1
|
Liu Y, Zuo Y, Li C, Fu P, He X, Wang Z, Li Y, Wan C, Wang Y, Wang Y, Zhu L, Shen X. Activation of an antifungal pathway in Yersinia pseudotuberculosis by chitin-receptor-mediated fungal recognition. Curr Biol 2025:S0960-9822(25)00569-X. [PMID: 40403720 DOI: 10.1016/j.cub.2025.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Despite the ubiquitous nature of bacterial-fungal interactions (BFIs), it is not fully understood how bacteria detect the presence of a potential fungal competitor to initiate appropriate defense responses. In this study, we show that the enteropathogen Yersinia pseudotuberculosis (Yptb) utilizes the two-component system (TCS) histidine kinase RstB to sense chitin as a pathogen-associated molecular pattern (PAMP) for detecting fungi, resulting in the phosphorylation of the downstream response regulator RstA and subsequent activation of the classical type II secretion system (T2SS) and the tight adherence secretion system (TadSS), a major subtype of T2SS. The activation of T2SS and TadSS facilitates the secretion of chitinase T2SS/TadSS-related chitinase effector (TscE), which eliminates fungi and enhances bacterial colonization of the murine gut. These findings not only elucidate the role of T2SS and TscE in antagonizing fungal competitors but also offer insights into the interkingdom recognition mechanisms between bacteria and fungi.
Collapse
Affiliation(s)
- Yuqi Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxin Zuo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China; College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Changfu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Peishuai Fu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xinquan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhuo Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, P.R. China
| | - Chuanxing Wan
- College of Life Sciences, Tarim University, Alar, Xinjiang 843300, P.R. China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lingfang Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
2
|
Chowdhury M, Stansfeld PJ, Sargent F. A lysis less ordinary: The bacterial Type 10 Secretion System. Adv Microb Physiol 2025; 86:175-198. [PMID: 40404269 DOI: 10.1016/bs.ampbs.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Bacteria have evolved several different biochemical pathways to either export proteins of all shapes and sizes out of the cell cytoplasm, or to secrete those proteins into the extracellular environment. Many bacterial protein secretion systems have evolutionary links to systems used by bacteriophage to move macromolecules across membranes. The Type 10 Secretion System (T10SS) was identified in gram-negative bacteria and comprises genes that bear striking sequence similarities to those found within phage lysis cassettes. The minimum components of a T10SS are an integral membrane holin-like protein together with a peptidoglycan hydrolase. Here, we review recent research in Serratia spp., Salmonella spp, Yersinia spp, and gram-positive Clostridioides spp., and consider the evidence for different T10SS mechanisms ranging from a controlled release of proteins into the environment, to stochastic altruistic lysis of specialised populations of cells.
Collapse
Affiliation(s)
- Mechna Chowdhury
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne
| | - Phillip J Stansfeld
- Department of Chemistry, School of Life Sciences, University of Warwick, Coventry
| | - Frank Sargent
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
3
|
Lopez AE, Mayoral J, Zheng H, Cianciotto NP. Legionella pneumophila IrsA, a novel, iron-regulated exoprotein that facilitates growth in low-iron conditions and modulates biofilm formation. Microbiol Spectr 2025; 13:e0231324. [PMID: 39612475 PMCID: PMC11705809 DOI: 10.1128/spectrum.02313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
To discover new factors that are involved in iron acquisition by Legionella pneumophila, we used RNA-Seq to identify the genes that are most highly induced when virulent strain 130b is cultured in a low-iron chemically defined medium. Among other things, this revealed 14915, a heretofore uncharacterized gene that is predicted to be transcriptionally regulated by Fur and to encode a novel, ~15 kDa protein. 14915 was present in all L. pneumophila strains examined and had homologs in a subset of the other Legionella species. Compatible with it containing a classic signal sequence, the 14915 protein was detected in bacterial culture supernatants in a manner dependent upon the L. pneumophila type II secretion system. Thus, we designated 14915 as IrsA for iron-regulated, secreted protein A. Based on mutant analysis, the irsA gene was not required for optimal growth of strain 130b in low-iron media. However, after discovering that the commonly used laboratory-derived strain Lp02 has a much greater requirement for iron, we uncovered a growth-enhancing role for IrsA after examining an Lp02 mutant that lacked both IrsA and the Fe2+-transporter FeoB. The irsA mutant of 130b, but not its complemented derivative, did, however, display increased biofilm formation on both plastic and agar surfaces, and compatible with this, the mutant hyper-aggregated. Thus, IrsA is a novel, iron-regulated exoprotein that modulates biofilm formation and, under some circumstances, promotes growth in low-iron conditions. For this study, we determined and deposited in the database a complete and fully assembled genome sequence for strain 130b.IMPORTANCEThe bacterium Legionella pneumophila is the principal cause of Legionnaires' disease, a potentially fatal form of pneumonia that is increasing in incidence. L. pneumophila exists in many natural and human-made water systems and can be transmitted to humans through inhalation of contaminated water droplets. L. pneumophila flourishes within its habitats by spreading planktonically, assembling into biofilms, and growing in larger host cells. Iron acquisition is a key determinant for L. pneumophila persistence in water and during infection. We previously demonstrated that L. pneumophila assimilates iron both by secreting a non-protein iron chelator (siderophore) and by importing iron through membrane transporters. In this study, we uncovered a novel, secreted protein that is highly iron-regulated, promotes L. pneumophila's growth in low-iron media, and impacts biofilm formation. We also identified uncharacterized, IrsA-related proteins in other important human and animal pathogens. Thus, our results have important implications for understanding iron assimilation, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
4
|
Romanov KA, O'Connor TJ. Legionella pneumophila, a Rosetta stone to understanding bacterial pathogenesis. J Bacteriol 2024; 206:e0032424. [PMID: 39636264 PMCID: PMC11656745 DOI: 10.1128/jb.00324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Legionella pneumophila is an environmentally acquired pathogen that causes respiratory disease in humans. While the discovery of L. pneumophila is relatively recent compared to other bacterial pathogens, over the past 50 years, L. pneumophila has emerged as a powerhouse for studying host-pathogen interactions. In its natural habitat of fresh water, L. pneumophila interacts with a diverse array of protozoan hosts and readily evolve to expand their host range. This has led to the accumulation of the most extensive arsenal of secreted virulence factors described for a bacterial pathogen and their ability to infect humans. Within amoebae and human alveolar macrophages, the bacteria replicate within specialized membrane-bound compartments, establishing L. pneumophila as a model for studying intracellular vacuolar pathogens. In contrast, the virulence factors required for intracellular replication are specifically tailored to individual host cells types, allowing the pathogen to adapt to variation between disparate niches. The broad host range of this pathogen, combined with the extensive diversity and genome plasticity across the Legionella genus, has thus established this bacterium as an archetype to interrogate pathogen evolution, functional genomics, and ecology. In this review, we highlight the features of Legionella that establish them as a versatile model organism, new paradigms in bacteriology and bacterial pathogenesis resulting from the study of Legionella, as well as current and future questions that will undoubtedly expand our understanding of the complex and intricate biology of the microbial world.
Collapse
Affiliation(s)
- Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Naz A, Gul F, Azam SS. Recursive dynamics of GspE through machine learning enabled identification of inhibitors. Comput Biol Chem 2024; 113:108217. [PMID: 39369611 DOI: 10.1016/j.compbiolchem.2024.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Type II secretion System has been increasingly recognized as a key driver of virulence in many pathogenic bacteria including Achromobacter xylosoxidans. ATPase GspE is the powerhouse of the T2SS. It powers the entire secretion process by binding with ATP and hydrolyzing it. Therefore, targeting it was thought to have a profound effect on the normal functioning of the whole T2SS. A. xylosoxidans is a Gram-negative bacterium that poses a rising concern to immunocompromised people. It is responsible for many opportunistic infections mostly in people with cystic fibrosis. Due to its intrinsic and acquired resistance mechanisms, it is challenging to treat. In this current study, an extensive machine learning-enabled computational investigation was carried out. Drug libraries were screened using machine learning random forest algorithm trained on non-redundant dataset of 8722 antibacterial compounds with reported IC50 values. Active compounds were then further subjected to molecular docking. To unravel the dynamics and better understand the stability of complexes, the top complexes were subjected to MD Simulations followed by various post-simulation analyses including Trajectory analysis, Atom Contacts, SASA, Hydrogen Bond, RDF, binding free energy calculations, PCA, and AFD analysis. Findings from the study unanimously unveiled Asinex-BAS00263070-28551 as the best inhibitor as it instigated the recursive dynamics of the target by making key hydrogen bond interactions with Walker A motif, suggesting it could serve as the promising drug candidate against GspE. Further experimental in-vivo and in-vitro validation is still required to authenticate the therapeutic effects of these drugs.
Collapse
Affiliation(s)
- Aliza Naz
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Fouzia Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
6
|
Shin CJ, O'Connor TJ. Novel induction of broad-spectrum antibiotics by the human pathogen Legionella. mSphere 2024; 9:e0012024. [PMID: 38888300 PMCID: PMC11288058 DOI: 10.1128/msphere.00120-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The majority of antibiotics are natural products, with microorganism-generated molecules and their derivatives being the most prevalent source of drugs to treat infections. Thus, identifying natural products remains the most valuable resource for novel therapeutics. Here, we report the discovery of a series of dormant bacteria in honey that have bactericidal activity toward Legionella, a bacterial pathogen that causes respiratory disease in humans. We show that, in response to bacterial products secreted by Legionella, the honey bacteria release diffusible antimicrobial molecules. Remarkably, the honey bacteria only produce these molecules in response to Legionella spp., when compared to a panel of 24 bacterial pathogens from different genera. However, the molecules induced by Legionella have broad activity against several clinically important pathogens, including many high-priority pathogens. Thus, Legionella spp. are potent drivers of antimicrobial molecule production by uncharacterized bacteria isolated from honey, providing access to new antimicrobial products and an unprecedented strategy for discovering novel antibiotics. IMPORTANCE Natural products generated by microorganisms remain the most viable and abundant source of new antibiotics. However, their discovery depends on the ability to isolate and culture the producing organisms and to identify conditions that promote antibiotic production. Here, we identify a series of previously undescribed bacteria isolated from raw honey and specific culture conditions that induce the production of antimicrobial molecules that are active against a wide variety of pathogenic bacteria.
Collapse
Affiliation(s)
- Carson J. Shin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Rehman S, Antonovic AK, McIntire IE, Zheng H, Cleaver L, Baczynska M, Adams CO, Portlock T, Richardson K, Shaw R, Oregioni A, Mastroianni G, Whittaker SBM, Kelly G, Lorenz CD, Fornili A, Cianciotto NP, Garnett JA. The Legionella collagen-like protein employs a distinct binding mechanism for the recognition of host glycosaminoglycans. Nat Commun 2024; 15:4912. [PMID: 38851738 PMCID: PMC11162425 DOI: 10.1038/s41467-024-49255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual trimer arrangement with a positively charged external surface and negatively charged solvent exposed internal cavity. Through molecular dynamics simulations, we show how the glycosaminoglycan chondroitin-4-sulphate associates with the Lcl-CTD surface via distinct binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate-binding mechanism.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Anna Katarina Antonovic
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ian E McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Maria Baczynska
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Carlton O Adams
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Theo Portlock
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Katherine Richardson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rosie Shaw
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Alain Oregioni
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Giulia Mastroianni
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Sara B-M Whittaker
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Christian D Lorenz
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Arianna Fornili
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK.
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
8
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Rehman S, Antonovic AK, McIntire IE, Zheng H, Cleaver L, Adams CO, Portlock T, Richardson K, Shaw R, Oregioni A, Mastroianni G, Whittaker SBM, Kelly G, Fornili A, Cianciotto NP, Garnett JA. The Legionella collagen-like protein employs a unique binding mechanism for the recognition of host glycosaminoglycans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570962. [PMID: 38106198 PMCID: PMC10723406 DOI: 10.1101/2023.12.10.570962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans (GAGs) on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual dynamic trimer arrangement with a positively charged external surface and a negatively charged solvent exposed internal cavity. Through Molecular Dynamics (MD) simulations, we show how the GAG chondroitin-4-sulphate associates with the Lcl-CTD surface via unique binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate binding mechanism.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Anna K. Antonovic
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ian E. McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Carlton O. Adams
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Theo Portlock
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Katherine Richardson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rosie Shaw
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Alain Oregioni
- The Medical Research Council Biomedical NMR Centre, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giulia Mastroianni
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Sara B-M. Whittaker
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Arianna Fornili
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
10
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
11
|
Afoshin A, Kudryakova I, Tarlachkov S, Leontyevskaya E, Zelenov D, Rudenko P, Leontyevskaya Vasilyeva N. Transcriptomic Analysis Followed by the Isolation of Extracellular Bacteriolytic Proteases from Lysobacter capsici VKM B-2533 T. Int J Mol Sci 2023; 24:11652. [PMID: 37511410 PMCID: PMC10380237 DOI: 10.3390/ijms241411652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of the study was to search for, isolate and characterize new bacteriolytic enzymes that show promising potential for their use in medicine, agriculture and veterinary. Using a transcriptomic analysis, we annotated in Lysobacter capsici VKM B-2533T the genes of known bacteriolytic and antifungal enzymes, as well as of antibiotics, whose expression levels increased when cultivated on media conducive to the production of antimicrobial agents. The genes of the secreted putative bacteriolytic proteases were also annotated. Two new bacteriolytic proteases, Serp and Serp3, were isolated and characterized. The maximum bacteriolytic activities of Serp and Serp3 were exhibited at low ionic strength of 10 mM Tris-HCl, and high temperatures of, respectively, 80 °C and 70 °C. The pH optimum for Serp was 8.0; for Serp3, it was slightly acidic, at 6.0. Both enzymes hydrolyzed autoclaved cells of Micrococcus luteus Ac-2230T, Proteus vulgaris H-19, Pseudomonas aeruginosa and Staphylococcus aureus 209P. Serp also digested cells of Bacillus cereus 217. Both enzymes hydrolyzed casein and azofibrin. The newly discovered enzymes are promising for developing proteolytic antimicrobial drugs on their basis.
Collapse
Affiliation(s)
- Alexey Afoshin
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Irina Kudryakova
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Sergey Tarlachkov
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Elena Leontyevskaya
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Dmitry Zelenov
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
- Pushchino Branch of the Federal State Budgetary Educational Institution of Higher Education «Russian Biotechnological University (BIOTECH University)», 3 Institutskaya Str., Pushchino 142290, Russia
| | - Pavel Rudenko
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Natalya Leontyevskaya Vasilyeva
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| |
Collapse
|
12
|
Abstract
It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
14
|
Skåne A, Edvardsen PK, Cordara G, Loose JSM, Leitl KD, Krengel U, Sørum H, Askarian F, Vaaje-Kolstad G. Chitinolytic enzymes contribute to the pathogenicity of Aliivibrio salmonicida LFI1238 in the invasive phase of cold-water vibriosis. BMC Microbiol 2022; 22:194. [PMID: 35941540 PMCID: PMC9361615 DOI: 10.1186/s12866-022-02590-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background Aliivibrio salmonicida is the causative agent of cold-water vibriosis in salmonids (Oncorhynchus mykiss and Salmo salar L.) and gadidae (Gadus morhua L.). Virulence-associated factors that are essential for the full spectrum of A. salmonicida pathogenicity are largely unknown. Chitin-active lytic polysaccharide monooxygenases (LPMOs) have been indicated to play roles in both chitin degradation and virulence in a variety of pathogenic bacteria but are largely unexplored in this context. Results In the present study we investigated the role of LPMOs in the pathogenicity of A. salmonicida LFI238 in Atlantic salmon (Salmo salar L.). In vivo challenge experiments using isogenic deletion mutants of the two LPMOs encoding genes AsLPMO10A and AsLPMO10B, showed that both LPMOs, and in particular AsLPMO10B, were important in the invasive phase of cold-water vibriosis. Crystallographic analysis of the AsLPMO10B AA10 LPMO domain (to 1.4 Å resolution) revealed high structural similarity to viral fusolin, an LPMO known to enhance the virulence of insecticidal agents. Finally, exposure to Atlantic salmon serum resulted in substantial proteome re-organization of the A. salmonicida LPMO deletion variants compared to the wild type strain, indicating the struggle of the bacterium to adapt to the host immune components in the absence of the LPMOs. Conclusion The present study consolidates the role of LPMOs in virulence and demonstrates that such enzymes may have more than one function.
Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02590-2.
Collapse
Affiliation(s)
- Anna Skåne
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Per Kristian Edvardsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315, Oslo, Norway
| | - Jennifer Sarah Maria Loose
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kira Daryl Leitl
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315, Oslo, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, School of Medicine, UC San Diego, La Jolla, San Diego, CA, USA.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
15
|
Devlin JR, Santus W, Mendez J, Peng W, Yu A, Wang J, Alejandro-Navarreto X, Kiernan K, Singh M, Jiang P, Mechref Y, Behnsen J. Salmonella enterica serovar Typhimurium chitinases modulate the intestinal glycome and promote small intestinal invasion. PLoS Pathog 2022; 18:e1010167. [PMID: 35482787 PMCID: PMC9049507 DOI: 10.1371/journal.ppat.1010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - William Santus
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jorge Mendez
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Xiomarie Alejandro-Navarreto
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn Kiernan
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Manmeet Singh
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Chandra K, Roy Chowdhury A, Chatterjee R, Chakravortty D. GH18 family glycoside hydrolase Chitinase A of Salmonella enhances virulence by facilitating invasion and modulating host immune responses. PLoS Pathog 2022; 18:e1010407. [PMID: 35482710 PMCID: PMC9049553 DOI: 10.1371/journal.ppat.1010407] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Salmonella is a facultative intracellular pathogen that has co-evolved with its host and has also developed various strategies to evade the host immune responses. Salmonella recruits an array of virulence factors to escape from host defense mechanisms. Previously chitinase A (chiA) was found to be upregulated in intracellular Salmonella. Although studies show that several structurally similar chitinases and chitin-binding proteins (CBP) of many human pathogens have a profound role in various aspects of pathogenesis, like adhesion, virulence, and immune evasion, the role of chitinase in the intravacuolar pathogen Salmonella has not yet been elucidated. Therefore, we made chromosomal deletions of the chitinase encoding gene (chiA) to study the role of chitinase of Salmonella enterica in the pathogenesis of the serovars, Typhimurium, and Typhi using in vitro cell culture model and two different in vivo hosts. Our data indicate that ChiA removes the terminal sialic acid moiety from the host cell surface, and facilitates the invasion of the pathogen into the epithelial cells. Interestingly we found that the mutant bacteria also quit the Salmonella-containing vacuole and hyper-proliferate in the cytoplasm of the epithelial cells. Further, we found that ChiA aids in reactive nitrogen species (RNS) and reactive oxygen species (ROS) production in the phagocytes, leading to MHCII downregulation followed by suppression of antigen presentation and antibacterial responses. Notably, in the murine host, the mutant shows compromised virulence, leading to immune activation and pathogen clearance. In continuation of the study in C. elegans, Salmonella Typhi ChiA was found to facilitate bacterial attachment to the intestinal epithelium, intestinal colonization, and persistence by downregulating antimicrobial peptides. This study provides new insights on chitinase as an important and novel virulence determinant that helps in immune evasion and increased pathogenesis of Salmonella.
Collapse
Affiliation(s)
- Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
17
|
The molecular basis of FimT-mediated DNA uptake during bacterial natural transformation. Nat Commun 2022; 13:1065. [PMID: 35246533 PMCID: PMC8897410 DOI: 10.1038/s41467-022-28690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Naturally competent bacteria encode sophisticated protein machinery for the uptake and translocation of exogenous DNA into the cell. If this DNA is integrated into the bacterial genome, the bacterium is said to be naturally transformed. Most competent bacterial species utilise type IV pili for the initial DNA uptake step. These proteinaceous cell-surface structures are composed of thousands of pilus subunits (pilins), designated as major or minor according to their relative abundance in the pilus. Here, we show that the minor pilin FimT plays an important role in the natural transformation of Legionella pneumophila. We use NMR spectroscopy, in vitro DNA binding assays and in vivo transformation assays to understand the molecular basis of FimT's role in this process. FimT binds to DNA via an electropositive patch, rich in arginines, several of which are well-conserved and located in a conformationally flexible C-terminal tail. FimT orthologues from other Gammaproteobacteria share the ability to bind to DNA. Our results suggest that FimT plays an important role in DNA uptake in a wide range of competent species.
Collapse
|
18
|
Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. THE NEW PHYTOLOGIST 2022; 233:2380-2396. [PMID: 34918344 DOI: 10.1111/nph.17921] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 05/21/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.
Collapse
Affiliation(s)
- Theruvothu Madathil Vandhana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Lou Reyre
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Dangudubiyyam Sushmaa
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Guy Berrin
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Bastien Bissaro
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
19
|
Pascale MR, Salaris S, Mazzotta M, Girolamini L, Fregni Serpini G, Manni L, Grottola A, Cristino S. New Insight regarding Legionella Non- Pneumophila Species Identification: Comparison between the Traditional mip Gene Classification Scheme and a Newly Proposed Scheme Targeting the rpoB Gene. Microbiol Spectr 2021; 9:e0116121. [PMID: 34908503 PMCID: PMC8672888 DOI: 10.1128/spectrum.01161-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The identification of Legionella non-pneumophila species (non-Lp) in clinical and environmental samples is based on the mip gene, although several studies suggest its limitations and the need to expand the classification scheme to include other genes. In this study, the development of a new classification scheme targeting the rpoB gene is proposed to obtain a more reliable identification of 135 Legionella environmental isolates. All isolates were sequenced for the mip and rpoB genes, and the results were compared to study the discriminatory power of the proposed rpoB scheme. Complete concordance between the mip and rpoB results based on genomic percent identity was found for 121/135 (89.6%) isolates; in contrast, discordance was found for 14/135 (10.4%) isolates. Additionally, due to the lack of reference values for the rpoB gene, inter- and intraspecies variation intervals were calculated based on a pairwise identity matrix that was built using the entire rpoB gene (∼4,107 bp) and a partial region (329 bp) to better evaluate the genomic identity obtained. The interspecies variation interval found here (4.9% to 26.7%) was then proposed as a useful sequence-based classification scheme for the identification of unknown non-Lp isolates. The results suggest that using both the mip and rpoB genes makes it possible to correctly discriminate between several species, allowing possible new species to be identified, as confirmed by preliminary whole-genome sequencing analyses performed on our isolates. Therefore, starting from a valid and reliable identification approach, the simultaneous use of mip and rpoB associated with other genes, as it occurs with the sequence-based typing (SBT) scheme developed for Legionella pneumophila, could support the development of multilocus sequence typing to improve the knowledge and discovery of Legionella species subtypes. IMPORTANCELegionella spp. are a widely spread bacteria that cause a fatal form of pneumonia. While traditional laboratory techniques have provided valuable systems for Legionella pneumophila identification, the amplification of the mip gene has been recognized as the only useful tool for Legionella non-pneumophila species identification both in clinical and environmental samples. Several studies focused on the mip gene classification scheme showed its limitations and the need to improve the classification scheme, including other genes. Our study provides significant advantages on Legionella identification, providing a reproducible new rpoB gene classification scheme that seems to be more accurate than mip gene sequencing, bringing out greater genetic variation on Legionella species. In addition, the combined use of both the mip and rpoB genes allowed us to identify presumed new Legionella species, improving epidemiological investigations and acquiring new understanding on Legionella fields.
Collapse
Affiliation(s)
- Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Silvano Salaris
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marta Mazzotta
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giulia Fregni Serpini
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy
| | - Laura Manni
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy
| | - Antonella Grottola
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Budowa i znaczenie II systemu sekrecji białek w ekologii i patogenezie Legionella pneumophila. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pałeczki Legionella pneumophila pasożytują w komórkach odległych filogenetycznie gospodarzy, w środowisku wodnym w pierwotniakach, a w organizmie człowieka w makrofagach alweolarnych. Zdolność tych bakterii do wewnątrzkomórkowego namnażania się w komórkach fagocytujących, wyspecjalizowanych do niszczenia mikroorganizmów, ma podstawowe znaczenie dla rozwoju nietypowego zapalenia płuc zwanego chorobą legionistów. Umiejscowione na kilku różnych loci chromosomu bakteryjnego geny II systemu sekrecji L. pneumophila kodują co najmniej 25 białek, w tym enzymy o aktywności lipolitycznej, proteolitycznej, rybonukleazy oraz białka unikalne bakterii Legionella. W środowisku naturalnym T2SS L. pneumophila odgrywa decydującą rolę w ekologii tych drobnoustrojów determinując ich zdolność do przeżycia zarówno w postaci planktonicznej, jak i w strukturach biofilmu w słodkowodnych zbiornikach o niskiej temperaturze. Białka T2SS umożliwiają L. pneumophila zakażenie różnych gatunków pierwotniaków, a substraty tego systemu określają zakres pierwotniaczego gospodarza. Namnażanie się bakterii w różnorodnych pierwotniakach przyczynia się do ich rozsiewania oraz transmisji do antropogenicznych źródeł. Białka wydzielane za pomocą II systemu sekrecji determinują również zdolność L. pneumophila do zakażania mysich makrofagów alweolarnych i szpiku kostnego, ludzkich makrofagów linii U937 i THP-1 oraz komórek nabłonkowych pęcherzyków płucnych. Enzymy wydzielane za pomocą tego systemu, takie jak: proteazy, aminopeptydazy czy fosfolipazy umożliwiają pozyskanie substancji pokarmowych oraz powodują destrukcję tkanki płucnej myszy. W organizmie człowieka białka T2SS przyczyniają się do osłabienia wrodzonej odpowiedzi immunologicznej na zakażenie L. pneumophila przez hamowanie indukcji prozapalnych cytokin (IL-6, TNF-α, IL-1 oraz IL-8).
Collapse
|
21
|
Activity of CcpA-Regulated GH18 Family Glycosyl Hydrolases That Contributes to Nutrient Acquisition and Fitness in Enterococcus faecalis. Infect Immun 2021; 89:e0034321. [PMID: 34424752 DOI: 10.1128/iai.00343-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of Enterococcus faecalis to colonize host anatomical sites is dependent on its adaptive response to host conditions. Three glycosyl hydrolase gene clusters, each belonging to glycosyl hydrolase family 18 (GH18) (ef0114, ef0361, and ef2863), in E. faecalis were previously found to be upregulated under glucose-limiting conditions. The GH18 catalytic domain is present in proteins that are classified as either chitinases or β-1,4 endo-β-N-acetylglucosaminidases (ENGases) based on their β-1,4 endo-N-acetyl-β-d-glucosaminidase activity, and ENGase activity is commonly associated with cleaving N-linked glycoprotein, an abundant glycan structure on host epithelial surfaces. Here, we show that all three hydrolases are negatively regulated by the transcriptional regulator carbon catabolite protein A (CcpA). Additionally, we demonstrate that a constitutively active CcpA variant represses the expression of CcpA-regulated genes irrespective of glucose availability. Previous studies showed that the GH18 catalytic domains of EndoE (EF0114) and EfEndo18A (EF2863) were capable of deglycosylating RNase B, a model high-mannose-type glycoprotein. However, it remained uncertain which glycosidase is primarily responsible for the deglycosylation of high-mannose-type glycoproteins. In this study, we show by mutation analysis as well as a dose-dependent analysis of recombinant protein expression that EfEndo18A is primarily responsible for deglycosylating high-mannose glycoproteins and that the glycans removed by EfEndo18A support growth under nutrient-limiting conditions in vitro. In contrast, IgG is representative of a complex-type glycoprotein, and we demonstrate that the GH18 domain of EndoE is primarily responsible for the removal of this glycan decoration. Finally, our data highlight the combined contribution of glycosidases to the virulence of E. faecalis in vivo.
Collapse
|
22
|
Metabolism of Poly-β1,4- N-Acetylglucosamine Substrates and Importation of N-Acetylglucosamine and Glucosamine by Enterococcus faecalis. J Bacteriol 2021; 203:e0037121. [PMID: 34424034 DOI: 10.1128/jb.00371-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Enterococcus faecalis to use a variety of carbon sources enables colonization at various anatomic sites within a mammalian host. N-Acetylglucosamine (GlcNAc) is one of the most abundant natural sugars and provides bacteria with a source of carbon and nitrogen when metabolized. N-Acetylglucosamine is also a component of bacterial peptidoglycan, further highlighting the significance of N-acetylglucosamine utilization. In this study, we show that CcpA-regulated enzymes are required for growth on the poly-β1,4-linked GlcNAc substrate, chitopentaose (β1,4-linked GlcNAc5). We also show that EF0114 (EndoE) is required for growth on chitobiose (β1,4-linked GlcNAc2) and that the GH20 domain of EndoE is required for the conversion of GlcNAc2 to N-acetylglucosamine. GlcNAc is transported into the cell via two separate phosphotransferase system (PTS) complexes, either the PTS IICBA encoded by ef1516 (nagE) or the Mpt glucose/mannose permease complex (MptBACD). The Mpt PTS is also the primary glucosamine transporter. In order for N-acetylglucosamine to be utilized as a carbon source, phosphorylated N-acetylglucosamine (GlcNAc-6-P) must be deacetylated, and here, we show that this activity is mediated by EF1317 (an N-acetylglucosamine-6-phosphate deacetylase; NagA homolog), as a deletion of ef1317 is unable to grow on GlcNAc as the carbon source. Deamination of glucosamine to fructose-6-phosphate is required for entry into glycolysis, and we show that growth on glucosamine is dependent on EF0466 (a glucosamine-6-phosphate deaminase; NagB homolog). Collectively, our data highlight the chitinolytic machinery required for breaking down exogenous chitinous substrates, as well as the uptake and cytosolic enzymes needed for metabolizing N-acetylglucosamine. IMPORTANCE Enterococcus faecalis causes life-threatening health care-associated infections in part due to its intrinsic and acquired antibiotic resistance, its ability to form biofilms, and its nutrient versatility. Alternative nutrient acquisition systems are key factors that contribute to enterococcal colonization at biologically unique host anatomic sites. Although E. faecalis can metabolize an array of carbon sources, little is known of how this bacterium acquires these secondary nutrient sources in mammalian hosts. Our research identifies the glycosidase machinery required for degrading exogenous chitinous substrates into N-acetylglucosamine monomers for transport and metabolism of one of the most abundant naturally occurring sugars, N-acetylglucosamine. Disrupting the function of this N-acetylglucosamine acquisition pathway may lead to new treatments against multidrug-resistant enterococcal infections.
Collapse
|
23
|
Jung AL, Schmeck B, Wiegand M, Bedenbender K, Benedikter BJ. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev 2021; 176:113811. [PMID: 34022269 DOI: 10.1016/j.addr.2021.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.
Collapse
|
24
|
Human macrophages utilize a wide range of pathogen recognition receptors to recognize Legionella pneumophila, including Toll-Like Receptor 4 engaging Legionella lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. PLoS Pathog 2021; 17:e1009781. [PMID: 34280250 PMCID: PMC8321404 DOI: 10.1371/journal.ppat.1009781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/29/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO's in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.
Collapse
|
25
|
Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence 2021; 12:1122-1144. [PMID: 33843434 PMCID: PMC8043192 DOI: 10.1080/21505594.2021.1903199] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteria of the genus Legionella are natural pathogens of amoebae that can cause a severe pneumonia in humans called Legionnaires’ Disease. Human disease results from inhalation of Legionella-contaminated aerosols and subsequent bacterial replication within alveolar macrophages. Legionella pathogenicity in humans has resulted from extensive co-evolution with diverse genera of amoebae. To replicate intracellularly, Legionella generates a replication-permissive compartment called the Legionella-containing vacuole (LCV) through the concerted action of hundreds of Dot/Icm-translocated effector proteins. In this review, we present a collective overview of Legionella pathogenicity including infection mechanisms, secretion systems, and translocated effector function. We also discuss innate and adaptive immune responses to L. pneumophila, the implications of Legionella genome diversity and future avenues for the field.
Collapse
Affiliation(s)
- Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
26
|
Grigoryeva LS, Rehman S, White RC, Garnett JA, Cianciotto NP. Assay for Assessing Mucin Binding to Bacteria and Bacterial Proteins. Bio Protoc 2021; 11:e3933. [PMID: 33796607 DOI: 10.21769/bioprotoc.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/02/2022] Open
Abstract
Legionella pneumophila, a Gram-negative bacterium and the causative agent of Legionnaires' disease, exports over 300 effector proteins/virulence factors, through its type II (T2SS) and type IV secretion systems (T4SS). One such T2SS virulence factor, ChiA, not only functions as a chitinase, but also as a novel mucinase, which we believe aids ChiA-dependent virulence during lung infection. Previously published protocols manipulated wild-type L. pneumophila strain 130b and its chiA mutant to express plasmid-encoded GFP. Similarly, earlier studies demonstrated that wheat germ agglutinin (WGA) can be fluorescently labeled and can bind to mucins. In the current protocol, GFP-labeled bacteria were incubated with type II and type III porcine stomach mucins, which were then labeled with TexasRed-tagged WGA and analyzed by flow-cytometry to measure the binding of bacteria to mucins in the presence or absence of endogenous ChiA. In addition, we analysed binding of purified ChiA to type II and type III porcine stomach mucins. This protocol couples both bacterial and direct protein binding to mucins and is the first to measure Gram-negative bacterial binding to mucins using WGA and flow-cytometric analysis. Graphic abstract: Strategy for assessing bacterial and protein binding to mucins.
Collapse
Affiliation(s)
- Lubov S Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Dental institute, King's College London, London, UK
| | - Richard C White
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental institute, King's College London, London, UK
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Abstract
Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model of sepsis, resulting from the unchecked accumulation of virulence factors. Here, we dissect the individual roles of these proteases by constructing and assessing the pathogenic potential of a combinatorial protease mutant library. When strains were constructed bearing increasing numbers of secreted proteases, we observed a variable impact on infectious capacity, where some exhibited hypervirulence, while others phenocopied the wild-type. The common thread for hypervirulent strains was that each lacked both aureolysin and staphopain A. Upon assessment, we found that the combined loss of these two enzymes alone was necessary and sufficient to engender hypervirulence. Using proteomics, we identified a number of important secreted factors, including SPIN, LukA, Sbi, SEK, and PSMα4, as well as an uncharacterized chitinase-related protein (SAUSA300_0964), to be overrepresented in both the aur scpA and the protease-null mutants. When assessing the virulence of aur scpA SAUSA300_0964 and aur scpA lukA mutants, we found that hypervirulence was completely eliminated, whereas aur scpA spn and aur scpA sek strains elicited aggressive infections akin to the protease double mutant. Collectively, our findings shed light on the influence of extracellular proteases in controlling the infectious process and identifies SAUSA300_0964 as an important new component of the S. aureus virulence factor arsenal.IMPORTANCE A key feature of the pathogenic success of S. aureus is the myriad virulence factors encoded within its genome. These are subject to multifactorial control, ensuring their timely production only within an intended infectious niche. A key node in this network of control is the secreted proteases of S. aureus, who specifically and selectively modulate virulence factor stability. In our previous work we demonstrated that deletion of all 10 secreted proteases results in hypervirulence, since virulence factors exist unchecked, leading to overly aggressive infections. Here, using a combinatorial collection of protease mutants, we reveal that deletion of aureolysin and staphopain A is necessary and sufficient to elicit hypervirulence. Using proteomic techniques, we identify the collection of virulence factors that accumulate in hypervirulent protease mutants, and demonstrate that a well-known toxin (LukA) and an entirely novel secreted element (SAUSA300_0964) are the leading contributors to deadly infections observed in protease-lacking strains.
Collapse
|
28
|
Tully BG, Huntley JF. A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors. Pathogens 2020; 9:pathogens9121037. [PMID: 33321814 PMCID: PMC7764610 DOI: 10.3390/pathogens9121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly 100 years after the first report of tick-borne tularemia, questions remain about the tick vector(s) that pose the greatest risk for transmitting Francisella tularensis (Ft), the causative agent of tularemia. Additionally, few studies have identified genes/proteins required for Ft to infect, persist, and replicate in ticks. To answer questions about vector competence and Ft transmission by ticks, we infected Dermacentor variabilis (Dv),Amblyomma americanum (Aa), and Haemaphysalis longicornis (Hl; invasive species from Asia) ticks with Ft, finding that although Aa ticks initially become infected with 1 order of magnitude higher Ft, Ft replicated more robustly in Dv ticks, and did not persist in Hl ticks. In transmission studies, both Dv and Aa ticks efficiently transmitted Ft to naïve mice, causing disease in 57% and 46% of mice, respectively. Of four putative Ft chitinases, FTL1793 is the most conserved among Francisella sp. We generated a ΔFTL1793 mutant and found that ΔFTL1793 was deficient for infection, persistence, and replication in ticks. Recombinant FTL1793 exhibited chitinase activity in vitro, suggesting that FTL1793 may provide an alternative energy source for Ft in ticks. Taken together, Dv ticks appear to pose a greater risk for harboring and transmitting tularemia and FTL1793 plays a major role in promoting tick infections by Ft.
Collapse
|
29
|
Palmer T, Finney AJ, Saha CK, Atkinson GC, Sargent F. A holin/peptidoglycan hydrolase-dependent protein secretion system. Mol Microbiol 2020; 115:345-355. [PMID: 32885520 DOI: 10.1111/mmi.14599] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
Gram-negative bacteria have evolved numerous pathways to secrete proteins across their complex cell envelopes. Here, we describe a protein secretion system that uses a holin membrane protein in tandem with a cell wall-editing enzyme to mediate the secretion of substrate proteins from the periplasm to the cell exterior. The identity of the cell wall-editing enzymes involved was found to vary across biological systems. For instance, the chitinase secretion pathway of Serratia marcescens uses an endopeptidase to facilitate secretion, whereas the secretion of Typhoid toxin in Salmonella enterica serovar Typhi relies on a muramidase. Various families of holins are also predicted to be involved. Genomic analysis indicates that this pathway is conserved and implicated in the secretion of hydrolytic enzymes and toxins for a range of bacteria. The pairing of holins from different families with various types of peptidoglycan hydrolases suggests that this secretion pathway evolved multiple times. We suggest that the complementary bodies of evidence presented is sufficient to propose that the pathway be named the Type 10 Secretion System (TXSS).
Collapse
Affiliation(s)
- Tracy Palmer
- Microbes in Health & Disease, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Alexander J Finney
- Plant & Microbial Biology, School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle Upon Tyne, UK
| | - Chayan Kumar Saha
- Department of Molecular Biology and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Gemma C Atkinson
- Department of Molecular Biology and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Frank Sargent
- Plant & Microbial Biology, School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
30
|
Churklam W, Aunpad R. Enzymatic characterization and structure-function relationship of two chitinases, LmChiA and LmChiB, from Listeria monocytogenes. Heliyon 2020; 6:e04252. [PMID: 32642582 PMCID: PMC7334433 DOI: 10.1016/j.heliyon.2020.e04252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
|
31
|
Portlock TJ, Tyson JY, Dantu SC, Rehman S, White RC, McIntire IE, Sewell L, Richardson K, Shaw R, Pandini A, Cianciotto NP, Garnett JA. Structure, Dynamics and Cellular Insight Into Novel Substrates of the Legionella pneumophila Type II Secretion System. Front Mol Biosci 2020; 7:112. [PMID: 32656228 PMCID: PMC7325957 DOI: 10.3389/fmolb.2020.00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium that is able to replicate within a broad range of aquatic protozoan hosts. L. pneumophila is also an opportunistic human pathogen that can infect macrophages and epithelia in the lung and lead to Legionnaires’ disease. The type II secretion system is a key virulence factor of L. pneumophila and is used to promote bacterial growth at low temperatures, regulate biofilm formation, modulate host responses to infection, facilitate bacterial penetration of mucin gels and is necessary for intracellular growth during the initial stages of infection. The L. pneumophila type II secretion system exports at least 25 substrates out of the bacterium and several of these, including NttA to NttG, contain unique amino acid sequences that are generally not observed outside of the Legionella genus. NttA, NttC, and NttD are required for infection of several amoebal species but it is unclear what influence other novel substrates have within their host. In this study, we show that NttE is required for optimal infection of Acanthamoeba castellanii and Vermamoeba vermiformis amoeba and is essential for the typical colony morphology of L. pneumophila. In addition, we report the atomic structures of NttA, NttC, and NttE and through a combined biophysical and biochemical hypothesis driven approach we propose novel functions for these substrates during infection. This work lays the foundation for future studies into the mechanistic understanding of novel type II substrate functions and how these relate to L. pneumophila ecology and disease.
Collapse
Affiliation(s)
- Theo J Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jessica Y Tyson
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sarath C Dantu
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Richard C White
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ian E McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lee Sewell
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Katherine Richardson
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rosie Shaw
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Alessandro Pandini
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
32
|
Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, Portlock TJ, Dorgan B, Zanjani ZS, Fornili A, Cianciotto NP, Garnett JA. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog 2020; 16:e1008342. [PMID: 32365117 PMCID: PMC7224574 DOI: 10.1371/journal.ppat.1008342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an often-fatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Katherine H. Richardson
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paula Corsini
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard C. White
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rosie Shaw
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Theo J. Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Benjamin Dorgan
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Zeinab S. Zanjani
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arianna Fornili
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
33
|
The Evolution of Protein Secretion Systems by Co-option and Tinkering of Cellular Machineries. Trends Microbiol 2020; 28:372-386. [DOI: 10.1016/j.tim.2020.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
34
|
Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host Microbe 2020; 27:571-584.e7. [PMID: 32220647 DOI: 10.1016/j.chom.2020.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila has co-evolved with amoebae, their natural hosts. Upon transmission to humans, the bacteria proliferate within alveolar macrophages causing pneumonia. Here, we show L. pneumophila injects the effector LamA, an amylase, into the cytosol of human macrophage (hMDMs) and amoebae to rapidly degrade glycogen to generate cytosolic hyper-glucose. In response, hMDMs shift their metabolism to aerobic glycolysis, which directly triggers an M1-like pro-inflammatory differentiation and nutritional innate immunity through enhanced tryptophan degradation. This leads to a modest restriction of bacterial proliferation in hMDMs. In contrast, LamA-mediated glycogenolysis in amoebae deprives the natural host from the main building blocks for synthesis of the cellulose-rich cyst wall, leading to subversion of amoeba encystation. This is non-permissive for bacterial proliferation. Therefore, LamA of L. pneumophila is an amoebae host-adapted effector that subverts encystation of the amoebae natural host, and the paradoxical hMDMs' pro-inflammatory response is likely an evolutionary accident.
Collapse
|
35
|
Different Cell Wall-Degradation Ability Leads to Tissue-Specificity between Xanthomonas oryzae pv . oryzae and Xanthomonas oryzae pv . oryzicola. Pathogens 2020; 9:pathogens9030187. [PMID: 32143474 PMCID: PMC7157550 DOI: 10.3390/pathogens9030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) lead to the devastating rice bacterial diseases and have a very close genetic relationship. There are tissue-specificity differences between Xoo and Xoc, i.e., Xoo only proliferating in xylem vessels and Xoc spreading in intercellular space of mesophyll cell. But there is little known about the determinants of tissue-specificity between Xoo and Xoc. Here we show that Xoc can spread in the intercellular spaces of mesophyll cells to form streak lesions. But Xoo is restricted to growth in the intercellular spaces of mesophyll cells on the inoculation sites. In vivo, Xoc largely breaks the surface and inner structures of cell wall in mesophyll cells in comparison with Xoo. In vitro, Xoc strongly damages the cellulose filter paper in comparison with Xoo. These results suggest that the stronger cell wall-degradation ability of Xoc than that of Xoo may be directly determining the tissue-specificity.
Collapse
|
36
|
Mondino S, Schmidt S, Rolando M, Escoll P, Gomez-Valero L, Buchrieser C. Legionnaires’ Disease: State of the Art Knowledge of Pathogenesis Mechanisms of Legionella. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:439-466. [DOI: 10.1146/annurev-pathmechdis-012419-032742] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Legionella species are environmental gram-negative bacteria able to cause a severe form of pneumonia in humans known as Legionnaires’ disease. Since the identification of Legionella pneumophila in 1977, four decades of research on Legionella biology and Legionnaires’ disease have brought important insights into the biology of the bacteria and the molecular mechanisms that these intracellular pathogens use to cause disease in humans. Nowadays, Legionella species constitute a remarkable model of bacterial adaptation, with a genus genome shaped by their close coevolution with amoebae and an ability to exploit many hosts and signaling pathways through the secretion of a myriad of effector proteins, many of which have a eukaryotic origin. This review aims to discuss current knowledge of Legionella infection mechanisms and future research directions to be taken that might answer the many remaining open questions. This research will without a doubt be a terrific scientific journey worth taking.
Collapse
Affiliation(s)
- Sonia Mondino
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Silke Schmidt
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
- Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Monica Rolando
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| |
Collapse
|
37
|
Chen X, Liu S, Jiang S, Zhang X, Zhang N, Ma J, Ge H. Crystal structure of a hypothetical T2SS effector Lpg0189 from Legionella pneumophila reveals a novel protein fold. Biochem Biophys Res Commun 2019; 521:799-805. [PMID: 31706575 DOI: 10.1016/j.bbrc.2019.10.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
Lpg0189 is a type II secretion system-dependent extracellular protein with unknown function from Legionella pneumophila. Herein, we determined the crystal structure of Lpg0189 at 1.98 Å resolution by using single-wavelength anomalous diffraction (SAD). Lpg0189 folds into a novel chair-shaped architecture, with two sheets roughly perpendicular to each other. Bioinformatics analysis suggests Lpg0189 and its homologues are unique to Legionellales and evolved divergently. The interlinking structural and bioinformatics studies provide a better understanding of this hypothetical protein.
Collapse
Affiliation(s)
- Xiaofang Chen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China; School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Shan Liu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Sha Jiang
- Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Xuecheng Zhang
- Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Nannan Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China; Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| | - Jinming Ma
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China; Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| | - Honghua Ge
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China; Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
38
|
Type II Secretion Promotes Bacterial Growth within the Legionella-Containing Vacuole in Infected Amoebae. Infect Immun 2019; 87:IAI.00374-19. [PMID: 31405960 DOI: 10.1128/iai.00374-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
It was previously determined that the type II secretion system (T2SS) promotes the ability of Legionella pneumophila to grow in coculture with amoebae. Here, we discerned the stage of intracellular infection that is potentiated by comparing the wild-type and T2SS mutant legionellae for their capacity to parasitize Acanthamoeba castellanii Whereas the mutant behaved normally for entry into the host cells and subsequent evasion of degradative lysosomes, it was impaired in the ability to replicate, with that defect being first evident at approximately 9 h postentry. The replication defect was initially documented in three ways: by determining the numbers of CFU recovered from the lysates of the infected monolayers, by monitoring the levels of fluorescence associated with amoebal monolayers infected with green fluorescent protein (GFP)-expressing bacteria, and by utilizing flow cytometry to quantitate the amounts of GFP-expressing bacteria in individual amoebae. By employing confocal microscopy and newer imaging techniques, we further determined the progression in volume and shape of the bacterial vacuoles and found that the T2SS mutant grows at a decreased rate and does not attain maximally sized phagosomes. Overall, the entire infection cycle (i.e., entry to egress) was considerably slower for the T2SS mutant than it was for the wild-type strain, and the mutant's defect was maintained over multiple rounds of infection. Thus, the T2SS is absolutely required for L. pneumophila to grow to larger numbers in its intravacuolar niche within amoebae. Combining these results with those of our recent analysis of macrophage infection, T2SS is clearly a major component of L. pneumophila intracellular infection.
Collapse
|
39
|
Khan F, Jeong MC, Park SK, Kim SK, Kim YM. Contribution of chitooligosaccharides to biofilm formation, antibiotics resistance and disinfectants tolerance of Listeria monocytogenes. Microb Pathog 2019; 136:103673. [PMID: 31437576 DOI: 10.1016/j.micpath.2019.103673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/31/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen present in various environmental reservoirs. It exhibits resistance and tolerance to antibiotics and sanitizing agents used in several food processing industries. It has been reported that L. monocytogenes chitinase can catalyze hydrolysis of chitin polymeric carbohydrate present in the environment and act as a virulence factor that support its survival in mammalian host cells. By taking advantage of chitinase, L. monocytogenes has both saprophytic and pathogenic lifestyles in the soil and the living host, respectively. The objective of the present study was to determine the involvement of chitin degradation products such as chitooligosaccharides (COS) in biofilm formation of L. monocytogenes. Results showed that different concentrations of COS with various molecular weight enhanced biofilm formation of L. monocytogenes. Such enhancement in biofilm formation contributed to the development of antibiotics resistance and disinfectants tolerance of cells present in the biofilm. The present article also described diverse roles of chitin, chitinase, and degradation of chitin and chitin-like substrates in saprophytic and pathogenic lifestyles of L. monocytogenes. This study offers a new direction for further exploration of the mechanisms of pathogenesis caused by L. monocytogenes.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea
| | - Min-Chul Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Seul-Ki Park
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
40
|
Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol 2019; 431:4321-4344. [PMID: 31351897 DOI: 10.1016/j.jmb.2019.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome-lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.
Collapse
|
41
|
Minniti G, Rød Sandve S, Padra JT, Heldal Hagen L, Lindén S, Pope PB, Ø Arntzen M, Vaaje-Kolstad G. The Farmed Atlantic Salmon ( Salmo salar) Skin-Mucus Proteome and Its Nutrient Potential for the Resident Bacterial Community. Genes (Basel) 2019; 10:genes10070515. [PMID: 31284681 PMCID: PMC6678340 DOI: 10.3390/genes10070515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/29/2022] Open
Abstract
Norway is the largest producer and exporter of farmed Atlantic salmon (Salmo salar) worldwide. Skin disorders correlated with bacterial infections represent an important challenge for fish farmers due to the economic losses caused. Little is known about this topic, thus studying the skin-mucus of Salmo salar and its bacterial community depict a step forward in understanding fish welfare in aquaculture. In this study, we used label free quantitative mass spectrometry to investigate the skin-mucus proteins associated with both Atlantic salmon and bacteria. In particular, the microbial temporal proteome dynamics during nine days of mucus incubation with sterilized seawater was investigated, in order to evaluate their capacity to utilize mucus components for growth in this environment. At the start of the incubation period, the largest proportion of proteins (~99%) belonged to the salmon and many of these proteins were assigned to protecting functions, confirming the defensive role of mucus. On the contrary, after nine days of incubation, most of the proteins detected were assigned to bacteria, mainly to the genera Vibrio and Pseudoalteromonas. Most of the predicted secreted proteins were affiliated with transport and metabolic processes. In particular, a large abundance and variety of bacterial proteases were observed, highlighting the capacity of bacteria to degrade the skin-mucus proteins of Atlantic salmon.
Collapse
Affiliation(s)
- Giusi Minniti
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Simen Rød Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - János Tamás Padra
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Sara Lindén
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway.
| |
Collapse
|
42
|
Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol 2019; 17:e3000390. [PMID: 31323028 PMCID: PMC6668835 DOI: 10.1371/journal.pbio.3000390] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/31/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Processes of molecular innovation require tinkering and shifting in the function of existing genes. How this occurs in terms of molecular evolution at long evolutionary scales remains poorly understood. Here, we analyse the natural history of a vast group of membrane-associated molecular systems in Bacteria and Archaea-the type IV filament (TFF) superfamily-that diversified in systems involved in flagellar or twitching motility, adhesion, protein secretion, and DNA uptake. The phylogeny of the thousands of detected systems suggests they may have been present in the last universal common ancestor. From there, two lineages-a bacterial and an archaeal-diversified by multiple gene duplications, gene fissions and deletions, and accretion of novel components. Surprisingly, we find that the 'tight adherence' (Tad) systems originated from the interkingdom transfer from Archaea to Bacteria of a system resembling the 'EppA-dependent' (Epd) pilus and were associated with the acquisition of a secretin. The phylogeny and content of ancestral systems suggest that initial bacterial pili were engaged in cell motility and/or DNA uptake. In contrast, specialised protein secretion systems arose several times independently and much later in natural history. The functional diversification of the TFF superfamily was accompanied by genetic rearrangements with implications for genetic regulation and horizontal gene transfer: systems encoded in fewer loci were more frequently exchanged between taxa. This may have contributed to their rapid evolution and spread across Bacteria and Archaea. Hence, the evolutionary history of the superfamily reveals an impressive catalogue of molecular evolution mechanisms that resulted in remarkable functional innovation and specialisation from a relatively small set of components.
Collapse
Affiliation(s)
- Rémi Denise
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
43
|
Gomez-Valero L, Buchrieser C. Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella. Microbes Infect 2019; 21:230-236. [PMID: 31252216 DOI: 10.1016/j.micinf.2019.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
Abstract
Legionella pneumophila is an intracellular pathogen that causes a severe pneumonia called Legionnaires' disease that is often fatal when not promptly diagnosed and treated. Legionella parasitize aquatic protozoa with which it co-evolved over an evolutionary long time. The close relationship between hosts and pathogens, their co-evolution, led to molecular interactions such as the exchange of genetic material through horizontal gene transfer (HGT). Genome sequencing of L. pneumophila and of the entire genus Legionella that comprises over 60 species revealed that Legionellae have co-opted genes and thus cellular functions from their eukaryotic hosts to a surprisingly high extent. Acquisition and loss of these eukaryotic-like genes and domains is an on-going process underlining the highly dynamic nature of the Legionella genomes. Although the large amount and diversity of HGT in Legionella seems to be unique in the prokaryotic world the analyses of more and more genomes from environmental organisms and symbionts of amoeba revealed that such genetic exchanges occur among all amoeba associated bacteria and also among the different microorganisms that infect amoeba. This dynamic reshuffling and gene-acquisition has led to the emergence of Legionella as human pathogen and may lead to the emergence of new human pathogens from the environment.
Collapse
Affiliation(s)
- Laure Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724, Paris, France.
| |
Collapse
|
44
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Gomez-Valero L, Buchrieser C. Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella. Genes Immun 2019; 20:394-402. [PMID: 31053752 DOI: 10.1038/s41435-019-0074-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Legionella pneumophila is an intracellular pathogen that causes a severe pneumonia called Legionnaires' disease that is often fatal when not promptly diagnosed and treated. However, L. pneumophila is mainly an environmental pathogen of protozoa. This bacterium parasitizes free-living amoeba and other aquatic protozoa with which it co-evolved over an evolutionary long time. Due to the close relationship between hosts and pathogens, their co-evolution leads to molecular interactions such as the exchange of genetic material through horizontal gene transfer (HGT). Those genes that confer an advantage to the bacteria were fixed in their genomes and help these pathogens to subvert host functions to their advantage. Genome sequencing of L. pneumophila and recently of the entire genus Legionella that comprises over 60 species revealed that Legionellae have co-opted genes and thus cellular functions from their eukaryotic hosts to a surprisingly high extent never observed before for an prokaryotic organism. Acquisition and loss of these eukaryotic-like genes and eukaryotic domains is an ongoing process underlining the highly dynamic nature of the Legionella genomes. Although the large amount and diversity of HGT that occurred between Legionella and their protozoan hosts seems to be unique in the prokaryotic world, the analyses of more and more genomes from environmental organisms and symbionts of amoeba revealed that such genetic exchanges occur among all amoeba-associated bacteria and also among the different microorganisms that infect amoeba such as viruses. This dynamic reshuffling and gene-acquisition has led to the emergence of major human pathogens such as Legionella and may lead to the emergence of new human pathogens from the environment.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724, Paris, France.
| |
Collapse
|
46
|
Zhang H, Yoshizawa S, Sun Y, Huang Y, Chu X, González JM, Pinhassi J, Luo H. Repeated evolutionary transitions of flavobacteria from marine to non-marine habitats. Environ Microbiol 2019; 21:648-666. [PMID: 30565818 DOI: 10.1111/1462-2920.14509] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 01/26/2023]
Abstract
The taxonomy of marine and non-marine organisms rarely overlap, but the mechanisms underlying this distinction are often unknown. Here, we predicted three major ocean-to-land transitions in the evolutionary history of Flavobacteriaceae, a family known for polysaccharide and peptide degradation. These unidirectional transitions were associated with repeated losses of marine signature genes and repeated gains of non-marine adaptive genes. This included various Na+ -dependent transporters, osmolyte transporters and glycoside hydrolases (GH) for sulfated polysaccharide utilization in marine descendants, and in non-marine descendants genes for utilizing the land plant material pectin and genes facilitating terrestrial host interactions. The K+ scavenging ATPase was repeatedly gained whereas the corresponding low-affinity transporter repeatedly lost upon transitions, reflecting K+ ions are less available to non-marine bacteria. Strikingly, the central metabolism Na+ -translocating NADH: quinone dehydrogenase gene was repeatedly gained in marine descendants, whereas the H+ -translocating counterpart was repeatedly gained in non-marine lineages. Furthermore, GH genes were depleted in isolates colonizing animal hosts but abundant in bacteria inhabiting other non-marine niches; thus relative abundances of GH versus peptidase genes among Flavobacteriaceae lineages were inconsistent with the marine versus non-marine dichotomy. We suggest that phylogenomic analyses can cast novel light on mechanisms explaining the distribution and ecology of key microbiome components.
Collapse
Affiliation(s)
- Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, ES-38200, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
47
|
Peptidyl-Prolyl- cis/ trans-Isomerases Mip and PpiB of Legionella pneumophila Contribute to Surface Translocation, Growth at Suboptimal Temperature, and Infection. Infect Immun 2018; 87:IAI.00939-17. [PMID: 30323027 DOI: 10.1128/iai.00939-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
The gammaproteobacterium Legionella pneumophila is the causative agent of Legionnaires' disease, an atypical pneumonia that manifests itself with severe lung damage. L. pneumophila, a common inhabitant of freshwater environments, replicates in free-living amoebae and persists in biofilms in natural and man-made water systems. Its environmental versatility is reflected in its ability to survive and grow within a broad temperature range as well as its capability to colonize and infect a wide range of hosts, including protozoa and humans. Peptidyl-prolyl-cis/trans-isomerases (PPIases) are multifunctional proteins that are mainly involved in protein folding and secretion in bacteria. In L. pneumophila the surface-associated PPIase Mip was shown to facilitate the establishment of the intracellular infection cycle in its early stages. The cytoplasmic PpiB was shown to promote cold tolerance. Here, we set out to analyze the interrelationship of these two relevant PPIases in the context of environmental fitness and infection. We demonstrate that the PPIases Mip and PpiB are important for surfactant-dependent sliding motility and adaptation to suboptimal temperatures, features that contribute to the environmental fitness of L. pneumophila Furthermore, they contribute to infection of the natural host Acanthamoeba castellanii as well as human macrophages and human explanted lung tissue. These effects were additive in the case of sliding motility or synergistic in the case of temperature tolerance and infection, as assessed by the behavior of the double mutant. Accordingly, we propose that Mip and PpiB are virulence modulators of L. pneumophila with compensatory action and pleiotropic effects.
Collapse
|
48
|
Best AM, Abu Kwaik Y. Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila. Cell Microbiol 2018; 21:e12971. [PMID: 30370624 DOI: 10.1111/cmi.12971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped with more sophisticated innate defence mechanisms than are protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defence processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in protist biology, that are modulated by L. pneumophila, including TLR2 signalling, NF-κB, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects haemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although coevolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of coevolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
Collapse
Affiliation(s)
- Ashley M Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
49
|
Gong X, Zhao X, Zhang W, Wang J, Chen X, Hameed MF, Zhang N, Ge H. Structural characterization of the hypothetical protein Lpg2622, a new member of the C1 family peptidases from Legionella pneumophila. FEBS Lett 2018; 592:2798-2810. [PMID: 30071124 DOI: 10.1002/1873-3468.13210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022]
Abstract
The Legionella pneumophila type II secretion system can promote bacterial growth under a wide variety of conditions and mediates the secretion of more than 25 proteins, including the uncharacterized effector Lpg2622. Here, we determined the crystal structures of apo-Lpg2622 and Lpg2622 in complex with the cysteine protease inhibitor E64. Structural analysis suggests that Lpg2622 belongs to the C1 family peptidases. Interestingly, unlike the other structurally resolved papain-like cysteine proteases, the propeptide of Lpg2622 forms a novel super-secondary structural fold (hairpin-turn-helix) and can be categorized into a new group. In addition, the N-terminal β-sheet of the Lpg2622 propeptide plays a regulatory role on enzymatic activity. This study enhances our understanding of the classification and regulatory mechanisms of the C1 family peptidases.
Collapse
Affiliation(s)
- Xiaojian Gong
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Xiaolei Zhao
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Wei Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Jinzhao Wang
- Department of Biology, Taiyuan Normal University, China
| | - Xiaofang Chen
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Muhammad Fazal Hameed
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
50
|
Mutahir Z, Mekasha S, Loose JSM, Abbas F, Vaaje-Kolstad G, Eijsink VGH, Forsberg Z. Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus. FEBS Lett 2018; 592:2562-2571. [PMID: 29993123 DOI: 10.1002/1873-3468.13189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) contribute to enzymatic conversion of recalcitrant polysaccharides such as chitin and cellulose and may also play a role in bacterial infections. Some LPMOs are multimodular, the implications of which remain only partly understood. We have studied the properties of a tetra-modular LPMO from the food poisoning bacterium Bacillus cereus (named BcLPMO10A). We show that BcLPMO10A, comprising an LPMO domain, two fibronectin-type III (FnIII)-like domains, and a carbohydrate-binding module (CBM5), is a powerful chitin-active LPMO. While the role of the FnIII domains remains unclear, we show that enzyme functionality strongly depends on the CBM5, which, by promoting substrate binding, protects the enzyme from inactivation. BcLPMO10A enhances the activity of chitinases during the degradation of α-chitin.
Collapse
Affiliation(s)
- Zeeshan Mutahir
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jennifer S M Loose
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Faiza Abbas
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|