1
|
Ruiz Ortega M, Pogorelyy MV, Minervina AA, Thomas PG, Mora T, Walczak AM. Learning predictive signatures of HLA type from T-cell repertoires. PLoS Comput Biol 2025; 21:e1012724. [PMID: 39761303 PMCID: PMC11737854 DOI: 10.1371/journal.pcbi.1012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 01/16/2025] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
T cells recognize a wide range of pathogens using surface receptors that interact directly with peptides presented on major histocompatibility complexes (MHC) encoded by the HLA loci in humans. Understanding the association between T cell receptors (TCR) and HLA alleles is an important step towards predicting TCR-antigen specificity from sequences. Here we analyze the TCR alpha and beta repertoires of large cohorts of HLA-typed donors to systematically infer such associations, by looking for overrepresentation of TCRs in individuals with a common allele.TCRs, associated with a specific HLA allele, exhibit sequence similarities that suggest prior antigen exposure. Immune repertoire sequencing has produced large numbers of datasets, however the HLA type of the corresponding donors is rarely available. Using our TCR-HLA associations, we trained a computational model to predict the HLA type of individuals from their TCR repertoire alone. We propose an iterative procedure to refine this model by using data from large cohorts of untyped individuals, by recursively typing them using the model itself. The resulting model shows good predictive performance, even for relatively rare HLA alleles.
Collapse
Affiliation(s)
- María Ruiz Ortega
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| | - Mikhail V. Pogorelyy
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anastasia A. Minervina
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Paul G. Thomas
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| |
Collapse
|
2
|
Wolf SP, Leisegang M, Steiner M, Wallace V, Kiyotani K, Hu Y, Rosenberger L, Huang J, Schreiber K, Nakamura Y, Schietinger A, Schreiber H. CD4 + T cells with convergent TCR recombination reprogram stroma and halt tumor progression in adoptive therapy. Sci Immunol 2024; 9:eadp6529. [PMID: 39270007 PMCID: PMC11560124 DOI: 10.1126/sciimmunol.adp6529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cancers eventually kill hosts even when infiltrated by cancer-specific T cells. We examined whether cancer-specific T cell receptors of CD4+ T cells (CD4TCRs) from tumor-bearing hosts can be exploited for adoptive TCR therapy. We focused on CD4TCRs targeting an autochthonous mutant neoantigen that is only presented by stroma surrounding the MHC class II-negative cancer cells. The 11 most common tetramer-sorted CD4TCRs were tested using TCR-engineered CD4+ T cells. Three TCRs were characterized by convergent recombination for which multiple T cell clonotypes differed in their nucleotide sequences but encoded identical TCR α and β chains. These preferentially selected TCRs destroyed tumors equally well and halted progression through reprogramming of the tumor stroma. TCRs represented by single T cell clonotypes were similarly effective only if they shared CDR elements with preferentially selected TCRs in both α and β chains. Selecting candidate TCRs on the basis of these characteristics can help identify TCRs that are potentially therapeutically effective.
Collapse
Affiliation(s)
- Steven P. Wolf
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Madeline Steiner
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Veronika Wallace
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Pritzker School of Medicine, University of Chicago; Chicago, USA
| | - Leonie Rosenberger
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| | - Karin Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | - Hans Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| |
Collapse
|
3
|
Linsley PS, Nakayama M, Balmas E, Chen J, Barahmand-Pour-Whitman F, Bansal S, Bottorff T, Serti E, Speake C, Pugliese A, Cerosaletti K. Germline-like TCR-α chains shared between autoreactive T cells in blood and pancreas. Nat Commun 2024; 15:4971. [PMID: 38871688 PMCID: PMC11176301 DOI: 10.1038/s41467-024-48833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Human type 1 diabetes (T1D) is caused by autoimmune attack on the insulin-producing pancreatic beta cells by islet antigen-reactive T cells. How human islet antigen-reactive (IAR) CD4+ memory T cells from peripheral blood affect T1D progression in the pancreas is poorly understood. Here, we aim to determine if IAR T cells in blood could be detected in pancreas. We identify paired αβ (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new-onset, and established T1D donors, and measured sequence overlap with TCRs in pancreata from healthy, at risk and T1D organ donors. We report extensive TRA junction sharing between IAR T cells and pancreas-infiltrating T cells (PIT), with perfect-match or single-mismatch TRA junction amino acid sequences comprising ~29% total unique IAR TRA junctions (942/3,264). PIT-matched TRA junctions were largely public and enriched for TRAV41 usage, showing significant nucleotide sequence convergence, increased use of germline-encoded versus non-templated residues in epitope engagement, and a potential for cross-reactivity. Our findings thus link T cells with distinctive germline-like TRA chains in the peripheral blood with T cells in the pancreas.
Collapse
Affiliation(s)
- Peter S Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elisa Balmas
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Janice Chen
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Shubham Bansal
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Ty Bottorff
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alberto Pugliese
- Department of Diabetes Immunology & The Wanek Family Project for Type 1 Diabetes, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
4
|
Tsareva A, Shelyakin PV, Shagina IA, Myshkin MY, Merzlyak EM, Kriukova VV, Apt AS, Linge IA, Chudakov DM, Britanova OV. Aberrant adaptive immune response underlies genetic susceptibility to tuberculosis. Front Immunol 2024; 15:1380971. [PMID: 38799462 PMCID: PMC11116662 DOI: 10.3389/fimmu.2024.1380971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a major threat worldwide, although only a fraction of infected individuals develops tuberculosis (TB). TB susceptibility is shaped by multiple genetic factors, and we performed comparative immunological analysis of two mouse strains to uncover relevant mechanisms underlying susceptibility and resistance. C57BL/6 mice are relatively TB-resistant, whereas I/St mice are prone to develop severe TB, partly due to the MHC-II allelic variant that shapes suboptimal CD4+ T cell receptor repertoire. We investigated the repertoires of lung-infiltrating helper T cells and B cells at the progressed stage in both strains. We found that lung CD4+ T cell repertoires of infected C57BL/6 but not I/St mice contained convergent TCR clusters with functionally confirmed Mtb specificity. Transcriptomic analysis revealed a more prominent Th1 signature in C57BL/6, and expression of pro-inflammatory IL-16 in I/St lung-infiltrating helper T cells. The two strains also showed distinct Th2 signatures. Furthermore, the humoral response of I/St mice was delayed, less focused, and dominated by IgG/IgM isotypes, whereas C57BL/6 mice generated more Mtb antigen-focused IgA response. We conclude that the inability of I/St mice to produce a timely and efficient anti-Mtb adaptive immune responses arises from a suboptimal helper T cell landscape that also impacts the humoral response, leading to diffuse inflammation and severe disease.
Collapse
Affiliation(s)
- Anastasiia Tsareva
- Precision Oncology Division, Boston Gene Laboratory, Waltham, MA, United States
| | - Pavel V. Shelyakin
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Irina A. Shagina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Mikhail Yu. Myshkin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ekaterina M. Merzlyak
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Valeriia V. Kriukova
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander S. Apt
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina A. Linge
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Dmitriy M. Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Olga V. Britanova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
5
|
Nakonechnaya TO, Moltedo B, Putintseva EV, Leyn S, Bolotin DA, Britanova OV, Shugay M, Chudakov DM. Convergence, plasticity, and tissue residence of regulatory T cell response via TCR repertoire prism. eLife 2024; 12:RP89382. [PMID: 38591522 PMCID: PMC11003740 DOI: 10.7554/elife.89382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Suppressive function of regulatory T cells (Treg) is dependent on signaling of their antigen receptors triggered by cognate self, dietary, or microbial peptides presented on MHC II. However, it remains largely unknown whether distinct or shared repertoires of Treg TCRs are mobilized in response to different challenges in the same tissue or the same challenge in different tissues. Here we use a fixed TCRβ chain FoxP3-GFP mouse model to analyze conventional (eCD4) and regulatory (eTreg) effector TCRα repertoires in response to six distinct antigenic challenges to the lung and skin. This model shows highly 'digital' repertoire behavior with easy-to-track challenge-specific TCRα CDR3 clusters. For both eCD4 and eTreg subsets, we observe challenge-specific clonal expansions yielding homologous TCRα clusters within and across animals and exposure sites, which are also reflected in the draining lymph nodes but not systemically. Some CDR3 clusters are shared across cancer challenges, suggesting a response to common tumor-associated antigens. For most challenges, eCD4 and eTreg clonal response does not overlap. Such overlap is exclusively observed at the sites of certain tumor challenges, and not systematically, suggesting transient and local tumor-induced eCD4=>eTreg plasticity. This transition includes a dominant tumor-responding eCD4 CDR3 motif, as well as characteristic iNKT TCRα CDR3. In addition, we examine the homeostatic tissue residency of clonal eTreg populations by excluding the site of challenge from our analysis. We demonstrate that distinct CDR3 motifs are characteristic of eTreg cells residing in particular lymphatic tissues, regardless of the challenge. This observation reveals the tissue-resident, antigen-specific clonal Treg populations.
Collapse
Affiliation(s)
- Tatyana O Nakonechnaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
| | - Bruno Moltedo
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ekaterina V Putintseva
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
| | - Sofya Leyn
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
| | - Dmitry A Bolotin
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
| | - Olga V Britanova
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
| | - Mikhail Shugay
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
| | - Dmitriy M Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
- Central European Institute of TechnologyBrnoCzech Republic
- Abu Dhabi Stem Cells CenterAbu DhabiUnited Arab Emirates
| |
Collapse
|
6
|
Ortega MR, Pogorelyy MV, Minervina AA, Thomas PG, Walczak AM, Mora T. Learning predictive signatures of HLA type from T-cell repertoires. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577228. [PMID: 38352609 PMCID: PMC10862754 DOI: 10.1101/2024.01.25.577228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
T cells recognize a wide range of pathogens using surface receptors that interact directly with pep-tides presented on major histocompatibility complexes (MHC) encoded by the HLA loci in humans. Understanding the association between T cell receptors (TCR) and HLA alleles is an important step towards predicting TCR-antigen specificity from sequences. Here we analyze the TCR alpha and beta repertoires of large cohorts of HLA-typed donors to systematically infer such associations, by looking for overrepresentation of TCRs in individuals with a common allele.TCRs, associated with a specific HLA allele, exhibit sequence similarities that suggest prior antigen exposure. Immune repertoire sequencing has produced large numbers of datasets, however the HLA type of the corresponding donors is rarely available. Using our TCR-HLA associations, we trained a computational model to predict the HLA type of individuals from their TCR repertoire alone. We propose an iterative procedure to refine this model by using data from large cohorts of untyped individuals, by recursively typing them using the model itself. The resulting model shows good predictive performance, even for relatively rare HLA alleles.
Collapse
|
7
|
Lee LW, Shafiani S, Crossley B, Emerson RO, Williamson D, Bunin A, Vargas J, Han AS, Kaplan IM, Green PHR, Kirsch I, Bhagat G. Characterisation of T cell receptor repertoires in coeliac disease. J Clin Pathol 2024; 77:116-124. [PMID: 36522177 PMCID: PMC10850686 DOI: 10.1136/jcp-2022-208541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022]
Abstract
AIMS Characterise T-cell receptor gene (TR) repertoires of small intestinal T cells of patients with newly diagnosed (active) coeliac disease (ACD), refractory CD type I (RCD I) and patients with CD on a gluten-free diet (GFD). METHODS Next-generation sequencing of complementarity-determining region 3 (CDR3) of rearranged T cell receptor β (TRB) and γ (TRG) genes was performed using DNA extracted from intraepithelial cell (IEC) and lamina propria cell (LPC) fractions and a small subset of peripheral blood mononuclear cell (PBMC) samples obtained from CD and non-CD (control) patients. Several parameters were assessed, including relative abundance and enrichment. RESULTS TRB and TRG repertoires of CD IEC and LPC samples demonstrated lower clonality but higher frequency of rearranged TRs compared with controls. No CD-related differences were detected in the limited number of PBMC samples. Previously published LP gliadin-specific TRB sequences were more frequently detected in LPC samples from patients with CD compared with non-CD controls. TRG repertoires of IECs from both ACD and GFD patients demonstrated increased abundance of certain CDR3 amino acid (AA) motifs compared with controls, which were encoded by multiple nucleotide variants, including one motif that was enriched in duodenal IECs versus the PBMCs of CD patients. CONCLUSIONS Small intestinal TRB and TRG repertoires of patients with CD are more diverse than individuals without CD, likely due to mucosal recruitment and accumulation of T cells because of protracted inflammation. Enrichment of the unique TRG CDR3 AA sequence in the mucosa of patients with CD may suggest disease-associated changes in the TCRγδ IE lymphocyte (IEL) landscape.
Collapse
Affiliation(s)
- Lik Wee Lee
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Shahin Shafiani
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Beryl Crossley
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Ryan O Emerson
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - David Williamson
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Anna Bunin
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Justin Vargas
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Arnold S Han
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ian M Kaplan
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Peter H R Green
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ilan Kirsch
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology and Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
8
|
Textor J, Buytenhuijs F, Rogers D, Gauthier ÈM, Sultan S, Wortel IMN, Kalies K, Fähnrich A, Pagel R, Melichar HJ, Westermann J, Mandl JN. Machine learning analysis of the T cell receptor repertoire identifies sequence features of self-reactivity. Cell Syst 2023; 14:1059-1073.e5. [PMID: 38061355 DOI: 10.1016/j.cels.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4+ T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCRβ sequence sets. This approach revealed that weakly self-reactive T cell populations were enriched for longer CDR3β regions and acidic amino acids. We tested our ML predictions of self-reactivity using retrogenic mice with fixed TCRβ sequences. Extrapolating our analyses to independent datasets, we predicted high self-reactivity for regulatory T cells and slightly reduced self-reactivity for T cells responding to chronic infections. Our analyses suggest a potential trade-off between TCR repertoire diversity and self-reactivity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Johannes Textor
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands.
| | - Franka Buytenhuijs
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, QC H3G 0B1, Canada; McGill Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada; Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Shabaz Sultan
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Inge M N Wortel
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Kathrin Kalies
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Anke Fähnrich
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - René Pagel
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada; Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Judith N Mandl
- Department of Physiology, McGill University, Montreal, QC H3G 0B1, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 1A3, Canada; McGill Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
9
|
Benotmane JK, Kueckelhaus J, Will P, Zhang J, Ravi VM, Joseph K, Sankowski R, Beck J, Lee-Chang C, Schnell O, Heiland DH. High-sensitive spatially resolved T cell receptor sequencing with SPTCR-seq. Nat Commun 2023; 14:7432. [PMID: 37973846 PMCID: PMC10654577 DOI: 10.1038/s41467-023-43201-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Spatial resolution of the T cell repertoire is essential for deciphering cancer-associated immune dysfunction. Current spatially resolved transcriptomic technologies are unable to directly annotate T cell receptors (TCR). We present spatially resolved T cell receptor sequencing (SPTCR-seq), which integrates optimized target enrichment and long-read sequencing for highly sensitive TCR sequencing. The SPTCR computational pipeline achieves yield and coverage per TCR comparable to alternative single-cell TCR technologies. Our comparison of PCR-based and SPTCR-seq methods underscores SPTCR-seq's superior ability to reconstruct the entire TCR architecture, including V, D, J regions and the complementarity-determining region 3 (CDR3). Employing SPTCR-seq, we assess local T cell diversity and clonal expansion across spatially discrete niches. Exploration of the reciprocal interaction of the tumor microenvironmental and T cells discloses the critical involvement of NK and B cells in T cell exhaustion. Integrating spatially resolved omics and TCR sequencing provides as a robust tool for exploring T cell dysfunction in cancers and beyond.
Collapse
Affiliation(s)
- Jasim Kada Benotmane
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
| | - Paulina Will
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
- Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, Freiburg University, Freiburg, Germany.
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Sofou E, Vlachonikola E, Zaragoza-Infante L, Brüggemann M, Darzentas N, Groenen PJTA, Hummel M, Macintyre EA, Psomopoulos F, Davi F, Langerak AW, Stamatopoulos K. Clonotype definitions for immunogenetic studies: proposals from the EuroClonality NGS Working Group. Leukemia 2023; 37:1750-1752. [PMID: 37391484 PMCID: PMC10400411 DOI: 10.1038/s41375-023-01952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Electra Sofou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Elisavet Vlachonikola
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Laura Zaragoza-Infante
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Monika Brüggemann
- Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nikos Darzentas
- Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth A Macintyre
- Department of Hematology, Université Paris Cité and APHP Necker-Enfants Malades, Paris, France
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Frederic Davi
- Hematology Department, Hospital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
11
|
Sidlik Muskatel R, Nathansohn-Levi B, Reich-Zeliger S, Mark M, Stoler-Barak L, Rosen C, Milman-Krentsis I, Bachar Lustig E, Pete Gale R, Friedman N, Reisner Y. Correction of T-Cell Repertoire and Autoimmune Diabetes in NOD Mice by Non-myeloablative T-Cell Depleted Allogeneic HSCT. Stem Cells Transl Med 2023; 12:281-292. [PMID: 37184893 PMCID: PMC10184699 DOI: 10.1093/stcltm/szad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/03/2023] [Indexed: 05/16/2023] Open
Abstract
The induction of partial tolerance toward pancreatic autoantigens in the treatment of type 1 diabetes mellitus (T1DM) can be attained by autologous hematopoietic stem cell transplantation (HSCT). However, most patients treated by autologous HSCT eventually relapse. Furthermore, allogeneic HSCT which could potentially provide a durable non-autoimmune T-cell receptor (TCR) repertoire is associated with a substantial risk for transplant-related mortality. We have previously demonstrated an effective approach for attaining engraftment without graft versus host disease (GVHD) of allogeneic T-cell depleted HSCT, following non-myeloablative conditioning, using donor-derived anti-3rd party central memory CD8 veto T cells (Tcm). In the present study, we investigated the ability of this relatively safe transplant modality to eliminate autoimmune T-cell clones in the NOD mouse model which spontaneously develop T1DM. Our results demonstrate that using this approach, marked durable chimerism is attained, without any transplant-related mortality, and with a very high rate of diabetes prevention. TCR sequencing of transplanted mice showed profound changes in the T-cell repertoire and decrease in the prevalence of specific autoimmune T-cell clones directed against pancreatic antigens. This approach could be considered as strategy to treat people destined to develop T1DM but with residual beta cell function, or as a platform for prevention of beta cell destruction after transplantation of allogenic beta cells.
Collapse
Affiliation(s)
- Rakefet Sidlik Muskatel
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Michal Mark
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Stoler-Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chava Rosen
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irit Milman-Krentsis
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Esther Bachar Lustig
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Pete Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yair Reisner
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- CPRIT Scholar in Cancer Research, Austin, TX, USA
| |
Collapse
|
12
|
Ruiz Ortega M, Spisak N, Mora T, Walczak AM. Modeling and predicting the overlap of B- and T-cell receptor repertoires in healthy and SARS-CoV-2 infected individuals. PLoS Genet 2023; 19:e1010652. [PMID: 36827454 PMCID: PMC10075420 DOI: 10.1371/journal.pgen.1010652] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Adaptive immunity's success relies on the extraordinary diversity of protein receptors on B and T cell membranes. Despite this diversity, the existence of public receptors shared by many individuals gives hope for developing population-wide vaccines and therapeutics. Using probabilistic modeling, we show many of these public receptors are shared by chance in healthy individuals. This predictable overlap is driven not only by biases in the random generation process of receptors, as previously reported, but also by their common functional selection. However, the model underestimates sharing between repertoires of individuals infected with SARS-CoV-2, suggesting strong specific antigen-driven convergent selection. We exploit this discrepancy to identify COVID-associated receptors, which we validate against datasets of receptors with known viral specificity. We study their properties in terms of sequence features and network organization, and use them to design an accurate diagnostic tool for predicting SARS-CoV-2 status from repertoire data.
Collapse
Affiliation(s)
- María Ruiz Ortega
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Natanael Spisak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| |
Collapse
|
13
|
Kanduri C, Scheffer L, Pavlović M, Rand KD, Chernigovskaya M, Pirvandy O, Yaari G, Greiff V, Sandve GK. simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods. Gigascience 2022; 12:giad074. [PMID: 37848619 PMCID: PMC10580376 DOI: 10.1093/gigascience/giad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-experienced repertoires. RESULTS We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like repertoires with a realistic overlap of receptor sequences. simAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental data sources) for what constitutes receptor-level immune signals. This includes the possibility of making or not making any prior assumptions regarding the similarity or commonality of immune state-associated sequences that will be used as true signals. We demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on simAIRR-generated and real-world experimental AIRR datasets. CONCLUSIONS This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state-of-the-art way of simulating AIRR datasets. simAIRR is available as a Python package: https://github.com/KanduriC/simAIRR.
Collapse
Affiliation(s)
- Chakravarthi Kanduri
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Lonneke Scheffer
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Milena Pavlović
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Knut Dagestad Rand
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Oz Pirvandy
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Geir K Sandve
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
14
|
Høye E, Dagenborg VJ, Torgunrud A, Lund-Andersen C, Fretland ÅA, Lorenz S, Edwin B, Hovig E, Fromm B, Inderberg EM, Greiff V, Ree AH, Flatmark K. T cell receptor repertoire sequencing reveals chemotherapy-driven clonal expansion in colorectal liver metastases. Gigascience 2022; 12:giad032. [PMID: 37161965 PMCID: PMC10170408 DOI: 10.1093/gigascience/giad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Colorectal liver metastasis (CLM) is a leading cause of colorectal cancer mortality, and the response to immune checkpoint inhibition (ICI) in microsatellite-stable CRC has been disappointing. Administration of cytotoxic chemotherapy may cause increased density of tumor-infiltrating T cells, which has been associated with improved response to ICI. This study aimed to quantify and characterize T-cell infiltration in CLM using T-cell receptor (TCR) repertoire sequencing. Eighty-five resected CLMs from patients included in the Oslo CoMet study were subjected to TCR repertoire sequencing. Thirty-five and 15 patients had received neoadjuvant chemotherapy (NACT) within a short or long interval, respectively, prior to resection, while 35 patients had not been exposed to NACT. T-cell fractions were calculated, repertoire clonality was analyzed based on Hill evenness curves, and TCR sequence convergence was assessed using network analysis. RESULTS Increased T-cell fractions (10.6% vs. 6.3%) were detected in CLMs exposed to NACT within a short interval prior to resection, while modestly increased clonality was observed in NACT-exposed tumors independently of the timing of NACT administration and surgery. While private clones made up >90% of detected clones, network connectivity analysis revealed that public clones contributed the majority of TCR sequence convergence. CONCLUSIONS TCR repertoire sequencing can be used to quantify T-cell infiltration and clonality in clinical samples. This study provides evidence to support chemotherapy-driven T-cell clonal expansion in CLM in a clinical context.
Collapse
Affiliation(s)
- Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
| | - Vegar J Dagenborg
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Annette Torgunrud
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Christin Lund-Andersen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
| | - Åsmund A Fretland
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
| | - Susanne Lorenz
- Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
| | - Eivind Hovig
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Else M Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Anne H Ree
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, 0379 Oslo, Norway
| |
Collapse
|
15
|
Yang X, Garner LI, Zvyagin IV, Paley MA, Komech EA, Jude KM, Zhao X, Fernandes RA, Hassman LM, Paley GL, Savvides CS, Brackenridge S, Quastel MN, Chudakov DM, Bowness P, Yokoyama WM, McMichael AJ, Gillespie GM, Garcia KC. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature 2022; 612:771-777. [PMID: 36477533 PMCID: PMC10511244 DOI: 10.1038/s41586-022-05501-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public β-chain variable region-complementary-determining region 3β (BV9-CDR3β) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3β TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.
Collapse
Affiliation(s)
- Xinbo Yang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lee I Garner
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ivan V Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Michael A Paley
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ekaterina A Komech
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiang Zhao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn M Hassman
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Grace L Paley
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Christina S Savvides
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Max N Quastel
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dmitriy M Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Muscuoskeletal Science (NDORMS), Botnar Research Center, University of Oxford, Oxford, UK
| | - Wayne M Yokoyama
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| | - Andrew J McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Geraldine M Gillespie
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Pan M, Li B. T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies. eLife 2022; 11:e81952. [PMID: 36350695 PMCID: PMC9683788 DOI: 10.7554/elife.81952] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
T cells are potent at eliminating pathogens and playing a crucial role in the adaptive immune response. T cell receptor (TCR) convergence describes T cells that share identical TCRs with the same amino acid sequences but have different DNA sequences due to codon degeneracy. We conducted a systematic investigation of TCR convergence using single-cell immune profiling and bulk TCRβ-sequence (TCR-seq) data obtained from both mouse and human samples and uncovered a strong link between antigen-specificity and convergence. This association was stronger than T cell expansion, a putative indicator of antigen-specific T cells. By using flow-sorted tetramer+ single T cell data, we discovered that convergent T cells were enriched for a neoantigen-specific CD8+ effector phenotype in the tumor microenvironment. Moreover, TCR convergence demonstrated better prediction accuracy for immunotherapy response than the existing TCR repertoire indexes. In conclusion, convergent T cells are likely to be antigen-specific and might be a novel prognostic biomarker for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Mingyao Pan
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Bo Li
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
17
|
Frimpong A, Ofori MF, Degoot AM, Kusi KA, Gershom B, Quartey J, Kyei-Baafour E, Nguyen N, Ndifon W. Perturbations in the T cell receptor β repertoire during malaria infection in children: A preliminary study. Front Immunol 2022; 13:971392. [PMID: 36311775 PMCID: PMC9606469 DOI: 10.3389/fimmu.2022.971392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The changes occurring in the T cell repertoire during clinical malaria infection in children remain unknown. In this study, we undertook the first detailed comparative study of the T cell repertoire in African children with and without clinical malaria to test the hypothesis that clonotypic expansions that occur during P. falciparum infection will contribute to the generation of a T cell repertoire that is unique to each disease state. We profiled the complementarity-determining region 3 (CDR3) of the TCRβ chain sequences from children with Plasmodium falciparum infections (asymptomatic, uncomplicated and severe malaria) and compared these with sequences from healthy children. Interestingly, we discovered that children with symptomatic malaria have a lower TCR diversity and frequency of shared (or “public”) TCR sequences compared to asymptomatic children. Also, TCR diversity was inversely associated with parasitemia. Furthermore, by clustering TCR sequences based on their predicted antigen specificities, we identified a specificity cluster, with a 4-mer amino acid motif, that is overrepresented in the asymptomatic group compared to the diseased groups. Further investigations into this finding may help in delineating important antigenic targets for vaccine and therapeutic development. The results show that the T cell repertoire in children is altered during malaria, suggesting that exposure to P. falciparum antigens disrupts the adaptive immune response, which is an underlying feature of the disease.
Collapse
Affiliation(s)
- Augustina Frimpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- African Institute for Mathematical Sciences, Accra, Ghana
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| | - Michael Fokuo Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abdoelnaser M. Degoot
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
| | - Kwadwo Asamoah Kusi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Buri Gershom
- African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jacob Quartey
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Kyei-Baafour
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Wilfred Ndifon
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
- African Institute for Mathematical Sciences, Cape Town, South Africa
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| |
Collapse
|
18
|
The splenic T cell receptor repertoire during an immune response against a complex antigen: Expanding private clones accumulate in the high and low copy number region. PLoS One 2022; 17:e0273264. [PMID: 36001559 PMCID: PMC9401120 DOI: 10.1371/journal.pone.0273264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Large cellular antigens comprise a variety of different epitopes leading to a T cell response of extreme diversity. Therefore, tracking such a response by next generation sequencing of the T cell receptor (TCR) in order to identify common TCR properties among the expanding T cells represents an enormous challenge. In the present study we adapted a set of established indices to elucidate alterations in the TCR repertoire regarding sequence similarities between TCRs including VJ segment usage and diversity of nucleotide coding of a single TCR. We combined the usage of these indices with a new systematic splitting strategy regarding the copy number of the extracted clones to divide the repertoire into multiple fractions for separate analysis. We implemented this new analytic approach using the splenic TCR repertoire following immunization with sheep red blood cells (SRBC) in mice. As expected, early after immunization presumably antigen-specific clones accumulated in high copy number fractions, but at later time points similar accumulation of specific clones occurred within the repertoire fractions of lowest copy number. For both repertoire regions immunized animals could reliably be distinguished from control in a classification approach, demonstrating the robustness of the two effects at the individual level. The direction in which the indices shifted after immunization revealed that for both the early and the late effect alterations in repertoire parameters were caused by antigen-specific private clones displacing non-specific public clones. Taken together, tracking antigen-specific clones by their displacement of average TCR repertoire characteristics in standardized repertoire fractions ensures that our analytical approach is fairly independent from the antigen in question and thus allows the in-depth characterization of a variety of immune responses.
Collapse
|
19
|
Katayama Y, Kobayashi TJ. Comparative Study of Repertoire Classification Methods Reveals Data Efficiency of k -mer Feature Extraction. Front Immunol 2022; 13:797640. [PMID: 35936014 PMCID: PMC9346074 DOI: 10.3389/fimmu.2022.797640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The repertoire of T cell receptors encodes various types of immunological information. Machine learning is indispensable for decoding such information from repertoire datasets measured by next-generation sequencing (NGS). In particular, the classification of repertoires is the most basic task, which is relevant for a variety of scientific and clinical problems. Supported by the recent appearance of large datasets, efficient but data-expensive methods have been proposed. However, it is unclear whether they can work efficiently when the available sample size is severely restricted as in practical situations. In this study, we demonstrate that their performances can be impaired substantially below critical sample sizes. To complement this drawback, we propose MotifBoost, which exploits the information of short k-mer motifs of TCRs. MotifBoost can perform the classification as efficiently as a deep learning method on large datasets while providing more stable and reliable results on small datasets. We tested MotifBoost on the four small datasets which consist of various conditions such as Cytomegalovirus (CMV), HIV, α-chain, β-chain and it consistently preserved the stability. We also clarify that the robustness of MotifBoost can be attributed to the efficiency of k-mer motifs as representation features of repertoires. Finally, by comparing the predictions of these methods, we show that the whole sequence identity and sequence motifs encode partially different information and that a combination of such complementary information is necessary for further development of repertoire analysis.
Collapse
Affiliation(s)
- Yotaro Katayama
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
20
|
Grace BE, Backlund CM, Morgan DM, Kang BH, Singh NK, Huisman BD, Rappazzo CG, Moynihan KD, Maiorino L, Dobson CS, Kyung T, Gordon KS, Holec PV, Mbah OCT, Garafola D, Wu S, Love JC, Wittrup KD, Irvine DJ, Birnbaum ME. Identification of Highly Cross-Reactive Mimotopes for a Public T Cell Response in Murine Melanoma. Front Immunol 2022; 13:886683. [PMID: 35812387 PMCID: PMC9260506 DOI: 10.3389/fimmu.2022.886683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
While immune checkpoint blockade results in durable responses for some patients, many others have not experienced such benefits. These treatments rely upon reinvigorating specific T cell-antigen interactions. However, it is often unknown what antigens are being recognized by T cells or how to potently induce antigen-specific responses in a broadly applicable manner. Here, we characterized the CD8+ T cell response to a murine model of melanoma following combination immunotherapy to determine the basis of tumor recognition. Sequencing of tumor-infiltrating T cells revealed a repertoire of highly homologous TCR sequences that were particularly expanded in treated mice and which recognized an antigen from an endogenous retrovirus. While vaccination against this peptide failed to raise a protective T cell response in vivo, engineered antigen mimotopes induced a significant expansion of CD8+ T cells cross-reactive to the original antigen. Vaccination with mimotopes resulted in killing of antigen-loaded cells in vivo yet showed modest survival benefit in a prophylactic vaccine paradigm. Together, this work demonstrates the identification of a dominant tumor-associated antigen and generation of mimotopes which can induce robust functional T cell responses that are cross-reactive to the endogenous antigen across multiple individuals.
Collapse
Affiliation(s)
- Beth E. Grace
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Coralie M. Backlund
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Byong H. Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nishant K. Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Brooke D. Huisman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - C. Garrett Rappazzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kelly D. Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura Maiorino
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Connor S. Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Taeyoon Kyung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Khloe S. Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Patrick V. Holec
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Daniel Garafola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - K. Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Michael E. Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- *Correspondence: Michael E. Birnbaum,
| |
Collapse
|
21
|
Bedri SK, Evertsson B, Khademi M, Al Nimer F, Olsson T, Hillert J, Glaser A. Copy number variations across the blood-brain barrier in multiple sclerosis. Ann Clin Transl Neurol 2022; 9:962-976. [PMID: 35560551 PMCID: PMC9268884 DOI: 10.1002/acn3.51573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/29/2022] Open
Abstract
Objective Multiple sclerosis (MS) is a neuroinflammatory disease where immune cells cross the blood–brain barrier (BBB) into the central nervous system (CNS). What predisposes these immune cells to cross the BBB is still unknown. Here, we examine the possibility that genomic rearrangements could predisposespecific immune cells in the peripheral blood to cross the BBB and form sub‐populations of cells involved in the inflammatory process in the CNS. Methods We compared copy number variations in paired peripheral blood mononuclear cells (PBMCs) and cerebrospinal fluid (CSF) cells from MS patients. Thereafter, using next generation sequencing, we studied the T‐cell receptor beta (TRB) locus rearrangements and profiled the αβ T cell repertoire in peripheral CD4+ and CD8+ T cells and in the CSF. Results We identified deletions in the T‐cell receptor alpha/delta (TRA/D), gamma (TRG), and TRB loci in CSF cells compared to PBMCs. Further characterization revealed diversity of the TRB locus which was used to describe the character and clonal expansion of T cells in the CNS. T‐cell repertoire profiling from either side of the BBB concluded that the most frequent clones in the CSF samples are unique to an individual. Furthermore, we observed a difference in the proportion of expanded T‐cell clones when comparing samples from MS patients in relapse and remission with opposite trends in CSF and peripheral blood. Interpretation This study provides a characterization of the T cells in the CSF and might indicate a role of expanded clones in MS pathogenicity.
Collapse
Affiliation(s)
- Sahl Khalid Bedri
- Department of Clinical Neuroscience and Centrum for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Björn Evertsson
- Department of Clinical Neuroscience and Centrum for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Tema Neuro, Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience and Centrum for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience and Centrum for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Tema Neuro, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience and Centrum for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Tema Neuro, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience and Centrum for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Tema Neuro, Stockholm, Sweden
| | - Anna Glaser
- Department of Clinical Neuroscience and Centrum for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Teng YHF, Quah HS, Suteja L, Dias JML, Mupo A, Bashford-Rogers RJM, Vassiliou GS, Chua MLK, Tan DSW, Lim DWT, Iyer NG. Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures. Cancer Immunol Immunother 2022; 71:989-998. [PMID: 34580764 PMCID: PMC8476067 DOI: 10.1007/s00262-021-03047-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 08/25/2021] [Indexed: 12/02/2022]
Abstract
Despite the conventional view that a truly random V(D)J recombination process should generate a highly diverse immune repertoire, emerging reports suggest that there is a certain bias toward the generation of shared/public immune receptor chains. These studies were performed in viral diseases where public T cell receptors (TCR) appear to confer better protective responses. Selective pressures generating common TCR clonotypes are currently not well understood, but it is believed that they confer a growth advantage. As very little is known about public TCR clonotypes in cancer, here we set out to determine the extent of shared TCR clonotypes in the intra-tumor microenvironments of virus- and non-virus-driven head and neck cancers using TCR sequencing. We report that tumor-infiltrating T cell clonotypes were indeed shared across individuals with the same cancer type, where the majority of shared sequences were specific to the cancer type (i.e., viral versus non-viral). These shared clonotypes were not particularly enriched in EBV-associated nasopharynx cancer but, in both cancers, exhibited distinct characteristics, namely shorter CDR3 lengths, restricted V- and J-gene usages, and also demonstrated convergent V(D)J recombination. Many of these shared TCRs were expressed in patients with a shared HLA background. Pattern recognition of CDR3 amino acid sequences revealed strong convergence to specific pattern motifs, and these motifs were uniquely found to each cancer type. This suggests that they may be enriched for specificity to common antigens found in the tumor microenvironment of different cancers. The identification of shared TCRs in infiltrating tumor T cells not only adds to our understanding of the tumor-adaptive immune recognition but could also serve as disease-specific biomarkers and guide the development of future immunotherapies.
Collapse
Affiliation(s)
- Yvonne H. F. Teng
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Hong Sheng Quah
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lisda Suteja
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - João M. L. Dias
- Hutchison/MRC Research Centre, MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK
| | | | | | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, CB2 0AW UK
| | - Melvin L. K. Chua
- Duke-NUS Medical School, Singapore, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Daniel S. W. Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Darren W. T. Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - N. Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Head and Neck Surgery, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Massey J, Jackson K, Singh M, Hughes B, Withers B, Ford C, Khoo M, Hendrawan K, Zaunders J, Charmeteau-De Muylder B, Cheynier R, Luciani F, Ma D, Moore J, Sutton I. Haematopoietic Stem Cell Transplantation Results in Extensive Remodelling of the Clonal T Cell Repertoire in Multiple Sclerosis. Front Immunol 2022; 13:798300. [PMID: 35197974 PMCID: PMC8859174 DOI: 10.3389/fimmu.2022.798300] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a vital therapeutic option for patients with highly active multiple sclerosis (MS). Rates of remission suggest AHSCT is the most effective form of immunotherapy in controlling the disease. Despite an evolving understanding of the biology of immune reconstitution following AHSCT, the mechanism by which AHSCT enables sustained disease remission beyond the period of lymphopenia remains to be elucidated. Auto-reactive T cells are considered central to MS pathogenesis. Here, we analyse T cell reconstitution for 36 months following AHSCT in a cohort of highly active MS patients. Through longitudinal analysis of sorted naïve and memory T cell clones, we establish that AHSCT induces profound changes in the dominant T cell landscape of both CD4+ and CD8+ memory T cell clones. Lymphopenia induced homeostatic proliferation is followed by clonal attrition; with only 19% of dominant CD4 (p <0.025) and 13% of dominant CD8 (p <0.005) clones from the pre-transplant repertoire detected at 36 months. Recovery of a thymically-derived CD4 naïve T cell repertoire occurs at 12 months and is ongoing at 36 months, however diversity of the naïve populations is not increased from baseline suggesting the principal mechanism of durable remission from MS after AHSCT relates to depletion of putative auto-reactive clones. In a cohort of MS patients expressing the MS risk allele HLA DRB1*15:01, public clones are probed as potential biomarkers of disease. AHSCT appears to induce sustained periods of disease remission with dynamic changes in the clonal T cell repertoire out to 36 months post-transplant.
Collapse
Affiliation(s)
- Jennifer Massey
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
- *Correspondence: Jennifer Massey,
| | - Katherine Jackson
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Mandeep Singh
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Brendan Hughes
- School of Medical Sciences and Kirby Institute for Infection and Immunity, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Barbara Withers
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
| | - Carole Ford
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Melissa Khoo
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Kevin Hendrawan
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - John Zaunders
- Immunology Laboratory, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | | | - Rémi Cheynier
- Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Fabio Luciani
- School of Medical Sciences and Kirby Institute for Infection and Immunity, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - David Ma
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
| | - John Moore
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
| | - Ian Sutton
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
- Department of Neurology, St Vincent’s Clinic, Darlinghurst, NSW, Australia
| |
Collapse
|
24
|
Fang M, Su Z, Abolhassani H, Zhang W, Jiang C, Cheng B, Luo L, Wu J, Wang S, Lin L, Wang X, Wang L, Aghamohammadi A, Li T, Zhang X, Hammarström L, Liu X. T Cell Repertoire Abnormality in Immunodeficiency Patients with DNA Repair and Methylation Defects. J Clin Immunol 2022; 42:375-393. [PMID: 34825286 PMCID: PMC8821531 DOI: 10.1007/s10875-021-01178-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Both DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.
Collapse
Affiliation(s)
- Mingyan Fang
- BGI-Shenzhen, Shenzhen, 518083, China
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Hassan Abolhassani
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | | | | | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Liya Lin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tao Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, 518083, China.
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
25
|
Clonotype pattern in T-cell lymphomas map the cell of origin to immature lymphoid precursors. Blood Adv 2022; 6:2334-2345. [PMID: 35015812 PMCID: PMC9006294 DOI: 10.1182/bloodadvances.2021005884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Mature T-cell lymphomas (TCLs) are rare, clinically heterogeneous hematologic cancers of high medical need. TCLs have inferior prognosis which is attributed to poor understanding of their pathogenesis. Based on phenotypic similarities between normal and neoplastic lymphocytes it has been assumed that TCLs develop in the periphery, directly from various subtypes of normal T-cells. To address the debated question of the cell of origin in TCLs we analyzed to identify the highly variable complementarity determining regions (CDR3) regions of T-cell receptor (TCR) to trace the clonal history of the T-cells. We have collected previously published whole genome -exome, and -transcriptome sequencing data from 574 TCL patients. TCR clonotypes were identified by de novo assembly of CDR3 regions of TCR γ, β and α. We have found that the vast majority of TCLs are clonotypically oligoclonal, although the pattern oligoclonality varied. Anaplastic large cell lymphoma was most diverse comprising multiple clonotypes of TCRγ, β and α whereas adult T-cell lymphoma/leukemia and peripheral T-cell lymphomas often showed monoclonality for TCRγ and β but had diverse TCRα clonotypes. These patterns of rearrangements indicated that TCLs are initiated at the level of the lymphoid precursor. In keeping with this hypothesis, TCR rearrangements in TCLs resembled the pattern seen in the human thymus showing biased usage of V and J segments of high combinatorial probability resulting in recurrent, "public" CDR3 sequences shared across unrelated patients and different clinical TCL entities. Clonotypically diverse initiating cells may seed target tissues being responsible for disease relapses after therapy.
Collapse
|
26
|
Wu D, Kolesnikov A, Yin R, Guest JD, Gowthaman R, Shmelev A, Serdyuk Y, Dianov DV, Efimov GA, Pierce BG, Mariuzza RA. Structural assessment of HLA-A2-restricted SARS-CoV-2 spike epitopes recognized by public and private T-cell receptors. Nat Commun 2022; 13:19. [PMID: 35013235 PMCID: PMC8748687 DOI: 10.1038/s41467-021-27669-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- COVID-19/immunology
- COVID-19/virology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Jurkat Cells
- K562 Cells
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Surface Plasmon Resonance/methods
Collapse
Affiliation(s)
- Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Alexander Kolesnikov
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Johnathan D Guest
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Ragul Gowthaman
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Anton Shmelev
- National Research Center for Hematology, Moscow, Russia
| | - Yana Serdyuk
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
27
|
Szeto C, Nguyen AT, Lobos CA, Chatzileontiadou DSM, Jayasinghe D, Grant EJ, Riboldi-Tunnicliffe A, Smith C, Gras S. Molecular Basis of a Dominant SARS-CoV-2 Spike-Derived Epitope Presented by HLA-A*02:01 Recognised by a Public TCR. Cells 2021; 10:cells10102646. [PMID: 34685626 PMCID: PMC8534114 DOI: 10.3390/cells10102646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.
Collapse
Affiliation(s)
- Christopher Szeto
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrea T. Nguyen
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christian A. Lobos
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Demetra S. M. Chatzileontiadou
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dhilshan Jayasinghe
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | | | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephanie Gras
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
28
|
Tune C, Hahn J, Autenrieth SE, Meinhardt M, Pagel R, Schampel A, Schierloh LK, Kalies K, Westermann J. Sleep restriction prior to antigen exposure does not alter the T cell receptor repertoire but impairs germinal center formation during a T cell-dependent B cell response in murine spleen. Brain Behav Immun Health 2021; 16:100312. [PMID: 34589803 PMCID: PMC8474616 DOI: 10.1016/j.bbih.2021.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
It is well known that sleep promotes immune functions. In line with this, a variety of studies in animal models and humans have shown that sleep restriction following an antigen challenge dampens the immune response on several levels which leads to e.g. worsening of disease outcome and reduction of vaccination efficiency, respectively. However, the inverse scenario with sleep restriction preceding an antigen challenge is only investigated in a few animal models where it has been shown to reduce antigen uptake and presentation as well as pathogen clearance and survival rates. Here, we use injection of sheep red blood cells to investigate the yet unknown effect on a T cell-dependent B cell response in a well-established mouse model. We found that 6 h of sleep restriction prior to the antigen challenge does not impact the T cell reaction including the T cell receptor repertoire but dampens the development of germinal centers which correlates with reduced antigen-specific antibody titer indicating an impaired B cell response. These changes concerned a functionally more relevant level than those found in the same experimental model with the inverse scenario when sleep restriction followed the antigen challenge. Taken together, our findings showed that the outcome of the T cell-dependent B cell response is indeed impacted by sleep restriction prior to the antigen challenge which highlights the clinical significance of this scenario and the need for further investigations in humans, for example concerning the effect of sleep restriction preceding a vaccination.
Collapse
Key Words
- Antigen presentation
- BCZ, B cell zone
- CCL, C–C motif ligand
- CCR, C–C motif receptor
- CD, cluster of differentiation
- CIITA, class II major histocompatibility complex transactivator
- CXCL, C-X-C motif ligand
- FDR, false discovery rate
- GC, germinal center
- Germinal center
- IFN, interferon
- IL, interleukin
- IgG, Immunglobulin G
- MHC-II, major histocompatibility complex II
- Mouse
- RP, red pulp
- SD, standard deviation
- SLO, secondary lymphoid organ
- SRBC, sheep red blood cells
- Sheep red blood cells
- Sleep deprivation
- Spleen
- T cell-dependent B cell response
- TCR, T cell receptor
- TCR-R, T cell receptor repertoire
- TCZ, T cell zone
- Tfh, follicular T helper cells
Collapse
Affiliation(s)
- Cornelia Tune
- Institute of Anatomy, University of Luebeck, Germany
| | - Julia Hahn
- Department of Internal Medicine II, University of Tuebingen, Germany
| | | | | | - Rene Pagel
- Institute of Anatomy, University of Luebeck, Germany
| | | | | | | | | |
Collapse
|
29
|
Milighetti M, Shawe-Taylor J, Chain B. Predicting T Cell Receptor Antigen Specificity From Structural Features Derived From Homology Models of Receptor-Peptide-Major Histocompatibility Complexes. Front Physiol 2021; 12:730908. [PMID: 34566692 PMCID: PMC8456106 DOI: 10.3389/fphys.2021.730908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The physical interaction between the T cell receptor (TCR) and its cognate antigen causes T cells to activate and participate in the immune response. Understanding this physical interaction is important in predicting TCR binding to a target epitope, as well as potential cross-reactivity. Here, we propose a way of collecting informative features of the binding interface from homology models of T cell receptor-peptide-major histocompatibility complex (TCR-pMHC) complexes. The information collected from these structures is sufficient to discriminate binding from non-binding TCR-pMHC pairs in multiple independent datasets. The classifier is limited by the number of crystal structures available for the homology modelling and by the size of the training set. However, the classifier shows comparable performance to sequence-based classifiers requiring much larger training sets.
Collapse
Affiliation(s)
- Martina Milighetti
- Division of Infection and Immunity, University College London, London, United Kingdom
- Cancer Institute, University College London, London, United Kingdom
| | - John Shawe-Taylor
- Department of Computer Science, University College London, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
30
|
Johnson SA, Seale SL, Gittelman RM, Rytlewski JA, Robins HS, Fields PA. Impact of HLA type, age and chronic viral infection on peripheral T-cell receptor sharing between unrelated individuals. PLoS One 2021; 16:e0249484. [PMID: 34460826 PMCID: PMC8405014 DOI: 10.1371/journal.pone.0249484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
The human adaptive immune system must generate extraordinary diversity to be able to respond to all possible pathogens. The T-cell repertoire derives this high diversity through somatic recombination of the T-cell receptor (TCR) locus, a random process that results in repertoires that are largely private to each individual. However, factors such as thymic selection and T-cell proliferation upon antigen exposure can affect TCR sharing among individuals. By immunosequencing the TCRβ variable region of 426 healthy individuals, we find that, on average, fewer than 1% of TCRβ clones are shared between individuals, consistent with largely private TCRβ repertoires. However, we detect a significant correlation between increased HLA allele sharing and increased number of shared TCRβ clones, with each additional shared HLA allele contributing to an increase in ~0.01% of the total shared TCRβ clones, supporting a key role for HLA type in shaping the immune repertoire. Surprisingly, we find that shared antigen exposure to CMV leads to fewer shared TCRβ clones, even after controlling for HLA, indicative of a largely private response to major viral antigenic exposure. Consistent with this hypothesis, we find that increased age is correlated with decreased overall TCRβ clone sharing, indicating that the pattern of private TCRβ clonal expansion is a general feature of the T-cell response to other infectious antigens as well. However, increased age also correlates with increased sharing among the lowest frequency clones, consistent with decreased repertoire diversity in older individuals. Together, all of these factors contribute to shaping the TCRβ repertoire, and understanding their interplay has important implications for the use of T cells for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | - Spencer L. Seale
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | | | | | - Harlan S. Robins
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | - Paul A. Fields
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| |
Collapse
|
31
|
Zhang J, Wang Y, Yu H, Chen G, Wang L, Liu F, Yuan J, Ni Q, Xia X, Wan Y. Mapping the spatial distribution of T cells in repertoire dimension. Mol Immunol 2021; 138:161-171. [PMID: 34428621 DOI: 10.1016/j.molimm.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 01/13/2023]
Abstract
T cells mediate adaptive immunity in diverse anatomic compartments through recognition of specific antigens via unique T cell receptor (TCR) structures. However, little is known about the spatial distribution of an organism's TCR repertoire. Here, using high-throughput TCR sequencing (TCRseq), we investigated the TCR repertoires of sixteen tissues in healthy C57B/L6 mice. We found that TCR repertoires generally classified into three categories (lymph nodes, non-lymph node tissues and small intestine) based on sequence similarity. Clonal distribution and diversity analyses showed that small intestine compartment had a more skewed repertoire as compared to lymph nodes and non-lymph node tissues. However, analysis of TRBV and TRBJ gene usage across tissue compartments, as well as comparison of CDR3 length distributions, showed no significant tissue-dependent differences. Interestingly, analysis of clonotype sharing between mice showed that although non-redundant public clonotypes were found more easily in lymph nodes, small intestinal CD4 + T cells harbored more abundant public clonotypes. These findings under healthy physiological conditions offer an important reference dataset, which may contribute to our ability to better manipulate T cell responses against infection and vaccination.
Collapse
Affiliation(s)
- Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Yu Wang
- Zunyi Medical University, Zunyi, 563003, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, 518036, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China.
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China; School of Big Data & Software Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
32
|
Smith NP, Ruiter B, Virkud YV, Tu AA, Monian B, Moon JJ, Love JC, Shreffler WG. Identification of antigen-specific TCR sequences based on biological and statistical enrichment in unselected individuals. JCI Insight 2021; 6:140028. [PMID: 34032640 PMCID: PMC8410028 DOI: 10.1172/jci.insight.140028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent advances in high-throughput T cell receptor (TCR) sequencing have allowed for new insights into the human TCR repertoire. However, methods for capturing antigen-specific repertoires remain an area of development. Here, we describe a potentially novel approach that utilizes both a biological and statistical enrichment to define putatively antigen-specific complementarity-determining region 3 (CDR3) repertoires in unselected individuals. The biological enrichment entailed FACS of in vitro antigen-activated memory CD4+ T cells, followed by TCRβ sequencing. The resulting TCRβ sequences were then filtered by selecting those that are statistically enriched when compared with their frequency in the autologous resting T cell compartment. Applying this method to define putatively peanut protein-specific repertoires in 27 peanut-allergic individuals resulted in a library of 7345 unique CDR3β amino acid sequences that had similar characteristics to other validated antigen-specific repertoires in terms of homology and diversity. In-depth analysis of these CDR3βs revealed 36 public sequences that demonstrated high levels of convergent recombination. In a network analysis, the public CDR3βs were shown to be core sequences with more edges than their private counterparts. This method has the potential to be applied to a wide range of T cell-mediated disorders and to yield new biomarkers and biological insights.
Collapse
Affiliation(s)
- Neal P. Smith
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bert Ruiter
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Yamini V. Virkud
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ang A. Tu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brinda Monian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James J. Moon
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wayne G. Shreffler
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Lanfermeijer J, de Greef PC, Hendriks M, Vos M, van Beek J, Borghans JAM, van Baarle D. Age and CMV-Infection Jointly Affect the EBV-Specific CD8 + T-Cell Repertoire. FRONTIERS IN AGING 2021; 2:665637. [PMID: 35822032 PMCID: PMC9261403 DOI: 10.3389/fragi.2021.665637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/31/2021] [Indexed: 01/15/2023]
Abstract
CD8+ T cells play an important role in protection against viral infections. With age, changes in the T-cell pool occur, leading to diminished responses against both new and recurring infections in older adults. This is thought to be due to a decrease in both T-cell numbers and T-cell receptor (TCR) diversity. Latent infection with cytomegalovirus (CMV) is assumed to contribute to this age-associated decline of the immune system. The observation that the level of TCR diversity in the total memory T-cell pool stays relatively stable during aging is remarkable in light of the constant input of new antigen-specific memory T cells. What happens with the diversity of the individual antigen-specific T-cell repertoires in the memory pool remains largely unknown. Here we studied the effect of aging on the phenotype and repertoire diversity of CMV-specific and Epstein-Barr virus (EBV)-specific CD8+ T cells, as well as the separate effects of aging and CMV-infection on the EBV-specific T-cell repertoire. Antigen-specific T cells against both persistent viruses showed an age-related increase in the expression of markers associated with a more differentiated phenotype, including KLRG-1, an increase in the fraction of terminally differentiated T cells, and a decrease in the diversity of the T-cell repertoire. Not only age, but also CMV infection was associated with a decreased diversity of the EBV-specific T-cell repertoire. This suggests that both CMV infection and age can impact the T-cell repertoire against other antigens.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter C. de Greef
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Marion Hendriks
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
34
|
Higher-order immunoglobulin repertoire restrictions in CLL: the illustrative case of stereotyped subsets 2 and 169. Blood 2021; 137:1895-1904. [PMID: 33036024 DOI: 10.1182/blood.2020005216] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) major stereotyped subset 2 (IGHV3-21/IGLV3-21, ∼2.5% of all cases of CLL) is an aggressive disease variant, irrespective of the somatic hypermutation (SHM) status of the clonotypic IGHV gene. Minor stereotyped subset 169 (IGHV3-48/IGLV3-21, ∼0.2% of all cases of CLL) is related to subset 2, as it displays a highly similar variable antigen-binding site. We further explored this relationship through next-generation sequencing and crystallographic analysis of the clonotypic B-cell receptor immunoglobulin. Branching evolution of the predominant clonotype through intraclonal diversification in the context of ongoing SHM was evident in both heavy and light chain genes of both subsets. Molecular similarities between the 2 subsets were highlighted by the finding of shared SHMs within both the heavy and light chain genes in all analyzed cases at either the clonal or subclonal level. Particularly noteworthy in this respect was a ubiquitous SHM at the linker region between the variable and the constant domain of the IGLV3-21 light chains, previously reported as critical for immunoglobulin homotypic interactions underlying cell-autonomous signaling capacity. Notably, crystallographic analysis revealed that the IGLV3-21-bearing CLL subset 169 immunoglobulin retains the same geometry and contact residues for the homotypic intermolecular interaction observed in subset 2, including the SHM at the linker region, and, from a molecular standpoint, belong to a common structural mode of autologous recognition. Collectively, our findings document that stereotyped subsets 2 and 169 are very closely related, displaying shared immunoglobulin features that can be explained only in the context of shared functional selection.
Collapse
|
35
|
Yiu HH, Schoettle LN, Garcia‐Neuer M, Blattman JN, Johnson PLF. Selection influences naive CD8+ TCR-β repertoire sharing. Immunology 2021; 162:464-475. [PMID: 33345304 PMCID: PMC7968400 DOI: 10.1111/imm.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022] Open
Abstract
Within each individual, the adaptive immune system generates a repertoire of cells expressing receptors capable of recognizing diverse potential pathogens. The theoretical diversity of the T-cell receptor (TCR) repertoire exceeds the actual size of the T-cell population in an individual by several orders of magnitude - making the observation of identical TCRs in different individuals extremely improbable if all receptors were equally likely. Despite this disparity between the theoretical and the realized diversity of the repertoire, these 'public' receptor sequences have been identified in autoimmune, cancer and pathogen interaction contexts. Biased generation processes explain the presence of public TCRs in the naive repertoire, but do not adequately explain the different abundances of these public TCRs. We investigate and characterize the distribution of genomic TCR-β sequences of naive CD8+ T cells from three genetically identical mice, comparing non-productive (non-functional sequences) and productive sequences. We find public TCR-β sequences at higher abundances compared with unshared sequences in the productive, but not in the non-productive, repertoire. We show that neutral processes such as recombination biases, codon degeneracy and generation probability do not fully account for these differences, and conclude that thymic or peripheral selection plays an important role in increasing the abundances of public TCR-β sequences.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/physiology
- Cells, Cultured
- Clonal Selection, Antigen-Mediated
- Codon Usage
- Genes, T-Cell Receptor beta/genetics
- Humans
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Hao H. Yiu
- Department of BiologyUniversity of MarylandCollege ParkMDUSA
| | - Louis N. Schoettle
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Marlene Garcia‐Neuer
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Joseph N. Blattman
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | | |
Collapse
|
36
|
Kedzierska K, Koutsakos M. The ABC of Major Histocompatibility Complexes and T Cell Receptors in Health and Disease. Viral Immunol 2021; 33:160-178. [PMID: 32286182 PMCID: PMC7185345 DOI: 10.1089/vim.2019.0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A seminal discovery of major histocompatibility complex (MHC) restriction in T cell recognition by Peter Doherty and Rolf Zinkernagel has led to 45 years of exciting research on the mechanisms governing peptide MHC (pMHC) recognition by T cell receptors (TCRs) and their importance in health and disease. T cells provide a significant level of protection against viral, bacterial, and parasitic infections, as well as tumors, hence, the generation of protective T cell responses is a primary goal for cell-mediated vaccines and immunotherapies. Understanding the mechanisms underlying generation of optimal high-avidity effector T cell responses, memory development, maintenance, and recall is of major importance for the rational design of preventative and therapeutic vaccines/immunotherapies. In this review, we summarize the lessons learned over the last four decades and outline our current understanding of the basis and consequences of pMHC/TCR interactions on T cell development and function, and TCR diversity and composition, driving better clinical outcomes and prevention of viral escape. We also discuss the current models of T cell memory formation and determinants of immunodominant T cell responses in animal models and humans. As TCR composition and diversity can affect both the protective capacity of T cells and protection against viral escape, defining the spectrum of TCR selection has implications for improving the functional efficacy of effector T cell responsiveness and memory formation.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
37
|
Gordin M, Philip H, Zilberberg A, Gidoni M, Margalit R, Clouser C, Adams K, Vigneault F, Cohen IR, Yaari G, Efroni S. Breast cancer is marked by specific, Public T-cell receptor CDR3 regions shared by mice and humans. PLoS Comput Biol 2021; 17:e1008486. [PMID: 33465095 PMCID: PMC7846026 DOI: 10.1371/journal.pcbi.1008486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 01/29/2021] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
The partial success of tumor immunotherapy induced by checkpoint blockade, which is not antigen-specific, suggests that the immune system of some patients contain antigen receptors able to specifically identify tumor cells. Here we focused on T-cell receptor (TCR) repertoires associated with spontaneous breast cancer. We studied the alpha and beta chain CDR3 domains of TCR repertoires of CD4 T cells using deep sequencing of cell populations in mice and applied the results to published TCR sequence data obtained from human patients. We screened peripheral blood T cells obtained monthly from individual mice spontaneously developing breast tumors by 5 months. We then looked at identical TCR sequences in published human studies; we used TCGA data from tumors and healthy tissues of 1,256 breast cancer resections and from 4 focused studies including sequences from tumors, lymph nodes, blood and healthy tissues, and from single cell dataset of 3 breast cancer subjects. We now report that mice spontaneously developing breast cancer manifest shared, Public CDR3 regions in both their alpha and beta and that a significant number of women with early breast cancer manifest identical CDR3 sequences. These findings suggest that the development of breast cancer is associated, across species, with biomarker, exclusive TCR repertoires.
Collapse
Affiliation(s)
- Miri Gordin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Hagit Philip
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Moriah Gidoni
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | | | | | - Kristofor Adams
- Juno Therapeutics, Seattle, Washington, United States of America
| | | | - Irun R. Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- * E-mail: (GY); (SE)
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (GY); (SE)
| |
Collapse
|
38
|
Sethna Z, Isacchini G, Dupic T, Mora T, Walczak AM, Elhanati Y. Population variability in the generation and selection of T-cell repertoires. PLoS Comput Biol 2020; 16:e1008394. [PMID: 33296360 PMCID: PMC7725366 DOI: 10.1371/journal.pcbi.1008394] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs.
Collapse
Affiliation(s)
- Zachary Sethna
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Giulio Isacchini
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France.,Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, Göttingen, Germany
| | - Thomas Dupic
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
39
|
Servaas NH, Zaaraoui-Boutahar F, Wichers CGK, Ottria A, Chouri E, Affandi AJ, Silva-Cardoso S, van der Kroef M, Carvalheiro T, van Wijk F, Radstake TRDJ, Andeweg AC, Pandit A. Longitudinal analysis of T-cell receptor repertoires reveals persistence of antigen-driven CD4 + and CD8 + T-cell clusters in systemic sclerosis. J Autoimmun 2020; 117:102574. [PMID: 33307312 DOI: 10.1016/j.jaut.2020.102574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The T-cell receptor (TCR) is a highly polymorphic surface receptor that allows T-cells to recognize antigenic peptides presented on the major histocompatibility complex (MHC). Changes in the TCR repertoire have been observed in several autoimmune conditions, and these changes are suggested to predispose autoimmunity. Multiple lines of evidence have implied an important role for T-cells in the pathogenesis of Systemic Sclerosis (SSc), a complex autoimmune disease. One of the major questions regarding the roles of T-cells is whether expansion and activation of T-cells observed in the diseases pathogenesis is antigen driven. To investigate the temporal TCR repertoire dynamics in SSc, we performed high-throughput sequencing of CD4+ and CD8+ TCRβ chains on longitudinal samples obtained from four SSc patients collected over a minimum of two years. Repertoire overlap analysis revealed that samples taken from the same individual over time shared a high number of TCRβ sequences, indicating a clear temporal persistence of the TCRβ repertoire in CD4+ as well as CD8+ T-cells. Moreover, the TCRβs that were found with a high frequency at one time point were also found with a high frequency at the other time points (even after almost four years), showing that frequencies of dominant TCRβs are largely consistent over time. We also show that TCRβ generation probability and observed TCR frequency are not related in SSc samples, showing that clonal expansion and persistence of TCRβs is caused by antigenic selection rather than convergent recombination. Moreover, we demonstrate that TCRβ diversity is lower in CD4+ and CD8+ T-cells from SSc patients compared with memory T-cells from healthy individuals, as SSc TCRβ repertoires are largely dominated by clonally expanded persistent TCRβ sequences. Lastly, using "Grouping of Lymphocyte Interactions by Paratope Hotspots" (GLIPH2), we identify clusters of TCRβ sequences with homologous sequences that potentially recognize the same antigens and contain TCRβs that are persist in SSc patients. In conclusion, our results show that CD4+ and CD8+ T-cells are highly persistent in SSc patients over time, and this persistence is likely a result from antigenic selection. Moreover, persistent TCRs form high similarity clusters with other (non-)persistent sequences that potentially recognize the same epitopes. These data provide evidence for an antigen driven expansion of CD4+/CD8+ T-cells in SSc.
Collapse
Affiliation(s)
- N H Servaas
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - F Zaaraoui-Boutahar
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - C G K Wichers
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A Ottria
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - E Chouri
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A J Affandi
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S Silva-Cardoso
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M van der Kroef
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T Carvalheiro
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - F van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A C Andeweg
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - A Pandit
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Smith NL, Nahrendorf W, Sutherland C, Mooney JP, Thompson J, Spence PJ, Cowan GJM. A Conserved TCRβ Signature Dominates a Highly Polyclonal T-Cell Expansion During the Acute Phase of a Murine Malaria Infection. Front Immunol 2020; 11:587756. [PMID: 33329568 PMCID: PMC7719809 DOI: 10.3389/fimmu.2020.587756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023] Open
Abstract
CD4+ αβ T-cells are key mediators of the immune response to a first Plasmodium infection, undergoing extensive activation and splenic expansion during the acute phase of an infection. However, the clonality and clonal composition of this expansion has not previously been described. Using a comparative infection model, we sequenced the splenic CD4+ T-cell receptor repertoires generated over the time-course of a Plasmodium chabaudi infection. We show through repeat replicate experiments, single-cell RNA-seq, and analyses of independent RNA-seq data, that following a first infection - within a highly polyclonal expansion - T-effector repertoires are consistently dominated by TRBV3 gene usage. Clustering by sequence similarity, we find the same dominant clonal signature is expanded across replicates in the acute phase of an infection, revealing a conserved pathogen-specific T-cell response that is consistently a hallmark of a first infection, but not expanded upon re-challenge. Determining the host or parasite factors driving this conserved response may uncover novel immune targets for malaria therapeutic purposes.
Collapse
Affiliation(s)
- Natasha L. Smith
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
D’Ippolito E, Wagner KI, Busch DH. Needle in a Haystack: The Naïve Repertoire as a Source of T Cell Receptors for Adoptive Therapy with Engineered T Cells. Int J Mol Sci 2020; 21:E8324. [PMID: 33171940 PMCID: PMC7664211 DOI: 10.3390/ijms21218324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
T cell engineering with antigen-specific T cell receptors (TCRs) has allowed the generation of increasingly specific, reliable, and versatile T cell products with near-physiological features. However, a broad applicability of TCR-based therapies in cancer is still limited by the restricted number of TCRs, often also of suboptimal potency, available for clinical use. In addition, targeting of tumor neoantigens with TCR-engineered T cell therapy moves the field towards a highly personalized treatment, as tumor neoantigens derive from somatic mutations and are extremely patient-specific. Therefore, relevant TCRs have to be de novo identified for each patient and within a narrow time window. The naïve repertoire of healthy donors would represent a reliable source due to its huge diverse TCR repertoire, which theoretically entails T cells for any antigen specificity, including tumor neoantigens. As a challenge, antigen-specific naïve T cells are of extremely low frequency and mostly of low functionality, making the identification of highly functional TCRs finding a "needle in a haystack." In this review, we present the technological advancements achieved in high-throughput mapping of patient-specific neoantigens and corresponding cognate TCRs and how these platforms can be used to interrogate the naïve repertoire for a fast and efficient identification of rare but therapeutically valuable TCRs for personalized adoptive T cell therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Neoplasms/genetics
- Precision Medicine/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
- Elvira D’Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Karolin I. Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Focus Group ‘‘Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München (TUM), 81675 Munich, Germany
| |
Collapse
|
42
|
Lanfermeijer J, Borghans JAM, Baarle D. How age and infection history shape the antigen-specific CD8 + T-cell repertoire: Implications for vaccination strategies in older adults. Aging Cell 2020; 19:e13262. [PMID: 33078890 PMCID: PMC7681067 DOI: 10.1111/acel.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults often show signs of impaired CD8+ T‐cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T‐cell numbers and repertoire diversity. If this is indeed the case, a strategy to prevent infectious diseases in older adults could be the induction of protective memory responses through vaccination at a younger age. However, this requires that the induced immune responses are maintained until old age. It is therefore important to obtain insights into the long‐term maintenance of the antigen‐specific T‐cell repertoire. Here, we review the literature on the maintenance of antigen‐experienced CD8+ T‐cell repertoires against acute and chronic infections. We describe the complex interactions that play a role in shaping the memory T‐cell repertoire, and the effects of age, infection history, and T‐cell avidity. We discuss the implications of these findings for the development of new vaccination strategies to protect older adults.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - Debbie Baarle
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
- Virology & Immunology Research Department of Medical Microbiology and Infection prevention University Medical Center Groningen the Netherlands
| |
Collapse
|
43
|
Attaf M, Roider J, Malik A, Rius Rafael C, Dolton G, Prendergast AJ, Leslie A, Ndung'u T, Kløverpris HN, Sewell AK, Goulder PJ. Cytomegalovirus-Mediated T Cell Receptor Repertoire Perturbation Is Present in Early Life. Front Immunol 2020; 11:1587. [PMID: 33101265 PMCID: PMC7554308 DOI: 10.3389/fimmu.2020.01587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus, particularly in sub-Saharan Africa, where it is endemic from infancy. The T cell response against CMV is important in keeping the virus in check, with CD8 T cells playing a major role in the control of CMV viraemia. Human leukocyte antigen (HLA) B*44:03-positive individuals raise a robust response against the NEGVKAAW (NW8) epitope, derived from the immediate-early-2 (IE-2) protein. We previously showed that the T cell receptor (TCR) repertoire raised against the NW8-HLA-B*44:03 complex was oligoclonal and characterised by superdominant clones, which were shared amongst unrelated individuals (i.e., "public"). Here, we address the question of how stable the CMV-specific TCR repertoire is over the course of infection, and whether substantial differences are evident in TCR repertoires in children, compared with adults. We present a longitudinal study of four HIV/CMV co-infected mother-child pairs, who in each case express HLA-B*44:03 and make responses to the NW8 epitope, and analyse their TCR repertoire over a period spanning more than 10 years. Using high-throughput sequencing, the paediatric CMV-specific repertoire was found to be highly diverse. In addition, paediatric repertoires were remarkably similar to adults, with public TCR responses being shared amongst children and adults alike. The CMV-specific repertoire in both adults and children displayed strong fluctuations in TCR clonality and repertoire architecture over time. Previously characterised superdominant clonotypes were readily identifiable in the children at high frequency, suggesting that the distortion of the CMV-specific repertoire is incurred as a direct result of CMV infection rather than a product of age-related "memory inflation." Early distortion of the TCR repertoire was particularly apparent in the case of the TCR-β chain, where oligoclonality was low in children and positively correlated with age, a feature we did not observe for TCR-α. This discrepancy between TCR-α and -β chain repertoire may reflect differential contribution to NW8 recognition. Altogether, the results of the present study provide insight into the formation of the TCR repertoire in early life and pave the way to better understanding of CD8 T cell responses to CMV at the molecular level.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Child
- Child, Preschool
- Coinfection
- Cytomegalovirus/immunology
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/metabolism
- Cytomegalovirus Infections/virology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Female
- HIV Infections/immunology
- HIV Infections/virology
- HLA Antigens/immunology
- High-Throughput Nucleotide Sequencing
- Humans
- Infant
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Peptides/chemistry
- Peptides/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Viral Load
- Young Adult
Collapse
Affiliation(s)
- Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Julia Roider
- Human Immunodeficiency Virus Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- German Centre for Infection Research, Munich, Germany
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | - Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Cristina Rius Rafael
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Alasdair Leslie
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
| | - Thumbi Ndung'u
- Human Immunodeficiency Virus Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
- Virology and Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Philip J. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| |
Collapse
|
44
|
Kotouza MT, Gemenetzi K, Galigalidou C, Vlachonikola E, Pechlivanis N, Agathangelidis A, Sandaltzopoulos R, Mitkas PA, Stamatopoulos K, Chatzidimitriou A, Psomopoulos FE. TRIP - T cell receptor/immunoglobulin profiler. BMC Bioinformatics 2020; 21:422. [PMID: 32993478 PMCID: PMC7525938 DOI: 10.1186/s12859-020-03669-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Background Antigen receptors are characterized by an extreme diversity of specificities, which poses major computational and analytical challenges, particularly in the era of high-throughput immunoprofiling by next generation sequencing (NGS). The T cell Receptor/Immunoglobulin Profiler (TRIP) tool offers the opportunity for an in-depth analysis based on the processing of the output files of the IMGT/HighV-Quest tool, a standard in NGS immunoprofiling, through a number of interoperable modules. These provide detailed information about antigen receptor gene rearrangements, including variable (V), diversity (D) and joining (J) gene usage, CDR3 amino acid and nucleotide composition and clonality of both T cell receptors (TR) and B cell receptor immunoglobulins (BcR IG), and characteristics of the somatic hypermutation within the BcR IG genes. TRIP is a web application implemented in R shiny. Results Two sets of experiments have been performed in order to evaluate the efficiency and performance of the TRIP tool. The first used a number of synthetic datasets, ranging from 250k to 1M sequences, and established the linear response time of the tool (about 6 h for 1M sequences processed through the entire BcR IG data pipeline). The reproducibility of the tool was tested comparing the results produced by the main TRIP workflow with the results from a previous pipeline used on the Galaxy platform. As expected, no significant differences were noted between the two tools; although the preselection process seems to be stricter within the TRIP pipeline, about 0.1% more rearrangements were filtered out, with no impact on the final results. Conclusions TRIP is a software framework that provides analytical services on antigen receptor gene sequence data. It is accurate and contains functions for data wrangling, cleaning, analysis and visualization, enabling the user to build a pipeline tailored to their needs. TRIP is publicly available at https://bio.tools/TRIP_-_T-cell_Receptor_Immunoglobulin_Profiler.
Collapse
Affiliation(s)
- Maria Th Kotouza
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Katerina Gemenetzi
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, 57001, Greece
| | - Chrysi Galigalidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, 57001, Greece
| | - Elisavet Vlachonikola
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, 57001, Greece
| | - Nikolaos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, 57001, Greece
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, 57001, Greece
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Pericles A Mitkas
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, 57001, Greece
| | - Anastasia Chatzidimitriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, 57001, Greece
| | - Fotis E Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, 57001, Greece. .,Dept of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
45
|
Heikkilä N, Vanhanen R, Yohannes DA, Kleino I, Mattila IP, Saramäki J, Arstila TP. Human thymic T cell repertoire is imprinted with strong convergence to shared sequences. Mol Immunol 2020; 127:112-123. [PMID: 32961421 DOI: 10.1016/j.molimm.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022]
Abstract
A highly diverse repertoire of T cell antigen receptors (TCR) is created in the thymus by recombination of gene segments and the insertion or deletion of nucleotides at the junctions. Using next-generation TCR sequencing we define here the features of recombination and selection in the human TCRα and TCRβ locus, and show that a strikingly high proportion of the repertoire is shared by unrelated individuals. The thymic TCRα nucleotide repertoire was more diverse than TCRβ, with 4.1 × 106 vs. 0.81 × 106 unique clonotypes, and contained nonproductive clonotypes at a higher frequency (69.2% vs. 21.2%). The convergence of distinct nucleotide clonotypes to the same amino acid sequences was higher in TCRα than in TCRβ repertoire (1.45 vs. 1.06 nucleotide sequences per amino acid sequence in thymus). The gene segment usage was biased, and generally all individuals favored the same genes in both TCRα and TCRβ loci. Despite the high diversity, a large fraction of the repertoire was found in more than one donor. The shared fraction was bigger in TCRα than TCRβ repertoire, and more common in in-frame sequences than in nonproductive sequences. Thus, both biases in rearrangement and thymic selection are likely to contribute to the generation of shared repertoire in humans.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Reetta Vanhanen
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Dawit A Yohannes
- Research Programs Unit, Translational Immunology and Medicum, Department of Medical and Clinical Genetics, University of Helsinki. Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Iivari Kleino
- Research Programs Unit, Translational Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital. Stenbäckinkatu 9, 00290 Helsinki, Finland.
| | - Jari Saramäki
- Department of Computer Science, Aalto University. Konemiehentie 2, 02150 Espoo, Finland.
| | - T Petteri Arstila
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| |
Collapse
|
46
|
Starke CE, Vinton CL, Ladell K, McLaren JE, Ortiz AM, Mudd JC, Flynn JK, Lai SH, Wu F, Hirsch VM, Darko S, Douek DC, Price DA, Brenchley JM. SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues. J Clin Invest 2020; 130:789-798. [PMID: 31661461 DOI: 10.1172/jci129161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell-mediated efficacy against SIV.
Collapse
Affiliation(s)
- Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Stephen H Lai
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Fan Wu
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Vanessa M Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Schober K, Fuchs P, Mir J, Hammel M, Fanchi L, Flossdorf M, Busch DH. The CMV-Specific CD8 + T Cell Response Is Dominated by Supra-Public Clonotypes with High Generation Probabilities. Pathogens 2020; 9:pathogens9080650. [PMID: 32823573 PMCID: PMC7460440 DOI: 10.3390/pathogens9080650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Evolutionary processes govern the selection of T cell clonotypes that are optimally suited to mediate efficient antigen-specific immune responses against pathogens and tumors. While the theoretical diversity of T cell receptor (TCR) sequences is vast, the antigen-specific TCR repertoire is restricted by its peptide epitope and the presenting major histocompatibility complex (pMHC). It remains unclear how many TCR sequences are recruited into an antigen-specific T cell response, both within and across different organisms, and which factors shape both of these distributions. Infection of mice with ovalbumin-expressing cytomegalovirus (IE2-OVA-mCMV) represents a well-studied model system to investigate T cell responses given their size and longevity. Here we investigated > 180,000 H2kb/SIINFEKL-recognizing TCR CDR3α or CDR3β sequences from 25 individual mice spanning seven different time points during acute infection and memory inflation. In-depth repertoire analysis revealed that from a pool of highly diverse, but overall limited sequences, T cell responses were dominated by public clonotypes, partly with unexpectedly extreme degrees of sharedness between individual mice ("supra-public clonotypes"). Public clonotypes were found exclusively in a fraction of TCRs with a high generation probability. Generation probability and degree of sharedness select for highly functional TCRs, possibly mediated through elevating intraindividual precursor frequencies of clonotypes.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Correspondence: (K.S.); (D.H.B.); Tel.: +49-89-4140-6870 (K.S.); +49-89-4140-4120 (D.H.B.)
| | - Pim Fuchs
- ENPICOM B.V., 5211 AX ‘s-Hertogenbosch, The Netherlands; (P.F.); (L.F.)
| | - Jonas Mir
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
| | - Lorenzo Fanchi
- ENPICOM B.V., 5211 AX ‘s-Hertogenbosch, The Netherlands; (P.F.); (L.F.)
| | - Michael Flossdorf
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Correspondence: (K.S.); (D.H.B.); Tel.: +49-89-4140-6870 (K.S.); +49-89-4140-4120 (D.H.B.)
| |
Collapse
|
48
|
Mendoza JL, Fischer S, Gee MH, Lam LH, Brackenridge S, Powrie FM, Birnbaum M, McMichael AJ, Garcia KC, Gillespie GM. Interrogating the recognition landscape of a conserved HIV-specific TCR reveals distinct bacterial peptide cross-reactivity. eLife 2020; 9:58128. [PMID: 32716298 PMCID: PMC7384859 DOI: 10.7554/elife.58128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
T cell cross-reactivity ensures that diverse pathogen-derived epitopes encountered during a lifetime are recognized by the available TCR repertoire. A feature of cross-reactivity where previous exposure to one microbe can alter immunity to subsequent, non-related pathogens has been mainly explored for viruses. Yet cross-reactivity to additional microbes is important to consider, especially in HIV infection where gut-intestinal barrier dysfunction could facilitate T cell exposure to commensal/pathogenic microbes. Here we evaluated the cross-reactivity of a ‘public’, HIV-specific, CD8 T cell-derived TCR (AGA1 TCR) using MHC class I yeast display technology. Via screening of MHC-restricted libraries comprising ~2×108 sequence-diverse peptides, AGA1 TCR specificity was mapped to a central peptide di-motif. Using the top TCR-enriched library peptides to probe the non-redundant protein database, bacterial peptides that elicited functional responses by AGA1-expressing T cells were identified. The possibility that in context-specific settings, MHC class I proteins presenting microbial peptides influence virus-specific T cell populations in vivo is discussed.
Collapse
Affiliation(s)
- Juan L Mendoza
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Suzanne Fischer
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Marvin H Gee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Lilian H Lam
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| | - Fiona M Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michael Birnbaum
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Koch Institute at MIT, Cambridge, United States
| | - Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Geraldine M Gillespie
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| |
Collapse
|
49
|
Effects of sleep on the splenic milieu in mice and the T cell receptor repertoire recruited into a T cell dependent B cell response. Brain Behav Immun Health 2020; 5:100082. [PMID: 34589857 PMCID: PMC8474558 DOI: 10.1016/j.bbih.2020.100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is known to improve immune function ranging from cell distribution in the naïve state to elevated antibody titers after an immune challenge. The underlying mechanisms still remain unclear, partially because most studies have focused on the analysis of blood only. Hence, we investigated the effects of sleep within the spleen in female C57BL/6J mice with normal sleep compared to short-term sleep-deprived animals both in the naïve state and after an antigen challenge. Lack of sleep decreased the expression of genes associated with immune cell recruitment into and antigen presentation within the spleen both in the naïve state and during a T cell dependent B cell response directed against sheep red blood cells (SRBC). However, neither T cell proliferation nor formation of SRBC-specific antibodies was affected. In addition, the T cell receptor repertoire recruited into the immune response within seven days was not influenced by sleep deprivation. Thus, sleep modulated the molecular milieu within the spleen whereas we could not detect corresponding changes in the primary immune response against SRBC. Further studies will show whether sleep influences the secondary immune response against SRBC or the development of the B cell receptor repertoire, and how this can be compared to other antigens. Sleep deprivation (SD) decreases expression of genes involved in T cell function. SD induces those changes in the milieu of both lymph nodes and spleen. SD dampens the expression of several genes in the spleen during an immune response. SD does not alter the T cell receptor repertoire recruited into the immune response.
Collapse
Key Words
- Antigen presentation
- BCZ, B cell zone
- CCL, C–C motif ligand
- CCR, C–C motif receptor
- CD, cluster of differentiation
- CIITA, class II major histocompatibility complex transactivator
- CXCL, C-X-C motif ligand
- FDR, false discovery rate
- GC, germinal center
- IFN, interferon
- IL, interleukin
- Lymphocyte migration
- MHC-II, major histocompatibility complex II
- SD, sleep deprivation
- SLO, secondary lymphoid organ
- SRBC, sheep red blood cells
- Sheep red blood cells
- Sleep deprivation
- T cell dependent B cell Response
- T cell receptor repertoire
- TCR, T cell receptor
- TCR-R, T cell receptor repertoire
- TCZ, T cell zone
Collapse
|
50
|
Gil A, Kamga L, Chirravuri-Venkata R, Aslan N, Clark F, Ghersi D, Luzuriaga K, Selin LK. Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor α and β Repertoires. mBio 2020; 11:e00250-20. [PMID: 32184241 PMCID: PMC7078470 DOI: 10.1128/mbio.00250-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.
Collapse
Affiliation(s)
- Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Larisa Kamga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|