1
|
Sharma C, Kim S, Eo H, Kim SR. Recovery of the injured neural system through gene delivery to surviving neurons in Parkinson's disease. Neural Regen Res 2025; 20:2855-2861. [PMID: 39610091 PMCID: PMC11826474 DOI: 10.4103/nrr.nrr-d-24-00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024] Open
Abstract
A critical unaddressed problem in Parkinson's disease is the lack of therapy that slows or hampers neurodegeneration. While medications effectively manage symptoms, they offer no long-term benefit because they fail to address the underlying neuronal loss. This highlights that the elusive goals of halting progression and restoring damaged neurons limit the long-term impact of current approaches. Recent clinical trials using gene therapy have demonstrated the safety of various vector delivery systems, dosages, and transgenes expressed in the central nervous system, signifying tangible and substantial progress in applying gene therapy as a promising Parkinson's disease treatment. Intriguingly, at diagnosis, many dopamine neurons remain in the substantia nigra, offering a potential window for recovery and survival. We propose that modulating these surviving dopamine neurons and axons in the substantia nigra and striatum using gene therapy offers a potentially more impactful therapeutic approach for future research. Moreover, innovative gene therapies that focus on preserving the remaining elements may have significant potential for enhancing long-term outcomes and the quality of life for patients with Parkinson's disease. In this review, we provide a perspective on how gene therapy can protect vulnerable elements in the substantia nigra and striatum, offering a novel approach to addressing Parkinson's disease at its core.
Collapse
Affiliation(s)
- Chanchal Sharma
- School of Life Science, Kyungpook National University, Daegu, Korea
- BK21 FOUR KNU Creative BioResearch Group Kyungpook National University, Daegu, Korea
| | - Sehwan Kim
- School of Life Science, Kyungpook National University, Daegu, Korea
- BK21 FOUR KNU Creative BioResearch Group Kyungpook National University, Daegu, Korea
| | - Hyemi Eo
- School of Life Science, Kyungpook National University, Daegu, Korea
- BK21 FOUR KNU Creative BioResearch Group Kyungpook National University, Daegu, Korea
| | - Sang Ryong Kim
- School of Life Science, Kyungpook National University, Daegu, Korea
- BK21 FOUR KNU Creative BioResearch Group Kyungpook National University, Daegu, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
2
|
Rooban S, Arul Senghor K, Vinodhini V, Kumar J. Adropin: A crucial regulator of cardiovascular health and metabolic balance. Metabol Open 2024; 23:100299. [PMID: 39045137 PMCID: PMC11263719 DOI: 10.1016/j.metop.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Adropin, a peptide discovered in 2008, has gained recognition as a key regulator of cardiovascular health and metabolic balance. Initially identified for its roles in energy balance, lipid metabolism, and glucose regulation, adropin has also been found to improve cardiovascular health by enhancing endothelial function, modulating lipid profiles, and reducing oxidative stress. These protective mechanisms suggest that adropin may be able to help prevent conditions such as atherosclerosis, hypertension, and other cardiovascular diseases. Research has established connections between adropin and cardiovascular risk factors, such as obesity, insulin resistance, and dyslipidemia, positioning it as a valuable biomarker for evaluating cardiovascular disease risk. New studies highlight adropin's diagnostic and prognostic significance, showing that higher levels are linked to better cardiovascular outcomes, while lower levels are associated with a higher risk of cardiovascular diseases. This review aims to summarize current knowledge on adropin, emphasizing its significance as a promising focus in the intersection of cardiovascular health and metabolic health. By summarizing the latest research findings, this review aims to offer insights into the potential applications of adropin in both clinical practice and research, leading to a deeper understanding of its role in maintaining cardiovascular and metabolic health.
Collapse
Affiliation(s)
- S. Rooban
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - K.A. Arul Senghor
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - V.M. Vinodhini
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - J.S. Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Huang Q, Wang Y, Chen S, Liang F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis 2024; 15:1155-1175. [PMID: 37611905 PMCID: PMC11081147 DOI: 10.14336/ad.2023.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Neurodegenerative diseases (ND) are conditions defined by progressive deterioration of the structure and function of the nervous system. Some major examples include Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). These diseases lead to various dysfunctions, like impaired cognition, memory, and movement. Chronic neuroinflammation may underlie numerous neurodegenerative disorders. Microglia, an important immunocell in the brain, plays a vital role in defending against neuroinflammation. When exposed to different stimuli, microglia are activated and assume different phenotypes, participating in immune regulation of the nervous system and maintaining tissue homeostasis. The immunological activity of activated microglia is affected by glucose metabolic alterations. However, in the context of chronic neuroinflammation, specific alterations of microglial glucose metabolism and their mechanisms of action remain unclear. Thus, in this paper, we review the glycometabolic reprogramming of microglia in ND. The key molecular targets and main metabolic pathways are the focus of this research. Additionally, this study explores the mechanisms underlying microglial glucose metabolism reprogramming in ND and offers an analysis of the most recent therapeutic advancements. The ultimate aim is to provide insights into the development of potential treatments for ND.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Yanfu Wang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
4
|
Ay M, Charli A, Langley M, Jang A, Padhi P, Jin H, Anantharam V, Kalyanaraman B, Kanthasamy A, Kanthasamy AG. Mito-metformin protects against mitochondrial dysfunction and dopaminergic neuronal degeneration by activating upstream PKD1 signaling in cell culture and MitoPark animal models of Parkinson's disease. Front Neurosci 2024; 18:1356703. [PMID: 38449738 PMCID: PMC10915001 DOI: 10.3389/fnins.2024.1356703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Impaired mitochondrial function and biogenesis have strongly been implicated in the pathogenesis of Parkinson's disease (PD). Thus, identifying the key signaling mechanisms regulating mitochondrial biogenesis is crucial to developing new treatment strategies for PD. We previously reported that protein kinase D1 (PKD1) activation protects against neuronal cell death in PD models by regulating mitochondrial biogenesis. To further harness the translational drug discovery potential of targeting PKD1-mediated neuroprotective signaling, we synthesized mito-metformin (Mito-Met), a mitochondria-targeted analog derived from conjugating the anti-diabetic drug metformin with a triphenylphosphonium functional group, and then evaluated the preclinical efficacy of Mito-Met in cell culture and MitoPark animal models of PD. Mito-Met (100-300 nM) significantly activated PKD1 phosphorylation, as well as downstream Akt and AMPKα phosphorylation, more potently than metformin, in N27 dopaminergic neuronal cells. Furthermore, treatment with Mito-Met upregulated the mRNA and protein expression of mitochondrial transcription factor A (TFAM) implying that Mito-Met can promote mitochondrial biogenesis. Interestingly, Mito-Met significantly increased mitochondrial bioenergetics capacity in N27 dopaminergic cells. Mito-Met also reduced mitochondrial fragmentation induced by the Parkinsonian neurotoxicant MPP+ in N27 cells and protected against MPP+-induced TH-positive neurite loss in primary neurons. More importantly, Mito-Met treatment (10 mg/kg, oral gavage for 8 week) significantly improved motor deficits and reduced striatal dopamine depletion in MitoPark mice. Taken together, our results demonstrate that Mito-Met possesses profound neuroprotective effects in both in vitro and in vivo models of PD, suggesting that pharmacological activation of PKD1 signaling could be a novel neuroprotective translational strategy in PD and other related neurocognitive diseases.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Adhithiya Charli
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Monica Langley
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Ahyoung Jang
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Piyush Padhi
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Huajun Jin
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Vellareddy Anantharam
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | | | - Arthi Kanthasamy
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
6
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomed Pharmacother 2022; 153:113412. [DOI: 10.1016/j.biopha.2022.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
|
7
|
Kosillo P, Ahmed KM, Aisenberg EE, Karalis V, Roberts BM, Cragg SJ, Bateup HS. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. eLife 2022; 11:e75398. [PMID: 35881440 PMCID: PMC9328766 DOI: 10.7554/elife.75398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kamran M Ahmed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bradley M Roberts
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Stephanie J Cragg
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
| |
Collapse
|
8
|
Honsho M, Mawatari S, Fujiki Y. ATP8B2-Mediated Asymmetric Distribution of Plasmalogens Regulates Plasmalogen Homeostasis and Plays a Role in Intracellular Signaling. Front Mol Biosci 2022; 9:915457. [PMID: 35832735 PMCID: PMC9271795 DOI: 10.3389/fmolb.2022.915457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Plasmalogens are a subclass of glycerophospholipid containing vinyl-ether bond at the sn-1 position of glycerol backbone. Ethanolamine-containing plasmalogens (plasmalogens) are major constituents of cellular membranes in mammalian cells and de novo synthesis of plasmalogens largely contributes to the homeostasis of plasmalogens. Plasmalogen biosynthesis is regulated by a feedback mechanism that senses the plasmalogen level in the inner leaflet of the plasma membrane and regulates the stability of fatty acyl-CoA reductase 1 (Far1), a rate-limiting enzyme for plasmalogen biosynthesis. However, the molecular mechanism underlying the localization of plasmalogens in cytoplasmic leaflet of plasma membrane remains unknown. To address this issue, we attempted to identify a potential transporter of plasmalogens from the outer to the inner leaflet of plasma membrane by focusing on phospholipid flippases, type-IV P-type adenosine triphosphatases (P4-ATPase), localized in the plasma membranes. We herein show that knockdown of ATP8B2 belonging to the class-1 P4-ATPase enhances localization of plasmalogens but not phosphatidylethanolamine in the extracellular leaflet and impairs plasmalogen-dependent degradation of Far1. Furthermore, phosphorylation of protein kinase B (AKT) is downregulated by lowering the expression of ATP8B2, which leads to suppression of cell growth. Taken together, these results suggest that enrichment of plasmalogens in the cytoplasmic leaflet of plasma membranes is mediated by ATP8B2 and this asymmetric distribution of plasmalogens is required for sensing plasmalogens as well as phosphorylation of AKT.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka, Japan
- *Correspondence: Masanori Honsho, ; Yukio Fujiki,
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Yukio Fujiki
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka, Japan
- Graduate School of Science, University of Hyogo, Hyogo, Japan
- *Correspondence: Masanori Honsho, ; Yukio Fujiki,
| |
Collapse
|
9
|
Varela L, Garcia-Rendueles MER. Oncogenic Pathways in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23063223. [PMID: 35328644 PMCID: PMC8952192 DOI: 10.3390/ijms23063223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer and neurodegenerative diseases are two of the leading causes of premature death in modern societies. Their incidence continues to increase, and in the near future, it is believed that cancer will kill more than 20 million people per year, and neurodegenerative diseases, due to the aging of the world population, will double their prevalence. The onset and the progression of both diseases are defined by dysregulation of the same molecular signaling pathways. However, whereas in cancer, these alterations lead to cell survival and proliferation, neurodegenerative diseases trigger cell death and apoptosis. The study of the mechanisms underlying these opposite final responses to the same molecular trigger is key to providing a better understanding of the diseases and finding more accurate treatments. Here, we review the ten most common signaling pathways altered in cancer and analyze them in the context of different neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases.
Collapse
Affiliation(s)
- Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, School of Medicine, Yale University, 310 Cedar St. BML 330, New Haven, CT 06520, USA
- Correspondence: (L.V.); (M.E.R.G.-R.)
| | - Maria E. R. Garcia-Rendueles
- Precision Nutrition and Cancer Program, IMDEA Food Institute, Campus Excelencia Internacional UAM+CSIC, 28049 Madrid, Spain
- Correspondence: (L.V.); (M.E.R.G.-R.)
| |
Collapse
|
10
|
Wang Q, Wang Y, Liu Z, Guo J, Li J, Zhao Y. Improvement effect of acupuncture on locomotor function in Parkinson disease via regulating gut microbiota and inhibiting inflammatory factor release. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Mesa-Infante V, Afonso-Oramas D, Salas-Hernández J, Rodríguez-Núñez J, Barroso-Chinea P. Long-term exposure to GDNF induces dephosphorylation of Ret, AKT, and ERK1/2, and is ineffective at protecting midbrain dopaminergic neurons in cellular models of Parkinson's disease. Mol Cell Neurosci 2021; 118:103684. [PMID: 34826608 DOI: 10.1016/j.mcn.2021.103684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/01/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes differentiation, proliferation, and survival in different cell types, including dopaminergic neurons. Thus, GDNF has been proposed as a promising neuroprotective therapy in Parkinson's disease. Although findings from cellular and animal models of Parkinson's disease were encouraging, results emerging from clinical trials were not as good as expected, probably due to the inappropriate administration protocols. Despite the growing information on GDNF action mechanisms, many aspects of its pharmacological effects are still unclear and data from different studies are still contradictory. Considering that GDNF action mechanisms are mediated by its receptor tyrosine kinase Ret, which activates PI3K/AKT and MAPK/ERK signaling pathways, we aimed to investigate Ret activation and its effect over both signaling pathways in midbrain cell cultures treated with GDNF at different doses (0.3, 1, and 10 ng/ml) and times (15 min, 24 h, 24 h (7 days), and 7 continuous days). The results showed that short-term or acute (15 min, 24 h, and 24 h (7 days)) GDNF treatment in rat midbrain neurons increases Tyrosine hydroxylase (TH) expression and the phosphorylation levels of Ret (Tyr 1062), AKT (Ser 473), ERK1/2 (Thr202/Tyr204), S6 (Ser 235/236), and GSK3-β (Ser 9). However, the phosphorylation level of these kinases, TH expression, and dopamine uptake, decreased below basal levels after long-term or prolonged treatment with 1 and 10 ng/ml GDNF (7 continuous days). Our data suggest that long-term GDNF treatment inactivates the receptor by an unknown mechanism, affecting its neuroprotective capacity against degeneration caused by 6-OHDA or rotenone, while short-term exposure to GDNF promoted dopaminergic cell survival. These findings highlight the need to find new and more effective long-acting therapeutic approaches for disorders in which GDNF plays a beneficial role, including Parkinson's disease. In this regard, it is necessary to propose new GDNF treatment guidelines to regulate and control its long-term expression levels and optimize the clinical use of this trophic factor in patients with Parkinson's disease.
Collapse
Affiliation(s)
- V Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - D Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| | - J Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - J Rodríguez-Núñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - P Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
12
|
Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnology 2021; 19:327. [PMID: 34663344 PMCID: PMC8522232 DOI: 10.1186/s12951-021-01059-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have been proposed as targeted carriers to deliver therapeutic molecules in the central nervous system (CNS). However, IONPs may damage neural tissue via free iron accumulation, protein aggregation, and oxidative stress. Neuroprotective effects of quercetin (QC) have been proven due to its antioxidant and anti-inflammatory properties. However, poor solubility and low bioavailability of QC have also led researchers to make various QC-involved nanoparticles to overcome these limitations. We wondered how high doses or prolonged treatment with quercetin conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) could improve cognitive dysfunction and promote neurogenesis without any toxicity. It can be explained that the QC inhibits protein aggregation and acts against iron overload via iron-chelating activity, iron homeostasis genes regulation, radical scavenging, and attenuation of Fenton/Haber-Weiss reaction. In this review, first, we present brain iron homeostasis, molecular mechanisms of iron overload that induced neurotoxicity, and the role of iron in dementia-associated diseases. Then by providing evidence of IONPs neurotoxicity, we discuss how QC neutralizes IONPs neurotoxicity, and finally, we make a brief comparison between QC and conventional iron chelators. In this review, we highlight that QC as supplementation and especially in conjugated form reduces iron oxide nanoparticles neurotoxicity in clinical application.
Collapse
Affiliation(s)
- Akram Bardestani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Shiva Ebrahimpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Ali Esmaeili
- School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran.
| |
Collapse
|
13
|
Krzystek TJ, Banerjee R, Thurston L, Huang J, Swinter K, Rahman SN, Falzone TL, Gunawardena S. Differential mitochondrial roles for α-synuclein in DRP1-dependent fission and PINK1/Parkin-mediated oxidation. Cell Death Dis 2021; 12:796. [PMID: 34404758 PMCID: PMC8371151 DOI: 10.1038/s41419-021-04046-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023]
Abstract
Mitochondria are highly dynamic organelles with strict quality control processes that maintain cellular homeostasis. Within axons, coordinated cycles of fission-fusion mediated by dynamin related GTPase protein (DRP1) and mitofusins (MFN), together with regulated motility of healthy mitochondria anterogradely and damaged/oxidized mitochondria retrogradely, control mitochondrial shape, distribution and size. Disruption of this tight regulation has been linked to aberrant oxidative stress and mitochondrial dysfunction causing mitochondrial disease and neurodegeneration. Although pharmacological induction of Parkinson's disease (PD) in humans/animals with toxins or in mice overexpressing α-synuclein (α-syn) exhibited mitochondrial dysfunction and oxidative stress, mice lacking α-syn showed resistance to mitochondrial toxins; yet, how α-syn influences mitochondrial dynamics and turnover is unclear. Here, we isolate the mechanistic role of α-syn in mitochondrial homeostasis in vivo in a humanized Drosophila model of Parkinson's disease (PD). We show that excess α-syn causes fragmented mitochondria, which persists with either truncation of the C-terminus (α-syn1-120) or deletion of the NAC region (α-synΔNAC). Using in vivo oxidation reporters Mito-roGFP2-ORP1/GRX1 and MitoTimer, we found that α-syn-mediated fragments were oxidized/damaged, but α-syn1-120-induced fragments were healthy, suggesting that the C-terminus is required for oxidation. α-syn-mediated oxidized fragments showed biased retrograde motility, but α-syn1-120-mediated healthy fragments did not, demonstrating that the C-terminus likely mediates the retrograde motility of oxidized mitochondria. Depletion/inhibition or excess DRP1-rescued α-syn-mediated fragmentation, oxidation, and the biased retrograde motility, indicating that DRP1-mediated fragmentation is likely upstream of oxidation and motility changes. Further, excess PINK/Parkin, two PD-associated proteins that function to coordinate mitochondrial turnover via induction of selective mitophagy, rescued α-syn-mediated membrane depolarization, oxidation and cell death in a C-terminus-dependent manner, suggesting a functional interaction between α-syn and PINK/Parkin. Taken together, our findings identify distinct roles for α-syn in mitochondrial homeostasis, highlighting a previously unknown pathogenic pathway for the initiation of PD.
Collapse
Affiliation(s)
- Thomas J Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Rupkatha Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Layne Thurston
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - JianQiao Huang
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Kelsey Swinter
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Saad Navid Rahman
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Tomas L Falzone
- Instituto de Biología Celular y Neurociencias IBCN (CONICET-UBA), Universidad De Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
14
|
Gordián-Vélez WJ, Chouhan D, España RA, Chen HI, Burdick JA, Duda JE, Cullen DK. Restoring lost nigrostriatal fibers in Parkinson's disease based on clinically-inspired design criteria. Brain Res Bull 2021; 175:168-185. [PMID: 34332016 DOI: 10.1016/j.brainresbull.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a neurodegenerative disease affecting around 10 million people worldwide. The death of dopaminergic neurons in the substantia nigra and the axonal fibers that constitute the nigrostriatal pathway leads to a loss of dopamine in the striatum that causes the motor symptoms of this disease. Traditional treatments have focused on reducing symptoms, while therapies with human fetal or stem cell-derived neurons have centered on implanting these cells in the striatum to restore its innervation. An alternative approach is pathway reconstruction, which aims to rebuild the entire structure of neurons and axonal fibers of the nigrostriatal pathway in a way that matches its anatomy and physiology. This type of repair could be more capable of reestablishing the signaling mechanisms that ensure proper dopamine release in the striatum and regulation of other motor circuit regions in the brain. In this manuscript, we conduct a review of the literature related to pathway reconstruction as a treatment for Parkinson's disease, delve into the limitations of these studies, and propose the requisite design criteria to achieve this goal at a human scale. We then present our tissue engineering-based platform to fabricate hydrogel-encased dopaminergic axon tracts in vitro for later implantation into the brain to replace and reconstruct the pathway. These tissue-engineered nigrostriatal pathways (TE-NSPs) can be characterized and optimized for cell number and phenotype, axon growth lengths and rates, and the capacity for synaptic connectivity and dopamine release. We then show original data of advances in creating these constructs matching clinical design criteria using human iPSC-derived dopaminergic neurons and a hyaluronic acid hydrogel. We conclude with a discussion of future steps that are needed to further optimize human-scale TE-NSPs and translate them into clinical products.
Collapse
Affiliation(s)
- Wisberty J Gordián-Vélez
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Dimple Chouhan
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Rodrigo A España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D Kacy Cullen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Wang Y, Gu L, Yang HM, Zhang H. Cystic fibrosis transmembrane conductance regulator-associated ligand protects dopaminergic neurons by differentially regulating metabotropic glutamate receptor 5 in the progression of neurotoxin 6-hydroxydopamine-induced Parkinson's disease model. Neurotoxicology 2021; 84:14-29. [PMID: 33571554 DOI: 10.1016/j.neuro.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Due to limitations in early diagnosis and treatments of Parkinson's disease (PD), it is necessary to explore the neuropathological changes that occur early in PD progression and to design neuroprotective therapies to prevent or delay the ongoing degeneration process. Metabotropic glutamate receptor 5 (mGlu5) has shown both diagnostic and therapeutic potential in preclinical studies on PD. Clinical trials using mGlu5 negative allosteric modulators to treat PD have, however, raised limitations about the neuroprotective role of mGlu5. It is likely that mGlu5 has different regulatory roles in different stages of PD. Here, we investigated a protective role of cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in the progression of PD by differential regulation of mGlu5 expression and activity to protect against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Following treatment with 6-OHDA, mGlu5 and CAL expressions were elevated in the early stage and reduced in the late stage, both in vitro and in vivo. Activation of mGlu5 in the early stage by (RS)-2-chloro-5-hydroxyphenylglycine, or blocking mGlu5 in the late stage by 2-methyl-6-(phenylethynyl) pyridine, increased cell survival and inhibited apoptosis, but these effects were significantly weakened by knockdown of CAL. CAL alleviated 6-OHDA-induced neurotoxicity by regulating mGlu5-mediated signaling pathways, thereby maintaining the physiological function of mGlu5 in different disease stages. In PD rat model, CAL deficiency aggravated 6-OHDA toxicity on dopaminergic neurons and increased motor dysfunction because of lack of regulation of mGlu5 activity. These data reveal a potential mechanism by which CAL specifically regulates the opposite activity of mGlu5 in progression of PD to protect against neurotoxicity, suggesting that CAL is a favorable endogenous target for the treatment of PD.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hui Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
16
|
Kim JH, Seo Y, Jo M, Jeon H, Kim YS, Kim EJ, Seo D, Lee WH, Kim SR, Yachie N, Zhong Q, Vidal M, Roth FP, Suk K. Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways. J Biol Chem 2020; 295:16906-16919. [PMID: 33060198 PMCID: PMC7863907 DOI: 10.1074/jbc.ra120.014831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yeojin Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Myungjin Jo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyejin Jeon
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Seop Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Eun-Jung Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Donggun Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, Brain Korea 21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Nozomu Yachie
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Quan Zhong
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frederick P Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
17
|
Chen B, Zhao J, Zhang R, Zhang L, Zhang Q, Yang H, An J. Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis. Nutr Neurosci 2020; 25:1078-1099. [PMID: 33164705 DOI: 10.1080/1028415x.2020.1840035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species, along with the failure of balancing effects of endogenous antioxidant defenses result in destruction of cellular structures, lipids, proteins, and genetic material, which lead to oxidative stress. Oxidative stress-induced neuronal apoptosis plays a pivotal role in pathogenesis of neurodegeneration. Antioxidants represent one of the medical choice strategies for protecting against this unbalanced oxidation-antioxidation status. Recently, natural compounds with neuroprotective potential that can scavenge free radicals and protect cells from oxidative damage have received extensive attention. METHODS In this review, we summarized the detailed research progress on the medicinal plants-derived natural compounds with potential anti-oxidation effects and their molecular mechanisms on modulating the neurotoxin (6-OHDA, H2O2, glutamate, Aβ)-induced oxidative stress and cell apoptosis. RESULTS The natural compounds that efficacious in modulating reactive species production and mitochondrial function include flavonoids, glucosides, alkaloids, polyphenols, lignans, coumarins, terpenoids, quinones and others. They decreased the neurotoxin-induced oxidative damage and apoptosis by (1) decreasing ROS/RNS generation, lipid peroxidation, caspase-3 and caspase-9 activities, LDH release, the ratio of Bax/Bcl-2, Ca2+ influx and cytochrome c release, (2) elevating MMP, and (3) restoring endogenous antioxidant enzymatic activities (CAT, GSH-Px, GSR, SOD). And they exerted neuroprotective effects against cell damages and apoptosis by modulating the oxidative cascades of different signaling pathways (Nrf2/HO-1, NF-κB, MAPKs, PI3K/Akt, GSK-3β) and preventing mitochondria-dependent apoptosis pathways. DISCUSSION The present work reviews the role of oxidative stress in neurodegeneration, highlighting the potential anti-oxidation effects of natural compounds as a promising approach to develop innovative neuroprotective strategy.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Jingjing Zhao
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Rui Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Qian Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| |
Collapse
|
18
|
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020; 10:1347-1359. [PMID: 32963936 PMCID: PMC7488363 DOI: 10.1016/j.apsb.2020.01.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is rapidly emerging as a powerful therapeutic strategy for a wide range of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Some early clinical trials have failed to achieve satisfactory therapeutic effects. Efforts to enhance effectiveness are now concentrating on three major fields: identification of new vectors, novel therapeutic targets, and reliable of delivery routes for transgenes. These approaches are being assessed closely in preclinical and clinical trials, which may ultimately provide powerful treatments for patients. Here, we discuss advances and challenges of gene therapy for neurodegenerative disorders, highlighting promising technologies, targets, and future prospects.
Collapse
Key Words
- AADC, aromatic-l-amino-acid
- AAVs, adeno-associated viruses
- AD, Alzheimer's disease
- ARSA, arylsulfatase A
- ASOs, antisense oligonucleotides
- ASPA, aspartoacylase
- Adeno-associated viruses
- Adv, adenovirus
- BBB, blood–brain barrier
- BCSFB, blood–cerebrospinal fluid barrier
- BRB, blood–retina barrier
- Bip, glucose regulated protein 78
- CHOP, CCAAT/enhancer binding homologous protein
- CLN6, ceroidlipofuscinosis neuronal protein 6
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Central nervous system
- Delivery routes
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- GAA, lysosomal acid α-glucosidase
- GAD, glutamic acid decarboxylase
- GDNF, glial derived neurotrophic factor
- Gene therapy
- HD, Huntington's disease
- HSPGs, heparin sulfate proteoglycans
- HTT, mutant huntingtin
- IDS, iduronate 2-sulfatase
- LVs, retrovirus/lentivirus
- Lamp2a, lysosomal-associated membrane protein 2a
- NGF, nerve growth factor
- Neurodegenerative disorders
- PD, Parkinson's disease
- PGRN, Progranulin
- PINK1, putative kinase 1
- PTEN, phosphatase and tensin homolog
- RGCs, retinal ganglion cells
- RNAi, RNA interference
- RPE, retinal pigmented epithelial
- SGSH, lysosomal heparan-N-sulfamidase gene
- SMN, survival motor neuron
- SOD, superoxide dismutase
- SUMF, sulfatase-modifying factor
- TFEB, transcription factor EB
- TPP1, tripeptidyl peptidase 1
- TREM2, triggering receptor expressed on myeloid cells 2
- UPR, unfolded protein response
- ZFPs, zinc finger proteins
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| |
Collapse
|
19
|
Liu J, Li K, Huang K, Yang C, Huang Z, Zhao X, Song S, Pang T, Zhou J, Wang Y, Wang C, Tang Y. Acellularized spinal cord scaffolds incorporating bpV(pic)/PLGA microspheres promote axonal regeneration and functional recovery after spinal cord injury. RSC Adv 2020; 10:18677-18686. [PMID: 35518337 PMCID: PMC9053942 DOI: 10.1039/d0ra02661a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 01/20/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic injury to the central nervous system (CNS) with a high rate of disability and a low capability of self-recovery. Phosphatase and tensin homolog (PTEN) inhibition by pharmacological blockade with bisperoxovanadium (pic) (bpV(pic)) has been reported to increase AKT/mTOR activity and induce robust axonal elongation and regeneration. However, the therapeutic effect of bpV(pic) in treating SCI is limited due to the lack of efficient delivery approaches. In this study, a composite scaffold consisting of an acellular spinal cord (ASC) scaffold and incorporated bpV(pic) loaded poly (lactic-co-glycolic acid) (PLGA) microspheres was developed, in order to improve the therapeutic effect of bpV(pic) on SCI. The inhibition of PTEN activity and activation of the mTORC1/AKT pathway, the axonal regeneration and the markers of apoptosis were analyzed via western blot and immunofluorescence in vitro. The bpV(pic)/PLGA/ASC scaffolds showed excellent biocompatibility and promoted the viability of neural stem cells and axonal growth in vitro. Implantation of the composite scaffold into rats with hemi-sectioned SCI resulted in increased axonal regeneration and functional recovery in vivo. Besides, bpV(pic) inhibited the phosphorylation of PTEN and activated the PI3K/mTOR signaling pathway. The successful construction of the composite scaffold improves the therapeutic effect of bpV(pic) on SCI.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdong510000China
| | - Ke Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Chengliang Yang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Zhipeng Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Xingchang Zhao
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Shiqiang Song
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Taisen Pang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Jing Zhou
- Department of Anatomy, Youjiang Medical College for NationalitiesBaiseGuangxi533000China
| | - Yuhai Wang
- Academy of Orthopedics, People's Hospital of Ningxia Hui Autonomous RegionNingxia502213China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of TechnologyNo. 1 University Road, Songshan LakeDongguanGuangdong523808P. R. China+86-1341-6885162
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| |
Collapse
|
20
|
Jeon MT, Moon GJ, Kim S, Choi M, Oh YS, Kim DW, Kim HJ, Lee KJ, Choe Y, Ha CM, Jang IS, Nakamura M, McLean C, Chung WS, Shin WH, Lee SG, Kim SR. Neurotrophic interactions between neurons and astrocytes following AAV1-Rheb(S16H) transduction in the hippocampus in vivo. Br J Pharmacol 2019; 177:668-686. [PMID: 31658360 PMCID: PMC7012949 DOI: 10.1111/bph.14882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose We recently reported that AAV1‐Rheb(S16H) transduction could protect hippocampal neurons through the induction of brain‐derived neurotrophic factor (BDNF) in the rat hippocampus in vivo. It is still unclear how neuronal BDNF produced by AAV1‐Rheb(S16H) transduction induces neuroprotective effects in the hippocampus and whether its up‐regulation contributes to the enhance of a neuroprotective system in the adult brain. Experimental Approach To determine the presence of a neuroprotective system in the hippocampus of patients with Alzheimer's disease (AD), we examined the levels of glial fibrillary acidic protein, BDNF and ciliary neurotrophic factor (CNTF) and their receptors, tropomyocin receptor kinase B (TrkB) and CNTF receptor α(CNTFRα), in the hippocampus of AD patients. We also determined whether AAV1‐Rheb(S16H) transduction stimulates astroglial activation and whether reactive astrocytes contribute to neuroprotection in models of hippocampal neurotoxicity in vivo and in vitro. Key Results AD patients may have a potential neuroprotective system, demonstrated by increased levels of full‐length TrkB and CNTFRα in the hippocampus. Further AAV1‐Rheb(S16H) transduction induced sustained increases in the levels of full‐length TrkB and CNTFRα in reactive astrocytes and hippocampal neurons. Moreover, neuronal BDNF produced by Rheb(S16H) transduction of hippocampal neurons induced reactive astrocytes, resulting in CNTF production through the activation of astrocytic TrkB and the up‐regulation of neuronal BDNF and astrocytic CNTF which had synergistic effects on the survival of hippocampal neurons in vivo. Conclusions and Implications The results demonstrated that Rheb(S16H) transduction of hippocampal neurons could strengthen the neuroprotective system and this intensified system may have a therapeutic value against neurodegeneration in the adult brain.
Collapse
Affiliation(s)
- Min-Tae Jeon
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Gyeong Joon Moon
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Minji Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyung-Jun Kim
- Department of Neural Development and Disease, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Kea Joo Lee
- Department of Neural Development and Disease, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Youngshik Choe
- Department of Neural Development and Disease, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Chang Man Ha
- Department of Neural Development and Disease, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Michiko Nakamura
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Catriona McLean
- Victorian Brain Bank Network, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Won-Ho Shin
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
21
|
Gao J, Kang XY, Sun S, Li L, Gao DS. MES23.5 DA Immortalized Neuroblastoma Cells Self-protect Against Early Injury by Overexpressing Glial Cell–derived Neurotrophic Factor via Akt1/Eya1/Six2 Signaling. J Mol Neurosci 2019; 70:328-339. [DOI: 10.1007/s12031-019-01416-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/10/2019] [Indexed: 01/26/2023]
|
22
|
Furlong RM, Lindsay A, Anderson KE, Hawkins PT, Sullivan AM, O'Neill C. The Parkinson's disease gene PINK1 activates Akt via PINK1 kinase-dependent regulation of the phospholipid PI(3,4,5)P 3. J Cell Sci 2019; 132:jcs.233221. [PMID: 31540955 DOI: 10.1242/jcs.233221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Akt signalling is central to cell survival, metabolism, protein and lipid homeostasis, and is impaired in Parkinson's disease (PD). Akt activation is reduced in the brain in PD, and by many PD-causing genes, including PINK1 This study investigated the mechanisms by which PINK1 regulates Akt signalling. Our results reveal for the first time that PINK1 constitutively activates Akt in a PINK1-kinase dependent manner in the absence of growth factors, and enhances Akt activation in normal growth medium. In PINK1-modified MEFs, agonist-induced Akt signalling failed in the absence of PINK1, due to PINK1 kinase-dependent increases in PI(3,4,5)P3 at both plasma membrane and Golgi being significantly impaired. In the absence of PINK1, PI(3,4,5)P3 levels did not increase in the Golgi, and there was significant Golgi fragmentation, a recognised characteristic of PD neuropathology. PINK1 kinase activity protected the Golgi from fragmentation in an Akt-dependent fashion. This study demonstrates a new role for PINK1 as a primary upstream activator of Akt via PINK1 kinase-dependent regulation of its primary activator PI(3,4,5)P3, providing novel mechanistic information on how loss of PINK1 impairs Akt signalling in PD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel M Furlong
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland.,Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City T12 XF62, Ireland.,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland
| | - Karen E Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City T12 XF62, Ireland.,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland .,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| |
Collapse
|
23
|
Balasubramanian V, Domanskyi A, Renko JM, Sarparanta M, Wang CF, Correia A, Mäkilä E, Alanen OS, Salonen J, Airaksinen AJ, Tuominen R, Hirvonen J, Airavaara M, Santos HA. Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials 2019; 227:119556. [PMID: 31670035 DOI: 10.1016/j.biomaterials.2019.119556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Abstract
Generation of new neurons by utilizing the regenerative potential of adult neural stem cells (NSCs) and neuroblasts is an emerging therapeutic strategy to treat various neurodegenerative diseases, including neuronal loss after stroke. Committed to neuronal lineages, neuroblasts are differentiated from NSCs and have a lower proliferation rate. In stroke the proliferation of the neuroblasts in the neurogenic areas is increased, but the limiting factor for regeneration is the poor survival of migrating neuroblasts. Survival of neuroblasts can be promoted by small molecules; however, new drug delivery methods are needed to specifically target these cells. Herein, to achieve specific targeting, we have engineered biofunctionalized porous silicon nanoparticles (PSi NPs) conjugated with a specific antibody against polysialylated neural cell adhesion molecule (PSA-NCAM). The PSi NPs loaded with a small molecule drug, SC-79, were able to increase the activity of the Akt signaling pathway in doublecortin positive neuroblasts both in cultured cells and in vivo in the rat brain. This study opens up new possibilities to target drug effects to migrating neuroblasts and facilitate differentiation, maturation and survival of developing neurons. The conjugated PSi NPs are a novel tool for future studies to develop new therapeutic strategies aiming at regenerating functional neurocircuitry after stoke.
Collapse
Affiliation(s)
- Vimalkumar Balasubramanian
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Finland.
| | - Juho-Matti Renko
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Chang-Fang Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, Laboratory of Industrial Physics, University of Turku, FI-20520, Finland
| | - Osku S Alanen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Jarno Salonen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Raimo Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Finland.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland; Helsinki Institute of Life Sciences, HiLIFE, University of Helsinki, FI-00014 Finland.
| |
Collapse
|
24
|
Guttuso T, Andrzejewski KL, Lichter DG, Andersen JK. Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium. J Neurol Sci 2019; 402:121-130. [PMID: 31129265 DOI: 10.1016/j.jns.2019.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
Several kinases have been implicated in the pathogenesis of Parkinson's disease (PD), most notably leucine-rich repeat kinase 2 (LRRK2), as LRRK2 mutations are the most common genetic cause of a late-onset parkinsonism that is clinically indistinguishable from sporadic PD. More recently, several other kinases have emerged as promising disease-modifying targets in PD based on both preclinical studies and clinical reports on exenatide, the urate precursor inosine, nilotinib and lithium use in PD patients. These kinases include protein kinase B (Akt), glycogen synthase kinases-3β and -3α (GSK-3β and GSK-3α), c-Abelson kinase (c-Abl) and cyclin-dependent kinase 5 (cdk5). Activities of each of these kinases are involved either directly or indirectly in phosphorylating tau or increasing α-synuclein levels, intracellular proteins whose toxic oligomeric forms are strongly implicated in the pathogenesis of PD. GSK-3β, GSK-3α and cdk5 are the principle kinases involved in phosphorylating tau at sites critical for the formation of tau oligomers. Exenatide analogues, urate, nilotinib and lithium have been shown to affect one or more of the above kinases, actions that can decrease the formation and increase the clearance of intraneuronal phosphorylated tau and α-synuclein. Here we review the current preclinical and clinical evidence supporting kinase-targeting agents as potential disease-modifying therapies for PD patients enriched with these therapeutic targets and incorporate LRRK2 physiology into this novel model.
Collapse
Affiliation(s)
- Thomas Guttuso
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - Kelly L Andrzejewski
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - David G Lichter
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - Julie K Andersen
- The Buck Institute for Research on Aging, Novato, CA, United States of America.
| |
Collapse
|
25
|
McDougald DS, Papp TE, Zezulin AU, Zhou S, Bennett J. AKT3 Gene Transfer Promotes Anabolic Reprogramming and Photoreceptor Neuroprotection in a Pre-clinical Model of Retinitis Pigmentosa. Mol Ther 2019; 27:1313-1326. [PMID: 31043342 DOI: 10.1016/j.ymthe.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022] Open
Abstract
Mutations within over 250 known genes are associated with inherited retinal degeneration. Clinical success following gene-replacement therapy for congenital blindness due to RPE65 mutations establishes a platform for the development of downstream treatments targeting other forms of inherited ocular disease. Unfortunately, several challenges relevant to complex disease pathology and limitations of current gene-transfer technologies impede the development of related strategies for each specific form of inherited retinal degeneration. Here, we describe a gene-augmentation strategy that delays retinal degeneration by stimulating features of anabolic metabolism necessary for survival and structural maintenance of photoreceptors. We targeted two critical points of regulation in the canonical insulin/AKT/mammalian target of rapamycin (mTOR) pathway with AAV-mediated gene augmentation in a mouse model of retinitis pigmentosa. AAV vectors expressing the serine/threonine kinase, AKT3, promote dramatic preservation of photoreceptor numbers, structure, and partial visual function. This protective effect was associated with successful reprogramming of photoreceptor metabolism toward pathways associated with cell growth and survival. Collectively, these findings underscore the importance of AKT activity and downstream pathways associated with anabolic metabolism in photoreceptor survival and maintenance.
Collapse
Affiliation(s)
- Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra U Zezulin
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shangzhen Zhou
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Fahn S, Sulzer D, Kang UJ, Bressman S. In memoriam: Robert E. Burke, MD, 1949–2018. Mov Disord 2019. [DOI: 10.1002/mds.27612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Stanley Fahn
- Division of Movement Disorders, Department of Neurology Columbia University Irving Medical Center New York New York USA
| | - David Sulzer
- Division of Movement Disorders, Department of Neurology Columbia University Irving Medical Center New York New York USA
- Departments of Psychiatry, Neurology and Pharmacology Columbia University Irving Medical Center New York New York USA
| | - Un Jung Kang
- Division of Movement Disorders, Department of Neurology Columbia University Irving Medical Center New York New York USA
| | - Susan Bressman
- Department of Neurology, Beth Israel Campus Mount Sinai Medical Center New York New York USA
| |
Collapse
|
27
|
Survival of midbrain dopamine neurons depends on the Bcl2 factor Mcl1. Cell Death Discov 2018; 4:107. [PMID: 30479840 PMCID: PMC6249233 DOI: 10.1038/s41420-018-0125-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondria-dependent apoptosis plays an important role in the embryonic development of the midbrain dopaminergic system as well as in Parkinson’s disease. Central to mitochondria-dependent apoptosis is the Bcl2 family of apoptosis-regulating proteins. However, it was unclear which Bcl2 proteins are important for the survival of dopaminergic neurons. Here, we identify Mcl1 as a critical Bcl2 pro-survival factor in midbrain dopaminergic neurons. Using a chemical biology approach to inhibit various components of the apoptotic machinery in the dopaminergic MN9D cell line or the control neuroblastoma N2A cell line, we find that functional inhibition of Mcl1 with the high affinity small molecule inhibitor UMI-77 results in a rapid and dose-dependent loss of viability, selectively in dopaminergic cells. In-depth analysis of the apoptotic signaling pathway reveals that chemical inhibition of Mcl1 results in the activation of Bax, activation of cleaved caspase-3 and finally cell death. The dependence of mouse dopaminergic midbrain neurons on Mcl1 was confirmed using ex vivo slice cultures from Pitx3GFP/+ and wildtype mice. In mouse dopaminergic midbrain neurons positive for the midbrain dopaminergic marker Pitx3, or tyrosine hydroxylase, UMI-77 treatment caused a dramatic increase in cleaved caspase 3, indicating that Mcl1 activity is required for basal neuronal survival. Overall, our results suggest that Mcl1 is of critical importance to dopaminergic neurons and is a weak link in the chain controlling cellular survival. Boosting the pro-survival function of Mcl1 should be pursued as a therapeutic approach to augment the resilience of midbrain dopaminergic neurons to apoptotic stress in Parkinson’s disease.
Collapse
|
28
|
Granado N, Ares-Santos S, Tizabi Y, Moratalla R. Striatal Reinnervation Process after Acute Methamphetamine-Induced Dopaminergic Degeneration in Mice. Neurotox Res 2018; 34:627-639. [PMID: 29934756 DOI: 10.1007/s12640-018-9925-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023]
Abstract
Methamphetamine (METH), an amphetamine derivate, may increase the risk of developing Parkinson's disease (PD). Human and animal studies have shown that METH produces persistent dopaminergic neurotoxicity in the nigrostriatal pathway, despite initial partial recovery. To determine the processes leading to early compensation, we studied the detailed morphology and distribution of tyrosine hydroxylase immunoreactive fibers (TH-ir) classified by their thickness (types I-IV) before and after METH. Applying three established neurotoxic regimens of METH: single high dose (1 × 30 mg/kg), multiple lower doses (3 × 5 mg/kg) or (3 × 10 mg/kg), we show that METH primarily damages type I fibers (the thinner ones), and to a much lesser extend types II-IV fibers including sterile axons. The striatal TH terminal partial recovery process, consisting of a progressive regrowth increases in types II, III, and IV fibers, demonstrated by co-localization of GAP-43, a sprouting marker, was observed 3 days post-METH treatment. In addition, we demonstrate the presence of growth-cone-like TH-ir structures, indicative of new terminal generation as well as improvement in motor functions after 3 days. A temporal relationship was observed between decreases in TH-expression and increases in silver staining, a marker of degeneration. Striatal regeneration was associated with an increase in astroglia and decrease in microglia expression, suggesting a possible role for the neuroimmune system in regenerative processes. Identification of regenerative compensatory mechanisms in response to neurotoxic agents could point to novel mechanisms in countering the neurotoxicity and/or enhancing the regenerative processes.
Collapse
Affiliation(s)
- Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain.,CIBERNED, ISCIII, Madrid, Spain
| | - Sara Ares-Santos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain.,CIBERNED, ISCIII, Madrid, Spain
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, USA
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain. .,CIBERNED, ISCIII, Madrid, Spain.
| |
Collapse
|
29
|
O'Keeffe GW, Sullivan AM. Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson's disease. Parkinsonism Relat Disord 2018; 56:9-15. [PMID: 29934196 DOI: 10.1016/j.parkreldis.2018.06.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/21/2018] [Accepted: 06/17/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder presenting with a variety of motor and non-motor symptoms. The motor symptoms manifest as a result of the progressive degeneration of midbrain dopaminergic neurons. The axons of these neurons project to the striatum as the nigrostriatal pathway, which is a crucial part of the basal ganglia circuitry controlling movement. In addition to the neuronal degeneration, abnormal intraneuronal α-synuclein protein inclusions called Lewy bodies and Lewy neurites increase in number and spread throughout the nervous system as the disease progresses. While the loss of midbrain dopaminergic neurons is well-established as being central to motor symptoms, there is an increasing focus on the timing of nigrostriatal degeneration, with preclinical evidence suggesting that early axonal degeneration may play a key role in the early stages of Parkinson's disease. Here we review recent evidence for early midbrain dopaminergic axonal degeneration in patients with Parkinson's disease, and explore the potential role of α-synuclein accumulation in this process, with a focus on studies in human populations at the imaging, post-mortem, cellular and molecular levels. Finally, we discuss the implications of this for neurotrophic factor therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland; Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland; Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
30
|
Park S, Burke RE, Kareva T, Kholodilov N, Aimé P, Franke TF, Levy O, Greene LA. Context-dependent expression of a conditionally-inducible form of active Akt. PLoS One 2018; 13:e0197899. [PMID: 29920520 PMCID: PMC6007834 DOI: 10.1371/journal.pone.0197899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Akt kinases are key signaling components in proliferation-competent and post-mitotic cells. Here, we sought to create a conditionally-inducible form of active Akt for both in vitro and in vivo applications. We fused a ligand-responsive Destabilizing Domain (DD) derived from E. coli dihydrofolate reductase to a constitutively active mutant form of Akt1, Akt(E40K). Prior work indicated that such fusion proteins may be stabilized and induced by a ligand, the antibiotic Trimethoprim (TMP). We observed dose-dependent, reversible induction of both total and phosphorylated/active DD-Akt(E40K) by TMP across several cellular backgrounds in culture, including neurons. Phosphorylation of FoxO4, an Akt substrate, was significantly elevated after DD-Akt(E40K) induction, indicating the induced protein was functionally active. The induced Akt(E40K) protected cells from apoptosis evoked by serum deprivation and was neuroprotective in two cellular models of Parkinson's disease (6-OHDA and MPP+ exposure). There was no significant protection without induction. We also evaluated Akt(E40K) induction by TMP in mouse substantia nigra and striatum after neuronal delivery via an AAV1 adeno-associated viral vector. While there was significant induction in striatum, there was no apparent induction in substantia nigra. To explore the possible basis for this difference, we examined DD-Akt(E40K) induction in cultured ventral midbrain neurons. Both dopaminergic and non-dopaminergic neurons in the cultures showed DD-Akt(E40K) induction after TMP treatment. However, basal DD-Akt(E40K) expression was 3-fold higher for dopaminergic neurons, resulting in a significantly lower induction by TMP in this population. Such findings suggest that dopaminergic neurons may be relatively inefficient in protein degradation, a property that could relate to their lack of apparent DD-Akt(E40K) induction in vivo and to their selective vulnerability in Parkinson's disease. In summary, we generated an inducible, biologically active form of Akt. The degree of inducibility appears to reflect cellular context that will inform the most appropriate applications for this and related reagents.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Robert E Burke
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America.,Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Tatyana Kareva
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Nikolai Kholodilov
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Pascaline Aimé
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Thomas F Franke
- Department of Neuroscience, Icahn School of Medicine at Mt Sinai, New York, New York, United States of America
| | - Oren Levy
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
31
|
Soutar MPM, Kempthorne L, Miyakawa S, Annuario E, Melandri D, Harley J, O'Sullivan GA, Wray S, Hancock DC, Cookson MR, Downward J, Carlton M, Plun-Favreau H. AKT signalling selectively regulates PINK1 mitophagy in SHSY5Y cells and human iPSC-derived neurons. Sci Rep 2018; 8:8855. [PMID: 29891871 PMCID: PMC5995958 DOI: 10.1038/s41598-018-26949-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
The discovery of mutations within genes associated with autosomal recessive Parkinson's disease allowed for the identification of PINK1/Parkin regulated mitophagy as an important pathway for the removal of damaged mitochondria. While recent studies suggest that AKT-dependent signalling regulates Parkin recruitment to depolarised mitochondria, little is known as to whether this can also regulate PINK1 mitochondrial accumulation and downstream mitophagy. Here, we demonstrate that inhibition of AKT signalling decreases endogenous PINK1 accumulation in response to mitochondria depolarisation, subsequent Parkin recruitment, phosphorylation of ubiquitin, and ultimately mitophagy. Conversely, we show that upon stimulation of AKT signalling via insulin, the mitophagy pathway is increased in SHSY5Y cells. These data suggest that AKT signalling is an upstream regulator of PINK1 accumulation on damaged mitochondria. Importantly, we show that the AKT pathway also regulates endogenous PINK1-dependent mitophagy in human iPSC-derived neurons.
Collapse
Affiliation(s)
- Marc P M Soutar
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Liam Kempthorne
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Shuichi Miyakawa
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Emily Annuario
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Daniela Melandri
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jasmine Harley
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Selina Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David C Hancock
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, NIH, Building 35, Room 1A116, 35 Convent Drive, Bethesda, MD, 20814, USA
| | - Julian Downward
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark Carlton
- CereVance Ltd. 418 Science Park, Milton Rd, Cambridge, CB4 0PZ, UK
| | - Hélène Plun-Favreau
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
32
|
Bourque M, Morissette M, Di Paolo T. Repurposing sex steroids and related drugs as potential treatment for Parkinson's disease. Neuropharmacology 2018; 147:37-54. [PMID: 29649433 DOI: 10.1016/j.neuropharm.2018.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder for which a greater prevalence and incidence is described in men. This suggests a protective effect of sex hormones in the brain. Therefore, steroids and drugs to treat endocrine conditions could have additional application for PD. Here, we review the protective effect of sex hormones, particularly estrogens, progesterone, androgens and dehydroepiandrosterone, in animal models of PD and also in human studies. Data also support that drugs affecting estrogen neurotransmission such as selective estrogen receptor modulators or affecting steroid metabolism with 5α-reductase inhibitors could be repositioned for treatment of PD. Sex steroids are also modulator of neurotransmission, thus they could repurposed to treat PD motor symptoms and to modulate the response to PD medication. No drug is yet available to limit PD progression. PD is a complex disease implicating multiple pathological processes and a therapeutic strategy using drugs with several mechanisms of action, such as sex steroids and endocrine drugs are interesting repositioning options for symptomatic treatment and disease-modifying activity for PD. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Mélanie Bourque
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada.
| |
Collapse
|
33
|
Kordower JH, Burke RE. Disease Modification for Parkinson's Disease: Axonal Regeneration and Trophic Factors. Mov Disord 2018; 33:678-683. [PMID: 29603370 DOI: 10.1002/mds.27383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
Abstract
Disease modification and structural neuroprotection have been the holy grail for Parkinson's disease (PD) experimental therapeutics. Theoretically, there are a number of ways to implement such therapeutics, but to date all have failed. This review examines the potential of axonal regeneration and trophic factor delivery for the nigrostriatal system as 2 such approaches that historically have initiated much excitement. However, we conclude this discussion with the following question: has science passed these approaches by? © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Robert E Burke
- Department of Neurology, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
34
|
Torra A, Parent A, Cuadros T, Rodríguez-Galván B, Ruiz-Bronchal E, Ballabio A, Bortolozzi A, Vila M, Bové J. Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration. Mol Ther 2018; 26:1552-1567. [PMID: 29628303 DOI: 10.1016/j.ymthe.2018.02.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms.
Collapse
Affiliation(s)
- Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Esther Ruiz-Bronchal
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Center for Networked Biomedical Research on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Analía Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Center for Networked Biomedical Research on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
35
|
Won SY, Park MH, You ST, Choi SW, Kim HK, McLean C, Bae SC, Kim SR, Jin BK, Lee KH, Shin EY, Kim EG. Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson's disease. Sci Transl Med 2017; 8:367ra170. [PMID: 27903866 DOI: 10.1126/scitranslmed.aaf1629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra. No neuroprotective treatments have successfully prevented the progression of this disease. We report that p21-activated kinase 4 (PAK4) is a key survival factor for DA neurons. We observed PAK4 immunoreactivity in rat and human DA neurons in brain tissue, but not in microglia or astrocytes. PAK4 activity was markedly decreased in postmortem brain tissue from PD patients and in rodent models of PD. Expression of constitutively active PAK4S445N/S474E (caPAK4) protected DA neurons in both the 6-hydroxydopamine and α-synuclein rat models of PD and preserved motor function. This neuroprotective effect of caPAK4 was mediated by phosphorylation of CRTC1 [CREB (adenosine 3',5'-monophosphate response element-binding protein)-regulated transcription coactivator] at S215. The nonphosphorylated form of CRTC1S215A compromised the ability of caPAK4 to induce the expression of the CREB target proteins Bcl-2, BDNF, and PGC-1α. Our results support a neuroprotective role for the PAK4-CRTC1S215-CREB signaling pathway and suggest that this pathway may be a useful therapeutic target in PD.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Mee-Hee Park
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Soon-Tae You
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Seung-Won Choi
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Hyong-Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Catriona McLean
- Department of Pathology, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, South Korea
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Chosun University, Gwangju 61452, South Korea.,Department of Biomedical Science, Chosun University, Gwangju 61452, South Korea
| | - Eun-Young Shin
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Eung-Gook Kim
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea.
| |
Collapse
|
36
|
Padmanabhan S, Burke RE. Induction of axon growth in the adult brain: A new approach to restoration in Parkinson's disease. Mov Disord 2017; 33:62-70. [PMID: 29205486 DOI: 10.1002/mds.27209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Robert E Burke
- Department of Neurology, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
37
|
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 2017; 298:137-147. [PMID: 28988910 DOI: 10.1016/j.expneurol.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Yvonne Schmitz
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - David Sulzer
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
38
|
MANF Promotes Differentiation and Migration of Neural Progenitor Cells with Potential Neural Regenerative Effects in Stroke. Mol Ther 2017; 26:238-255. [PMID: 29050872 PMCID: PMC5763030 DOI: 10.1016/j.ymthe.2017.09.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
Cerebral ischemia activates endogenous reparative processes, such as increased proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) and migration of neural progenitor cells (NPCs) toward the ischemic area. However, this reparative process is limited because most of the NPCs die shortly after injury or are unable to arrive at the infarct boundary. In this study, we demonstrate for the first time that endogenous mesencephalic astrocyte-derived neurotrophic factor (MANF) protects NSCs against oxygen-glucose-deprivation-induced injury and has a crucial role in regulating NPC migration. In NSC cultures, MANF protein administration did not affect growth of cells but triggered neuronal and glial differentiation, followed by activation of STAT3. In SVZ explants, MANF overexpression facilitated cell migration and activated the STAT3 and ERK1/2 pathway. Using a rat model of cortical stroke, intracerebroventricular injections of MANF did not affect cell proliferation in the SVZ, but promoted migration of doublecortin (DCX)+ cells toward the corpus callosum and infarct boundary on day 14 post-stroke. Long-term infusion of MANF into the peri-infarct zone increased the recruitment of DCX+ cells in the infarct area. In conclusion, our data demonstrate a neuroregenerative activity of MANF that facilitates differentiation and migration of NPCs, thereby increasing recruitment of neuroblasts in stroke cortex.
Collapse
|
39
|
Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 2017; 155:120-148. [DOI: 10.1016/j.pneurobio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
|
40
|
Shiau MY, Lee PS, Huang YJ, Yang CP, Hsiao CW, Chang KY, Chen HW, Chang YH. Role of PARL-PINK1-Parkin pathway in adipocyte differentiation. Metabolism 2017. [PMID: 28641777 DOI: 10.1016/j.metabol.2017.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Adipogenesis determines the number of adipocytes which is increased when individuals become obese. Mitochondria undergo remarkable morphological and functional changes during adipogenesis. PTEN-induced kinase 1 (PINK1) is pivotal to maintain mitochondrial homeostasis in neural cells. The present study aimed at investigating effects of PINK1 on adipogenesis and energy metabolism. METHODS Expression of presenilin associated rhomboid-like protein (PARL), PINK1 and Parkin, as well as the interaction among these proteins was temporally examined during adipogenesis. In addition, the alterations of mitochondrial mass and the energy metabolism were also analyzed. RESULTS Adipogenic process can be dissected into 3 stages according to the participation of PARL-PINK1-Parkin system. (1) When pre-adipocytes are switched to differentiation, f-PINK1 is subjected to PARL cleavage to generate s-PINK1 at the early stage of differentiation (0-4day). Mitochondrial mass is increased for generating ambient energy to meet the demands for cellular remodeling. (2) At the second stage (5-6day), s-PINK1 persistently accumulates in mitochondria and translocates into cytoplasm to mediate Parkin degradation. Mitochondria are fragmented to reduce their mass. (3) At the late stage (7-8day), only residual autophagy activity is remained when excess mitochondria have been eliminated. This mitochondria clearance maintains energy consumption of mature adipocytes at the minimal levels for storing energy. PARL silencing aborts adipogenesis by inhibiting PPARγ expression and the finely-orchestrated events. CONCLUSIONS Our findings reveal the sequential adipogenic events directed by PARL-PINK1-Parkin system, add more evidence supporting the convergence of pathogenesis leading to neurodegenerative and metabolic diseases, and provide substantial information for developing novel therapeutic strategies by manipulating adipogenesis.
Collapse
Affiliation(s)
- Ming-Yuh Shiau
- Department of Nursing, College of Medicine & Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Pin-Shen Lee
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ying-Jyun Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chiao-Wan Hsiao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Kai-Yun Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Huan-Wen Chen
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
41
|
Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. J Neurochem 2017; 141:766-782. [PMID: 28376279 PMCID: PMC5643047 DOI: 10.1111/jnc.14033] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Luo
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Monica Langley
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Huajun Jin
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Vellareddy Anantharam
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Arthi Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
42
|
Hu J, Ferchmin PA, Hemmerle AM, Seroogy KB, Eterovic VA, Hao J. 4R-Cembranoid Improves Outcomes after 6-Hydroxydopamine Challenge in Both In vitro and In vivo Models of Parkinson's Disease. Front Neurosci 2017; 11:272. [PMID: 28611572 PMCID: PMC5447022 DOI: 10.3389/fnins.2017.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/28/2017] [Indexed: 11/13/2022] Open
Abstract
(1S, 2E, 4R, 6R,-7E, 11E)-2, 7, 11-cembratriene-4, 6-diol (4R) is one of the cembranoids found in tobacco leaves. Previous studies have found that 4R protected acute rat hippocampal slices against neurotoxicity induced by N-methyl-D-aspartate (NMDA) and against the toxic organophosphorus compounds paraoxon and diisopropylfluorophosphate (DFP). Furthermore, in vivo, 4R reduced the infarct size in a rodent ischemic stroke model and neurodegeneration caused by DFP. The present study expanded our previous study by focusing on the effect of 4R in Parkinson's disease (PD) and elucidating its underlying mechanisms using 6-hydroxydopamine (6-OHDA)-induced injury models. We found that 4R exhibited significant neuroprotective activity in the rat unilateral 6-OHDA-induced PD model in vivo. The therapeutic effect was evident both at morphological and behavioral levels. 4R (6 and 12 mg/kg) treatments significantly improved outcomes of 6-OHDA-induced PD in vivo as indicated by reducing forelimb asymmetry scores and corner test scores 4 weeks after injection of 6-OHDA (p < 0.05). The therapeutic effect of 4R was also reflected by decreased depletion of tyrosine hydroxylase (TH) in the striatum and substantia nigra (SN) on the side injected with 6-OHDA. TH expression was 70.3 and 62.8% of the contralateral side in striatum and SN, respectively, after 6 mg/kg 4R treatment; furthermore, it was 80.1 and 79.3% after treatment with 12 mg/kg of 4R. In the control group, it was 51.9 and 23.6% of the contralateral striatum and SN (p < 0.05). Moreover, 4R also protected differentiated neuro-2a cells from 6-OHDA-induced cytotoxicity in vitro. The activation of p-AKT and HAX-1, and inhibition of caspase-3 and endothelial inflammation, were involved in 4R-mediated protection against 6-OHDA-induced injury. In conclusion, the present study indicates that 4R shows a therapeutic effect in the rat 6-OHDA-induced PD model in vivo and in 6-OHDA-challenged neuro-2a cells in vitro.
Collapse
Affiliation(s)
- Jing Hu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of CincinnatiCincinnati, OH, United States
| | - P A Ferchmin
- Department of Neurosciences, School of Medicine, Universidad Central del CaribeBayamón, Puerto Rico
| | - Ann M Hemmerle
- Department of Neurology and Rehabilitation Medicine, University of CincinnatiCincinnati, OH, United States
| | - Kim B Seroogy
- Department of Neurology and Rehabilitation Medicine, University of CincinnatiCincinnati, OH, United States
| | - Vesna A Eterovic
- Department of Neurosciences, School of Medicine, Universidad Central del CaribeBayamón, Puerto Rico
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of CincinnatiCincinnati, OH, United States
| |
Collapse
|
43
|
Oh SE, Mouradian MM. Regulation of Signal Transduction by DJ-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:97-131. [PMID: 29147906 DOI: 10.1007/978-981-10-6583-5_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of DJ-1 to modulate signal transduction has significant effects on how the cell regulates normal processes such as growth, senescence, apoptosis, and autophagy to adapt to changing environmental stimuli and stresses. Perturbations of DJ-1 levels or function can disrupt the equilibrium of homeostatic signaling networks and set off cascades that play a role in the pathogenesis of conditions such as cancer and Parkinson's disease.DJ-1 plays a major role in various pathways. It mediates cell survival and proliferation by activating the extracellular signal-regulated kinase (ERK1/2) pathway and the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. It attenuates cell death signaling by inhibiting apoptosis signal-regulating kinase 1 (ASK1) activation as well as by inhibiting mitogen-activated protein kinase kinase kinase 1 (MEKK1/MAP3K1) activation of downstream apoptotic cascades. It also modulates autophagy through the ERK, Akt, or the JNK/Beclin1 pathways. In addition, DJ-1 regulates the transcription of genes essential for male reproductive function, such as spermatogenesis, by relaying nuclear receptor androgen receptor (AR) signaling. In this chapter, we summarize the ways that DJ-1 regulates these pathways, focusing on how its role in signal transduction contributes to cellular homeostasis and the pathologic states that result from dysregulation.
Collapse
Affiliation(s)
- Stephanie E Oh
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
44
|
Arena G, Valente EM. PINK1 in the limelight: multiple functions of an eclectic protein in human health and disease. J Pathol 2016; 241:251-263. [PMID: 27701735 DOI: 10.1002/path.4815] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/04/2016] [Accepted: 09/23/2016] [Indexed: 01/02/2023]
Abstract
The gene PINK1 [phosphatase and tensin homologue (PTEN)-induced putative kinase 1] encodes a serine/threonine kinase which was initially linked to the pathogenesis of a familial form of Parkinson's disease. Research on PINK1 has recently unravelled that its multiple functions extend well beyond neuroprotection, implicating this eclectic protein in a growing number of human pathologies, including cancer, diabetes, cardiopulmonary dysfunctions, and inflammation. Extensive studies have identified PINK1 as a crucial player in the mitochondrial quality control pathway, required to label damaged mitochondria and promote their elimination through an autophagic process (mitophagy). Mounting evidence now indicates that PINK1 activities are not restricted solely to mitophagy, and that different subcellular and even sub-mitochondrial pools of PINK1 are involved in distinct signalling cascades to regulate cell metabolism and survival. In this review, we provide a concise overview on the different functions of PINK1 and their potential role in human diseases. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giuseppe Arena
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, Montpellier, France.,Institut Régional du Cancer Montpellier, Montpellier, France
| | - Enza Maria Valente
- Section of Neurosciences, Department of Medicine and Surgery, University of Salerno, Salerno, Italy.,Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
45
|
Expression mediated by three partial sequences of the human tyrosine hydroxylase promoter in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16062. [PMID: 27689101 PMCID: PMC5031092 DOI: 10.1038/mtm.2016.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 12/25/2022]
Abstract
The use of viral vectors to transfect postmitotic neurons has provided an important research tool, and it offers promise for treatment of neurologic disease. The utility of vectors is enhanced by the use of selective promoters that permit control of the cellular site of expression. One potential clinical application is in the neurorestorative treatment of Parkinson’s disease by the induction of new axon growth. However, many of the genes with an ability to restore axons have oncogenic potential. Therefore, clinical safety would be enhanced by restriction of expression to neurons affected by the disease, particularly dopamine neurons. To achieve this goal we have evaluated in vivo three partial sequences of the promoter for human tyrosine hydroxylase, the rate limiting enzyme in catecholamine synthesis. All sequences induced expression in dopamine neurons. None of them induced expression in glia or in nondopaminergic neurons in striatum or cortex. We conclude that these sequences have potential use for targeting dopamine neurons in research and clinical applications.
Collapse
|
46
|
Protein Kinases and Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17091585. [PMID: 27657053 PMCID: PMC5037850 DOI: 10.3390/ijms17091585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 01/09/2023] Open
Abstract
Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules.
Collapse
|
47
|
Kim SR. Control of Granule Cell Dispersion by Natural Materials Such as Eugenol and Naringin: A Potential Therapeutic Strategy Against Temporal Lobe Epilepsy. J Med Food 2016; 19:730-6. [PMID: 27404051 DOI: 10.1089/jmf.2016.3712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hippocampus is an important brain area where abnormal morphological characteristics are often observed in patients with temporal lobe epilepsy (TLE), typically showing the loss of the principal neurons in the CA1 and CA3 areas of the hippocampus. TLE is frequently associated with widening of the granule cell layer of the dentate gyrus (DG), termed granule cell dispersion (GCD), in the hippocampus, suggesting that the control of GCD with protection of hippocampal neurons may be useful for preventing and inhibiting epileptic seizures. We previously reported that eugenol (EUG), which is an essential component of medicinal herbs and has anticonvulsant activity, is beneficial for treating epilepsy through its ability to inhibit GCD via suppression of mammalian target of rapamycin complex 1 (mTORC1) activation in the hippocampal DG in a kainic acid (KA)-treated mouse model of epilepsy in vivo. In addition, we reported that naringin, a bioflavonoid in citrus fruits, could exert beneficial effects, such as antiautophagic stress and antineuroinflammation, in the KA mouse model of epilepsy, even though it was unclear whether naringin might also attenuate the seizure-induced morphological changes of GCD in the DG. Similar to the effects of EUG, we recently observed that naringin treatment significantly reduced KA-induced GCD and mTORC1 activation, which are both involved in epileptic seizures, in the hippocampus of mouse brain. Therefore, these observations suggest that the utilization of natural materials, which have beneficial properties such as inhibition of GCD formation and protection of hippocampal neurons, may be useful in developing a novel therapeutic agent against TLE.
Collapse
Affiliation(s)
- Sang Ryong Kim
- 1 School of Life Sciences, Kyungpook National University , Daegu, Korea.,2 BK21 plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Korea.,3 Brain Science and Engineering Institute, Kyungpook National University , Daegu, Korea
| |
Collapse
|
48
|
Shahjouei S, Ansari S, Pourmotabbed T, Zand R. Potential Roles of Adropin in Central Nervous System: Review of Current Literature. Front Mol Biosci 2016; 3:25. [PMID: 27446928 PMCID: PMC4921473 DOI: 10.3389/fmolb.2016.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023] Open
Abstract
Adropin is a 4.9 kDa peptide that is important for maintenance of metabolic and non-metabolic homeostasis. It regulates glucose and fatty acid metabolism and is involved in endothelial cell function and endothelial nitric oxide (NO) synthase bioactivity as well as physical activity and motor coordination. Adropin is expressed in many tissues and organs including central nervous system (CNS). This peptide plays a crucial role in the development of various CNS disorders such as stroke, schizophrenia, bipolar disorder as well as Alzheimer's, Parkinson's, and Huntington's diseases. In this comprehensive review, the potential roles of adropin in cellular signaling pathways that lead to pathogenesis and/or treatment of CNS disorders will be discussed.
Collapse
Affiliation(s)
- Shima Shahjouei
- Department of Neurosurgery, Tehran University of Medical Sciences Tehran, Iran
| | - Saeed Ansari
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| | - Ramin Zand
- Department of Neurology, University of Tennessee Health Science CenterMemphis, TN, USA; Biocomplexity Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|
49
|
Li XY, Teng JJ, Liu Y, Wu YB, Zheng Y, Xie AM. Association of AKT1 gene polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett 2016; 629:38-42. [PMID: 27353512 DOI: 10.1016/j.neulet.2016.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/20/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Genetic variants of AKT1 have been shown to influence brain function of Parkinson's disease (PD) patients, and in this paper our aim is to investigate the association between the three single-nucleotide polymorphisms (rs2498799; rs2494732; rs1130214) and PD in Han Chinese. 413 Han Chinese PD patients and 450 healthy age and gender-matched controls were genotyped using the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method. Both the patient and control groups show similar genotype frequencies at the three loci: rs2498799, rs2494732 and rs1130214. We are able to identify a significant difference in the frequencies of genotype (p=0.019) and G allele (OR=0.764, 95% CI=0.587-0.995, p=0.045) both at rs2498799 between the patient and control groups. Furthermore, the association of subjects with GG genotypes versus those with GA+AA genotype remain significant after adjusting for age in the Han Chinese female cohort (OR=0.538, 95%CI=0.345-0.841, p=0.006), which is especially evident in the late-onset cohort (OR=0.521, 95%CI=0.309-0.877, p=0.012). In contrast, allele frequencies at rs2494732 and rs1130214 were similar between patients and controls in all subgroup analyses. These results suggest that polymorphism of AKT1 locus is associated with risk of PD and that the G allele at rs2498799 may decrease the risk of PD in the North-eastern part of Han Chinese female population.
Collapse
Affiliation(s)
- Xiao-Yuan Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Department of Neurology, Hospital of Integrated Traditional and Western Medicine, Qingdao, China
| | - Ji-Jun Teng
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu-Bin Wu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Zheng
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
50
|
The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 2016; 12:379-92. [PMID: 27340022 DOI: 10.1038/nrneurol.2016.81] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.
Collapse
|