1
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Liu YB, Hong JR, Jiang N, Jin L, Zhong WJ, Zhang CY, Yang HH, Duan JX, Zhou Y. The Role of Mitochondrial Quality Control in Chronic Obstructive Pulmonary Disease. J Transl Med 2024; 104:100307. [PMID: 38104865 DOI: 10.1016/j.labinv.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Ling H, Zhang Q, Luo Q, Ouyang D, He Z, Sun J, Sun M. Dynamic immuno-nanomedicines in oncology. J Control Release 2024; 365:668-687. [PMID: 38042376 DOI: 10.1016/j.jconrel.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Anti-cancer therapeutics have achieved significant advances due to the emergence of immunotherapies that rely on the identification of tumors by the patients' immune system and subsequent tumor eradication. However, tumor cells often escape immunity, leading to poor responsiveness and easy tolerance to immunotherapy. Thus, the potentiated anti-tumor immunity in patients resistant to immunotherapies remains a challenge. Reactive oxygen species-based dynamic nanotherapeutics are not new in the anti-tumor field, but their potential as immunomodulators has only been demonstrated in recent years. Dynamic nanotherapeutics can distinctly enhance anti-tumor immune response, which derives the concept of the dynamic immuno-nanomedicines (DINMs). This review describes the pivotal role of DINMs in cancer immunotherapy and provides an overview of the clinical realities of DINMs. The preclinical development of emerging DINMs is also outlined. Moreover, strategies to synergize the antitumor immunity by DINMs in combination with other immunologic agents are summarized. Last but not least, the challenges and opportunities related to DINMs-mediated immune responses are also discussed.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qinyi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
4
|
Raina R, Shetty DC, Nasreen N, DAS S, Sethi A, Chikara A, Rai G, Kumar A, Tulsyan S, Sisodiya S, Hussain S. Mitochondrial DNA content as a biomarker for oral carcinogenesis: correlation with clinicopathologic parameters. Minerva Dent Oral Sci 2023; 72:211-220. [PMID: 37066891 DOI: 10.23736/s2724-6329.23.04756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Mitochondrial genome (mtDNA) exhibits greater vulnerability to mutations and/or copy number variations than nuclear counterpart (nDNA) in both normal and cancer cells due to oxidative stress generated by inflammation, viral infections, physical, mechanical, and chemical load. The study was designed to evaluate the mtDNA content in oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC). Various parameters were analyzed including its variation with human papillomavirus (HPV) during oral carcinogenesis. METHODS The present cross-sectional study comprised of two hundred patients (100 OPMDs and 100 OSCCs) and 100 healthy controls. PCR amplifications were done for mtDNA content and HPV in OPMDs and OSCC using real-time and conventional PCR respectively. RESULTS The relative mtDNA content was assessed quantitatively and it was observed that mtDNA was greater in OSCC (7.60±0.94) followed by OPMDs (5.93±0.92) and controls (5.37±0.95). It showed a positive linear correlation with habits and increasing histopathological grades. Total HPV-positive study groups showed higher mtDNA content (7.06±1.64) than HPV-negative counterparts (6.21±1.29). CONCLUSIONS An elevated mutant mtDNA may be attributed to increased free radicals and selective cell clonal proliferation in test groups. Moreover, sustained HPV infection enhances tumorigenesis through mitochondria mediated apoptosis. Since, mtDNA content is directly linked to oxidative DNA damage, these quantifications might serve as a surrogate measure for invasiveness in dysplastic lesions and typify their malignant potential.
Collapse
Affiliation(s)
- Reema Raina
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Centre for Dental Studies and Research, Muradnagar, India
| | - Devi C Shetty
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Centre for Dental Studies and Research, Muradnagar, India
| | - Nighat Nasreen
- Department of Oral Pathology and Microbiology, Divya Jyoti College of Dental Sciences and Research, Modinagar, India
| | - Shukla DAS
- Department of Microbiology, University College of Medical Sciences and GTB Hospital, Dilshad Garden, New Delhi, India
| | - Aashka Sethi
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Centre for Dental Studies and Research, Muradnagar, India
| | - Atul Chikara
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India
| | - Gargi Rai
- Department of Microbiology, University College of Medical Sciences and GTB Hospital, Dilshad Garden, New Delhi, India
| | - Anshuman Kumar
- Department of Surgical Oncology, Dharamshila Narayana Superspeciality Hospital, Vasundhara Enclave, New Delhi, India
| | - Sonam Tulsyan
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India
| | - Sandeep Sisodiya
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India
| | - Showket Hussain
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India -
| |
Collapse
|
5
|
Moss DY, McCann C, Kerr EM. Rerouting the drug response: Overcoming metabolic adaptation in KRAS-mutant cancers. Sci Signal 2022; 15:eabj3490. [PMID: 36256706 DOI: 10.1126/scisignal.abj3490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in guanosine triphosphatase KRAS are common in lung, colorectal, and pancreatic cancers. The constitutive activity of mutant KRAS and its downstream signaling pathways induces metabolic rewiring in tumor cells that can promote resistance to existing therapeutics. In this review, we discuss the metabolic pathways that are altered in response to treatment and those that can, in turn, alter treatment efficacy, as well as the role of metabolism in the tumor microenvironment (TME) in dictating the therapeutic response in KRAS-driven cancers. We highlight metabolic targets that may provide clinical opportunities to overcome therapeutic resistance and improve survival in patients with these aggressive cancers.
Collapse
Affiliation(s)
- Deborah Y Moss
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| |
Collapse
|
6
|
Smith ALM, Whitehall JC, Greaves LC. Mitochondrial
DNA
mutations in aging and cancer. Mol Oncol 2022; 16:3276-3294. [PMID: 35842901 PMCID: PMC9490137 DOI: 10.1002/1878-0261.13291] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age‐related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
Collapse
Affiliation(s)
- Anna LM Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| |
Collapse
|
7
|
Kang JH, Lee SK, Yun NJ, Kim YS, Song JJ, Bae Y. IM156, a new AMPK activator, protects against polymicrobial sepsis. J Cell Mol Med 2022; 26:3378-3386. [PMID: 35502484 PMCID: PMC9189331 DOI: 10.1111/jcmm.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/05/2022] Open
Abstract
IM156, a novel biguanide with higher potency of AMP-activated protein kinase activation than metformin, has inhibitory activity against angiogenesis and cancer. In this study, we investigated effects of IM156 against polymicrobial sepsis. Administration of IM156 significantly increased survival rate against caecal ligation and puncture (CLP)-induced sepsis. Mechanistically, IM156 markedly reduced viable bacterial burden in the peritoneal fluid and peripheral blood and attenuated organ damage in a CLP-induced sepsis model. IM156 also inhibited the apoptosis of splenocytes and the production of inflammatory cytokines including IL-1β, IL-6 and IL-10 in CLP mice. Moreover, IM156 strongly inhibited the generation of reactive oxygen species and subsequent formation of neutrophil extracellular traps in response to lipopolysaccharide in neutrophils. Taken together, these results show that IM156 can inhibit inflammatory response and protect against polymicrobial sepsis, suggesting that IM156 might be a new treatment for sepsis.
Collapse
Affiliation(s)
- Ji Hyeon Kang
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung Kyun Lee
- Center for Convergent Research of Emerging Virus InfectionKorea Research Institute of Chemical TechnologyDaejeonRepublic of Korea
| | - Nam Joo Yun
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Ye Seon Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Jason Jungsik Song
- Division of RheumatologyDepartment of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Institute for Immunology and Immunological DiseasesYonsei University College of MedicineSeoulRepublic of Korea
| | - Yoe‐Sik Bae
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
8
|
Khomtchouk BB, Lee YS, Khan ML, Sun P, Mero D, Davidson MH. Targeting the cytoskeleton and extracellular matrix in cardiovascular disease drug discovery. Expert Opin Drug Discov 2022; 17:443-460. [PMID: 35258387 PMCID: PMC9050939 DOI: 10.1080/17460441.2022.2047645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Currently, cardiovascular disease (CVD) drug discovery has focused primarily on addressing the inflammation and immunopathology aspects inherent to various CVD phenotypes such as cardiac fibrosis and coronary artery disease. However, recent findings suggest new biological pathways for cytoskeletal and extracellular matrix (ECM) regulation across diverse CVDs, such as the roles of matricellular proteins (e.g. tenascin-C) in regulating the cellular microenvironment. The success of anti-inflammatory drugs like colchicine, which targets microtubule polymerization, further suggests that the cardiac cytoskeleton and ECM provide prospective therapeutic opportunities. AREAS COVERED Potential therapeutic targets include proteins such as gelsolin and calponin 2, which play pivotal roles in plaque development. This review focuses on the dynamic role that the cytoskeleton and ECM play in CVD pathophysiology, highlighting how novel target discovery in cytoskeletal and ECM-related genes may enable therapeutics development to alter the regulation of cellular architecture in plaque formation and rupture, cardiac contractility, and other molecular mechanisms. EXPERT OPINION Further research into the cardiac cytoskeleton and its associated ECM proteins is an area ripe for novel target discovery. Furthermore, the structural connection between the cytoskeleton and the ECM provides an opportunity to evaluate both entities as sources of potential therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bohdan B. Khomtchouk
- University of Chicago, Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology, Chicago, IL USA
| | - Yoon Seo Lee
- The College of the University of Chicago, Chicago, IL USA
| | - Maha L. Khan
- The College of the University of Chicago, Chicago, IL USA
| | - Patrick Sun
- The College of the University of Chicago, Chicago, IL USA
| | | | - Michael H. Davidson
- University of Chicago, Department of Medicine, Section of Cardiology, Chicago, IL USA
| |
Collapse
|
9
|
Qi Y, Ye Y, Wang R, Yu S, Zhang Y, Lv J, Jin W, Xia S, Jiang W, Li Y, Zhang D. Mitochondrial dysfunction by TFAM depletion disrupts self-renewal and lineage differentiation of human PSCs by affecting cell proliferation and YAP response. Redox Biol 2022; 50:102248. [PMID: 35091324 PMCID: PMC8802056 DOI: 10.1016/j.redox.2022.102248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 02/08/2023] Open
Abstract
Genetic mitochondrial dysfunction is frequently associated with various embryonic developmental defects. However, how mitochondria contribute to early development and cell fate determination is poorly studied, especially in humans. Using human pluripotent stem cells (hPSCs), we established a Dox-induced knockout model with mitochondrial dysfunction and evaluated the effect of mitochondrial dysfunction on human pluripotency maintenance and lineage differentiation. The nucleus-encoded gene TFAM (transcription factor A, mitochondrial), essential for mitochondrial gene transcription and mitochondrial DNA replication, is targeted to construct the mitochondrial dysfunction model. The hPSCs with TFAM depletion exhibit the decrease of mtDNA level and oxidative respiration efficiency, representing a typical mitochondrial dysfunction phenotype. Mitochondrial dysfunction leads to impaired self-renewal in hPSCs due to proliferation arrest. Although the mitochondrial dysfunction does not affect pluripotent gene expression, it results in a severe defect in lineage differentiation. Further study in mesoderm differentiation reveals that mitochondrial dysfunction causes proliferation disability and YAP nuclear translocalization and thus together blocks mesoderm lineage differentiation. These findings provide new insights into understanding the mitochondrial function in human pluripotency maintenance and mesoderm differentiation.
Collapse
Affiliation(s)
- Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yida Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Ruxiang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Senlin Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yue Zhang
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Lv
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Wenwen Jin
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Wei Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Yifei Li
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
10
|
Peng Y, Cheng W, Duan J, Zhao Y, Zhou Z, Zhou A, Deng M, Peng H, Ouyang R, Chen Y, Chen P. Prohibitin Protects Pulmonary Microvascular Endothelial Cells Against Cigarette Smoke Extract-Induced Cell Apoptosis and Inflammation. Int J Chron Obstruct Pulmon Dis 2022; 17:653-665. [PMID: 35378837 PMCID: PMC8976484 DOI: 10.2147/copd.s345058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/12/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Prohibitin has been identified to play roles in cell survival and apoptosis. Here, this study aimed to clarify the role of prohibitin in cigarette smoke extract (CSE)-induced endothelial cell apoptosis. METHODS The protein level of prohibitin was assessed by Western blot in lung tissues from emphysema and control mice. CSE-induced human pulmonary microvascular endothelial cells (hPMECs) were applied to mimic smoke-related cell apoptosis in vitro. Prohibitin was overexpressed in hPMECs with or without CSE. Mitochondrial function was analyzed by JC-1 staining and ATP assay kits. Oxidative stress was assessed by flow cytometry, fluorescence staining and immunocytochemistry. Apoptosis was analyzed by flow cytometry, Western blot and caspase-3 activity assays. In addition, the expression of inflammatory markers was assessed by Western blot and real-time polymerase chain reaction (PCR). The secretion of inflammatory cytokines was measured by ELISA. RESULTS Prohibitin was downregulated in emphysema mouse tissues compared with control experiments. Consistently, CSE inhibited both the protein and RNA levels of prohibitin in hPMECs in a dose-dependent manner. Gain-of-function experiments indicated that CSE induced collapse of mitochondrial membrane potential (MMP) and loss of ATP, while prohibitin improved mitochondrial function. CSE induced robust ROS production and oxidative DNA damage, while prohibitin decreased this damage. Upregulation of prohibitin protected the apoptosis of hPMECs from CSE. Overexpression of prohibitin significantly reduced the levels of the main proinflammatory cytokines. Finally, prohibitin inhibited nuclear factor-kappa B (NF-κB) p65 accumulation and IκBα degradation induced by CSE. CONCLUSION The current findings suggest that CSE-mediated mitochondrial dysfunction, oxidative stress, cell apoptosis and inflammation in hPMECs were reduced by overexpression of prohibitin. We identified prohibitin as a novel regulator of endothelial cell apoptosis and survival in the context of CSE exposure.
Collapse
Affiliation(s)
- Yating Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Jiaxi Duan
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Yiyang Zhao
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Aiyuan Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Minhua Deng
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
- Department of Respiratory, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, People’s Republic of China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiang Ya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Institute of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Centre for Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
11
|
Repurposing Multiple-Molecule Drugs for COVID-19-Associated Acute Respiratory Distress Syndrome and Non-Viral Acute Respiratory Distress Syndrome via a Systems Biology Approach and a DNN-DTI Model Based on Five Drug Design Specifications. Int J Mol Sci 2022; 23:ijms23073649. [PMID: 35409008 PMCID: PMC8998971 DOI: 10.3390/ijms23073649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) epidemic is currently raging around the world at a rapid speed. Among COVID-19 patients, SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) is the main contribution to the high ratio of morbidity and mortality. However, clinical manifestations between SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS are quite common, and their therapeutic treatments are limited because the intricated pathophysiology having been not fully understood. In this study, to investigate the pathogenic mechanism of SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS, first, we constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via database mining. With the help of host-pathogen RNA sequencing (RNA-Seq) data, real HPI-GWGEN of COVID-19-associated ARDS and non-viral ARDS were obtained by system modeling, system identification, and Akaike information criterion (AIC) model order selection method to delete the false positives in candidate HPI-GWGEN. For the convenience of mitigation, the principal network projection (PNP) approach is utilized to extract core HPI-GWGEN, and then the corresponding core signaling pathways of COVID-19-associated ARDS and non-viral ARDS are annotated via their core HPI-GWGEN by KEGG pathways. In order to design multiple-molecule drugs of COVID-19-associated ARDS and non-viral ARDS, we identified essential biomarkers as drug targets of pathogenesis by comparing the core signal pathways between COVID-19-associated ARDS and non-viral ARDS. The deep neural network of the drug–target interaction (DNN-DTI) model could be trained by drug–target interaction databases in advance to predict candidate drugs for the identified biomarkers. We further narrowed down these predicted drug candidates to repurpose potential multiple-molecule drugs by the filters of drug design specifications, including regulation ability, sensitivity, excretion, toxicity, and drug-likeness. Taken together, we not only enlighten the etiologic mechanisms under COVID-19-associated ARDS and non-viral ARDS but also provide novel therapeutic options for COVID-19-associated ARDS and non-viral ARDS.
Collapse
|
12
|
Hao L, Zhong W, Dong H, Guo W, Sun X, Zhang W, Yue R, Li T, Griffiths A, Ahmadi AR, Sun Z, Song Z, Zhou Z. ATF4 activation promotes hepatic mitochondrial dysfunction by repressing NRF1-TFAM signalling in alcoholic steatohepatitis. Gut 2021; 70:1933-1945. [PMID: 33177163 PMCID: PMC8110597 DOI: 10.1136/gutjnl-2020-321548] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mitochondrial dysfunction plays a dominant role in the pathogenesis of alcoholic liver disease (ALD); however, the underlying mechanisms remain to be fully understood. We previously found that hepatic activating transcription factor 4 (ATF4) activation was associated with mitochondrial dysfunction in ALD. This study aimed to investigate the function and mechanism of ATF4 in alcohol-induced hepatic mitochondrial dysfunction. DESIGN ATF4 activation was detected in the livers of patients with severe alcoholic hepatitis (AH). The role of ATF4 and mitochondrial transcription factor A (TFAM) in alcohol-induced liver damage was determined in hepatocyte-specific ATF4 knockout mice and liver-specific TFAM overexpression mice, respectively. RESULTS Hepatic PERK-eIF2α-ATF4 ER stress signalling was upregulated in patients with AH. Hepatocyte-specific ablation of ATF4 in mice ameliorated alcohol-induced steatohepatitis. ATF4 ablation also attenuated alcohol-impaired mitochondrial biogenesis and respiratory function along with the restoration of TFAM. Cell studies confirmed that TFAM expression was negatively regulated by ATF4. TFAM silencing in hepatoma cells abrogated the protective effects of ATF4 knockdown on ethanol-mediated mitochondrial dysfunction and cell death. Moreover, hepatocyte-specific TFAM overexpression in mice attenuated alcohol-induced mitochondrial dysfunction and liver damage. Mechanistic studies revealed that ATF4 repressed the transcription activity of nuclear respiratory factor 1 (NRF1), a key regulator of TFAM, through binding to its promoter region. Clinical relevance among ATF4 activation, NRF1-TFAM pathway disruption and mitochondrial dysfunction was validated in the livers of patients with AH. CONCLUSION This study demonstrates that hepatic ATF4 plays a pathological role in alcohol-induced mitochondrial dysfunction and liver injury by disrupting the NRF1-TFAM pathway.
Collapse
Affiliation(s)
- Liuyi Hao
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
- Department of Nutrition, UNCG, Greensboro, North Carolina, USA
| | - Haibo Dong
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
| | - Wei Guo
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
| | - Wenliang Zhang
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
| | - Ruichao Yue
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
| | - Tianjiao Li
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
| | | | - Ali Reza Ahmadi
- Department of Surgery, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, UIC, Chicago, Illinois, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, UNCG, Kannapolis, North Carolina, USA
- Department of Nutrition, UNCG, Greensboro, North Carolina, USA
| |
Collapse
|
13
|
McCann C, Kerr EM. Metabolic Reprogramming: A Friend or Foe to Cancer Therapy? Cancers (Basel) 2021; 13:3351. [PMID: 34283054 PMCID: PMC8267696 DOI: 10.3390/cancers13133351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a major cause of cancer treatment failure, effectively driven by processes that promote escape from therapy-induced cell death. The mechanisms driving evasion of apoptosis have been widely studied across multiple cancer types, and have facilitated new and exciting therapeutic discoveries with the potential to improve cancer patient care. However, an increasing understanding of the crosstalk between cancer hallmarks has highlighted the complexity of the mechanisms of drug resistance, co-opting pathways outside of the canonical "cell death" machinery to facilitate cell survival in the face of cytotoxic stress. Rewiring of cellular metabolism is vital to drive and support increased proliferative demands in cancer cells, and recent discoveries in the field of cancer metabolism have uncovered a novel role for these programs in facilitating drug resistance. As a key organelle in both metabolic and apoptotic homeostasis, the mitochondria are at the forefront of these mechanisms of resistance, coordinating crosstalk in the event of cellular stress, and promoting cellular survival. Importantly, the appreciation of this role metabolism plays in the cytotoxic response to therapy, and the ability to profile metabolic adaptions in response to treatment, has encouraged new avenues of investigation into the potential of exploiting metabolic addictions to improve therapeutic efficacy and overcome drug resistance in cancer. Here, we review the role cancer metabolism can play in mediating drug resistance, and the exciting opportunities presented by imposed metabolic vulnerabilities.
Collapse
Affiliation(s)
| | - Emma M. Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Rd, BT9 7AE Belfast, Ireland;
| |
Collapse
|
14
|
Del Campo A, Perez G, Castro PF, Parra V, Verdejo HE. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166208. [PMID: 34214606 DOI: 10.1016/j.bbadis.2021.166208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is one of the leading causes of hospitalization for the adult population and a major cause of mortality worldwide. The HF syndrome is characterized by the heart's inability to supply the cardiac output required to meet the body's metabolic requirements or only at the expense of elevated filling pressures. HF without overt impairment of left ventricular ejection fraction (LVEF) was initially labeled as "diastolic HF" until recognizing the coexistence of both systolic and diastolic abnormalities in most cases. Acknowledging these findings, the preferred nomenclature is HF with preserved EF (HFpEF). This syndrome primarily affects the elderly population and is associated with a heterogeneous overlapping of comorbidities that makes its diagnosis challenging. Despite extensive research, there is still no evidence-based therapy for HFpEF, reinforcing the need for a thorough understanding of the pathophysiology underlying its onset and progression. The role of mitochondrial dysfunction in developing the pathophysiological changes that accompany HFpEF onset and progression (low-grade systemic inflammation, oxidative stress, endothelial dysfunction, and myocardial remodeling) has just begun to be acknowledged. This review summarizes our current understanding of the participation of the mitochondrial network in the pathogenesis of HFpEF, with particular emphasis on the signaling pathways involved, which may provide future therapeutic targets.
Collapse
Affiliation(s)
- Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Perez
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| | - Hugo E Verdejo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| |
Collapse
|
15
|
Summerhill VI, Sukhorukov VN, Eid AH, Nedosugova LV, Sobenin IA, Orekhov AN. Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Biomol Concepts 2021; 12:55-67. [PMID: 34115932 DOI: 10.1515/bmc-2021-0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex degenerative vascular disease, with considerable morbidity and mortality rates among the elderly population. The mortality of AAA is related to aneurysm expansion (the enlargement of the aortic diameter up to 30 mm and above) and the subsequent rupture. The pathogenesis of AAA involves several biological processes, including aortic mural inflammation, oxidative stress, vascular smooth muscle cell apoptosis, elastin depletion, and degradation of the extracellular matrix. Mitochondrial dysfunction was also found to be associated with AAA formation. The evidence accumulated to date supports a close relationship between environmental and genetic factors in AAA initiation and progression. However, a comprehensive pathophysiological understanding of AAA formation remains incomplete. The open surgical repair of AAA is the only therapeutic option currently available, while a specific pharmacotherapy is still awaited. Therefore, there is a great need to clarify pathophysiological cellular and molecular mechanisms underlying AAA formation that would help to develop effective pharmacological therapies. In this review, pathophysiological aspects of AAA development with a special focus on mitochondrial dysfunction and genetic associations were discussed.
Collapse
Affiliation(s)
- Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut-Lebanon
| | - Ludmila V Nedosugova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, Moscow 119991, Russia
| | - Igor A Sobenin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia.,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow 121552, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| |
Collapse
|
16
|
Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 2021; 17:948-960. [PMID: 32186434 PMCID: PMC8078708 DOI: 10.1080/15548627.2020.1739447] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer tends to be highly resistant to current therapy and remains one of the great challenges in biomedicine with very low 5-year survival rates. Here, we report that zalcitabine, an antiviral drug for human immunodeficiency virus infection, can suppress the growth of primary and immortalized human pancreatic cancer cells through the induction of ferroptosis, an iron-dependent form of regulated cell death. Mechanically, this effect relies on zalcitabine-induced mitochondrial DNA stress, which activates the STING1/TMEM173-mediated DNA sensing pathway, leading to macroautophagy/autophagy-dependent ferroptotic cell death via lipid peroxidation, but not a type I interferon response. Consequently, the genetic and pharmacological inactivation of the autophagy-dependent ferroptosis pathway diminishes the anticancer effects of zalcitabine in cell culture and animal models. Together, these findings not only provide a new approach for pancreatic cancer therapy but also increase our understanding of the interplay between autophagy and DNA damage response in shaping cell death.Abbreviations: ALOX: arachidonate lipoxygenase; ARNTL/BMAL1: aryl hydrocarbon receptor nuclear translocator-like; ATM: ATM serine/threonine kinase; ATG: autophagy-related; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; ER: endoplasmic reticulum; FANCD2: FA complementation group D2; GPX4: glutathione peroxidase 4; IFNA1/IFNα: interferon alpha 1; IFNB1/IFNβ: interferon beta 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MDA: malondialdehyde; mtDNA: mitochondrial DNA; NCOA4: nuclear receptor coactivator 4; PDAC: pancreatic ductal adenocarcinoma; POLG: DNA polymerase gamma, catalytic subunit; qRT-PCR: quantitative polymerase chain reaction; RCD: regulated cell death; ROS: reactive oxygen species; SLC7A11: solute carrier family 7 member 11; STING1/TMEM173: stimulator of interferon response cGAMP interactor 1; TFAM: transcription factor A, mitochondrial.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Izzo C, Vitillo P, Di Pietro P, Visco V, Strianese A, Virtuoso N, Ciccarelli M, Galasso G, Carrizzo A, Vecchione C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life (Basel) 2021; 11:60. [PMID: 33467601 PMCID: PMC7829951 DOI: 10.3390/life11010060] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paolo Vitillo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Andrea Strianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| |
Collapse
|
18
|
Akintade DD, Chaudhuri B. Apoptosis, Induced by Human α-Synuclein in Yeast, Can Occur Independent of Functional Mitochondria. Cells 2020; 9:cells9102203. [PMID: 33003464 PMCID: PMC7601298 DOI: 10.3390/cells9102203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Human α-synuclein expression in baker’s yeast reportedly induces mitochondria-dependent apoptosis. Surprisingly, we find that, under de-repressing conditions of the inducible MET25/GAL1 promoters, yeast cells expressing chromosomally-integrated copies of the human α-synuclein gene are not killed, but spontaneously form respiration-deficient rho-minus (ρ−) petites. Although yeast cells can undergo cell death (apoptosis) from loss of mitochondrial function, they can also survive without functional mitochondria. Such cells are referred to as ρ0 or ρ− petites. This study reports that minimal expression of human α-synuclein in yeast, from MET25/GAL1 promoter, gives rise to ρ− petites. Interestingly, the full expression of α-synuclein, from the same promoters, in α-synuclein-triggered ρ− petites and also in ρ0 petites (produced by treating ρ+ cells with the mutagen ethidium bromide) initiates apoptosis. The percentages of petites increase with increasing α-synuclein gene copy-number. ρ− petites expressing α-synuclein from fully-induced MET25/GAL1 promoters exhibit increased ROS levels, loss of mitochondrial membrane potential, and nuclear DNA fragmentation, with increasing copies of α-synuclein. Our results indicate that, for the first time in yeast, α-synuclein-triggered apoptosis can occur independently of functional mitochondria. The observation that α-synuclein naturally forms petites and that they can undergo apoptosis may have important implications in understanding the pathogenesis of Parkinson’s disease.
Collapse
Affiliation(s)
- Damilare D. Akintade
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
- Correspondence: ; Tel.: +44-07712452922
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
19
|
Svaguša T, Martinić M, Martinić M, Kovačević L, Šepac A, Miličić D, Bulum J, Starčević B, Sirotković-Skerlev M, Seiwerth F, Kulić A, Sedlić F. Mitochondrial unfolded protein response, mitophagy and other mitochondrial quality control mechanisms in heart disease and aged heart. Croat Med J 2020. [PMID: 32378379 PMCID: PMC7230417 DOI: 10.3325/cmj.2020.61.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are involved in crucial homeostatic processes in the cell: the production of adenosine triphosphate and reactive oxygen species, and the release of pro-apoptotic molecules. Thus, cell survival depends on the maintenance of proper mitochondrial function by mitochondrial quality control. The most important mitochondrial quality control mechanisms are mitochondrial unfolded protein response, mitophagy, biogenesis, and fusion-fission dynamics. This review deals with mitochondrial quality control in heart diseases, especially myocardial infarction and heart failure. Some previous studies have demonstrated that the activation of mitochondrial quality control mechanisms may be beneficial for the heart, while others have shown that it may lead to heart damage. Our aim was to describe the mechanisms by which mitochondrial quality control contributes to heart protection or damage and to provide evidence that may resolve the seemingly contradictory results from the previous studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Filip Sedlić
- Filip Sedlić, Department of Pathophysiology, University of Zagreb School of Medicine, Kišpatićeva 12, 10 000 Zagreb, Croatia,
| |
Collapse
|
20
|
Naveed M, Majeed F, Taleb A, Zubair HM, Shumzaid M, Farooq MA, Baig MMFA, Abbas M, Saeed M, Changxing L. A Review of Medicinal Plants in Cardiovascular Disorders: Benefits and Risks. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:259-286. [PMID: 32345058 DOI: 10.1142/s0192415x20500147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many cultivated and wild plants are used for the management of various diseases, specifically renal and hepatic diseases and those of the immune and cardiovascular systems. In China, medicinal plants from ancient to modern history have been used in patients with angina pectoris, congestive heart failure (CHF), systolic hypertension, arrhythmia, and venous insufficiency for centuries. The latest increase in the fame of natural products and alternative medicine has revived interest in conventional remedies that have been consumed in the management of CVD. The cardio-protective properties of the various herbs are possibly due to their anti-oxidative, antihypercholesterolemic, anti-ischemic activities, and inhibition of platelet aggregation that reduce the risk of CVD. Ethno-pharmacological and biological properties of these plants are explored, based upon published scientific literature. Although a majority of medicinal plants having a biological mechanism that linked with CVD management, to date, published literature pertaining to their promising scientific properties are still poorly understood. Compared with synthetic medicines, alternative medicines do not need scientific studies before their formal approval from the government sector and due to this purpose; their safety, as well as efficacy, still remain elusive. Taken together, we addressed all accessible evidence on alternative medicines commonly consumed in CVD management. Our comprehensive analysis of the scientific literature indicated that many TCMs are available and valuable herbal medication would be the best alternative for the management of CVD as a complementary therapy. Furthermore, practitioners should always discuss possible benefits-risks of alternative medicines with patients so that they are aware of the consumption of alternative medications.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Fatima Majeed
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Abdoh Taleb
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Hafiz Muhammad Zubair
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Muhammad Shumzaid
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Punjab Province, Lahore 54770, Pakistan
| | - Muhammad Asim Farooq
- Department of Pharmacy, School of Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing 211198, P. R. China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu Province, Nanjing 210093, P. R. China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Jiangsu Province, Nanjing 210093, P. R. China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810000, Qinghai Province, P. R. China
| |
Collapse
|
21
|
Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020; 10:biom10081193. [PMID: 32824374 PMCID: PMC7463775 DOI: 10.3390/biom10081193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
Collapse
Affiliation(s)
- Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Ján Frankovský
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia;
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
- Correspondence: ; Tel.: +421-2-90149-433
| |
Collapse
|
22
|
Hypermethylation of mitochondrial DNA in vascular smooth muscle cells impairs cell contractility. Cell Death Dis 2020; 11:35. [PMID: 31959742 PMCID: PMC6971246 DOI: 10.1038/s41419-020-2240-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/26/2023]
Abstract
Vascular smooth muscle cell (SMC) from arterial stenotic-occlusive diseases is featured with deficiency in mitochondrial respiration and loss of cell contractility. However, the regulatory mechanism of mitochondrial genes and mitochondrial energy metabolism in SMC remains elusive. Here, we described that DNA methyltransferase 1 (DNMT1) translocated to the mitochondria and catalyzed D-loop methylation of mitochondrial DNA in vascular SMCs in response to platelet-derived growth factor-BB (PDGF-BB). Mitochondrial-specific expression of DNMT1 repressed mitochondrial gene expression, caused functional damage, and reduced SMC contractility. Hypermethylation of mitochondrial D-loop regions were detected in the intima-media layer of mouse carotid arteries subjected to either cessation of blood flow or mechanical endothelial injury, and also in vessel specimens from patients with carotid occlusive diseases. Likewise, the ligated mouse arteries exhibited an enhanced mitochondrial binding of DNMT1, repressed mitochondrial gene expression, defects in mitochondrial respiration, and impaired contractility. The impaired contractility of a ligated vessel could be restored by ex vivo transplantation of DNMT1-deleted mitochondria. In summary, we discovered the function of DNMT1-mediated mitochondrial D-loop methylation in the regulation of mitochondrial gene transcription. Methylation of mitochondrial D-loop in vascular SMCs contributes to impaired mitochondrial function and loss of contractile phenotype in vascular occlusive disease.
Collapse
|
23
|
Liu L, Wang F, Tong Y, Li LF, Liu Y, Gao WQ. Pentamidine inhibits prostate cancer progression via selectively inducing mitochondrial DNA depletion and dysfunction. Cell Prolif 2019; 53:e12718. [PMID: 31721355 PMCID: PMC6985668 DOI: 10.1111/cpr.12718] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 10/11/2019] [Indexed: 01/28/2023] Open
Abstract
Objectives We investigated the anti‐cancer activity of pentamidine, an anti‐protozoal cationic aromatic diamidine drug, in prostate cancer cells and aimed to provide valuable insights for improving the efficacy of prostate cancer treatment. Materials and methods Prostate cancer cell lines and epithelial RWPE‐1 cells were used in the study. Cell viability, wound‐healing, transwell and apoptosis assays were examined to evaluate the influences of pentamidine in vitro. RNA‐seq and qPCR were performed to analyse changes in gene transcription levels upon pentamidine treatment. Mitochondrial changes were assessed by measuring mitochondrial DNA content, morphology, membrane potential, cellular glucose uptake, ATP production and ROS generation. Nude mouse xenograft models were used to test anti‐tumour effects of pentamidine in vivo. Results Pentamidine exerted profound inhibitory effects on proliferation, colony formation, migration and invasion of prostate cancer cells. In addition, the drug suppressed growth of xenograft tumours without exhibiting any obvious toxicity in nude mice. Mechanistically, pentamidine caused mitochondrial DNA content reduction and induced mitochondrial morphological changes, mitochondrial membrane potential dissipation, ATP level reduction, ROS production elevation and apoptosis in prostate cancer cells. Conclusions Pentamidine can efficiently suppress prostate cancer progression and may serve as a novel mitochondria‐targeted therapeutic agent for prostate cancer.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Tong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Feng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Hassani OK, Rymar VV, Nguyen KQ, Huo L, Cloutier JF, Miller FD, Sadikot AF. The noradrenergic system is necessary for survival of vulnerable midbrain dopaminergic neurons: implications for development and Parkinson's disease. Neurobiol Aging 2019; 85:22-37. [PMID: 31734438 DOI: 10.1016/j.neurobiolaging.2019.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The cause of midbrain dopaminergic (mDA) neuron loss in sporadic Parkinson's disease (PD) is multifactorial, involving cell autonomous factors, cell-cell interactions, and the effects of environmental toxins. Early loss of neurons in the locus coeruleus (LC), the main source of ascending noradrenergic (NA) projections, is an important feature of PD and other neurodegenerative disorders. We hypothesized that NA afferents provide trophic support for vulnerable mDA neurons. We demonstrate that depriving mDA neurons of NA input increases postnatal apoptosis and decreases cell survival in young adult rodents, with relative sparing of calbindin-positive subpopulations known to be resistant to degeneration in PD. As a mechanism, we propose that the neurotrophin brain-derived neurotrophic factor (BDNF) modulates anterograde survival effects of LC inputs to mDA neurons. We demonstrate that the LC is rich in BDNF mRNA in postnatal and young adult brains. Early postnatal NA denervation reduces both BDNF protein and activation of TrkB receptors in the ventral midbrain. Furthermore, overexpression of BDNF in NA afferents in transgenic mice increases mDA neuronal survival. Finally, increasing NA activity in primary cultures of mDA neurons improves survival, an effect that is additive or synergistic in the presence of different concentrations of BDNF. Taken together, our results point to a novel mechanism whereby LC afferents couple BDNF effects and NA activity to provide anterograde trophic support for vulnerable mDA neurons. Early loss of NA activity and anterograde neurotrophin support may contribute to degeneration of vulnerable neurons in PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Oum Kaltoum Hassani
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vladimir V Rymar
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Khanh Q Nguyen
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lia Huo
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Freda D Miller
- Departments of Medical Genetics, Microbiology & Physiology, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Abbas F Sadikot
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Ghnaimawi S, Shelby S, Baum J, Huang Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on C2C12 cell adipogenesis and inhibition of myotube formation. Anim Cells Syst (Seoul) 2019; 23:355-364. [PMID: 31700701 PMCID: PMC6830227 DOI: 10.1080/19768354.2019.1661282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) modulate cellular metabolic functions and gene expression. This study investigated the impacts of EPA and DHA on gene expression and morphological changes during adipogenic inducement in C2C12 myoblasts. Cells were cultured and treated with differentiation medium with and without 50 μM EPA and DHA. Cells treated with fatty acids had noticeable lipid droplets, but no formation of myotubes compared to control group cells. The expression levels of key genes relevant to adipogenesis and inflammation were significantly higher (P < 0.05) in cells treated with fatty acids. Genes associated with myogenesis and mitochondrial biosynthesis and function had lower (P < 0.05) expression with fatty acids supplementation. Moreover, fatty acid treatment reduced (P < 0.05) oxygen consumption rate in the differentiated cells. This suggested blocking myotube formation through supplementation with EPA and DHA drove myoblasts to enter the quiescent state and enabled adipogenic trans-differentiation of the myoblasts. Data also suggested that overdosage of EPA and DHA during gestation may drive fetal mesenchymal stem cell differentiation to the fate of adipogenesis and have a long-term effect on childhood obesity.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA
| | - Sarah Shelby
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA
| | - Jamie Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA
| |
Collapse
|
26
|
Giroto AB, Fontes PK, Franchi FF, Dos Santos PH, Razza EM, Nogueira MFG, Maioli MA, Nogueira GP, Nunes GB, Mingoti GZ, Mareco EA, Castilho ACS. Use of pregnancy-associated plasma protein-A during oocyte in vitro maturation increases IGF-1 and affects the transcriptional profile of cumulus cells and embryos from Nelore cows. Mol Reprod Dev 2019; 86:1694-1704. [PMID: 31468638 DOI: 10.1002/mrd.23259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) activity is established by the regulation of IGF binding protein activity, which blocks IGF-1 functions, whereas pregnancy-associated plasma protein-A (PAPP-A) improves IGF-1 bioavailability and facilitates binding to IGF receptors. To further extend our understanding of the effect of exogenous PAPP-A on bovine embryo production, we added this protein during in vitro maturation of cumulus-oocyte complexes (COCs); moreover, we assessed its effects on IGF-1 quantity in the maturation medium, embryonic yield and postwarming survival, blastocyst quality, and transcript abundance. Bovine COCs were matured in a serum-free medium, either with PAPP-A supplementation (100 ng/ml) or without (control). The treatment group produced higher IGF-1 concentrations in the maturation medium; however, showed no difference on cleavage, blastocysts rates, and embryonic survival 3 and 24 hr postcryopreservation. Regarding gene expression, VNN1 was upregulated, whereas AGPAT9, FASN, EGFR, HAS2, and IMPDH1 were downregulated in PAPP-A treated. PAPP-A treated, CPT2, DNMT3A, and TFAM were upregulated, whereas ATF4 and IFITM3 were downregulated. We concluded that although the addition of PAPP-A did not affect embryo yield and blastocyst survival, higher IGF-1 levels may affect embryo competence through differential expression of genes involved in lipid metabolism, oocyte competence, and mitochondrial function.
Collapse
Affiliation(s)
- Alan B Giroto
- Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Patrícia K Fontes
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Fernanda F Franchi
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Priscila H Dos Santos
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Eduardo M Razza
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Marcelo F G Nogueira
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Assis, São Paulo, Brazil
| | - Marcos A Maioli
- Departamento de Apoio Produção e Saúde Animal, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - Guilherme P Nogueira
- Departamento de Apoio Produção e Saúde Animal, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - Giovana B Nunes
- Departamento de Apoio Produção e Saúde Animal, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - Gisele Z Mingoti
- Departamento de Apoio Produção e Saúde Animal, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - Edson A Mareco
- Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
27
|
Abstract
Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, Mile End Road, London E1 4NS, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
28
|
Suppressing Mitochondrial Respiration Is Critical for Hypoxia Tolerance in the Fetal Growth Plate. Dev Cell 2019; 49:748-763.e7. [PMID: 31105007 DOI: 10.1016/j.devcel.2019.04.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 02/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Oxygen (O2) is both an indispensable metabolic substrate and a regulatory signal that controls the activity of Hypoxia-Inducible Factor 1α (Hif1a), a mediator of the cellular adaptation to low O2 tension (hypoxia). Hypoxic cells require Hif1a to survive. Additionally, Hif1a is an inhibitor of mitochondrial respiration. Hence, we hypothesized that enhancing mitochondrial respiration is detrimental to the survival of hypoxic cells in vivo. We tested this hypothesis in the fetal growth plate, which is hypoxic. Our findings show that mitochondrial respiration is dispensable for survival of growth plate chondrocytes. Furthermore, its impairment prevents the extreme hypoxia and the massive chondrocyte death observed in growth plates lacking Hif1a. Consequently, augmenting mitochondrial respiration affects the survival of hypoxic chondrocytes by, at least in part, increasing intracellular hypoxia. We thus propose that partial suppression of mitochondrial respiration is crucial during development to protect the tissues that are physiologically hypoxic from lethal intracellular anoxia.
Collapse
|
29
|
Expression of selected mitochondrial genes during in vitro maturation of bovine oocytes related to their meiotic competence. Theriogenology 2019; 133:104-112. [PMID: 31078068 DOI: 10.1016/j.theriogenology.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022]
Abstract
The main goal of this study was to characterize the expression patterns of genes which play a role in mitochondrial DNA biogenesis and metabolism during the maturation of bovine oocytes with different meiotic competence and health. Meiotically more and less competent oocytes were obtained separately either from medium (MF) or small (SF) follicles and categorized according to oocyte morphology into healthy and light-atretic. The four oocyte categories were matured and collected after 0, 3, 7, 16 and 24 h of maturation. Either total RNA or poly(A) RNA were extracted from oocytes and the expression of selected mitochondrial translational factors (TFAM, TFB1M, and TFB2M), MATER, and Luciferase as external standard was assessed using a real-time RT-PCR. The level of TFAM, TFB1M and MATER poly(A) RNA transcripts significantly decreased during maturation in both healthy and light-atretic MF and SF oocytes. On the other hand, the level of TFB2M poly(A) increased during maturation in healthy and light-atretic SF oocytes, in contrast to MF oocytes. The abundance of TFAM total RNA was significantly higher after maturation than that before maturation in all oocyte categories. However, no differences in TFB1M and TFB2M total RNA were found in any oocyte categories. It can be concluded that the gene expression patterns differ in maturing bovine oocytes in dependence on their meiotic competence and health. The TFAM and TFB1M poly(A) RNAs are actively deadenylated at different meiotic stages but TFB2M poly(A) RNA remains elevated in light-atretic less competent oocytes until the completion of meiosis.
Collapse
|
30
|
Sharikova AV, Quaye E, Park JY, Maloney MC, Desta H, Thiyagarajan R, Seldeen KL, Parikh NU, Sandhu P, Khmaladze A, Troen BR, Schwartz SA, Mahajan SD. Methamphetamine Induces Apoptosis of Microglia via the Intrinsic Mitochondrial-Dependent Pathway. J Neuroimmune Pharmacol 2018; 13:396-411. [PMID: 29644532 DOI: 10.1007/s11481-018-9787-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
Methamphetamine (METH) is a drug of abuse, the acute and chronic use of which induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Our goals were to understand the impact of METH on microglial mitochondrial respiration and to determine whether METH induces the activation of the mitochondrial-dependent intrinsic apoptosis pathway in microglia. We assessed the expression of pro- apoptosis genes using qPCR of RNA extracted from a human microglial cell line (HTHU). We examined the apoptosis-inducing effects of METH on microglial cells using digital holographic microscopy (DHM) to quantify real-time apoptotic volume decrease (AVD) in microglia in a noninvasive manner. METH treatment significantly increased AVD, activated Caspase 3/7, increased the gene expression levels of the pro- apoptosis proteins, APAF-1 and BAX, and decreased mitochondrial DNA content. Using immunofluorescence analysis, we found that METH increased the expression of the mitochondrial proteins cytochrome c and MCL-1, supporting the activation of mitochondrion-dependent (intrinsic) apoptosis pathway. Cellular bio-energetic flux analysis by Agilent Seahorse XF Analyzer revealed that METH treatment increased both oxidative and glycolytic respiration after 3 h, which was sustained for at least 24 h. Several events, such as oxidative stress, neuro-inflammatory responses, and mitochondrial dysfunction, may converge to mediate METH-induced apoptosis of microglia that may contribute to neurotoxicity of the CNS. Our study has important implications for therapeutic strategies aimed at preserving mitochondrial function in METH abusing patients.
Collapse
Affiliation(s)
- Anna V Sharikova
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Elizabeth Quaye
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, SUNY University at Buffalo, 6074 Clinical and Translational Research Center, 875 Ellicott St, Buffalo, NY, 14203, USA
| | - Jun Yong Park
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maxwell C Maloney
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Habben Desta
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, 14240, USA
| | - Kenneth L Seldeen
- Division of Geriatrics and Palliative Medicine, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, 14240, USA
| | - Neil U Parikh
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, SUNY University at Buffalo, 6074 Clinical and Translational Research Center, 875 Ellicott St, Buffalo, NY, 14203, USA
| | - Parteet Sandhu
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, SUNY University at Buffalo, 6074 Clinical and Translational Research Center, 875 Ellicott St, Buffalo, NY, 14203, USA
| | - Alexander Khmaladze
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, 14240, USA
| | - Stanley A Schwartz
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, SUNY University at Buffalo, 6074 Clinical and Translational Research Center, 875 Ellicott St, Buffalo, NY, 14203, USA
| | - Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, SUNY University at Buffalo, 6074 Clinical and Translational Research Center, 875 Ellicott St, Buffalo, NY, 14203, USA.
| |
Collapse
|
31
|
Zong D, Li J, Cai S, He S, Liu Q, Jiang J, Chen S, Long Y, Chen Y, Chen P, Ouyang R. Notch1 regulates endothelial apoptosis via the ERK pathway in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2018; 315:C330-C340. [PMID: 29874112 PMCID: PMC6171044 DOI: 10.1152/ajpcell.00182.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
Abstract
The Notch signaling pathway plays critical role for determining cell fate by controlling proliferation, differentiation, and apoptosis. In the current study, we investigated the roles of the Notch signaling pathway in cigarette smoke (CS)-induced endothelial apoptosis in chronic obstructive pulmonary disease (COPD). We obtained surgical specimens from 10 patients with COPD and 10 control participants. Notch1, 2, and 4 express in endothelial cells, whereas Notch3 mainly localizes in smooth muscle cells. Compared with control groups, we found that the expression of Notch1, 3, and 4 decreased, as well as their target genes Hes1 and Hes2, while the expression of Notch2 and extracellular signal-regulated kinase (ERK)1/2 increased in COPD patients compared with controls, as well as in human pulmonary microvascular endothelial cells (HPMECs) when exposed to CS extract (CSE). Overexpression of Notch1 with N1ICD in HPMECs markedly alleviated the cell apoptosis induced by CSE. The ERK signaling pathway was significantly activated by CSE, which correlated with CSE-induced apoptosis. However, this activation can be abolished by N1ICD overexpression. Furthermore, treatment of PD98059 (ERK inhibitor) significantly alleviated CSE-induced apoptosis, as well as reduced the methylation of mitochondrial transcription factor A (mtTFA) promoter, which was correlated with CS-induced endothelial apoptosis. These results suggest that CS alters Notch signaling in pulmonary endothelial cells. Notch1 protects against CS-induced endothelial apoptosis in COPD through inhibiting the ERK pathway, while the ERK pathway further regulates the methylation of mtTFA promotor.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory Medicine, the Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University , Changsha , China
| | - Jinhua Li
- Department of Respiratory Medicine, the Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University , Changsha , China
| | - Shan Cai
- Department of Respiratory Medicine, the Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University , Changsha , China
| | - Shengdong He
- Department of Respiratory Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, China
| | - Qingqing Liu
- Department of Respiratory Medicine, the Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University , Changsha , China
| | - Jiehan Jiang
- Department of Respiratory Medicine, Changsha Central Hospital , Changsha , China
| | - Shanshan Chen
- Department of Radiology, the Second Xiangya Hospital, Central South University , Changsha , China
| | - Yingjiao Long
- Department of Respiratory Medicine, the Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University , Changsha , China
| | - Yan Chen
- Department of Respiratory Medicine, the Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University , Changsha , China
| | - Ping Chen
- Department of Respiratory Medicine, the Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University , Changsha , China
| | - Ruoyun Ouyang
- Department of Respiratory Medicine, the Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University , Changsha , China
| |
Collapse
|
32
|
Zhang R, Wang J. HuR stabilizes TFAM mRNA in an ATM/p38-dependent manner in ionizing irradiated cancer cells. Cancer Sci 2018; 109:2446-2457. [PMID: 29856906 PMCID: PMC6113444 DOI: 10.1111/cas.13657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) plays key roles in transcription and maintenance of mtDNA. It has been reported that TFAM could promote the proliferation and tumorigenesis of cells under stressed conditions. Previous evidence showed ionizing radiation stimulated the expression of TFAM, the replication of mtDNA, and the activity of mtDNA‐encoded cytochrome C oxidase. However, little is known about the mechanism of TFAM regulation in irradiated cells. In this article, we explored the role of mRNA stability in regulating TFAM expression in irradiated cancer cells. Our results showed that radiation stimulated the levels of TFAM mRNA and protein. RNA‐binding protein HuR associated and stabilized TFAM mRNA to facilitate the expression of TFAM, which was enhanced by radiation. Furthermore, radiation‐activated ataxia‐telangiectasia mutated kinase/p38 signaling positively contributed to the nucleus to cytosol translocation of HuR, its binding and stabilization of TFAM mRNA, without affecting the transcription and the stability of TFAM. Our current work proposed a new mechanism of DNA damage response‐regulated mitochondrial function variations, and indicated that TFAM might be a potential target for increasing the sensitization of cancer cells to radiotherapy.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
33
|
Abstract
Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA.
| |
Collapse
|
34
|
Martín-Fernández B, Gredilla R. Mitochondrial oxidative stress and cardiac ageing. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:74-83. [PMID: 29398015 DOI: 10.1016/j.arteri.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones.
Collapse
Affiliation(s)
- Beatriz Martín-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España.
| | - Ricardo Gredilla
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
35
|
Guo Y, Zeng H, Chang X, Wang C, Cui H. Additional dexamethasone in chemotherapies with carboplatin and paclitaxel could reduce the impaired glycometabolism in rat models. BMC Cancer 2018; 18:81. [PMID: 29338697 PMCID: PMC5769515 DOI: 10.1186/s12885-017-3917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 12/14/2017] [Indexed: 11/23/2022] Open
Abstract
Background Side-effects have been considered as the limitation of the chemotherapy agents’ administration and life quality in patients with ovarian cancers. In order to explore the influence of the chemotherapy agents commonly used in ovarian cancer patients on the blood glucose metabolism in rat models, we conducted this study which simulated the conditions of clinical protocols. Methods Eighty clean-grade female Wistar rats were randomized into 8 groups: Group 1 (Negative control), Group 1′ (Dexamethasone), Group 2 (Carboplatin), Group 2′ (Carboplatin-plus-dexamethasone), Group 3 (Paclitaxel), Group 3′ (Paclitaxel-plus-dexamethasone), Group 4 (Combined therapy), Group 4′ (Combined-therapy-plus-dexamethasone). On day 0, 4, 7 and 14, after fasted for 12 h, the rats in all groups underwent a glucose load and their blood glucose, glucagon and insulin levels were measured. Results The glucose levels in group 2, 3 and 4 at 1 h after the loading on day 4 significantly increased (P = 0.190, 0.008 and 0.025, respectively). The glucagon levels in group 3 and 4 showed a similar trend and the increase was not suppressed by the glucose loading (P < 0.001). A significant decrease of insulin levels in group 2, 3 and 4 were observed on day 14 after treatment (P = 0.043, 0.019 and 0.019, respectively). The change of HOMA2 %B, an index reflects the ability of insulin secretion was negatively corresponded to the glucose levels, and the trends of HOMA2 IR, an index shows insulin resistance, were positively correlated to the glucose levels. The application of dexamethasone could reduce the degree of increased glucose levels significantly in group 2, 3 and 4. There were no differences in overall survival between the 8 groups. Edema in the stroma of pancreases was observed in group 3, 3′, 4 and 4′ on day 4 after treatment (P = 0.002, 0.002, 0.000 and 0.000 respectively) and lasted until day 14. Conclusions Carboplatin and paclitaxel administration could cause a transient hyperglycemia in rats. This effect might occur by the combination of glucagon accumulation due to the decrease in islet cell secretion. The additional dexamethasone in the combination protocol of carboplatin and paclitaxel seemed to reduce the impaired blood glucose metabolism.
Collapse
Affiliation(s)
- Yanxiu Guo
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing, 100044, China
| | - Haoxia Zeng
- Obstetrics and Gynecology Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaohong Chang
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing, 100044, China
| | - Chaohua Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| | - Heng Cui
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
36
|
Sommakia S, Houlihan PR, Deane SS, Simcox JA, Torres NS, Jeong MY, Winge DR, Villanueva CJ, Chaudhuri D. Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. J Mol Cell Cardiol 2017; 113:22-32. [PMID: 28962857 PMCID: PMC5652072 DOI: 10.1016/j.yjmcc.2017.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
Abstract
Calcium (Ca2+) influx into the mitochondrial matrix stimulates ATP synthesis. Here, we investigate whether mitochondrial Ca2+ transport pathways are altered in the setting of deficient mitochondrial energy synthesis, as increased matrix Ca2+ may provide a stimulatory boost. We focused on mitochondrial cardiomyopathies, which feature such dysfunction of oxidative phosphorylation. We study a mouse model where the main transcription factor for mitochondrial DNA (transcription factor A, mitochondrial, Tfam) has been disrupted selectively in cardiomyocytes. By the second postnatal week (10-15day old mice), these mice have developed a dilated cardiomyopathy associated with impaired oxidative phosphorylation. We find evidence of increased mitochondrial Ca2+ during this period using imaging, electrophysiology, and biochemistry. The mitochondrial Ca2+ uniporter, the main portal for Ca2+ entry, displays enhanced activity, whereas the mitochondrial sodium-calcium (Na+-Ca2+) exchanger, the main portal for Ca2+ efflux, is inhibited. These changes in activity reflect changes in protein expression of the corresponding transporter subunits. While decreased transcription of Nclx, the gene encoding the Na+-Ca2+ exchanger, explains diminished Na+-Ca2+ exchange, the mechanism for enhanced uniporter expression appears to be post-transcriptional. Notably, such changes allow cardiac mitochondria from Tfam knockout animals to be far more sensitive to Ca2+-induced increases in respiration. In the absence of Ca2+, oxygen consumption declines to less than half of control values in these animals, but rebounds to control levels when incubated with Ca2+. Thus, we demonstrate a phenotype of enhanced mitochondrial Ca2+ in a mitochondrial cardiomyopathy model, and show that such Ca2+ accumulation is capable of rescuing deficits in energy synthesis capacity in vitro.
Collapse
Affiliation(s)
- Salah Sommakia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Patrick R Houlihan
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Sadiki S Deane
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Judith A Simcox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mi-Young Jeong
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dennis R Winge
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
37
|
Gao W, Wu M, Wang N, Zhang Y, Hua J, Tang G, Wang Y. Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 predicts a poor clinical outcome of breast cancer. Oncol Lett 2017; 15:1449-1458. [PMID: 29434836 PMCID: PMC5774493 DOI: 10.3892/ol.2017.7487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/11/2017] [Indexed: 01/19/2023] Open
Abstract
Nuclear respiratory factor-1 (Nrf1) and mitochondrial transcription factor A (TFAM) are involved in the regulation of a variety of mitochondrial functional genes, which are associated with decreased sensitivity of tumor cells to chemotherapy. However, the expression status of Nrf1 and TFAM, as well as their clinical significance in breast cancer, is unknown. In the present study, tumor tissues and corresponding adjacent normal tissues were collected from 336 patients with breast cancer, and Nrf1 and TFAM expression was analyzed by immunohistochemistry using a tissue microarray. Expression of Nrf1 and TFAM was significantly increased in breast cancer tissue compared with adjacent normal tissues. In addition, patients positive for Nrf1 or TFAM had a poorer clinical prognosis than patients who were negative, and those positive for Nrf1 and TFAM had the shortest survival time. These results suggest that Nrf1 and TFAM are potential biomarkers for the determination of individualized therapy and the prognosis of breast cancer, and molecular targeting of Nrf1 and TFAM is a promising strategy for the sensitization of breast cancer cells to chemotherapeutics.
Collapse
Affiliation(s)
- Wei Gao
- Department of Radiation Oncology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200433, P.R. China.,Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Ning Wang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jing Hua
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Gusheng Tang
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
38
|
Ikonomidis I, Tzortzis S, Lekakis J, Paraskevaidis I, Dasou P, Parissis J, Nikolaou M, Markantonis S, Katsimbri P, Skarantavos G, Anastasiou-Nana M, Andreadou I. Association of soluble apoptotic markers with impaired left ventricular deformation in patients with rheumatoid arthritis. Effects of inhibition of interleukin-1 activity by anakinra. Thromb Haemost 2017; 106:959-67. [DOI: 10.1160/th11-02-0117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/26/2011] [Indexed: 12/11/2022]
Abstract
SummaryMyocardial function is impaired in rheumatoid arthritis (RA). Inhibition of interleukin (IL)-1 activity reduces experimental myocardial infarction by limiting apoptosis. We investigated whether a) soluble apoptotic markers are related with impaired left ventricular (LV) performance and b) treatment with anakinra, an IL-1 receptor antagonist, reduces apoptotic markers leading to improved LV performance in RA. We studied 46 RA patients. In an acute, double-blind cross-over trial, 23 patients were randomised to a single injection of anakinra or placebo and after 48 hours (h) to the alternative treatment. In a chronic trial, 23 patients who received anakinra for 30 days were compared with 23 patients who received prednisolone. At baseline, 3 h and 30 days after treatment, we measured circulating IL-1β, tumour necrosis factor (TNF)-α, Fas, Fas-ligand and caspase-9 to assess apoptosis. At baseline and 30 days after treatment, we assessed LV longitudinal strain, strain rate and E/Em ratio using 2D-speckle tracking and tissue Doppler echocardiography. At baseline, increased apoptotic markers were related with reduced LongSRS and increased E/Em (p<0.05). After 3 h and 30 days of anakinra, there was a reduction in Fas (median 481 vs. 364 vs. 301 pg/ml), Fasligand (median 289 vs. 221 vs. 190 pg/ml), caspase-9 (median 1.90 vs. 1.40 vs. 1.07 ng/ml), TNF-α and IL-1β (p<0.05 for all comparisons). E/Em, LongS and LongSRS were improved after anakinra (p<0.01) and their percent changes were related with the corresponding changes of Fas and caspase-9 (p<0.05). No changes of the examined parameters were observed after prednisolone. In conclusion, inhibition of IL-1 activity by anakinra reduces apoptotic markers leading to improved LV performance in RA.
Collapse
|
39
|
Langley M, Ghosh A, Charli A, Sarkar S, Ay M, Luo J, Zielonka J, Brenza T, Bennett B, Jin H, Ghaisas S, Schlichtmann B, Kim D, Anantharam V, Kanthasamy A, Narasimhan B, Kalyanaraman B, Kanthasamy AG. Mito-Apocynin Prevents Mitochondrial Dysfunction, Microglial Activation, Oxidative Damage, and Progressive Neurodegeneration in MitoPark Transgenic Mice. Antioxid Redox Signal 2017; 27:1048-1066. [PMID: 28375739 PMCID: PMC5651937 DOI: 10.1089/ars.2016.6905] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive motor deficits and degeneration of dopaminergic neurons. Caused by a number of genetic and environmental factors, mitochondrial dysfunction and oxidative stress play a role in neurodegeneration in PD. By selectively knocking out mitochondrial transcription factor A (TFAM) in dopaminergic neurons, the transgenic MitoPark mice recapitulate many signature features of the disease, including progressive motor deficits, neuronal loss, and protein inclusions. In the present study, we evaluated the neuroprotective efficacy of a novel mitochondrially targeted antioxidant, Mito-apocynin, in MitoPark mice and cell culture models of neuroinflammation and mitochondrial dysfunction. RESULTS Oral administration of Mito-apocynin (10 mg/kg, thrice a week) showed excellent central nervous system bioavailability and significantly improved locomotor activity and coordination in MitoPark mice. Importantly, Mito-apocynin also partially attenuated severe nigrostriatal degeneration in MitoPark mice. Mechanistic studies revealed that Mito-apo improves mitochondrial function and inhibits NOX2 activation, oxidative damage, and neuroinflammation. INNOVATION The properties of Mito-apocynin identified in the MitoPark transgenic mouse model strongly support potential clinical applications for Mito-apocynin as a viable neuroprotective and anti-neuroinflammatory drug for treating PD when compared to conventional therapeutic approaches. CONCLUSION Collectively, our data demonstrate, for the first time, that a novel orally active apocynin derivative improves behavioral, inflammatory, and neurodegenerative processes in a severe progressive dopaminergic neurodegenerative model of PD. Antioxid. Redox Signal. 27, 1048-1066.
Collapse
Affiliation(s)
- Monica Langley
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Anamitra Ghosh
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Adhithiya Charli
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Souvarish Sarkar
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Muhammet Ay
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Jie Luo
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Jacek Zielonka
- 2 Department of Biophysics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Timothy Brenza
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | - Brian Bennett
- 4 Department of Physics, Marquette University , Milwaukee, Wisconsin
| | - Huajun Jin
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Shivani Ghaisas
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Benjamin Schlichtmann
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | - Dongsuk Kim
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Vellareddy Anantharam
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Arthi Kanthasamy
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Balaji Narasimhan
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | | | - Anumantha G Kanthasamy
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| |
Collapse
|
40
|
Uusitalo JJ, Ingólfsson HI, Marrink SJ, Faustino I. Martini Coarse-Grained Force Field: Extension to RNA. Biophys J 2017. [PMID: 28633759 DOI: 10.1016/j.bpj.2017.05.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA has an important role not only as the messenger of genetic information but also as a regulator of gene expression. Given its central role in cell biology, there is significant interest in studying the structural and dynamic behavior of RNA in relation to other biomolecules. Coarse-grain molecular dynamics simulations are a key tool to that end. Here, we have extended the coarse-grain Martini force field to include RNA after our recent extension to DNA. In the same way DNA was modeled, the tertiary structure of RNA is constrained using an elastic network. This model, therefore, is not designed for applications involving RNA folding but rather offers a stable RNA structure for studying RNA interactions with other (bio)molecules. The RNA model is compatible with all other Martini models and opens the way to large-scale explicit-solvent molecular dynamics simulations of complex systems involving RNA.
Collapse
Affiliation(s)
- Jaakko J Uusitalo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
| | - Ignacio Faustino
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
41
|
Tetramethylpyrazine blocks TFAM degradation and up-regulates mitochondrial DNA copy number by interacting with TFAM. Biosci Rep 2017; 37:BSR20170319. [PMID: 28465355 PMCID: PMC5434891 DOI: 10.1042/bsr20170319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023] Open
Abstract
The natural small molecule compound: 2,3,5,6-tetramethylpyrazine (TMP), is a major component of the Chinese medicine Chuanxiong, which has wide clinical applications in dilating blood vessels, inhibiting platelet aggregation and treating thrombosis. Recent work suggests that TMP is also an antitumour agent. Despite its chemotherapeutic potential, the mechanism(s) underlying TMP action are unknown. Herein, we demonstrate that TMP binds to mitochondrial transcription factor A (TFAM) and blocks its degradation by the mitochondrial Lon protease. TFAM is a key regulator of mtDNA replication, transcription and transmission. Our previous work showed that when TFAM is not bound to DNA, it is rapidly degraded by the ATP-dependent Lon protease, which is essential for mitochondrial proteostasis. In cultured cells, TMP specifically blocks Lon-mediated degradation of TFAM, leading to TFAM accumulation and subsequent up-regulation of mtDNA content in cells with substantially low levels of mtDNA. In vitro protease assays show that TMP does not directly inhibit mitochondrial Lon, rather interacts with TFAM and blocks degradation. Pull-down assays show that biotinylated TMP interacts with TFAM. These findings suggest a novel mechanism whereby TMP stabilizes TFAM and confers resistance to Lon-mediated degradation, thereby promoting mtDNA up-regulation in cells with low mtDNA content.
Collapse
|
42
|
Mitochondrial cAMP prevents apoptosis modulating Sirt3 protein level and OPA1 processing in cardiac myoblast cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:355-366. [PMID: 27890624 DOI: 10.1016/j.bbamcr.2016.11.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria, responding to a wide variety of signals, including oxidative stress, are critical in regulating apoptosis that plays a key role in the pathogenesis of a variety of cardiovascular diseases. A number of mitochondrial proteins and pathways have been found to be involved in the mitochondrial dependent apoptosis mechanism, such as optic atrophy 1 (OPA1), sirtuin 3 (Sirt3), deacetylase enzyme and cAMP signal. In the present work we report a network among OPA1, Sirt3 and cAMP in ROS-dependent apoptosis. Rat myoblastic H9c2 cell lines, were treated with tert-butyl hydroperoxide (t-BHP) to induce oxidative stress-dependent apoptosis. FRET analysis revealed a selective decrease of mitochondrial cAMP in response to t-BHP treatment. This was associated with a decrease of Sirt3 protein level and proteolytic processing of OPA1. Pretreatment of cells with permeant analogous of cAMP (8-Br-cAMP) protected the cell from apoptosis preventing all these events. Using H89, inhibitor of the protein kinase A (PKA), and protease inhibitors, evidences have been obtained that ROS-dependent apoptosis is associated with an alteration of mitochondrial cAMP/PKA signal that causes degradation/proteolysis of Sirt3 that, in turn, promotes acetylation and proteolytic processing of OPA1.
Collapse
|
43
|
Gao C, Wang F, Wang Z, Zhang J, Yang X. Asiatic acid inhibits lactate-induced cardiomyocyte apoptosis through the regulation of the lactate signaling cascade. Int J Mol Med 2016; 38:1823-1830. [DOI: 10.3892/ijmm.2016.2783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 10/12/2016] [Indexed: 11/05/2022] Open
|
44
|
Zhou MC, Zhu L, Cui X, Feng L, Zhao X, He S, Ping F, Li W, Li Y. Reduced peripheral blood mtDNA content is associated with impaired glucose-stimulated islet β cell function in a Chinese population with different degrees of glucose tolerance. Diabetes Metab Res Rev 2016; 32:768-774. [PMID: 27103506 PMCID: PMC5108437 DOI: 10.1002/dmrr.2814] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/17/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
AIMS Our aim is to explore the associations between mitochondrial DNA (mtDNA) content and basal plasma glucose, plasma glucose after oral glucose administration and oxidative stress in a Chinese population with different levels of glucose tolerance. We also aimed to investigate the effect of mtDNA content on basal and oral glucose-stimulated insulin secretion. METHODS Five hundred and fifty-six Chinese subjects underwent a 75-g, 2-h oral glucose tolerance test. Subjects with diabetes (n = 159), pre-diabetes (n = 197) and normal glucose tolerance (n = 200) were screened. Blood lipid profile was assessed, and levels of the oxidative stress indicators superoxide dismutase, glutathione reductase (GR) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) were measured. Levels of HbA1c , plasma glucose, insulin and C-peptide were also determined. Measurements were taken at 0, 30, 60 and 120 min after 75 g oral glucose tolerance test. Peripheral blood mtDNA content was assessed using a real-time polymerase chain reaction assay. Insulin sensitivity was evaluated by homeostatic model assessment of insulin resistance and Matsuda index (ISIM ). Basal insulin secretion index (HOMA-β), early phase disposition index (DI30 ) and total phase disposition index (DI120 ) indicate insulin levels at different phases of insulin secretion. RESULTS Peripheral blood mtDNA content was positively associated with DI30 and DI120 and was negatively associated with plasma glucose measured 30, 60 and 120 min after oral glucose administration. However, there was no correlation between mtDNA content and basal insulin secretion (HOMA-β), serum lipid or oxidative stress indicators (8-oxo-dG, superoxide dismutase, GR). HbA1c was negatively associated with GR (r = -0.136, p = 0.001). Multiple linear regression analysis showed that reduced peripheral blood mtDNA content increased the risk of impaired glucose-stimulated β cell function (DI30 : β = 0.104, p = 0.019; DI120 : β = 0.116, p = 0.009). CONCLUSIONS Decreased peripheral blood mtDNA content was more closely associated with glucose-stimulated insulin secretion than with basal secretion. Reduction in glucose-stimulated insulin secretion causes postprandial hyperglycaemia. The oxidative stress was probably largely influenced by hyperglycaemia; it was probably that the decreased mt DNA content led to hyperglycaemia, which caused elevated oxidative stress. © 2016 The Authors. Diabetes/Metabolism Research and Reviews Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Mei-Cen Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, China
| | - Lixin Zhu
- Nankou Community Health Service Centers, Beijing, China
| | - Xiangli Cui
- Nankou Community Health Service Centers, Beijing, China
| | | | | | - Shuli He
- Department of Nutrition, Peking Union Medical College Hospital, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
45
|
Martín-Fernández B, Gredilla R. Mitochondria and oxidative stress in heart aging. AGE (DORDRECHT, NETHERLANDS) 2016; 38:225-238. [PMID: 27449187 PMCID: PMC5061683 DOI: 10.1007/s11357-016-9933-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/12/2016] [Indexed: 05/06/2023]
Abstract
As average lifespan of humans increases in western countries, cardiac diseases become the first cause of death. Aging is among the most important risk factors that increase susceptibility for developing cardiovascular diseases. The heart has very aerobic metabolism, and is highly dependent on mitochondrial function, since mitochondria generate more than 90 % of the intracellular ATP consumed by cardiomyocytes. In the last few decades, several investigations have supported the relevance of mitochondria and oxidative stress both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy, and diabetic cardiomyopathy. In the current review, we compile different studies corroborating this role. Increased mitochondria DNA instability, impaired bioenergetic efficiency, enhanced apoptosis, and inflammation processes are some of the events related to mitochondria that occur in aging heart, leading to reduced cellular survival and cardiac dysfunction. Knowing the mitochondrial mechanisms involved in the aging process will provide a better understanding of them and allow finding approaches to more efficiently improve this process.
Collapse
Affiliation(s)
- Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Complutense University, Plaza Ramon y Cajal s/n, 28040, Madrid, Spain.
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Plaza Ramon y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
46
|
Walker MT, Montell C. Suppression of the motor deficit in a mucolipidosis type IV mouse model by bone marrow transplantation. Hum Mol Genet 2016; 25:2752-2761. [PMID: 27270598 DOI: 10.1093/hmg/ddw132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/04/2016] [Accepted: 04/25/2016] [Indexed: 11/13/2022] Open
Abstract
Mucolipidosis IV (MLIV) is a severe lysosomal storage disorder, which results from loss of the TRPML1 channel. MLIV causes multiple impairments in young children, including severe motor deficits. Currently, there is no effective treatment. Using a Drosophila MLIV model, we showed previously that introduction of trpml+ in phagocytic glia rescued the locomotor deficit by removing early dying neurons, thereby preventing amplification of neuronal death from cytotoxicity. Because microglia, which are phagocytic cells in the mammalian brain, are bone marrow derived, and cross the blood-brain barrier, we used a mouse MLIV model to test the efficacy of bone marrow transplantation (BMT). We found that BMT suppressed the reduced myelination and the increased caspase-3 activity due to loss of TRPML1. Using a rotarod test, we demonstrated that early BMT greatly delayed the motor impairment in the mutant mice. These data offer the possibility that BMT might provide the first therapy for MLIV.
Collapse
Affiliation(s)
- Marquis T Walker
- Neuroscience Research Institute.,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Craig Montell
- Neuroscience Research Institute .,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Yamamoto T, Takabatake Y, Kimura T, Takahashi A, Namba T, Matsuda J, Minami S, Kaimori JY, Matsui I, Kitamura H, Matsusaka T, Niimura F, Yanagita M, Isaka Y, Rakugi H. Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy 2016; 12:801-13. [PMID: 26986194 DOI: 10.1080/15548627.2016.1159376] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays an essential role in cellular homeostasis through the quality control of proteins and organelles. Although a time-dependent decline in autophagic activity is believed to be involved in the aging process, the issue remains controversial. We previously demonstrated that autophagy maintains proximal tubular cell homeostasis and protects against kidney injury. Here, we extend that study and examine how autophagy is involved in kidney aging. Unexpectedly, the basal autophagic activity was higher in the aged kidney than that in young kidney; short-term cessation of autophagy in tamoxifen-inducible proximal tubule-specific autophagy-deficient mice increased the accumulation of SQSTM1/p62- and ubiquitin-positive aggregates in the aged kidney. By contrast, autophagic flux in response to metabolic stress was blunted with aging, as demonstrated by the observation that transgenic mice expressing a green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3B fusion construct, showed a drastic increase of GFP-positive puncta in response to starvation in young mice compared to a slight increase observed in aged mice. Finally, proximal tubule-specific autophagy-deficient mice at 24 mo of age exhibited a significant deterioration in kidney function and fibrosis concomitant with mitochondrial dysfunction as well as mitochondrial DNA abnormalities and nuclear DNA damage, all of which are hallmark characteristics of cellular senescence. These results suggest that age-dependent high basal autophagy plays a crucial role in counteracting kidney aging through mitochondrial quality control. Furthermore, a reduced capacity for upregulation of autophagic flux in response to metabolic stress may be associated with age-related kidney diseases.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Yoshitsugu Takabatake
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Tomonori Kimura
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan.,b Department of Molecular Genetics and Microbiology , University of New Mexico , Albuquerque, NM , USA
| | - Atsushi Takahashi
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Tomoko Namba
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Jun Matsuda
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Satoshi Minami
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Jun-Ya Kaimori
- c Department of Advanced Technology for Transplantation , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Isao Matsui
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Harumi Kitamura
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Taiji Matsusaka
- d Institute of Medical Science and Department of Molecular Life Science, Tokai University School of Medicine , Isehara , Kanagawa , Japan
| | - Fumio Niimura
- e Department of Pediatrics , Tokai University School of Medicine , Isehara , Kanagawa , Japan
| | - Motoko Yanagita
- f Department of Nephrology , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Yoshitaka Isaka
- a Department of Nephrology , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Hiromi Rakugi
- g Department of Geriatric and General Medicine , Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| |
Collapse
|
48
|
Abstract
Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.
Collapse
Affiliation(s)
- Ya-Ting Peng
- Department of Respiratory Medicine, Respiratory Disease Research Institute, Second XiangYa Hospital of Central South University, Changsha, 410011, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes. ZYGOTE 2015; 24:465-76. [PMID: 26350562 DOI: 10.1017/s0967199415000416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The developmental potential of in vitro matured porcine oocytes is still lower than that of oocytes matured and fertilized in vivo. Major problems that account for the lower efficiency of in vitro production include the improper nuclear and cytoplasmic maturation of oocytes. With the aim of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus-oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10 or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for mRNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P < 0.05), and also simultaneously induced the expression of BCL-xL and TERT and suppressed the expression of caspase-3 in resulting blastocysts (P < 0.05). These results suggest that both GDNF and EGF may play an important role in the regulation of porcine in vitro oocyte maturation and the combination of these growth factors could promote oocyte competency and blastocyst quality.
Collapse
|
50
|
Mitochondrial Transcription Factor A and Mitochondrial Genome as Molecular Targets for Cisplatin-Based Cancer Chemotherapy. Int J Mol Sci 2015; 16:19836-50. [PMID: 26307971 PMCID: PMC4581328 DOI: 10.3390/ijms160819836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are important cellular organelles that function as control centers of the energy supply for highly proliferative cancer cells and regulate apoptosis after cancer chemotherapy. Cisplatin is one of the most important chemotherapeutic agents and a key drug in therapeutic regimens for a broad range of solid tumors. Cisplatin may directly interact with mitochondria, which can induce apoptosis. The direct interactions between cisplatin and mitochondria may account for our understanding of the clinical activity of cisplatin and development of resistance. However, the basis for the roles of mitochondria under treatment with chemotherapy is poorly understood. In this review, we present novel aspects regarding the unique characteristics of the mitochondrial genome in relation to the use of platinum-based chemotherapy and describe our recent work demonstrating the importance of the mitochondrial transcription factor A (mtTFA) expression in cancer cells.
Collapse
|