1
|
Mätlik K, Govek EE, Hatten ME. Histone bivalency in CNS development. Genes Dev 2025; 39:428-444. [PMID: 39880657 PMCID: PMC11960699 DOI: 10.1101/gad.352306.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons. In this review, we discuss methods to study bivalency in specific populations of neurons and summarize emerging studies on the function of bivalency in central nervous system neuronal maturation and in adult neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
2
|
Chandrasekaran V, Andersson KME, Erlandsson M, Li S, Olsson TN, Garcia-Bonete MJ, Malmhäll-Bah E, Johansson P, Katona G, Bokarewa MI. Bivalent chromatin accommodates survivin and BRG1/SWI complex to activate DNA damage response in CD4 + cells. Cell Commun Signal 2024; 22:440. [PMID: 39261837 PMCID: PMC11389452 DOI: 10.1186/s12964-024-01814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Bivalent regions of chromatin (BvCR) are characterized by trimethylated lysine 4 (H3K4me3) and lysine 27 on histone H3 (H3K27me3) deposition which aid gene expression control during cell differentiation. The role of BvCR in post-transcriptional DNA damage response remains unidentified. Oncoprotein survivin binds chromatin and mediates IFNγ effects in CD4+ cells. In this study, we explored the role of BvCR in DNA damage response of autoimmune CD4+ cells in rheumatoid arthritis (RA). METHODS We performed deep sequencing of the chromatin bound to survivin, H3K4me3, H3K27me3, and H3K27ac, in human CD4+ cells and identified BvCR, which possessed all three histone H3 modifications. Protein partners of survivin on chromatin were predicted by integration of motif enrichment analysis, computational machine-learning, and structural modeling, and validated experimentally by mass spectrometry and peptide binding array. Survivin-dependent change in BvCR and transcription of genes controlled by the BvCR was studied in CD4+ cells treated with survivin inhibitor, which revealed survivin-dependent biological processes. Finally, the survivin-dependent processes were mapped to the transcriptome of CD4+ cells in blood and in synovial tissue of RA patients and the effect of modern immunomodulating drugs on these processes was explored. RESULTS We identified that BvCR dominated by H3K4me3 (H3K4me3-BvCR) accommodated survivin within cis-regulatory elements of the genes controlling DNA damage. Inhibition of survivin or JAK-STAT signaling enhanced H3K4me3-BvCR dominance, which improved DNA damage recognition and arrested cell cycle progression in cultured CD4+ cells. Specifically, BvCR accommodating survivin aided sequence-specific anchoring of the BRG1/SWI chromatin-remodeling complex coordinating DNA damage response. Mapping survivin interactome to BRG1/SWI complex demonstrated interaction of survivin with the subunits anchoring the complex to chromatin. Co-expression of BRG1, survivin and IFNγ in CD4+ cells rendered complete deregulation of DNA damage response in RA. Such cells possessed strong ability of homing to RA joints. Immunomodulating drugs inhibited the anchoring subunits of BRG1/SWI complex, which affected arthritogenic profile of CD4+ cells. CONCLUSIONS BvCR execute DNA damage control to maintain genome fidelity in IFN-activated CD4+ cells. Survivin anchors the BRG1/SWI complex to BvCR to repress DNA damage response. These results offer a platform for therapeutic interventions targeting survivin and BRG1/SWI complex in autoimmunity.
Collapse
Affiliation(s)
- Venkataragavan Chandrasekaran
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg, 40530, Sweden
| | - Karin M E Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg, 40530, Sweden
| | - Malin Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg, 40530, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 16, Gothenburg, 41346, Sweden
| | - Shuxiang Li
- Computational Biology and Biophysics Lab, Queen's University, Kingston, Canada
| | - Torbjörn Nur Olsson
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, SE, 405 30, Sweden
| | - Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg, 40530, Sweden
| | - Pegah Johansson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg, 40530, Sweden.
- Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 16, Gothenburg, 41346, Sweden.
| |
Collapse
|
3
|
Arivarasan VK, Diwakar D, Kamarudheen N, Loganathan K. Current approaches in CRISPR-Cas systems for diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:95-125. [PMID: 39824586 DOI: 10.1016/bs.pmbts.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes. We highlight the importance of how improved genetic screening and the identification of susceptibility genes are aiding in early diagnosis and risk stratification. The spotlight then shifts to CRISPR-Cas9, a robust genome editing tool capable of various applications including correcting mutations in type 1 diabetes, enhancing insulin production in T2D, modulating genes associated with metabolism of glucose and insulin sensitivity. Delivery methods for CRISPR to targeted tissues and cells are explored, including viral and non-viral vectors, alongside the exciting possibilities offered by nanocarriers. We conclude by discussing the challenges and ethical considerations surrounding CRISPR-based therapies for DM. These include potential off-target effects, ensuring long-term efficacy and safety, and navigating the ethical implications of human genome modification. This chapter offers a comprehensive perspective on how genetic and molecular insights, coupled with the transformative power of CRISPR, are paving the way for potential cures and novel therapeutic approaches for DM.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Diksha Diwakar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neethu Kamarudheen
- The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
4
|
Hixon JC, Rivas Zarete JI, White J, Hilaire M, Muhammad A, Yusuf AP, Adu-Addai B, Yates CC, Mahavadi S. Epigenetic Modulation of GPER Expression in Gastric and Colonic Smooth Muscle of Male and Female Non-Obese Diabetic (NOD) Mice: Insights into H3K4me3 and H3K27ac Modifications. Int J Mol Sci 2024; 25:5260. [PMID: 38791299 PMCID: PMC11121689 DOI: 10.3390/ijms25105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Type 1 diabetes (T1D) affects gastrointestinal (GI) motility, favoring gastroparesis, constipation, and fecal incontinence, which are more prevalent in women. The mechanisms are unknown. Given the G-protein-coupled estrogen receptor's (GPER) role in GI motility, we investigated sex-related diabetes-induced epigenetic changes in GPER. We assessed GPER mRNA and protein expression levels using qPCR and Western blot analyses, and quantified the changes in nuclear DNA methyltransferases and histone modifications (H3K4me3, H3Ac, and H3K27Ac) by ELISA kits. Targeted bisulfite and chromatin immunoprecipitation assays were used to evaluate DNA methylation and histone modifications around the GPER promoter by chromatin immunoprecipitation assays in gastric and colonic smooth muscle tissues of male and female control (CTR) and non-obese diabetic (NOD) mice. GPER expression was downregulated in NOD, with sex-dependent variations. In the gastric smooth muscle, not in colonic smooth muscle, downregulation coincided with differences in methylation ratios between regions 1 and 2 of the GPER promoter of NOD. DNA methylation was higher in NOD male colonic smooth muscle than in NOD females. H3K4me3 and H3ac enrichment decreased in NOD gastric smooth muscle. H3K4me3 levels diminished in the colonic smooth muscle of NOD. H3K27ac levels were unaffected, but enrichment decreased in NOD male gastric smooth muscle; however, it increased in the NOD male colonic smooth muscle and decreased in the female NOD colonic smooth muscle. Male NOD colonic smooth muscle exhibited decreased H3K27ac levels, not female, whereas female NOD colonic smooth muscle demonstrated diminished enrichment of H3ac at the GPER promoter, contrary to male NOD. Sex-specific epigenetic mechanisms contribute to T1D-mediated suppression of GPER expression in the GI tract. These insights advance our understanding of T1D complications and suggest promising avenues for targeted therapeutic interventions.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Colon/metabolism
- Colon/pathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/genetics
- DNA Methylation
- Epigenesis, Genetic
- Histones/metabolism
- Mice, Inbred NOD
- Muscle, Smooth/metabolism
- Promoter Regions, Genetic
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Stomach/pathology
Collapse
Affiliation(s)
- Juanita C. Hixon
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA; (J.C.H.); (J.W.); (A.M.)
| | - Jatna I. Rivas Zarete
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (J.I.R.Z.); (B.A.-A.)
| | - Jason White
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA; (J.C.H.); (J.W.); (A.M.)
| | - Mariline Hilaire
- Department of Environment & Nutrition Sciences, College of Agriculture, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA; (J.C.H.); (J.W.); (A.M.)
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria 810211, Kaduna State, Nigeria
| | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna 920101, Niger State, Nigeria;
| | - Benjamin Adu-Addai
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (J.I.R.Z.); (B.A.-A.)
| | - Clayton C. Yates
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA; (J.C.H.); (J.W.); (A.M.)
| |
Collapse
|
5
|
Wang X, Zhao K. Reactivating antitumor immunity by inhibiting JMJD1C. Nat Immunol 2024; 25:390-391. [PMID: 38356060 DOI: 10.1038/s41590-024-01760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Affiliation(s)
- Xuezheng Wang
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Mocholi E, Russo L, Gopal K, Ramstead AG, Hochrein SM, Vos HR, Geeven G, Adegoke AO, Hoekstra A, van Es RM, Pittol JR, Vastert S, Rutter J, Radstake T, van Loosdregt J, Berkers C, Mokry M, Anderson CC, O'Connell RM, Vaeth M, Ussher J, Burgering BMT, Coffer PJ. Pyruvate metabolism controls chromatin remodeling during CD4 + T cell activation. Cell Rep 2023; 42:112583. [PMID: 37267106 DOI: 10.1016/j.celrep.2023.112583] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
Upon antigen-specific T cell receptor (TCR) engagement, human CD4+ T cells proliferate and differentiate, a process associated with rapid transcriptional changes and metabolic reprogramming. Here, we show that the generation of extramitochondrial pyruvate is an important step for acetyl-CoA production and subsequent H3K27ac-mediated remodeling of histone acetylation. Histone modification, transcriptomic, and carbon tracing analyses of pyruvate dehydrogenase (PDH)-deficient T cells show PDH-dependent acetyl-CoA generation as a rate-limiting step during T activation. Furthermore, T cell activation results in the nuclear translocation of PDH and its association with both the p300 acetyltransferase and histone H3K27ac. These data support the tight integration of metabolic and histone-modifying enzymes, allowing metabolic reprogramming to fuel CD4+ T cell activation. Targeting this pathway may provide a therapeutic approach to specifically regulate antigen-driven T cell activation.
Collapse
Affiliation(s)
- Enric Mocholi
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Laura Russo
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Andrew G Ramstead
- Huntsman Cancer Institute and Division of Microbiology and Immunology, Department of Pathology, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT, USA
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Geert Geeven
- Department of Clinical Genetics, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Adeolu O Adegoke
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Anna Hoekstra
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jose Ramos Pittol
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sebastian Vastert
- Laboratory for Translational Immunology and Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jared Rutter
- Huntsman Cancer Institute and Division of Microbiology and Immunology, Department of Pathology, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT, USA
| | - Timothy Radstake
- Laboratory for Translational Immunology and Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Laboratory for Translational Immunology and Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Celia Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Michal Mokry
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Cardiovascular Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Ryan M O'Connell
- Huntsman Cancer Institute and Division of Microbiology and Immunology, Department of Pathology, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT, USA
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - John Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Fan C, Chen K, Wang Y, Ball EV, Stenson PD, Mort M, Bacolla A, Kehrer-Sawatzki H, Tainer JA, Cooper DN, Zhao H. Profiling human pathogenic repeat expansion regions by synergistic and multi-level impacts on molecular connections. Hum Genet 2023; 142:245-274. [PMID: 36344696 PMCID: PMC10290229 DOI: 10.1007/s00439-022-02500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Whilst DNA repeat expansions cause numerous heritable human disorders, their origins and underlying pathological mechanisms are often unclear. We collated a dataset comprising 224 human repeat expansions encompassing 203 different genes, and performed a systematic analysis with respect to key topological features at the DNA, RNA and protein levels. Comparison with controls without known pathogenicity and genomic regions lacking repeats, allowed the construction of the first tool to discriminate repeat regions harboring pathogenic repeat expansions (DPREx). At the DNA level, pathogenic repeat expansions exhibited stronger signals for DNA regulatory factors (e.g. H3K4me3, transcription factor-binding sites) in exons, promoters, 5'UTRs and 5'genes but were not significantly different from controls in introns, 3'UTRs and 3'genes. Additionally, pathogenic repeat expansions were also found to be enriched in non-B DNA structures. At the RNA level, pathogenic repeat expansions were characterized by lower free energy for forming RNA secondary structure and were closer to splice sites in introns, exons, promoters and 5'genes than controls. At the protein level, pathogenic repeat expansions exhibited a preference to form coil rather than other types of secondary structure, and tended to encode surface-located protein domains. Guided by these features, DPREx ( http://biomed.nscc-gz.cn/zhaolab/geneprediction/# ) achieved an Area Under the Curve (AUC) value of 0.88 in a test on an independent dataset. Pathogenic repeat expansions are thus located such that they exert a synergistic influence on the gene expression pathway involving inter-molecular connections at the DNA, RNA and protein levels.
Collapse
Affiliation(s)
- Cong Fan
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China
| | - Ken Chen
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 500001, China
| | - Yukai Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 500001, China
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | | | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China.
| |
Collapse
|
8
|
Milec Z, Strejčková B, Šafář J. Contemplation on wheat vernalization. FRONTIERS IN PLANT SCIENCE 2023; 13:1093792. [PMID: 36684728 PMCID: PMC9853533 DOI: 10.3389/fpls.2022.1093792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Vernalization is a period of low non-freezing temperatures, which provides the competence to flower. This mechanism ensures that plants sown before winter develop reproductive organs in more favourable conditions during spring. Such an evolutionary mechanism has evolved in both monocot and eudicot plants. Studies in monocots, represented by temperate cereals like wheat and barley, have identified and proposed the VERNALIZATION1 (VRN1) gene as a key player in the vernalization response. VRN1 belongs to MADS-box transcription factors and is expressed in the leaves and the apical meristem, where it subsequently promotes flowering. Despite substantial research advancement in the last two decades, there are still gaps in our understanding of the vernalization mechanism. Here we summarise the present knowledge of wheat vernalization. We discuss VRN1 allelic variation, review vernalization models, talk VRN1 copy number variation and devernalization phenomenon. Finally, we suggest possible future directions of the vernalization research in wheat.
Collapse
|
9
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
10
|
Janas JA, Zhang L, Luu JH, Demeter J, Meng L, Marro SG, Mall M, Mooney NA, Schaukowitch K, Ng YH, Yang N, Huang Y, Neumayer G, Gozani O, Elias JE, Jackson PK, Wernig M. Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent gene activation. Mol Cell 2022; 82:4627-4646.e14. [PMID: 36417913 PMCID: PMC9779922 DOI: 10.1016/j.molcel.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.
Collapse
Affiliation(s)
- Justyna A Janas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Zhang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacklyn H Luu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingjun Meng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuele G Marro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Moritz Mall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katie Schaukowitch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Han Ng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuhao Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gernot Neumayer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter K Jackson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Swargiary P, Boruah N, Singh CS, Chatterjee A. Genome-wide analysis of DNaseI hypersensitivity unveils open chromatin associated with histone H3 modifications after areca nut with lime exposure. Mutagenesis 2022; 37:182-190. [DOI: 10.1093/mutage/geac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Research over the years revealed that precocious anaphase, securin overexpression, and genome instability in both target and nontarget cells are significantly associated with the increased risk of areca nut (AN) and lime-induced oral, esophageal, and gastric cancers. Further, hyperphosphorylation of Rb and histone H3 epigenetic modifications both globally and in the promoter region of the securin gene were demonstrated after AN + lime exposure. This study aims whether the extract of raw AN + lime relaxes chromatin structure which further facilitates the histone H3 epigenetic modifications during the initial phase of carcinogenesis. Three groups of mice (10 in each group) were used. The treated group consumed 1 mg/day/mice of AN extract with lime ad libitum in the drinking water for 60 days. The dose was increased by 1 mg every 60 days. Isolated nuclei were digested with DNaseI and 2 kb and below DNA was eluted from the agarose gel, purified and PCR amplified by using securin and GAPDH primers. Securin and E2F1 expression, pRb phosphorylation, and histone epigenetic modifications were analyzed by immunohistochemistry. The number of DNA fragments within 2 kb in size after DNaseI treatment was higher significantly in AN + lime exposed tissue samples than in the untreated one. The PCR result showed that the number of fragments bearing securin gene promoter and GAPDH gene was significantly higher in AN + lime exposed DNaseI-treated samples. Immunohistochemistry data revealed increased Rb hyperphosphorylation, upregulation of E2F1, and securin in the AN + lime-treated samples. Increased trimethylation of histone H3 lysine 4 and acetylation of H3 lysine 9 and 18 were observed globally in the treated samples. Therefore, the results of this study have led to the hypothesis that AN + lime exposure relaxes the chromatin, changes the epigenetic landscape, and deregulates the Rb–E2F1 circuit which might be involved in the upregulation of securin and some other proto-oncogenes that might play an important role in the initial phases of AN + lime mediated carcinogenesis.
Collapse
Affiliation(s)
- Pooja Swargiary
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Nabamita Boruah
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Chongtham Sovachandra Singh
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
- Department of Biotechnology, Royal School of Biosciences, The Assam Royal Global University , Guwahati, Assam 781035 , India
| |
Collapse
|
13
|
Yu M, Jia Y, Ma Z, Ji D, Wang C, Liang Y, Zhang Q, Yi H, Zeng L. Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer. Front Oncol 2022; 12:906807. [PMID: 36033518 PMCID: PMC9399681 DOI: 10.3389/fonc.2022.906807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
ASH1L is a member of the Trithorax-group protein and acts as a histone methyltransferase for gene transcription activation. It is known that ASH1L modulates H3K4me3 and H3K36me2/3 at its gene targets, but its specific mechanism of histone recognition is insufficiently understood. In this study, we found that the ASH1L plant homeodomain (PHD) finger interacts with mono-, di-, and trimethylated states of H3K4 peptides with comparable affinities, indicating that ASH1L PHD non-selectively binds to all three methylation states of H3K4. We solved nuclear magnetic resonance structures picturing the ASH1L PHD finger binding to the dimethylated H3K4 peptide and found that a narrow binding groove and residue composition in the methylated-lysine binding pocket restricts the necessary interaction with the dimethyl-ammonium moiety of K4. In addition, we found that the ASH1L protein is overexpressed in castrate-resistant prostate cancer (PCa) PC3 and DU145 cells in comparison to PCa LNCaP cells. The knockdown of ASH1L modulated gene expression and cellular pathways involved in apoptosis and cell cycle regulation and consequently induced cell cycle arrest, cell apoptosis, and reduced colony-forming abilities in PC3 and DU145 cells. The overexpression of the C-terminal core of ASH1L but not the PHD deletion mutant increased the overall H3K36me2 level but had no effect on the H3K4me2/3 level. Overall, our study identifies the ASH1L PHD finger as the first native reader that non-selectively recognizes the three methylation states of H3K4. Additionally, ASH1L is required for the deregulation of cell cycle and survival in PCas.
Collapse
Affiliation(s)
- Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yingying Liang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| |
Collapse
|
14
|
Zhao T, Lum JJ. Methionine cycle-dependent regulation of T cells in cancer immunity. Front Oncol 2022; 12:969563. [PMID: 36033438 PMCID: PMC9399763 DOI: 10.3389/fonc.2022.969563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The methionine cycle comprises a series of reactions that catabolizes and regenerates methionine. This process is crucial to many cellular functions, including polyamine synthesis, DNA synthesis, redox balance, and DNA and histone methylation. In response to antigens, T cells activate the methionine cycle to support proliferation and differentiation, indicating the importance of the methionine cycle to T cell immunity. In cancer, T cells serve as important effectors of adaptive immunity by directly killing cancerous cells. However, the tumor microenvironment can induce a state of T cell exhaustion by regulating the methionine metabolism of T cells, posing a barrier to both endogenous T cell responses and T cell immunotherapy. Here we review the role of methionine cycle metabolites in regulating the activation and effector function of T cells and explore the mechanism by which tumor cells exploit the methionine pathway as a means of immune evasion. Finally, we discuss new perspectives on reprogramming the methionine cycle of T cells to enhance anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Tian Zhao
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
15
|
Zhang B, Srivastava A, Mimitou E, Stuart T, Raimondi I, Hao Y, Smibert P, Satija R. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Nat Biotechnol 2022; 40:1220-1230. [PMID: 35332340 PMCID: PMC9378363 DOI: 10.1038/s41587-022-01250-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Technologies that profile chromatin modifications at single-cell resolution offer enormous promise for functional genomic characterization, but the sparsity of the measurements and integrating multiple binding maps represent substantial challenges. Here we introduce single-cell (sc)CUT&Tag-pro, a multimodal assay for profiling protein-DNA interactions coupled with the abundance of surface proteins in single cells. In addition, we introduce single-cell ChromHMM, which integrates data from multiple experiments to infer and annotate chromatin states based on combinatorial histone modification patterns. We apply these tools to perform an integrated analysis across nine different molecular modalities in circulating human immune cells. We demonstrate how these two approaches can characterize dynamic changes in the function of individual genomic elements across both discrete cell states and continuous developmental trajectories, nominate associated motifs and regulators that establish chromatin states and identify extensive and cell-type-specific regulatory priming. Finally, we demonstrate how our integrated reference can serve as a scaffold to map and improve the interpretation of additional scCUT&Tag datasets.
Collapse
Affiliation(s)
- Bingjie Zhang
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Avi Srivastava
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Eleni Mimitou
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Tim Stuart
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Ivan Raimondi
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Yuhan Hao
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|
16
|
Yashar WM, Kong G, VanCampen J, Curtiss BM, Coleman DJ, Carbone L, Yardimci GG, Maxson JE, Braun TP. GoPeaks: histone modification peak calling for CUT&Tag. Genome Biol 2022; 23:144. [PMID: 35788238 PMCID: PMC9252088 DOI: 10.1186/s13059-022-02707-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Genome-wide mapping of histone modifications is critical to understanding transcriptional regulation. CUT&Tag is a new method for profiling histone modifications, offering improved sensitivity and decreased cost compared with ChIP-seq. Here, we present GoPeaks, a peak calling method specifically designed for histone modification CUT&Tag data. We compare the performance of GoPeaks against commonly used peak calling algorithms to detect histone modifications that display a range of peak profiles and are frequently used in epigenetic studies. We find that GoPeaks robustly detects genome-wide histone modifications and, notably, identifies a substantial number of H3K27ac peaks with improved sensitivity compared to other standard algorithms.
Collapse
Affiliation(s)
- William M. Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, USA
| | - Garth Kong
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Jake VanCampen
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | | | - Daniel J. Coleman
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Lucia Carbone
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, USA
| | - Galip Gürkan Yardimci
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Center for Early Cancer Detection, Oregon Health & Science University, Portland, USA
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, USA
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, USA
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, USA
| |
Collapse
|
17
|
Cheng Y, Chen Y, Wang G, Liu P, Xie G, Jing H, Chen H, Fan Y, Wang M, Zhou J. Protein Methylation in Diabetic Kidney Disease. Front Med (Lausanne) 2022; 9:736006. [PMID: 35647002 PMCID: PMC9133329 DOI: 10.3389/fmed.2022.736006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by persistent urine aberrations, structural abnormalities, or impaired excretory renal function. Diabetes is the leading cause of CKD. Their common pathological manifestation is renal fibrosis. Approximately half of all patients with type 2 diabetes and one-third with type 1 diabetes will develop CKD. However, renal fibrosis mechanisms are still poorly understood, especially post-transcriptional and epigenetic regulation. And an unmet need remains for innovative treatment strategies for preventing, arresting, treating, and reversing diabetic kidney disease (DKD). People believe that protein methylation, including histone and non-histone, is an essential type of post-translational modification (PTM). However, prevalent reviews mainly focus on the causes such as DNA methylation. This review will take insights into the protein part. Furthermore, by emphasizing the close relationship between protein methylation and DKD, we will summarize the clinical research status and foresee the application prospect of protein methyltransferase (PMT) inhibitors in DKD treatment. In a nutshell, our review will contribute to a more profound understanding of DKD’s molecular mechanism and inspire people to dig into this field.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guodong Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, The Eighth People’s Hospital of Guangzhou, Guangzhou, China
| | - Youlin Fan
- Department of Anesthesiology, Guangzhou Panyu Central Hospital of Panyu District, Guangzhou, China
| | - Min Wang
- Department of Anesthesiology, The Gaoming People’s Hospital, Foshan, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
18
|
Boruah N, Singh CS, Swargiary P, Dkhar H, Chatterjee A. Securin overexpression correlates with the activated Rb/E2F1 pathway and histone H3 epigenetic modifications in raw areca nut-induced carcinogenesis in mice. Cancer Cell Int 2022; 22:30. [PMID: 35033090 PMCID: PMC8761315 DOI: 10.1186/s12935-022-02442-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022] Open
Abstract
Background Raw areca nut (RAN) consumption induces oral, esophageal and gastric cancers, which are significantly associated with the overexpression of pituitary tumor transforming gene 1/securin and chromosomal instability (CIN). An association of Securin/PTTG1 upregulation and gastric cancer in human was also demonstrated earlier. Since the molecular mechanism underlying securin upregulation remains unclear, this study intended to investigate the association of securin upregulation with the Rb-E2F1 circuit and epigenetic histone (H3) modification patterns both globally and in the promoter region of the securin gene. Methods Six groups of mice were used, and in the treated group, each mouse consumed 1 mg of RAN extract with lime per day ad libitum in the drinking water for 60 days, after which the dose was increased by 1 mg every 60 days. Histopathological evaluation of stomach tissues was performed and securin expression was analysed by immunoblotting as well as by immunohistochemistry. ChIP-qPCR assays were performed to evaluate the recruitment of different histone modifications in the core promoter region of securin gene as well as its upstream and downstream regions. Results All mice developed gastric cancer with securin overexpression after 300 days of feeding. Immunohistochemistry data revealed hyperphosphorylation of Rb and upregulation of E2F1 in the RAN-treated samples. Increased trimethylation of H3 lysine 4 and acetylation of H3 lysine 9 and 18 both globally and in the promoter region of the securin gene were observed by increasing the levels of lysine-N-methyltransferase 2A, lysine-acetyltransferase, EP-300 and PCAF after RAN treatment. ChIP-qPCR data revealed that the quantity of DNA fragments retrieved from the immunoprecipitated samples was maximum in the -83 to -192 region than further upstream and the downstream of the promoter for H3K4Me3, H3K9ac, H3K18ac and H3K9me3. Conclusions RAN-mediated pRb-inactivation induced securin upregulation, a putative E2F1 target, by inducing misregulation in chromatin remodeling in its promoter region, which led to transcriptional activation and subsequent development of chromosomal instability. Therefore, present results have led to the hypothesis that RAN-induced changes in the epigenetic landscape, securin overexpression and subsequent elevation of chromosomal instability is probably byproducts of inactivation of the pRb pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02442-z.
Collapse
Affiliation(s)
- Nabamita Boruah
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Chongtham Sovachandra Singh
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Pooja Swargiary
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Hughbert Dkhar
- Histopathology Division, Nazareth Hospital, Laitumkhrah, Shillong, 793003, India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
19
|
Rajabi F, Abdollahimajd F, Jabalameli N, Nassiri Kashani M, Firooz A. The Immunogenetics of Alopecia areata. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:19-59. [DOI: 10.1007/978-3-030-92616-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Thomsen I, Kunowska N, de Souza R, Moody AM, Crawford G, Wang YF, Khadayate S, Whilding C, Strid J, Karimi MM, Barr AR, Dillon N, Sabbattini P. RUNX1 Regulates a Transcription Program That Affects the Dynamics of Cell Cycle Entry of Naive Resting B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2976-2991. [PMID: 34810221 PMCID: PMC8675107 DOI: 10.4049/jimmunol.2001367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.
Collapse
Affiliation(s)
- Inesa Thomsen
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Natalia Kunowska
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Roshni de Souza
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Anne-Marie Moody
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Yi-Fang Wang
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Sanjay Khadayate
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alexis R Barr
- Cell Cycle Control Group, MRC London Institute of Medical Sciences, London, United Kingdom; and
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Pierangela Sabbattini
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
| |
Collapse
|
21
|
Reprogramming of H3K9bhb at regulatory elements is a key feature of fasting in the small intestine. Cell Rep 2021; 37:110044. [PMID: 34818540 PMCID: PMC8668154 DOI: 10.1016/j.celrep.2021.110044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
β-hydroxybutyrate (β-OHB) is an essential metabolic energy source during fasting and functions as a chromatin regulator by lysine β-hydroxybutyrylation (Kbhb) modification of the core histones H3 and H4. We report that Kbhb on histone H3 (H3K9bhb) is enriched at proximal promoters of critical gene subsets associated with lipolytic and ketogenic metabolic pathways in small intestine (SI) crypts during fasting. Similar Kbhb enrichment is observed in Lgr5+ stem cell-enriched epithelial spheroids treated with β-OHB in vitro. Combinatorial chromatin state analysis reveals that H3K9bhb is associated with active chromatin states and that fasting enriches for an H3K9bhb-H3K27ac signature at active metabolic gene promoters and distal enhancer elements. Intestinal knockout of Hmgcs2 results in marked loss of H3K9bhb-associated loci, suggesting that local production of β-OHB is responsible for chromatin reprogramming within the SI crypt. We conclude that modulation of H3K9bhb in SI crypts is a key gene regulatory event in response to fasting. Terranova et al. demonstrate that fasting induces production of HMGCS2 and β-hydroxybutyrate in small intestine (SI) crypt cells. This causes enrichment of H3K9bhb within regulatory regions of critical metabolic genes in crypt epithelial cells. Loss of intestinal Hmgcs2 impairs H3K9bhb enrichment and affects expression of H3K9bhb-associated metabolic gene programs.
Collapse
|
22
|
Lee HW, Jose CC, Cuddapah S. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases. Semin Cancer Biol 2021; 76:99-109. [PMID: 34058338 PMCID: PMC8627926 DOI: 10.1016/j.semcancer.2021.05.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Nickel compounds are environmental toxicants, prevalent in the atmosphere due to their widespread use in several industrial processes, extensive consumption of nickel containing products, as well as burning of fossil fuels. Exposure to nickel is associated with a multitude of chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. In addition, nickel exposure is implicated in the development of nasal and lung cancers. Interestingly, a common pathogenic mechanism underlying the development of diseases associated with nickel exposure is epithelial-mesenchymal transition (EMT). EMT is a process by which the epithelial cells lose their junctions and polarity and acquire mesenchymal traits, including increased ability to migrate and invade. EMT is a normal and essential physiological process involved in differentiation, development and wound healing. However, EMT also contributes to a number of pathological conditions, including fibrosis, cancer and metastasis. Growing evidence suggest that EMT induction could be an important outcome of nickel exposure. In this review, we discuss the role of EMT in nickel-induced lung diseases and the mechanisms associated with EMT induction by nickel exposure.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA.
| |
Collapse
|
23
|
Madhok A, Bhat SA, Philip CS, Sureshbabu SK, Chiplunkar S, Galande S. Transcriptome Signature of Vγ9Vδ2 T Cells Treated With Phosphoantigens and Notch Inhibitor Reveals Interplay Between TCR and Notch Signaling Pathways. Front Immunol 2021; 12:660361. [PMID: 34526984 PMCID: PMC8435775 DOI: 10.3389/fimmu.2021.660361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gamma delta (γδ) T cells, especially the Vγ9Vδ2 subtype, have been implicated in cancer therapy and thus have earned the spotlight in the past decade. Although one of the most important properties of γδ T cells is their activation by phosphoantigens, which are intermediates of the Mevalonate and Rohmer pathway of isoprenoid biosynthesis, such as IPP and HDMAPP, respectively, the global effects of such treatments on Vγ9Vδ2 T cells remain elusive. Here, we used the high-throughput transcriptomics approach to elucidate the transcriptional changes in human Vγ9Vδ2 T cells upon HDMAPP, IPP, and anti-CD3 treatments in combination with interleukin 2 (IL2) cytokine stimulation. These activation treatments exhibited a dramatic surge in transcription with distinctly enriched pathways. We further assessed the transcriptional dynamics upon inhibition of Notch signaling coupled with activation treatments. We observed that the metabolic processes are most affected upon Notch inhibition via GSI-X. The key effector genes involved in gamma-delta cytotoxic function were downregulated upon Notch blockade even in combination with activation treatment, suggesting a transcriptional crosstalk between T-cell receptor (TCR) signaling and Notch signaling in Vγ9Vδ2 T cells. Collectively, we demonstrate the effect of the activation of TCR signaling by phosphoantigens or anti-CD3 on the transcriptional status of Vγ9Vδ2 T cells along with IL2 stimulation. We further show that the blockade of Notch signaling antagonistically affects this activation.
Collapse
Affiliation(s)
- Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India
| | - Sajad Ahmad Bhat
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Chinna Susan Philip
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shalini Kashipathi Sureshbabu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shubhada Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
24
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
25
|
Prowse-Wilkins CP, Wang J, Xiang R, Garner JB, Goddard ME, Chamberlain AJ. Putative Causal Variants Are Enriched in Annotated Functional Regions From Six Bovine Tissues. Front Genet 2021; 12:664379. [PMID: 34249087 PMCID: PMC8260860 DOI: 10.3389/fgene.2021.664379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants which affect complex traits (causal variants) are thought to be found in functional regions of the genome. Identifying causal variants would be useful for predicting complex trait phenotypes in dairy cows, however, functional regions are poorly annotated in the bovine genome. Functional regions can be identified on a genome-wide scale by assaying for post-translational modifications to histone proteins (histone modifications) and proteins interacting with the genome (e.g., transcription factors) using a method called Chromatin immunoprecipitation followed by sequencing (ChIP-seq). In this study ChIP-seq was performed to find functional regions in the bovine genome by assaying for four histone modifications (H3K4Me1, H3K4Me3, H3K27ac, and H3K27Me3) and one transcription factor (CTCF) in 6 tissues (heart, kidney, liver, lung, mammary and spleen) from 2 to 3 lactating dairy cows. Eighty-six ChIP-seq samples were generated in this study, identifying millions of functional regions in the bovine genome. Combinations of histone modifications and CTCF were found using ChromHMM and annotated by comparing with active and inactive genes across the genome. Functional marks differed between tissues highlighting areas which might be particularly important to tissue-specific regulation. Supporting the cis-regulatory role of functional regions, the read counts in some ChIP peaks correlated with nearby gene expression. The functional regions identified in this study were enriched for putative causal variants as seen in other species. Interestingly, regions which correlated with gene expression were particularly enriched for potential causal variants. This supports the hypothesis that complex traits are regulated by variants that alter gene expression. This study provides one of the largest ChIP-seq annotation resources in cattle including, for the first time, in the mammary gland of lactating cows. By linking regulatory regions to expression QTL and trait QTL we demonstrate a new strategy for identifying causal variants in cattle.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Jianghui Wang
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, Australia
| | - Michael E Goddard
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| |
Collapse
|
26
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
27
|
Ku WL, Pan L, Cao Y, Gao W, Zhao K. Profiling single-cell histone modifications using indexing chromatin immunocleavage sequencing. Genome Res 2021; 31:1831-1842. [PMID: 33853847 DOI: 10.1101/gr.260893.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
Recently, multiple single-cell assays were developed for detecting histone marks at the single-cell level. These techniques are either limited by the low cell throughput or sparse reads which limit their applications. To address these problems, we introduce indexing single-cell immunocleavage sequencing (iscChIC-seq), a multiplex indexing method based on TdT terminal transferase and T4 DNA ligase-mediated barcoding strategy and single-cell ChIC-seq, which is capable of readily analyzing histone modifications across tens of thousands of single cells in one experiment. Application of iscChIC-seq to profiling H3K4me3 and H3K27me3 in human white blood cells (WBCs) enabled successful detection of more than 10,000 single cells for each histone modification with 11 K and 45 K nonredundant reads per cell, respectively. Cluster analysis of these data allowed identification of monocytes, T cells, B cells, and NK cells from WBCs. The cell types annotated from H3K4me3 single-cell data are specifically correlated with the cell types annotated from H3K27me3 single-cell data. Our data indicate that iscChIC-seq is a reliable technique for profiling histone modifications in a large number of single cells, which may find broad applications in studying cellular heterogeneity and differentiation status in complex developmental and disease systems.
Collapse
Affiliation(s)
- Wai Lim Ku
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | - Lixia Pan
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | - Weiwu Gao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| |
Collapse
|
28
|
Abstract
Single-cell sequencing-based methods for profiling gene transcript levels have revealed substantial heterogeneity in expression levels among morphologically indistinguishable cells. This variability has important functional implications for tissue biology and disease states such as cancer. Mapping of epigenomic information such as chromatin accessibility, nucleosome positioning, histone tail modifications and enhancer-promoter interactions in both bulk-cell and single-cell samples has shown that these characteristics of chromatin state contribute to expression or repression of associated genes. Advances in single-cell epigenomic profiling methods are enabling high-resolution mapping of chromatin states in individual cells. Recent studies using these techniques provide evidence that variations in different aspects of chromatin organization collectively define gene expression heterogeneity among otherwise highly similar cells.
Collapse
Affiliation(s)
- Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
29
|
Mantsoki A, Parussel K, Joshi A. Identification and Characterisation of Putative Enhancer Elements in Mouse Embryonic Stem Cells. Bioinform Biol Insights 2021; 15:1177932220974623. [PMID: 33623376 PMCID: PMC7876754 DOI: 10.1177/1177932220974623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Enhancer elements control mammalian transcription largely in a cell-type-specific
manner. The genome-wide identification of enhancer elements and their activity
status in a cellular context is therefore fundamental to understanding cell
identity and function. We determined enhancer activity in mouse embryonic stem
(ES) cells using chromatin modifications and characterised their global
properties. Specifically, we first grouped enhancers into 5 groups using
multiple H3K4me1, H3K27ac, and H3K27me3 modification data sets. Active enhancers
(simultaneous presence of H3K4me1 and H3K27ac) were enriched for binding of
pluripotency factors and were found near pluripotency-related genes. Although
both H3K4me1-only and active enhancers were enriched for super-enhancers and a
TATA box like motif, active enhancers were preferentially bound by RNA polII
(s2) and were enriched for bidirectional transcription, while H3K4me1-only
enhancers were enriched for RNA polII (8WG16) suggesting they were likely
poised. Bivalent enhancers (simultaneous presence of H3K4me1 and H3K27me3) were
preferentially in the vicinity of bivalent genes. They were enriched for binding
of components of polycomb complex as well as Tcf3 and Oct4. Moreover, a
‘CTTTCTC’ de-novo motif was enriched at bivalent enhancers, previously
identified at bivalent promoters in ES cells. Taken together, 3 histone
modifications successfully demarcated active, bivalent, and poised enhancers
with distinct sequence and binding features.
Collapse
Affiliation(s)
- Anna Mantsoki
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Karla Parussel
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Anagha Joshi
- Computational Biology Unit, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Camacho-Ordonez N, Ballestar E, Timmers HTM, Grimbacher B. What can clinical immunology learn from inborn errors of epigenetic regulators? J Allergy Clin Immunol 2021; 147:1602-1618. [PMID: 33609625 DOI: 10.1016/j.jaci.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
The epigenome is at the interface between environmental factors and the genome, regulating gene transcription, DNA repair, and replication. Epigenetic modifications play a crucial role in establishing and maintaining cell identity and are especially crucial for neurology, musculoskeletal integrity, and the function of the immune system. Mutations in genes encoding for the components of the epigenetic machinery lead to the development of distinct disorders, especially involving the central nervous system and host defense. In this review, we focus on the role of epigenetic modifications for the function of the immune system. By studying the immune phenotype of patients with monogenic mutations in components of the epigenetic machinery (inborn errors of epigenetic regulators), we demonstrate the importance of DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and mRNA processing for immunity. Moreover, we give a short overview on therapeutic strategies targeting the epigenome.
Collapse
Affiliation(s)
- Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Urology, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST- Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
31
|
Epigenetic reprogramming during prostate cancer progression: A perspective from development. Semin Cancer Biol 2021; 83:136-151. [PMID: 33545340 DOI: 10.1016/j.semcancer.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Conrad Waddington's theory of epigenetic landscape epitomize the process of cell fate and cellular decision-making during development. Wherein the epigenetic code maintains patterns of gene expression in pluripotent and differentiated cellular states during embryonic development and differentiation. Over the years disruption or reprogramming of the epigenetic landscape has been extensively studied in the course of cancer progression. Cellular dedifferentiation being a key hallmark of cancer allow us to take cues from the biological processes involved during development. Here, we discuss the role of epigenetic landscape and its modifiers in cell-fate determination, differentiation and prostate cancer progression. Lately, the emergence of RNA-modifications has also furthered our understanding of epigenetics in cancer. The overview of the epigenetic code regulating androgen signalling, and progression to aggressive neuroendocrine stage of PCa reinforces its gene regulatory functions during the development of prostate gland as well as cancer progression. Additionally, we also highlight the clinical implications of cancer cell epigenome, and discuss the recent advancements in the therapeutic strategies targeting the advanced stage disease.
Collapse
|
32
|
The Role of H3K4 Trimethylation in CpG Islands Hypermethylation in Cancer. Biomolecules 2021; 11:biom11020143. [PMID: 33499170 PMCID: PMC7912453 DOI: 10.3390/biom11020143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
CpG methylation in transposons, exons, introns and intergenic regions is important for long-term silencing, silencing of parasitic sequences and alternative promoters, regulating imprinted gene expression and determining X chromosome inactivation. Promoter CpG islands, although rich in CpG dinucleotides, are unmethylated and remain so during all phases of mammalian embryogenesis and development, except in specific cases. The biological mechanisms that contribute to the maintenance of the unmethylated state of CpG islands remain elusive, but the modification of established DNA methylation patterns is a common feature in all types of tumors and is considered as an event that intrinsically, or in association with genetic lesions, feeds carcinogenesis. In this review, we focus on the latest results describing the role that the levels of H3K4 trimethylation may have in determining the aberrant hypermethylation of CpG islands in tumors.
Collapse
|
33
|
Ghare SS, Chilton PM, Rao AV, Joshi-Barve S, Peyrani P, Reyes Vega A, McClain CJ, Bryant K, Cook RL, Freiberg M, Barve S. Epigenetic Mechanisms Underlying HIV-Infection Induced Susceptibility of CD4+ T Cells to Enhanced Activation-Induced FasL Expression and Cell Death. J Acquir Immune Defic Syndr 2021; 86:128-137. [PMID: 33093334 PMCID: PMC8384352 DOI: 10.1097/qai.0000000000002526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic immune activation and CD4 T cell depletion are significant pathogenic features of HIV infection. Expression of Fas ligand (FasL), a key mediator of activation-induced cell death in T cells, is elevated in people living with HIV-1 infection (PLWH). However, the epigenetic mechanisms underlying the enhanced induction of FasL expression in CD4 T lymphocytes in PLWH are not completely elucidated. Hence, the current work examined the effect of HIV infection on FasL promoter-associated histone modifications and transcriptional regulation in CD4 T lymphocytes in PLWH. METHOD Flow cytometric analysis was performed to examine the Fas-FasL expression on total CD4 T cells and naïve/memory CD4 T cell subsets. Epigenetic FasL promoter histone modifications were investigated by chromatin immunoprecipitation-quantitative real-time polymerase chain reaction analysis using freshly isolated total CD4 T lymphocytes from HIV-1 infected and noninfected individuals. RESULTS All naïve/memory CD4 T cell subsets from PLWH showed markedly greater frequency of FasL expression. Notably, examination of functional outcome of FasL/Fas co-expression demonstrated the preferential susceptibility of Tcm and Tem subsets to activation-induced apoptosis. Importantly, these CD4 T cells collectively demonstrated a distinct FasL promoter histone profile involving a coordinated cross-talk between histone H3 modifications leading to enhanced FasL gene expression. Specifically, levels of transcriptionally permissive histone H3K4-trimethylation (H3K4Me3) and histone H3K9-acetylation (H3K9Ac) were increased, with a concomitant decrease in the repressive H3K9-trimethylation (H3K9Me3). CONCLUSION The present work demonstrates that epigenetic mechanisms involving promoter-histone modifications regulate transcriptional competence and FasL expression in CD4 T cells from PLWH and render them susceptible to activation-induced cell death.
Collapse
Affiliation(s)
- Smita S. Ghare
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Paula M. Chilton
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Aakarsha V. Rao
- Department of Medicine, University of Louisville, Louisville, KY
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Paula Peyrani
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Andrea Reyes Vega
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Kendall Bryant
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Robert L. Cook
- Department of Epidemiology and Biostatistics, University of Florida, Gainesville, FL
| | - Mathew Freiberg
- Department of Medicine, Vanderbilt University Medical Center
| | - Shirish Barve
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| |
Collapse
|
34
|
Grover P, Goel PN, Piccirillo CA, Greene MI. FOXP3 and Tip60 Structural Interactions Relevant to IPEX Development Lead to Potential Therapeutics to Increase FOXP3 Dependent Suppressor T Cell Functions. Front Pediatr 2021; 9:607292. [PMID: 33614551 PMCID: PMC7888439 DOI: 10.3389/fped.2021.607292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Regulatory T (Treg) cells play a role in the maintenance of immune homeostasis and are critical mediators of immune tolerance. The Forkhead box P3 (FOXP3) protein acts as a regulator for Treg development and function. Mutations in the FOXP3 gene can lead to autoimmune diseases such as Immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome in humans, often resulting in death within the first 2 years of life and a scurfy like phenotype in Foxp3 mutant mice. We discuss biochemical features of the FOXP3 ensemble including its regulation at various levels (epigenetic, transcriptional, and post-translational modifications) and molecular functions. The studies also highlight the interactions of FOXP3 and Tat-interacting protein 60 (Tip60), a principal histone acetylase enzyme that acetylates FOXP3 and functions as an essential subunit of the FOXP3 repression ensemble complex. Lastly, we have emphasized the role of allosteric modifiers that help stabilize FOXP3:Tip60 interactions and discuss targeting this interaction for the therapeutic manipulation of Treg activity.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
35
|
Rezinciuc S, Tian Z, Wu S, Hengel S, Pasa-Tolic L, Smallwood HS. Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells. Viruses 2020; 12:v12121409. [PMID: 33302437 PMCID: PMC7762524 DOI: 10.3390/v12121409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection. Activation significantly altered PTMs following influenza infection, histone maps changed as T cells migrated to the site of infection, and T cells responding to secondary infections had significantly more transcription enhancing modifications. Thus, HiPTMap identified and quantified proteoforms and determined changes in CD8 T cell histone PTMs over the course of infection.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhixin Tian
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Shawna Hengel
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Children’s Foundation Research Institute, Memphis, TN 38105, USA
- Correspondence: ; Tel.: +1-(901)-448–3068
| |
Collapse
|
36
|
Koss B, Shields BD, Taylor EM, Storey AJ, Byrum SD, Gies AJ, Washam CL, Choudhury SR, Hyun Ahn J, Uryu H, Williams JB, Krager KJ, Chiang TC, Mackintosh SG, Edmondson RD, Aykin-Burns N, Gajewski TF, Wang GG, Tackett AJ. Epigenetic Control of Cdkn2a.Arf Protects Tumor-Infiltrating Lymphocytes from Metabolic Exhaustion. Cancer Res 2020; 80:4707-4719. [PMID: 33004350 PMCID: PMC7642172 DOI: 10.1158/0008-5472.can-20-0524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/04/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
T-cell exhaustion in cancer is linked to poor clinical outcomes, where evidence suggests T-cell metabolic changes precede functional exhaustion. Direct competition between tumor-infiltrating lymphocytes (TIL) and cancer cells for metabolic resources often renders T cells dysfunctional. Environmental stress produces epigenome remodeling events within TIL resulting from loss of the histone methyltransferase EZH2. Here, we report an epigenetic mechanism contributing to the development of metabolic exhaustion in TIL. A multiomics approach revealed a Cdkn2a.Arf-mediated, p53-independent mechanism by which EZH2 inhibition leads to mitochondrial dysfunction and the resultant exhaustion. Reprogramming T cells to express a gain-of-function EZH2 mutant resulted in an enhanced ability of T cells to inhibit tumor growth in vitro and in vivo. Our data suggest that manipulation of T-cell EZH2 within the context of cellular therapies may yield lymphocytes that are able to withstand harsh tumor metabolic environments and collateral pharmacologic insults. SIGNIFICANCE: These findings demonstrate that manipulation of T-cell EZH2 in cellular therapies may yield cellular products able to withstand solid tumor metabolic-deficient environments. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4707/F1.large.jpg.
Collapse
Affiliation(s)
- Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Bradley D Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Erin M Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Allen J Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Samrat Roy Choudhury
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Hidetaka Uryu
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Jason B Williams
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Kimberly J Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tung-Chin Chiang
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rick D Edmondson
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| |
Collapse
|
37
|
Chandradoss KR, Chawla B, Dhuppar S, Nayak R, Ramachandran R, Kurukuti S, Mazumder A, Sandhu KS. CTCF-Mediated Genome Architecture Regulates the Dosage of Mitotically Stable Mono-allelic Expression of Autosomal Genes. Cell Rep 2020; 33:108302. [PMID: 33113374 DOI: 10.1016/j.celrep.2020.108302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
The mechanisms that guide the clonally stable random mono-allelic expression of autosomal genes remain enigmatic. We show that (1) mono-allelically expressed (MAE) genes are assorted and insulated from bi-allelically expressed (BAE) genes through CTCF-mediated chromatin loops; (2) the cell-type-specific dynamics of mono-allelic expression coincides with the gain and loss of chromatin insulator sites; (3) dosage of MAE genes is more sensitive to the loss of chromatin insulation than that of BAE genes; and (4) inactive alleles of MAE genes are significantly more insulated than active alleles and are de-repressed upon CTCF depletion. This alludes to a topology wherein the inactive alleles of MAE genes are insulated from the spatial interference of transcriptional states from the neighboring bi-allelic domains via CTCF-mediated loops. We propose that CTCF functions as a typical insulator on inactive alleles, but facilitates transcription through enhancer-linking on active allele of MAE genes, indicating widespread allele-specific regulatory roles of CTCF.
Collapse
Affiliation(s)
- Keerthivasan Raanin Chandradoss
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Bindia Chawla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Shivnarayan Dhuppar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR) Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Rakhee Nayak
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Aprotim Mazumder
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR) Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India.
| |
Collapse
|
38
|
Scott WA, Campos EI. Interactions With Histone H3 & Tools to Study Them. Front Cell Dev Biol 2020; 8:701. [PMID: 32850821 PMCID: PMC7411163 DOI: 10.3389/fcell.2020.00701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Histones are an integral part of chromatin and thereby influence its structure, dynamics, and functions. The effects of histone variants, posttranslational modifications, and binding proteins is therefore of great interest. From the moment that they are deposited on chromatin, nucleosomal histones undergo dynamic changes in function of the cell cycle, and as DNA is transcribed and replicated. In the process, histones are not only modified and bound by various proteins, but also shuffled, evicted, or replaced. Technologies and tools to study such dynamic events continue to evolve and better our understanding of chromatin and of histone proteins proper. Here, we provide an overview of H3.1 and H3.3 histone dynamics throughout the cell cycle, while highlighting some of the tools used to study their protein–protein interactions. We specifically discuss how histones are chaperoned, modified, and bound by various proteins at different stages of the cell cycle. Established and select emerging technologies that furthered (or have a high potential of furthering) our understanding of the dynamic histone–protein interactions are emphasized. This includes experimental tools to investigate spatiotemporal changes on chromatin, the role of histone chaperones, histone posttranslational modifications, and histone-binding effector proteins.
Collapse
Affiliation(s)
- William A Scott
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Sałkowska A, Karaś K, Karwaciak I, Walczak-Drzewiecka A, Krawczyk M, Sobalska-Kwapis M, Dastych J, Ratajewski M. Identification of Novel Molecular Markers of Human Th17 Cells. Cells 2020; 9:cells9071611. [PMID: 32635226 PMCID: PMC7407666 DOI: 10.3390/cells9071611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Th17 cells are important players in host defense against pathogens such as Staphylococcus aureus, Candida albicans, and Bacillus anthracis. Th17 cell-mediated inflammation, under certain conditions in which balance in the immune system is disrupted, is the underlying pathogenic mechanism of certain autoimmune disorders, e.g., rheumatoid arthritis, Graves' disease, multiple sclerosis, and psoriasis. In the present study, using transcriptomic profiling, we selected genes and analyzed the expression of these genes to find potential novel markers of Th17 lymphocytes. We found that APOD (apolipoprotein D); C1QL1 (complement component 1, Q subcomponent-like protein 1); and CTSL (cathepsin L) are expressed at significantly higher mRNA and protein levels in Th17 cells than in the Th1, Th2, and Treg subtypes. Interestingly, these genes and the proteins they encode are well associated with the function of Th17 cells, as these cells produce inflammation, which is linked with atherosclerosis and angiogenesis. Furthermore, we found that high expression of these genes in Th17 cells is associated with the acetylation of H2BK12 within their promoters. Thus, our results provide new information regarding this cell type. Based on these results, we also hope to better identify pathological conditions of clinical significance caused by Th17 cells.
Collapse
Affiliation(s)
- Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.W.-D.); (J.D.)
| | | | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- BBMRI.pl Consortium, 54-066 Wroclaw, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.W.-D.); (J.D.)
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
- Correspondence: ; Tel.: +48-42-209-33-89
| |
Collapse
|
40
|
Histone Deacetylase Inhibitors Promote Latent Adenovirus Reactivation from Tonsillectomy Specimens. J Virol 2020; 94:JVI.00100-20. [PMID: 32269118 DOI: 10.1128/jvi.00100-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Adenovirus (HAdV) infection is a common cause of illness among young children, immunocompromised patients, and transplant recipients. The majority of HAdV infections are self-limited, but recurring infection is frequently encountered in young children and may require hospitalization. In this study, we surveyed the presence of HAdV in tonsillectomy samples and investigated epigenetic conditions that contributed to HAdV reactivation. HAdV DNA was detected from 86.7% donors. The lymphocytes isolated from the samples failed to produce infectious HAdV after incubation, suggesting the viruses remained in a latent status. To determine whether epigenetic factors played a role in HAdV reactivation, isolated lymphocytes were treated with a small compound library. Viral DNA replication and infectious HAdV production were assayed by PCR and by a secondary infection assay. We identified several compounds, mainly pan- and selective histone deacetylase (HDAC) inhibitors, which showed activity to reactivate HAdV from latency. The viruses were isolated and were determined as species C HAdV. Using a model of HAdV lytic infection, we showed that the compounds promoted histone-3 acetylation and association with viral early gene promoters. In addition to demonstrate the palatine tonsils as a reservoir of latent HAdV, this study uncovers a critical role of histone acetylation in HAdV reactivation, linking HAdV latency to recurrent HAdV infection.IMPORTANCE Respiratory tract infection by adenoviruses is among the most common diseases in children, attributing to approximately 20% of hospitalizations of children with acute respiratory infection (ARI). Adenovirus transmits by direct contact, but recurrent infection is common. Ever since its isolation, adenovirus has been known to have the ability to establish persistent or latent infection. We found 87.7% tonsillectomy specimens contained detectable amounts of adenoviral DNA. Isolated lymphocytes did not produce infectious adenoviruses without stimulation. By screening an epigenetic informer compound library, we identified several histone deacetylase inhibitors that promoted adenovirus reactivation that was evidenced by increased viral DNA replication and production of infectious viruses. The human tonsils are covered with bacterial pathogens that may utilize pathogen-associated pattern molecules or metabolites to cause epigenetic activation and proinflammatory gene transcription, which may lead to viral reactivation from latency. The study shows that recurrent adenovirus infection could arise from reactivation of residing virus from previous infections.
Collapse
|
41
|
Perillo B, Di Santi A, Cernera G, Galasso G, Pocsfalvi G, Castoria G, Migliaccio A. Acetylation/methylation at lysine 9 in histone H3 as a mark of nucleosome asymmetry in human somatic breast cells. Cell Death Discov 2020; 6:39. [PMID: 32528728 PMCID: PMC7251094 DOI: 10.1038/s41420-020-0278-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Bruno Perillo
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, C.N.R, 80131 Naples, Italy
| | | | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | | | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università della Campania “L. Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
42
|
Mitchell CM, Hirst JJ, Mitchell MD, Murray HG, Zakar T. Genes upregulated in the amnion at labour are bivalently marked by activating and repressive histone modifications. Mol Hum Reprod 2020; 25:228-240. [PMID: 30753586 DOI: 10.1093/molehr/gaz007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammatory genes are expressed increasingly in the foetal membranes at late gestation triggering birth. Here we have examined whether epigenetic histone modifications contribute to the upregulation of proinflammatory genes in the amnion in late pregnancy and at labour. Amnion samples were collected from early pregnancy, at term in the absence of labour and after spontaneous birth. The expression of the labour-associated proinflammatory genes PTGS2, BMP2 and NAMPT was determined by reverse transcription-coupled quantitative real-time PCR (qRT-PCR). Chromatin immunoprecipitation (ChIP) and sequential double ChIP were performed to determine the levels and co-occurrence of activating histone-3, lysine-4 trimethylation (H3K4me3) and repressive histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. H3K4 methyltransferase, H3K27me3 demethylase and H3K27 methyltransferase expression was determined by qRT-PCR and immunofluorescence confocal microscopy. PTGS2, BMP2 and NAMPT expression was upregulated robustly between early pregnancy and term (P < 0.05). The promoters were marked bivalently by both the H3K4me3 and H3K27me3 modifications. Bivalence was reduced at term by the decrease of the H3K27me3-modified fraction of promoter copies marked by H3K4me3 indicating epigenetic activation. Messenger RNAs encoding the H3K4-specific methyl transferases MLL1,-2,-3,-4, SETD1A,-B and the H3K27me3-specific demethylases KDM6A,-B were expressed increasingly while the H3K27 methyl transferase EZH2 was expressed decreasingly at term. Histone modifying enzyme proteins were detected in amnion epithelial and mesenchymal cells. These results with prototypical proinflammatory genes suggest that nucleosomes at labour-promoting genes are marked bivalently in the amnion, which is shifted towards monovalent H3K4me3 modification at term when the genes are upregulated. Bivalent epigenetic regulation by histone modifying enzymes may control the timing of labour.
Collapse
Affiliation(s)
- Carolyn M Mitchell
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Faculty of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Faculty of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Murray D Mitchell
- Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Henry G Murray
- Department of Obstetrics and Gynaecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia.,Faculty of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Obstetrics and Gynaecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia.,Faculty of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
43
|
Kim YD, Park SM, Ha HC, Lee AR, Won H, Cha H, Cho S, Cho JM. HDAC Inhibitor, CG-745, Enhances the Anti-Cancer Effect of Anti-PD-1 Immune Checkpoint Inhibitor by Modulation of the Immune Microenvironment. J Cancer 2020; 11:4059-4072. [PMID: 32368288 PMCID: PMC7196255 DOI: 10.7150/jca.44622] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are well-known epigenetic regulators with therapeutic potential in various diseases. Recent studies have shown that HDACis are involved in immune-mediated anti-cancer effects and may modulate the activity of immunotherapy agents. CG-745, a histone deacetylase inhibitor, has shown anti-cancer effects in pancreatic cancer, colorectal cancer, and non-small cell lung cancer. However, the exact role of CG-745 within the immune system is largely unknown. In this study, we have shown that CG-745 induces microenvironment changes promoting anti-cancer effect of anti-PD-1 antibody in syngeneic mouse models. Specifically, CG-745 induces or extends IL-2 and IFN-γ expression with or without additional stimulation, and increases proliferation of cytotoxic T cells and NK cells, while inhibiting proliferation of regulatory T cells. The analysis of immune cell distribution in the tumor microenvironment and spleen reveals that CG-745 suppresses M2 macrophage polarization and decreases the myeloid-derived suppressor cells. Recent advances in immunotherapy highlight the anti-cancer effects of immune checkpoint inhibitor despite a relatively limited clinical benefit in the subset of patients. Our results indicate that CG-745 enables the synergistic effects of the immune checkpoint inhibitor combination therapy in various cancers by suppressing tumor microenvironment.
Collapse
Affiliation(s)
- Young-Dae Kim
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Sang-Min Park
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Hae Chan Ha
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - A Reum Lee
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Heeyoung Won
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Hyunju Cha
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Sangsook Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Joong Myung Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| |
Collapse
|
44
|
Abstract
Recent advances in immunotherapy have revolutionized the treatment of certain cancers. Some patients show a durable response to these immunotherapies, while others show little benefit or develop resistance. Identification of biomarkers to predict responsiveness will be helpful for informing treatment strategies; and would furthermore lead to the identification of molecular pathways dysregulated in nonresponding patients that could be targeted for therapeutic development. Pathways of epigenetic modification, such as histone posttranslational modifications (PTMs), have been shown to be dysregulated in certain cancer and immune cells. Histones are abundant cellular proteins readily assayed with high-throughput technologies, making them attractive targets as biomarkers. We explore promising advancements for using histone PTMs as immunotherapy responsiveness biomarkers in both cancer and immune cells, and provide a methodological workflow for assaying histone PTMs in relevant samples.
Collapse
Affiliation(s)
- Erin M Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lauren E Davis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
45
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
46
|
Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The Bivalent Genome: Characterization, Structure, and Regulation. Trends Genet 2019; 36:118-131. [PMID: 31818514 DOI: 10.1016/j.tig.2019.11.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
An intricate molecular machinery is at the core of gene expression regulation in every cell. During the initial stages of organismal development, the coordinated activation of diverse transcriptional programs is crucial and must be carefully executed to shape every organ and tissue. Bivalent promoters and poised enhancers are regulatory regions decorated with histone marks that are associated with both positive and negative transcriptional outcomes. These apparently contradictory signals are important for setting bivalent genes in a poised state, which is subsequently resolved during differentiation into either active or repressive states. We discuss the origins of bivalent promoters and the mechanisms implicated in their acquisition and maintenance. We further review how the presence of bivalent marks influences genome architecture. Finally, we highlight the potential link between bivalency and cancer which could drive biomedical research in disease etiology and treatment.
Collapse
Affiliation(s)
- Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Mar González-Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
47
|
Gu X, Xu Y, Xue WZ, Wu Y, Ye Z, Xiao G, Wang HL. Interplay of miR-137 and EZH2 contributes to the genome-wide redistribution of H3K27me3 underlying the Pb-induced memory impairment. Cell Death Dis 2019; 10:671. [PMID: 31511494 PMCID: PMC6739382 DOI: 10.1038/s41419-019-1912-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023]
Abstract
Compromised learning and memory is a common feature of multiple neurodegenerative disorders. A paradigm spatial memory impairment could be caused by developmental lead (Pb) exposure. Growing evidence implicates epigenetic modifications in the Pb-mediated memory deficits; however, how histone modifications exemplified by H3K27me3 (H3 Lys27 trimethylation) contribute to this pathogenesis remains poorly understood. Here we found that Pb exposure diminished H3K27me3 levels in vivo by suppressing EZH2 (enhancer of zeste homolog 2) expression at an early stage. EZH2 overexpression in Pb-treated rats rescued the H3K27me3 abundance and partially restored the normal spatial memory, as manifested by the rat performance in a Morris water maze test, and structural analysis of hippocampal spine densities. Furthermore, miR-137 and EZH2 constitute mutually inhibitory loop to regulate the H3K27me3 level, and this feedback regulation could be specifically activated by Pb treatment. Considering genes targeted by H3K27me3, ChIP-chip (chromatin immunoprecipitation on chip) studies revealed that Pb could remodel the genome-wide distribution of H3K27me3, represented by pathways like transcriptional regulation, developmental regulation, cell motion, and apoptosis, as well as a novel Wnt9b locus. As a Wnt isoform associated with canonical and noncanonical signaling, Wnt9b was regulated by the opposite modifications of H3K4me3 (H3 Lys4 trimethylation) and H3K27me3 in Pb-exposed neurons. Rescue trials further validated the contribution of Wnt9b to Pb-induced neuronal impairments, wherein canonical or noncanonical Wnt signaling potentially exhibited destructive or protective roles, respectively. In summary, the study reveals an epigenetic-based molecular change underlying Pb-triggered spatial memory deficits, and provides new potential avenues for our understanding of neurodegenerative diseases with environmental etiology.
Collapse
Affiliation(s)
- Xiaozhen Gu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wei-Zhen Xue
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yulan Wu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Zi Ye
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100022, People's Republic of China
| | - Guiran Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
48
|
Boshans LL, Factor DC, Singh V, Liu J, Zhao C, Mandoiu I, Lu QR, Casaccia P, Tesar PJ, Nishiyama A. The Chromatin Environment Around Interneuron Genes in Oligodendrocyte Precursor Cells and Their Potential for Interneuron Reprograming. Front Neurosci 2019; 13:829. [PMID: 31440130 PMCID: PMC6694778 DOI: 10.3389/fnins.2019.00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs), also known as NG2 glia, arise from neural progenitor cells in the embryonic ganglionic eminences that also generate inhibitory neurons. They are ubiquitously distributed in the central nervous system, remain proliferative through life, and generate oligodendrocytes in both gray and white matter. OPCs exhibit some lineage plasticity, and attempts have been made to reprogram them into neurons, with varying degrees of success. However, little is known about how epigenetic mechanisms affect the ability of OPCs to undergo fate switch and whether OPCs have a unique chromatin environment around neuronal genes that might contribute to their lineage plasticity. Our bioinformatic analysis of histone posttranslational modifications at interneuron genes in OPCs revealed that OPCs had significantly fewer bivalent and repressive histone marks at interneuron genes compared to astrocytes or fibroblasts. Conversely, OPCs had a greater degree of deposition of active histone modifications at bivalently marked interneuron genes than other cell types, and this was correlated with higher expression levels of these genes in OPCs. Furthermore, a significantly higher proportion of interneuron genes in OPCs than in other cell types lacked the histone posttranslational modifications examined. These genes had a moderately high level of expression, suggesting that the "no mark" interneuron genes could be in a transcriptionally "poised" or "transitional" state. Thus, our findings suggest that OPCs have a unique histone code at their interneuron genes that may obviate the need for erasure of repressive marks during their fate switch to inhibitory neurons.
Collapse
Affiliation(s)
- Linda L. Boshans
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Daniel C. Factor
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Vijender Singh
- Computational Biology Core, University of Connecticut, Storrs, CT, United States
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, The City University of New York, New York, NY, United States
| | - Chuntao Zhao
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Ion Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | - Q. Richard Lu
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, The City University of New York, New York, NY, United States
| | - Paul J. Tesar
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
49
|
Placek K, Schultze JL, Aschenbrenner AC. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J Clin Invest 2019; 129:2994-3005. [PMID: 31329166 DOI: 10.1172/jci124619] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immune cells are pivotal in the reaction to injury, whereupon, under ideal conditions, repair and resolution phases restore homeostasis following initial acute inflammation. Immune cell activation and reprogramming require transcriptional changes that can only be initiated if epigenetic alterations occur. Recently, accelerated deciphering of epigenetic mechanisms has extended knowledge of epigenetic regulation, including long-distance chromatin remodeling, DNA methylation, posttranslational histone modifications, and involvement of small and long noncoding RNAs. Epigenetic changes have been linked to aspects of immune cell development, activation, and differentiation. Furthermore, genome-wide epigenetic landscapes have been established for some immune cells, including tissue-resident macrophages, and blood-derived cells including T cells. The epigenetic mechanisms underlying developmental steps from hematopoietic stem cells to fully differentiated immune cells led to development of epigenetic technologies and insights into general rules of epigenetic regulation. Compared with more advanced research areas, epigenetic reprogramming of immune cells in injury remains in its infancy. While the early epigenetic mechanisms supporting activation of the immune response to injury have been studied, less is known about resolution and repair phases and cell type-specific changes. We review prominent recent findings concerning injury-mediated epigenetic reprogramming, particularly in stroke and myocardial infarction. Lastly, we illustrate how single-cell technologies will be crucial to understanding epigenetic reprogramming in the complex sequential processes following injury.
Collapse
Affiliation(s)
- Katarzyna Placek
- Immunology and Metabolism, LIMES Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany.,Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
50
|
Abstract
Dendritic cells (DCs), a vital component of the innate immune system, are considered to lack antigen specificity and be devoid of immunological memory. Strategies that can induce memory-like responses from innate cells can be utilized to elicit protective immunity in immune deficient persons. Here we utilize an experimental immunization strategy to modulate DC inflammatory and memory-like responses against an opportunistic fungal pathogen that causes significant disease in immunocompromised individuals. Our results show that DCs isolated from protectively immunized mice exhibit enhanced transcriptional activation of interferon and immune signaling pathways. We also show long-term memory-like cytokine responses upon subsequent challenge with the fungal pathogen that are abrogated with inhibitors of specific histone modifications. Altogether, our study demonstrates that immunization strategies can be designed to elicit memory-like DC responses against infectious disease. Wormley and colleagues present data showing that vaccine strategies can be devised to prime dendritic cells to respond in a memory-like fashion upon subsequent exposure to a pathogen.
Collapse
|