
| |
Collapse
|
18
|
Galloway JR, Bethea M, Liu Y, Underwood R, Mobley JA, Hunter CS. SSBP3 Interacts With Islet-1 and Ldb1 to Impact Pancreatic β-Cell Target Genes. Mol Endocrinol 2015; 29:1774-86. [PMID: 26495868 DOI: 10.1210/me.2015-1165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Islet-1 (Isl1) is a Lin11, Isl1, Mec3 (LIM)-homeodomain transcription factor important for pancreatic islet cell development, maturation, and function, which largely requires interaction with the LIM domain-binding protein 1 (Ldb1) coregulator. In other tissues, Ldb1 and Isl1 interact with additional factors to mediate target gene transcription, yet few protein partners are known in β-cells. Therefore, we hypothesize that Ldb1 and Isl1 participate in larger regulatory complexes to impact β-cell gene expression. To test this, we used cross-linked immunoprecipitation and mass spectrometry to identify interacting proteins from mouse β-cells. Proteomic datasets revealed numerous interacting candidates, including a member of the single-stranded DNA-binding protein (SSBP) coregulator family, SSBP3. SSBPs potentiate LIM transcription factor complex activity and stability in other tissues. However, nothing was known of SSBP3 interaction, expression, or activity in β-cells. Our analyses confirmed that SSBP3 interacts with Ldb1 and Isl1 in β-cell lines and in mouse and human islets and demonstrated SSBP3 coexpression with Ldb1 and Isl1 pancreas tissue. Furthermore, β-cell line SSBP3 knockdown imparted mRNA deficiencies similar to those observed upon Ldb1 reduction in vitro or in vivo. This appears to be (at least) due to SSBP3 occupancy of known Ldb1-Isl1 target promoters, including MafA and Glp1r. This study collectively demonstrates that SSBP3 is a critical component of Ldb1-Isl1 regulatory complexes, required for expression of critical β-cell target genes.
Collapse
Affiliation(s)
- Jamie R Galloway
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Maigen Bethea
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yanping Liu
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rachel Underwood
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James A Mobley
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Chad S Hunter
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
19
|
Fossat N, Ip CK, Jones VJ, Studdert JB, Khoo PL, Lewis SL, Power M, Tourle K, Loebel DAF, Kwan KM, Behringer RR, Tam PPL. Context-specific function of the LIM homeobox 1 transcription factor in head formation of the mouse embryo. Development 2015; 142:2069-79. [DOI: 10.1242/dev.120907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/19/2015] [Indexed: 01/18/2023]
Abstract
ABSTRACT
Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity.
Collapse
Affiliation(s)
- Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vanessa J. Jones
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Joshua B. Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Poh-Lynn Khoo
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Samara L. Lewis
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Melinda Power
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Karin Tourle
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - David A. F. Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kin Ming Kwan
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77005, USA
| | - Richard R. Behringer
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77005, USA
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
20
|
Li J, Kurasawa Y, Wang Y, Clise-Dwyer K, Klumpp SA, Liang H, Tailor RC, Raymond AC, Estrov Z, Brandt SJ, Davis RE, Zweidler-McKay P, Amin HM, Nagarajan L. Requirement for ssbp2 in hematopoietic stem cell maintenance and stress response. THE JOURNAL OF IMMUNOLOGY 2014; 193:4654-62. [PMID: 25238756 DOI: 10.4049/jimmunol.1300337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional mechanisms governing hematopoietic stem cell (HSC) quiescence, self-renewal, and differentiation are not fully understood. Sequence-specific ssDNA-binding protein 2 (SSBP2) is a candidate acute myelogenous leukemia (AML) suppressor gene located at chromosome 5q14. SSBP2 binds the transcriptional adaptor protein Lim domain-binding protein 1 (LDB1) and enhances LDB1 stability to regulate gene expression. Notably, Ldb1 is essential for HSC specification during early development and maintenance in adults. We previously reported shortened lifespan and greater susceptibility to B cell lymphomas and carcinomas in Ssbp2(-/-) mice. However, whether Ssbp2 plays a regulatory role in normal HSC function and leukemogenesis is unknown. In this study, we provide several lines of evidence to demonstrate a requirement for Ssbp2 in the function and transcriptional program of hematopoietic stem and progenitor cells (HSPCs) in vivo. We found that hematopoietic tissues were hypoplastic in Ssbp2(-/-) mice, and the frequency of lymphoid-primed multipotent progenitor cells in bone marrow was reduced. Other significant features of these mice were delayed recovery from 5-fluorouracil treatment and diminished multilineage reconstitution in lethally irradiated bone marrow recipients. Dramatic reduction of Notch1 transcripts and increased expression of transcripts encoding the transcription factor E2a and its downstream target Cdkn1a also distinguished Ssbp2(-/-) HSPCs from wild-type HSPCs. Finally, a tendency toward coordinated expression of SSBP2 and the AML suppressor NOTCH1 in a subset of the Cancer Genome Atlas AML cases suggested a role for SSBP2 in AML pathogenesis. Collectively, our results uncovered a critical regulatory function for SSBP2 in HSPC gene expression and function.
Collapse
Affiliation(s)
- June Li
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Yasuhiro Kurasawa
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Yang Wang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Sherry A Klumpp
- Department of Veterinary Medicine and Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hong Liang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ramesh C Tailor
- Department of Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Aaron C Raymond
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Zeev Estrov
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Stephen J Brandt
- Department of Medicine, Vanderbilt University, Nashville, TN 37232; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Richard E Davis
- Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Patrick Zweidler-McKay
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hesham M Amin
- Department of Hematopathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; and
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Human Molecular Genetics, Center for Stem Cell and Developmental Biology, and Center for Cancer Genetics and Genomics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
21
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
22
|
Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2012; 99:489-502. [PMID: 17696879 DOI: 10.1042/bc20060126] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.
Collapse
Affiliation(s)
- Quanhui Zheng
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
23
|
Klippel S, Wieczorek M, Schümann M, Krause E, Marg B, Seidel T, Meyer T, Knapp EW, Freund C. Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome. J Biol Chem 2011; 286:38478-38487. [PMID: 21917930 DOI: 10.1074/jbc.m111.265710] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome.
Collapse
Affiliation(s)
- Stefan Klippel
- Protein Engineering Group, Leibniz Institut für Molekulare Pharmakologie and Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Marek Wieczorek
- Protein Engineering Group, Leibniz Institut für Molekulare Pharmakologie and Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Michael Schümann
- Mass Spectrometry Unit, Leibniz Institut für Molekulare Pharmakologie, Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Eberhard Krause
- Mass Spectrometry Unit, Leibniz Institut für Molekulare Pharmakologie, Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Berenice Marg
- Department of Dynamic Cell Imaging, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Department of Dynamic Cell Imaging, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Tim Meyer
- Theoretical Chemistry Group, Freie Universität Berlin, Institut für Chemie, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Ernst-Walter Knapp
- Theoretical Chemistry Group, Freie Universität Berlin, Institut für Chemie, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Christian Freund
- Protein Engineering Group, Leibniz Institut für Molekulare Pharmakologie and Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
24
|
Zhong Z, Ma H, Taniguchi-Ishigaki N, Nagarajan L, Becker CG, Bach I, Becker T. SSDP cofactors regulate neural patterning and differentiation of specific axonal projections. Dev Biol 2011; 349:213-24. [PMID: 21056553 PMCID: PMC3019294 DOI: 10.1016/j.ydbio.2010.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 10/25/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
The developmental activity of LIM homeodomain transcription factors (LIM-HDs) is critically controlled by LIM domain-interacting cofactors of LIM-HDs (CLIM, also known as NLI or LDB). CLIM cofactors associate with single-stranded DNA binding proteins (SSDPs, also known as SSBPs) thereby recruiting SSDP1 and/or SSDP2 to LIM-HD/CLIM complexes. Although evidence has been presented that SSDPs are important for the activity of specific LIM-HD/CLIM complexes, the developmental roles of SSDPs are unclear. We show that SSDP1a and SSDP1b mRNAs are widely expressed early during zebrafish development with conspicuous expression of SSDP1b in sensory trigeminal and Rohon-Beard neurons. SSDP1 and CLIM immunoreactivity co-localize in these neuronal cell types and in other structures. Over-expression of the N-terminal portion of SSDP1 (N-SSDP1), which contains the CLIM-interaction domain, increases endogenous CLIM protein levels in vivo and impairs the formation of eyes and midbrain-hindbrain boundary. In addition, manipulation of SSDP1 via N-SSDP1 over-expression or SSDP1b knock down impairs trigeminal and Rohon-Beard sensory axon growth. We show that N-SSDP1 is able to partially rescue the inhibition of axon growth induced by a dominant-negative form of CLIM (DN-CLIM). These results reveal specific functions of SSDP in neural patterning and sensory axon growth, in part due to the stabilization of LIM-HD/CLIM complexes.
Collapse
Affiliation(s)
- Zhen Zhong
- Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, The Chancellor’s Building, Edinburgh EH16 4SB, UK
| | - Hong Ma
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA 01605
| | - Naoko Taniguchi-Ishigaki
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lalitha Nagarajan
- Department of Molecular Genetics, MD Anderson Cancer Center, Houston, TX 77030
| | - Catherina G. Becker
- Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, The Chancellor’s Building, Edinburgh EH16 4SB, UK
| | - Ingolf Bach
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA 01605
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Thomas Becker
- Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, The Chancellor’s Building, Edinburgh EH16 4SB, UK
| |
Collapse
|
25
|
Takeuchi K, Gal M, Takahashi H, Shimada I, Wagner G. HNCA-TOCSY-CANH experiments with alternate (13)C- (12)C labeling: a set of 3D experiment with unique supra-sequential information for mainchain resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2011; 49:17-26. [PMID: 21110064 PMCID: PMC3072286 DOI: 10.1007/s10858-010-9456-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/02/2010] [Indexed: 05/30/2023]
Abstract
Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak ³J(CαCα) coupling. These pulse sequences, which resemble recently described (13)C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in (1)H(2)O, and use (1)H excitation and detection. These experiments require alternate (13)C-(12)C labeling together with perdeuteration, which allows utilizing the small ³J(CαCα) scalar coupling that is otherwise masked by the stronger (1)J(CC) couplings in uniformly (13)C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the ¹³C(α) of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i-1, i + 1 and i-2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOCSY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the (15)N-(1)H spin pair of residue i to adjacent amide protons and nitrogens at positions i-2, i-1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments.
Collapse
Affiliation(s)
- Koh Takeuchi
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Maayan Gal
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hideo Takahashi
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan. Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan. Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
26
|
Zheng Q, Schaefer AM, Nonet ML. Regulation of C. elegans presynaptic differentiation and neurite branching via a novel signaling pathway initiated by SAM-10. Development 2010; 138:87-96. [PMID: 21115607 DOI: 10.1242/dev.055350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation.
Collapse
Affiliation(s)
- Qun Zheng
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
27
|
Takeuchi K, Heffron G, Sun ZYJ, Frueh DP, Wagner G. Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments. JOURNAL OF BIOMOLECULAR NMR 2010; 47:271-82. [PMID: 20556482 PMCID: PMC2946331 DOI: 10.1007/s10858-010-9430-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/01/2010] [Indexed: 05/12/2023]
Abstract
Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low gamma nuclei, such as (13)C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel (15)N direct-detection experiments. The CAN experiment sequentially connects amide (15)N resonances using (13)C(alpha) chemical shift matching, and the CON experiment connects the preceding (13)C' nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding (13)C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower gamma is counteracted by the slower (15)N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the (15)N observe CAN experiment is 16% higher than in the (13)C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field C(alpha) resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D(2)O. Thus, these features and the superior resolution of (15)N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST.
Collapse
Affiliation(s)
- Koh Takeuchi
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Gregory Heffron
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Zhen-Yu J. Sun
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Dominique P. Frueh
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
28
|
Yasuoka Y, Kobayashi M, Kurokawa D, Akasaka K, Saiga H, Taira M. Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3. Development 2009; 136:2005-14. [DOI: 10.1242/dev.028530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the LIM homeobox gene lhx1 (lim1) is specific to the vertebrate gastrula organizer. Lhx1 functions as a transcriptional regulatory core protein to exert `organizer' activity in Xenopus embryos. Its ancient paralog, lhx3 (lim3),is expressed around the blastopore in amphioxus and ascidian, but not vertebrate, gastrulae. These two genes are thus implicated in organizer evolution, and we addressed the evolutionary origins of their blastoporal expression and organizer activity. Gene expression analysis of organisms ranging from cnidarians to chordates suggests that blastoporal expression has its evolutionary root in or before the ancestral eumetazoan for lhx1,but possibly in the ancestral chordate for lhx3, and that in the ascidian lineage, blastoporal expression of lhx1 ceased, whereas endodermal expression of lhx3 has persisted. Analysis of organizer activity using Xenopus embryos suggests that a co-factor of LIM homeodomain proteins, Ldb, has a conserved function in eumetazoans to activate Lhx1, but that Lhx1 acquired organizer activity in the bilaterian lineage,Lhx3 acquired organizer activity in the deuterostome lineage and ascidian Lhx3 acquired a specific transactivation domain to confer organizer activity on this molecule. Knockdown analysis using cnidarian embryos suggests that Lhx1 is required for chordin expression in the blastoporal region. These data suggest that Lhx1 has been playing fundamental roles in the blastoporal region since the ancestral eumetazoan arose, that it contributed as an`original organizer gene' to the evolution of the vertebrate gastrula organizer, and that Lhx3 could be involved in the establishment of organizer gene networks.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaaki Kobayashi
- Department of Biological Sciences, Graduate School of Science and Engineering,Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo 192-0397,Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura Kanagawa, 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura Kanagawa, 238-0225, Japan
| | - Hidetoshi Saiga
- Department of Biological Sciences, Graduate School of Science and Engineering,Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo 192-0397,Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Kato Y, Kato T, Ono T, Susa T, Kitahara K, Matsumoto K. Intracellular localization of porcine single-strand binding protein 2. J Cell Biochem 2009; 106:912-9. [PMID: 19199338 DOI: 10.1002/jcb.22066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously cloned cofactor CLIM2 (Ldb1/NL1) as a binding protein for LIM homeodomain transcription factor and now seek a protein interacting with CLIM2. Ultimately, SSBP2 was cloned as CLIM2 binding protein from the adult porcine pituitary cDNA library by the Yeast Two-Hybrid System. The amino acid sequence of porcine SSBP2 shows a high identity (99%) with those of other mammalian species, man, and mouse. Using fluorescence protein-fused SSBP2 and its deletion mutants, we observed that SSBP2 overexpressed in CHO cells predominantly localizes in mitochondria. Expression of mutant SSBP2s demonstrated that the first 241 amino acid residues are responsive for the mitochondrial localization. When CLIM2 vector was co-transfected, SSBP2 changed its location to nuclei. The similar translocation was also observed when CLIM2 vector was transfected 17 h after the transfection of SSBP2 vector. The first 120 residues of SSBP2 are responsible for the nuclear localization by guidance with CLIM2. RT-PCR demonstrated that SSBP2 was expressed in the porcine pituitary from fetal 40 days to postnatal 230 days in both genders and in the variety of pituitary and non-pituitary tumor cell lines, indicating that SSBP2 is present ubiquitously and plays a universal function during fetal and postnatal pituitary development.
Collapse
Affiliation(s)
- Yukio Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Boles MK, Wilkinson BM, Maxwell A, Lai L, Mills AA, Nishijima I, Salinger AP, Moskowitz I, Hirschi KK, Liu B, Bradley A, Justice MJ. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines. BMC Genet 2009; 10:12. [PMID: 19267930 PMCID: PMC2670824 DOI: 10.1186/1471-2156-10-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. RESULTS We isolated 11 lethal lines that map to the region of chromosome 4 between D4Mit117 and D4Mit281. These lines form 10 complementation groups. The majority of lines die during embryonic development between E5.5 and E12.5 and display defects in gastrulation, cardiac development, and craniofacial development. One line displayed postnatal lethality and neurological defects, including ataxia and seizures. CONCLUSION These eleven mutants allow us to query gene function within the distal region of mouse chromosome 4 and demonstrate that new mouse models of mammalian developmental defects can easily and quickly be generated and mapped with the use of ENU-mutagenesis in combination with balancer chromosomes. The low number of mutations isolated in this screen compared with other balancer chromosome screens indicates that the functions of genes in different regions of the genome vary widely.
Collapse
Affiliation(s)
- Melissa K Boles
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bonney M Wilkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Maxwell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lihua Lai
- Departments of Pediatrics and of Molecular and Cellular Biology, Center for Cell and Gene Therapy, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ichiko Nishijima
- Center for Molecular and Human Genetics, Columbus Children's Research Institute, The Ohio State University, Columbus, OH 43205, USA
| | - Andrew P Salinger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivan Moskowitz
- Departments of Pediatrics and Pathology, Institute for Molecular Pediatric Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Karen K Hirschi
- Departments of Pediatrics and of Molecular and Cellular Biology, Center for Cell and Gene Therapy, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bin Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Monica J Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
31
|
Dey-Guha I, Malik N, Lesourne R, Love PE, Westphal H. Tyrosine phosphorylation controls nuclear localization and transcriptional activity of Ssdp1 in mammalian cells. J Cell Biochem 2008; 103:1856-65. [PMID: 18080319 DOI: 10.1002/jcb.21576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The LIM-HD proteins interact with different cofactors, including Ssdp1 to regulate development in a diverse range of species. The single stranded DNA binding protein (Ssdp1) is a member of an evolutionarily conserved family of proteins that regulate critical transcriptional processes during embryonic development. Ssdp1 is localized predominantly in the cytoplasm of 293T cells but is translocated to the nucleus when co-transfected with Lck, a member of the Src family of non-receptor tyrosine kinases. The Src tyrosine kinase inhibitor PP2 blocked the nuclear translocation of Ssdp1. Western blot analysis showed that co-expression of Ssdp1 and Lck in 293T cells induces Ssdp1 phosphorylation. Mutation of the Ssdp1 N terminal tyrosine residues 23 and 25 markedly reduced both the phosphorylation and the nuclear localization of Ssdp1. Lck enhanced the transcriptional activity of Ssdp1 in the context of known components of a LIM-homeodomain (LIM-HD)/cofactor complex. We propose that phosphorylation involving N-terminal tyrosine residues of Ssdp1 is a means of regulating its nuclear localization and subsequent transcriptional activation of LIM-HD complexes.
Collapse
Affiliation(s)
- Ipsita Dey-Guha
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, HHS, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Cai Y, Xu Z, Nagarajan L, Brandt SJ. Single-stranded DNA-binding proteins regulate the abundance and function of the LIM-homeodomain transcription factor LHX2 in pituitary cells. Biochem Biophys Res Commun 2008; 373:303-8. [PMID: 18565323 PMCID: PMC2496924 DOI: 10.1016/j.bbrc.2008.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
A family of single-stranded DNA-binding proteins (or SSBPs) has been shown to augment the function of LIM-homeodomain (LIM-HD) transcription factors in embryogenesis by interaction with LIM domain-binding protein-1 (LDB1). No DNA-binding complex has been described, however, containing a LIM-HD protein, LDB1, and SSBP, and the mechanism by which SSBPs affect LIM-HD function had not been elucidated. Through use of electrophoretic mobility shift, antibody supershift, and ChIP analyses, we show that an Lhx2-Ldb1-Ssbp3 complex binds a specific element in the Lhx2 target gene Cga (encoding the alpha subunit of glycoprotein hormones) in the alphaT3-1 pituitary cell line. Using overexpression and knockdown approaches, we demonstrate that SSBP3 inhibits Lhx2 and Ldb1 turnover, stimulates assembly of this DNA-binding complex, promotes its recruitment to the Cga promoter, and enhances Cga transcription. These studies provide novel insights into the regulation of pituitary gene expression and LIM-HD function more generally.
Collapse
Affiliation(s)
- Ying Cai
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Zhixiong Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lalitha Nagarajan
- Department of Molecular Genetics and Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Stephen J. Brandt
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
- VA Tennessee Valley Healthcare System, Nashville, TN 37212
| |
Collapse
|
33
|
Lewis SL, Khoo PL, De Young RA, Steiner K, Wilcock C, Mukhopadhyay M, Westphal H, Jamieson RV, Robb L, Tam PPL. Dkk1andWnt3interact to control head morphogenesis in the mouse. Development 2008; 135:1791-801. [DOI: 10.1242/dev.018853] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Loss of Dkk1 results in ectopic WNT/β-catenin signalling activity in the anterior germ layer tissues and impairs cell movement in the endoderm of the mouse gastrula. The juxtaposition of the expression domains of Dkk1 and Wnt3 is suggestive of an antagonist-agonist interaction. The downregulation of Dkk1 when Wnt3 activity is reduced reveals a feedback mechanism for regulating WNT signalling. Compound Dkk1;Wnt3 heterozygous mutant embryos display head truncation and trunk malformation, which are not found in either Dkk1+/- or Wnt3+/- embryos. Reducing the dose of Wnt3 gene in Dkk1-/- embryos partially rescues the truncated head phenotype. These findings highlight that head development is sensitive to the level of WNT3 signalling and that DKK1 is the key antagonist that modulates WNT3 activity during anterior morphogenesis.
Collapse
Affiliation(s)
- Samara L. Lewis
- Embryology Unit, Children's Medical Research Institute, University of Sydney,Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
| | - Poh-Lynn Khoo
- Embryology Unit, Children's Medical Research Institute, University of Sydney,Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
| | - R. Andrea De Young
- Embryology Unit, Children's Medical Research Institute, University of Sydney,Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
| | - Kirsten Steiner
- Embryology Unit, Children's Medical Research Institute, University of Sydney,Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
| | - Chris Wilcock
- Faculty of Medicine, University of Sydney, Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
| | - Mahua Mukhopadhyay
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20892, USA
| | - Heiner Westphal
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20892, USA
| | - Robyn V. Jamieson
- Embryology Unit, Children's Medical Research Institute, University of Sydney,Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
- Faculty of Medicine, University of Sydney, Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
| | - Lorraine Robb
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade,Parkville, Victoria 3050, Australia
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute, University of Sydney,Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
- Faculty of Medicine, University of Sydney, Locked Bag 23, Wentworthville, New South Wales, NSW 2145, Australia
| |
Collapse
|
34
|
Xu Z, Meng X, Cai Y, Liang H, Nagarajan L, Brandt SJ. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins. Genes Dev 2007; 21:942-55. [PMID: 17437998 PMCID: PMC1847712 DOI: 10.1101/gad.1528507] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/02/2007] [Indexed: 01/02/2023]
Abstract
The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and beta-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins.
Collapse
Affiliation(s)
- Zhixiong Xu
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Xianzhang Meng
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Ying Cai
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Hong Liang
- Department of Molecular Genetics, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lalitha Nagarajan
- Department of Molecular Genetics, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephen J. Brandt
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, USA
| |
Collapse
|
35
|
Neduva V, Russell RB. Proline-rich regions in transcriptional complexes: heading in many directions. ACTA ACUST UNITED AC 2007; 2007:pe1. [PMID: 17228057 DOI: 10.1126/stke.3692007pe1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although many protein complexes are now known, the precise details of how each component operates are rarely understood. Through a combination of bioinformatics and analysis of gene-trapped mouse clones, Enkhmandakh et al. were able to deduce the modular function for a part of Ssdp1, a crucial component of the Ldb1 transcriptional complex, which plays a central role in mammalian head development. A proline-rich module from Ssdp1 is likely responsible for transactivation, and this region is curiously mobile, occurring in different proteins in different species. The results underscore the importance of protein modularity in complex organization, as well as the role of irregular or disordered parts of proteins in crucial biological processes.
Collapse
Affiliation(s)
- Victor Neduva
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|