1
|
Huang P, Chen G, Zhu Z, Wang S, Chen Z, Chai Y, Li W, Ou G. Phosphorylation-dependent regional motility of the ciliary kinesin OSM-3. J Cell Biol 2025; 224:e202407152. [PMID: 40272473 PMCID: PMC12020746 DOI: 10.1083/jcb.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/29/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Kinesin motor proteins, vital for intracellular microtubule-based transport, display region-specific motility within cells, a phenomenon that remains molecularly enigmatic. This study focuses on the localized activation of OSM-3, an intraflagellar transport kinesin crucial for the assembly of ciliary distal segments in Caenorhabditis elegans sensory neurons. Fluorescence lifetime imaging microscopy unveiled an extended, active conformation of OSM-3 in the ciliary base and middle segments, where OSM-3 is conveyed as cargo by kinesin-II. We demonstrate that NEKL-3, a never in mitosis kinase-like protein, directly phosphorylates the motor domain of OSM-3, inhibiting its in vitro activity. NEKL-3 and NEKL-4, localized at the ciliary base, function redundantly to restrict OSM-3 activation. Elevated levels of protein phosphatase 2A at the ciliary transition zone or middle segments triggered premature OSM-3 motility, while its deficiency resulted in reduced OSM-3 activity and shorter cilia. These findings elucidate a phosphorylation-mediated mechanism governing the regional motility of kinesins.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guanghan Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Institute of Molecular Enzymology, Soochow University, Suzhou, China
| | - Shimin Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Wang HP, Singh S, Wong LC, Hsu CJ, Li SC, Lee SJ, Lee CH, Lee WT. Lacosamide Is a Novel Drug That Improves AGTPBP1 Knockout-Mediated Impairment of Neuronal and Dopaminergic Function. Mol Neurobiol 2025:10.1007/s12035-025-05016-y. [PMID: 40347376 DOI: 10.1007/s12035-025-05016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
AGTPBP1 regulates microtubule stabilization through post-translational modification of alpha-tubulin. Mutations in the AGTPBP1 gene are associated with clinical phenotypes such as early postnatal cerebellar atrophy, ataxia, spasticity, and dystonia, highlighting its critical roles in both neurodevelopment and neurodegeneration. However, how AGTPBP1 affects neurite development and its function in dopaminergic neurons remains unclear. To investigate the role of AGTPBP1, we utilized both in vitro AGTPBP1 knockout (KO) cell models and zebrafish models. Our findings reveal that AGTPBP1 KO in cells leads to excessive neurite outgrowth and significantly increases expression of collapsin response mediator protein 2 (CRMP2). Additionally, AGTPBP1 KO results in mitochondrial dysfunction and a hyperdopaminergic state in differentiated neurons. In zebrafish, knockdown of AGTPBP1 caused reduced brain volume and impaired swimming behavior, indicating disrupted neurodevelopment and motor function. Given CRMP2's involvement in both cytoskeletal dynamics and mitochondrial activity, we tested lacosamide, a drug known to modulate CRMP2 expression and phosphorylation. Lacosamide treatment in vitro improved cell morphology and restored mitochondrial function, while in vivo, it rescued brain volume deficits and enhanced swimming performance in AGTPBP1-deficient zebrafish. In conclusion, AGTPBP1 knockout impairs neuronal differentiation, induces mitochondrial dysfunction, increases oxidative stress, and promotes a hyperdopaminergic state. Our study suggests that elevated CRMP2 expression may underlie the pathophysiology of cerebellar degeneration in AGTPBP1-related disorders. Targeting CRMP2 with lacosamide represents a promising therapeutic strategy for mitigating AGTPBP1-mediated neurodegeneration.
Collapse
Affiliation(s)
- Hsin-Pei Wang
- Department of Pediatrics, National Taiwan University Hospital, Yunlin Branch, Yunlin, 970, Taiwan
- National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, Taipei, 100, Taiwan
| | - Shekhar Singh
- National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Lee-Chin Wong
- National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, Taipei, 100, Taiwan
- National Taiwan University College of Medicine, Taipei, 100, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, 8, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hospital, Hsinchu Branch, Hsinchu City, 300, Taiwan
| | - Shih-Chi Li
- Department of Life Science, National Taiwan University, Taipei, 100, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, 100, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
| | - Wang-Tso Lee
- National Taiwan University College of Medicine, Taipei, 100, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan.
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, 8, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
Lal S, Snape TJ. Tubulin targeting agents and their implications in non-cancer disease management. Drug Discov Today 2025; 30:104338. [PMID: 40118444 DOI: 10.1016/j.drudis.2025.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Microtubules act as molecular 'tracks' for the intracellular transport of accessory proteins, enabling them to assemble into various larger structures, such as spindle fibres formed during the cell cycle. Microtubules provide an organisational framework for the healthy functioning of various cellular processes that work through the process of dynamic instability, driven by the hydrolysis of GTP. In this role, tubulin proteins undergo various modifications, and in doing so modulate various healthy or pathogenic physiological processes within cells. In this review, we provide a detailed update of small molecule chemical agents that interact with tubulin, along with their implications, specifically in non-cancer disease management.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram 122413 Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
4
|
Badarudeen B, Chiang HJ, Collado L, Wang L, Sanchez I, Dynlacht BD. The tubulin poly-glutamylase complex, TPGC, is required for phosphatidyl inositol homeostasis and cilium assembly and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641315. [PMID: 40093036 PMCID: PMC11908161 DOI: 10.1101/2025.03.03.641315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The tubulin poly-glutamylase complex (TPGC) is comprised of TTLL1 and at least five associated proteins that promote the addition of glutamate residues to tubulin tails of microtubules. Despite its discovery two decades ago, the enzyme has been refractory to characterization owing to its complex multimeric nature and the inability to detect poly-glutamylase activity after assembling the six-subunit complex. We now show that TPGC is the key enzyme driving centriolar and ciliary poly-glutamylation. We identified two novel TPGC subunits, TBC1D19 and KIAA1841, and showed that both components play an essential role in the assembly of the eight-subunit holo-enzyme. Remarkably, we were able to reconstitute the activity of TPGC with all eight subunits. TBC1D19 and KIAA1841 were essential for assembly and activity, and loss of TBC1D19 strongly compromised multiple tubulin modifications, including axonemal poly-glutamylation. TBC1D19 loss abolished transport of Arl13b and other ciliary membrane proteins, abrogating primary cilium assembly. Structural modeling revealed an essential role for TBC1D19 and KIAA1841 in complex assembly, microtubule binding, and preferential poly-glutamylation of α-tubulin. We found that TBC1D19 loss abrogated the ciliary localization of phosphatidyl inositol phosphatase, INPP5E, triggering cilium instability. Ciliogenesis in TBC1D19 null cells could be restored through inhibition of a specific phosphatidyl inositol phosphate (PIP) kinase, PIP5K1c, suggesting that TBC1D19 is required to instigate and maintain PIP homeostasis during ciliogenesis. Collectively, our data show that TPGC is a multi-functional enzyme essential for cilium assembly and maintenance.
Collapse
|
5
|
Jang EH, Choi H, Hur EM. Microtubule function and dysfunction in the nervous system. Mol Cells 2024; 47:100111. [PMID: 39265797 PMCID: PMC11474369 DOI: 10.1016/j.mocell.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Microtubules are core components of the neuronal cytoskeleton, providing structural support for the complex cytoarchitecture of neurons and serving as tracks for long-distance transport. The properties and functions of neuronal microtubules are controlled by tubulin isoforms and a variety of post-translational modifications, collectively known as the "tubulin code." The tubulin code exerts direct control over the intrinsic properties of neuronal microtubules and regulates the repertoire of proteins that read the code, which in turn, has a significant impact on microtubule stability and dynamics. Here, we review progress in the understanding of the tubulin code in the nervous system, with a particular focus on tubulin post-translational modifications that have been proposed as potential contributors to the development and maintenance of the mammalian nervous system. Furthermore, we also discuss the potential links between disruptions in the tubulin code and neurological disorders, including neurodevelopmental abnormalities and neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea
| | - Harryn Choi
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
6
|
Jentzsch J, Wunderlich H, Thein M, Bechthold J, Brehm L, Krauss SW, Weiss M, Ersfeld K. Microtubule polyglutamylation is an essential regulator of cytoskeletal integrity in Trypanosoma brucei. J Cell Sci 2024; 137:jcs261740. [PMID: 38205672 DOI: 10.1242/jcs.261740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Tubulin polyglutamylation, catalysed by members of the tubulin tyrosine ligase-like (TTLL) protein family, is an evolutionarily highly conserved mechanism involved in the regulation of microtubule dynamics and function in eukaryotes. In the protozoan parasite Trypanosoma brucei, the microtubule cytoskeleton is essential for cell motility and maintaining cell shape. In a previous study, we showed that T. brucei TTLL6A and TTLL12B are required to regulate microtubule dynamics at the posterior cell pole. Here, using gene deletion, we show that the polyglutamylase TTLL1 is essential for the integrity of the highly organised microtubule structure at the cell pole, with a phenotype distinct from that observed in TTLL6A- and TTLL12B-depleted cells. Reduced polyglutamylation in TTLL1-deficient cells also leads to increased levels in tubulin tyrosination, providing new evidence for an interplay between the tubulin tyrosination and detyrosination cycle and polyglutamylation. We also show that TTLL1 acts differentially on specific microtubule doublets of the flagellar axoneme, although the absence of TTLL1 appears to have no measurable effect on cell motility.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hannes Wunderlich
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marinus Thein
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Julia Bechthold
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Lucas Brehm
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sebastian W Krauss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
7
|
Morone N, Martin MG, Goggin P, Czymmek KJ, Mennella V, Gonzalez JL. A Novel Sandwich Method for Serial Block Face SEM Imaging of Airway Multiciliated Epithelium. Methods Mol Biol 2024; 2725:121-129. [PMID: 37856021 DOI: 10.1007/978-1-0716-3507-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Volume electron microscopy technologies such as serial block face scanning electron microscopy (SBF-SEM) allow the characterization of tissue organization and cellular content in three dimensions at nanoscale resolution. Here, we describe the procedure to process and image an air-liquid interface culture of human or mouse airway epithelial cells for visualization of the multiciliated epithelium by SBF-SEM in vertical or horizontal cross section.
Collapse
Affiliation(s)
- Nobuhiro Morone
- Electron Microscopy and Ultrastructural Pathology Facility, Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
| | - Maria Guerra Martin
- Electron Microscopy and Ultrastructural Pathology Facility, Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Patricia Goggin
- Biomedical Imaging Facility, Laboratory and Pathology Block, Southampton General Hospital, Southampton, UK
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, Department of Biology, Saint Louis University, Saint Louis, MO, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Jaime Llodra Gonzalez
- Electron Microscopy and Ultrastructural Pathology Facility, Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Zhang X, Li X, Chen W, Wang Y, Diao L, Gao Y, Wang H, Bao L, Liang X, Wu HY. The distinct initiation sites and processing activities of TTLL4 and TTLL7 in glutamylation of brain tubulin. J Biol Chem 2023; 299:104923. [PMID: 37321451 PMCID: PMC10404701 DOI: 10.1016/j.jbc.2023.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the β-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than β-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and β2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangxiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Heyi Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
9
|
Chen J, Roll-Mecak A. Glutamylation is a negative regulator of microtubule growth. Mol Biol Cell 2023; 34:ar70. [PMID: 37074962 PMCID: PMC10295482 DOI: 10.1091/mbc.e23-01-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023] Open
Abstract
Microtubules are noncovalent polymers built from αβ-tubulin dimers. The disordered C-terminal tubulin tails are functionalized with multiple glutamate chains of variable lengths added and removed by tubulin tyrosine ligases (TTLLs) and carboxypeptidases (CCPs). Glutamylation is abundant on stable microtubule arrays such as in axonemes and axons, and its dysregulation leads to human pathologies. Despite this, the effects of glutamylation on intrinsic microtubule dynamics are unclear. Here we generate tubulin with short and long glutamate chains and show that glutamylation slows the rate of microtubule growth and increases catastrophes as a function of glutamylation levels. This implies that the higher stability of glutamylated microtubules in cells is due to effectors. Interestingly, EB1 is minimally affected by glutamylation and thus can report on the growth rates of both unmodified and glutamylated microtubules. Finally, we show that glutamate removal by CCP1 and 5 is synergistic and occurs preferentially on soluble tubulin, unlike TTLL enzymes that prefer microtubules. This substrate preference establishes an asymmetry whereby once the microtubule depolymerizes, the released tubulin is reset to a less-modified state, while polymerized tubulin accumulates the glutamylation mark. Our work shows that a modification on the disordered tubulin tails can directly affect microtubule dynamics and furthers our understanding of the mechanistic underpinnings of the tubulin code.
Collapse
Affiliation(s)
- Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, and
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, and
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| |
Collapse
|
10
|
Ping Y, Ohata K, Kikushima K, Sakamoto T, Islam A, Xu L, Zhang H, Chen B, Yan J, Eto F, Nakane C, Takao K, Miyakawa T, Kabashima K, Watanabe M, Kahyo T, Yao I, Fukuda A, Ikegami K, Konishi Y, Setou M. Tubulin Polyglutamylation by TTLL1 and TTLL7 Regulate Glutamate Concentration in the Mice Brain. Biomolecules 2023; 13:biom13050784. [PMID: 37238654 DOI: 10.3390/biom13050784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
As an important neurotransmitter, glutamate acts in over 90% of excitatory synapses in the human brain. Its metabolic pathway is complicated, and the glutamate pool in neurons has not been fully elucidated. Tubulin polyglutamylation in the brain is mainly mediated by two tubulin tyrosine ligase-like (TTLL) proteins, TTLL1 and TTLL7, which have been indicated to be important for neuronal polarity. In this study, we constructed pure lines of Ttll1 and Ttll7 knockout mice. Ttll knockout mice showed several abnormal behaviors. Matrix-assisted laser desorption/ionization (MALDI) Imaging mass spectrometry (IMS) analyses of these brains showed increases in glutamate, suggesting that tubulin polyglutamylation by these TTLLs acts as a pool of glutamate in neurons and modulates some other amino acids related to glutamate.
Collapse
Affiliation(s)
- Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenji Ohata
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chiho Nakane
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Miyakawa
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for Comprehensive Medical Science Division of Systems Medicine, Fujita Health University, Aichi 470-1192, Japan
| | - Katsuya Kabashima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ikuko Yao
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8553, Japan
| | - Yoshiyuki Konishi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
11
|
Chiba K, Kita T, Anazawa Y, Niwa S. Insight into the regulation of axonal transport from the study of KIF1A-associated neurological disorder. J Cell Sci 2023; 136:286709. [PMID: 36655764 DOI: 10.1242/jcs.260742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuronal function depends on axonal transport by kinesin superfamily proteins (KIFs). KIF1A is the molecular motor that transports synaptic vesicle precursors, synaptic vesicles, dense core vesicles and active zone precursors. KIF1A is regulated by an autoinhibitory mechanism; many studies, as well as the crystal structure of KIF1A paralogs, support a model whereby autoinhibited KIF1A is monomeric in solution, whereas activated KIF1A is dimeric on microtubules. KIF1A-associated neurological disorder (KAND) is a broad-spectrum neuropathy that is caused by mutations in KIF1A. More than 100 point mutations have been identified in KAND. In vitro assays show that most mutations are loss-of-function mutations that disrupt the motor activity of KIF1A, whereas some mutations disrupt its autoinhibition and abnormally hyperactivate KIF1A. Studies on disease model worms suggests that both loss-of-function and gain-of-function mutations cause KAND by affecting the axonal transport and localization of synaptic vesicles. In this Review, we discuss how the analysis of these mutations by molecular genetics, single-molecule assays and force measurements have helped to reveal the physiological significance of KIF1A function and regulation, and what physical parameters of KIF1A are fundamental to axonal transport.
Collapse
Affiliation(s)
- Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Tomoki Kita
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuzu Anazawa
- Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan.,Department of Applied Physics, Graduate School of Engineering, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
12
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
13
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
14
|
Chromosome segregation fidelity requires microtubule polyglutamylation by the cancer downregulated enzyme TTLL11. Nat Commun 2022; 13:7147. [PMID: 36414642 PMCID: PMC9681853 DOI: 10.1038/s41467-022-34909-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Regulation of microtubule (MT) dynamics is key for mitotic spindle assembly and faithful chromosome segregation. Here we show that polyglutamylation, a still understudied post-translational modification of spindle MTs, is essential to define their dynamics within the range required for error-free chromosome segregation. We identify TTLL11 as an enzyme driving MT polyglutamylation in mitosis and show that reducing TTLL11 levels in human cells or zebrafish embryos compromises chromosome segregation fidelity and impairs early embryonic development. Our data reveal a mechanism to ensure genome stability in normal cells that is compromised in cancer cells that systematically downregulate TTLL11. Our data suggest a direct link between MT dynamics regulation, MT polyglutamylation and two salient features of tumour cells, aneuploidy and chromosome instability (CIN).
Collapse
|
15
|
Costa AC, Sousa MM. The Role of Spastin in Axon Biology. Front Cell Dev Biol 2022; 10:934522. [PMID: 35865632 PMCID: PMC9294387 DOI: 10.3389/fcell.2022.934522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurons are highly polarized cells with elaborate shapes that allow them to perform their function. In neurons, microtubule organization—length, density, and dynamics—are essential for the establishment of polarity, growth, and transport. A mounting body of evidence shows that modulation of the microtubule cytoskeleton by microtubule-associated proteins fine tunes key aspects of neuronal cell biology. In this respect, microtubule severing enzymes—spastin, katanin and fidgetin—a group of microtubule-associated proteins that bind to and generate internal breaks in the microtubule lattice, are emerging as key modulators of the microtubule cytoskeleton in different model systems. In this review, we provide an integrative view on the latest research demonstrating the key role of spastin in neurons, specifically in the context of axonal cell biology. We focus on the function of spastin in the regulation of microtubule organization, and axonal transport, that underlie its importance in the intricate control of axon growth, branching and regeneration.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| | - Monica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| |
Collapse
|
16
|
Wu HY, Rong Y, Bansal PK, Wei P, Guo H, Morgan JI. TTLL1 and TTLL4 polyglutamylases are required for the neurodegenerative phenotypes in pcd mice. PLoS Genet 2022; 18:e1010144. [PMID: 35404950 PMCID: PMC9022812 DOI: 10.1371/journal.pgen.1010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Polyglutamylation is a dynamic posttranslational modification where glutamate residues are added to substrate proteins by 8 tubulin tyrosine ligase-like (TTLL) family members (writers) and removed by the 6 member Nna1/CCP family of carboxypeptidases (erasers). Genetic disruption of polyglutamylation leading to hyperglutamylation causes neurodegenerative phenotypes in humans and animal models; the best characterized being the Purkinje cell degeneration (pcd) mouse, a mutant of the gene encoding Nna1/CCP1, the prototypic eraser. Emphasizing the functional importance of the balance between glutamate addition and elimination, loss of TTLL1 prevents Purkinje cell degeneration in pcd. However, whether Ttll1 loss protects other vulnerable neurons in pcd, or if elimination of other TTLLs provides protection is largely unknown. Here using a mouse genetic rescue strategy, we characterized the contribution of Ttll1, 4, 5, 7, or 11 to the degenerative phenotypes in cerebellum, olfactory bulb and retinae of pcd mutants. Ttll1 deficiency attenuates Purkinje cell loss and function and reduces olfactory bulb mitral cell death and retinal photoreceptor degeneration. Moreover, degeneration of photoreceptors in pcd is preceded by impaired rhodopsin trafficking to the rod outer segment and likely represents the causal defect leading to degeneration as this too is rescued by elimination of TTLL1. Although TTLLs have similar catalytic properties on model substrates and several are highly expressed in Purkinje cells (e.g. TTLL5 and 7), besides TTLL1 only TTLL4 deficiency attenuated degeneration of Purkinje and mitral cells in pcd. Additionally, TTLL4 loss partially rescued photoreceptor degeneration and impaired rhodopsin trafficking. Despite their common properties, the polyglutamylation profile changes promoted by TTLL1 and TTLL4 deficiencies in pcd mice are very different. We also report that loss of anabolic TTLL5 synergizes with loss of catabolic Nna1/CCP1 to promote photoreceptor degeneration. Finally, male infertility in pcd is not rescued by loss of any Ttll. These data provide insight into the complexity of polyglutamate homeostasis and function in vivo and potential routes to ameliorate disorders caused by disrupted polyglutamylation.
Collapse
Affiliation(s)
- Hui-Yuan Wu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Parmil K. Bansal
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peng Wei
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hong Guo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - James I. Morgan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
17
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
18
|
Wang L, Paudyal SC, Kang Y, Owa M, Liang FX, Spektor A, Knaut H, Sánchez I, Dynlacht BD. Regulators of tubulin polyglutamylation control nuclear shape and cilium disassembly by balancing microtubule and actin assembly. Cell Res 2022; 32:190-209. [PMID: 34782749 PMCID: PMC8807603 DOI: 10.1038/s41422-021-00584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Cytoskeletal networks play an important role in regulating nuclear morphology and ciliogenesis. However, the role of microtubule (MT) post-translational modifications in nuclear shape regulation and cilium disassembly has not been explored. Here we identified a novel regulator of the tubulin polyglutamylase complex (TPGC), C11ORF49/CSTPP1, that regulates cytoskeletal organization, nuclear shape, and cilium disassembly. Mechanistically, loss of C11ORF49/CSTPP1 impacts the assembly and stability of the TPGC, which modulates long-chain polyglutamylation levels on microtubules (MTs) and thereby balances the binding of MT-associated proteins and actin nucleators. As a result, loss of TPGC leads to aberrant, enhanced assembly of MTs that penetrate the nucleus, which in turn leads to defects in nuclear shape, and disorganization of cytoplasmic actin that disrupts the YAP/TAZ pathway and cilium disassembly. Further, we showed that C11ORF49/CSTPP1-TPGC plays mechanistically distinct roles in the regulation of nuclear shape and cilium disassembly. Remarkably, disruption of C11ORF49/CSTPP1-TPGC also leads to developmental defects in vivo. Our findings point to an unanticipated nexus that links tubulin polyglutamylation with nuclear shape and ciliogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| | - Sharad C Paudyal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuchen Kang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, New York, NY, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Irma Sánchez
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Leser JM, Harriot A, Buck HV, Ward CW, Stains JP. Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:782848. [PMID: 36004321 PMCID: PMC9396756 DOI: 10.3389/fresc.2021.782848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022]
Abstract
The decline in the mass and function of bone and muscle is an inevitable consequence of healthy aging with early onset and accelerated decline in those with chronic disease. Termed osteo-sarcopenia, this condition predisposes the decreased activity, falls, low-energy fractures, and increased risk of co-morbid disease that leads to musculoskeletal frailty. The biology of osteo-sarcopenia is most understood in the context of systemic neuro-endocrine and immune/inflammatory alterations that drive inflammation, oxidative stress, reduced autophagy, and cellular senescence in the bone and muscle. Here we integrate these concepts to our growing understanding of how bone and muscle senses, responds and adapts to mechanical load. We propose that age-related alterations in cytoskeletal mechanics alter load-sensing and mechano-transduction in bone osteocytes and muscle fibers which underscores osteo-sarcopenia. Lastly, we examine the evidence for exercise as an effective countermeasure to osteo-sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
21
|
CCP1, a Tubulin Deglutamylase, Increases Survival of Rodent Spinal Cord Neurons following Glutamate-Induced Excitotoxicity. eNeuro 2021; 8:ENEURO.0431-20.2021. [PMID: 33688040 PMCID: PMC8021396 DOI: 10.1523/eneuro.0431-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 01/21/2023] Open
Abstract
Microtubules (MTs) are cytoskeletal elements that provide structural support and act as roadways for intracellular transport in cells. MTs are also needed for neurons to extend and maintain long axons and dendrites that establish connectivity to transmit information through the nervous system. Therefore, in neurons, the ability to independently regulate cytoskeletal stability and MT-based transport in different cellular compartments is essential. Posttranslational modification of MTs is one mechanism by which neurons regulate the cytoskeleton. The carboxypeptidase CCP1 negatively regulates posttranslational polyglutamylation of MTs. In mammals, loss of CCP1, and the resulting hyperglutamylation of MTs, causes neurodegeneration. It has also long been known that CCP1 expression is activated by neuronal injury; however, whether CCP1 plays a neuroprotective role after injury is unknown. Using shRNA-mediated knock-down of CCP1 in embryonic rat spinal cord cultures, we demonstrate that CCP1 protects spinal cord neurons from excitotoxic death. Unexpectedly, excitotoxic injury reduced CCP1 expression in our system. We previously demonstrated that the CCP1 homolog in Caenorhabditis elegans is important for maintenance of neuronal cilia. Although cilia enhance neuronal survival in some contexts, it is not yet clear whether CCP1 maintains cilia in mammalian spinal cord neurons. We found that knock-down of CCP1 did not result in loss or shortening of cilia in cultured spinal cord neurons, suggesting that its effect on survival of excitotoxicity is independent of cilia. Our results support the idea that enzyme regulators of MT polyglutamylation might be therapeutically targeted to prevent excitotoxic death after spinal cord injuries.
Collapse
|
22
|
Parato J, Bartolini F. The microtubule cytoskeleton at the synapse. Neurosci Lett 2021; 753:135850. [PMID: 33775740 DOI: 10.1016/j.neulet.2021.135850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
In neurons, microtubules (MTs) provide routes for transport throughout the cell and structural support for dendrites and axons. Both stable and dynamic MTs are necessary for normal neuronal functions. Research in the last two decades has demonstrated that MTs play additional roles in synaptic structure and function in both pre- and postsynaptic elements. Here, we review current knowledge of the functions that MTs perform in excitatory and inhibitory synapses, as well as in the neuromuscular junction and other specialized synapses, and discuss the implications that this knowledge may have in neurological disease.
Collapse
Affiliation(s)
- Julie Parato
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States; SUNY Empire State College, Department of Natural Sciences, 177 Livingston Street, Brooklyn, NY, 11201, United States
| | - Francesca Bartolini
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States.
| |
Collapse
|
23
|
Yang WT, Hong SR, He K, Ling K, Shaiv K, Hu J, Lin YC. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol 2021; 9:622302. [PMID: 33748109 PMCID: PMC7970040 DOI: 10.3389/fcell.2021.622302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia, which either generate coordinated motion or sense environmental cues and transmit corresponding signals to the cell body, are highly conserved hair-like structures that protrude from the cell surface among diverse species. Disruption of ciliary functions leads to numerous human disorders, collectively referred to as ciliopathies. Cilia are mechanically supported by axonemes, which are composed of microtubule doublets. It has been recognized for several decades that tubulins in axonemes undergo glutamylation, a post-translational polymodification, that conjugates glutamic acid chains onto the C-terminal tail of tubulins. However, the physiological roles of axonemal glutamylation were not uncovered until recently. This review will focus on how cells modulate glutamylation on ciliary axonemes and how axonemal glutamylation regulates cilia architecture and functions, as well as its physiological importance in human health. We will also discuss the conventional and emerging new strategies used to manipulate glutamylation in cilia.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kritika Shaiv
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - JingHua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu City, Taiwan
| |
Collapse
|
24
|
Bodakuntla S, Janke C, Magiera MM. Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 2021; 746:135656. [PMID: 33482309 DOI: 10.1016/j.neulet.2021.135656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases lead to a progressive demise of neuronal functions that ultimately results in neuronal death. Besides a large variety of molecular pathways that have been linked to the degeneration of neurons, dysfunctions of the microtubule cytoskeleton are common features of many human neurodegenerative disorders. Yet, it is unclear whether microtubule dysfunctions are causative, or mere bystanders in the disease progression. A so-far little explored regulatory mechanism of the microtubule cytoskeleton, the posttranslational modifications of tubulin, emerge as candidate mechanisms involved in neuronal dysfunction, and thus, degeneration. Here we review the role of tubulin polyglutamylation, a prominent modification of neuronal microtubules. We discuss the current understanding of how polyglutamylation controls microtubule functions in healthy neurons, and how deregulation of this modification leads to neurodegeneration in mice and humans.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
25
|
Wang R, Lin L, Zheng Y, Cao P, Yuchi Z, Wu HY. Identification of 2-PMPA as a novel inhibitor of cytosolic carboxypeptidases. Biochem Biophys Res Commun 2020; 533:1393-1399. [PMID: 33092792 DOI: 10.1016/j.bbrc.2020.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
Cytosolic carboxypeptidases (CCPs) comprise a unique subfamily of M14 carboxypeptidases and are erasers of the reversible protein posttranslational modification- polyglutamylation. Potent inhibitors for CCPs may serve as leading compounds targeting imbalanced polyglutamylation. However, no efficient CCP inhibitor has yet been reported. Here, we showed that 2-phosphonomethylpentanedioic acid (2-PMPA), a potent inhibitor of the distant M28 family member glutamate carboxypeptidase II (GCPII), rather than the typical M14 inhibitor 2-benzylsuccinic acid, could efficiently inhibit CCP activities. 2-PMPA inhibited the recombinant Nna1 (a.k.a. CCP1) for hydrolyzing a synthetic peptide in a mixed manner, with Ki and Ki' being 0.11 μM and 0.24 μM respectively. It inhibited Nna1 for deglutamylating tubulin, the best-known polyglutamylated protein, with an IC50 of 0.21 mM. Homology modeling predicted that the R-form of 2-PMPA is more favorable to bind Nna1, unlike that GCPII prefers to S-form. This work for the first time identified a potent inhibitor for CCP family.
Collapse
Affiliation(s)
- Ruixue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lianyun Lin
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yiqiang Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
26
|
Li J, Snyder EY, Tang FHF, Pasqualini R, Arap W, Sidman RL. Nna1 gene deficiency triggers Purkinje neuron death by tubulin hyperglutamylation and ER dysfunction. JCI Insight 2020; 5:136078. [PMID: 33004692 PMCID: PMC7566705 DOI: 10.1172/jci.insight.136078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Posttranslational glutamylation/deglutamylation balance in tubulins influences dendritic maturation and neuronal survival of cerebellar Purkinje neurons (PNs). PNs and some additional neuronal types degenerate in several spontaneous, independently occurring Purkinje cell degeneration (pcd) mice featuring mutant neuronal nuclear protein induced by axotomy (Nna1), a deglutamylase gene. This defective deglutamylase allows glutamylases to form hyperglutamylated tubulins. In pcd, all PNs die during postnatal “adolescence.” Neurons in some additional brain regions also die, mostly later than PNs. We show in laser capture microdissected single PNs, in cerebellar granule cell neuronal clusters, and in dissected hippocampus and substantia nigra that deglutamase mRNA and protein were virtually absent before pcd PNs degenerated, whereas glutaminase mRNA and protein remained normal. Hyperglutamylated microtubules and dimeric tubulins accumulated in pcd PNs and were involved in pcd PN death by glutamylase/deglutamylase imbalance. Importantly, treatment with a microtubule depolymerizer corrected the glutamylation/deglutamylation ratio, increasing PN survival. Further, before onset of neuronal death, pcd PNs displayed prominent basal polylisosomal masses rich in ER. We propose a “seesaw” metamorphic model summarizing mutant Nna1-induced tubulin hyperglutamylation, the pcd’s PN phenotype, and report that the neuronal disorder involved ER stress, unfolded protein response, and protein synthesis inhibition preceding PN death by apoptosis/necroptosis. Purkinje cell degeneration is due to ER stress, unfolded protein response, and protein synthesis inhibition preceding Purkinje neuron death by apoptosis/necroptosis.
Collapse
Affiliation(s)
- Jianxue Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fenny HF Tang
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Richard L Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Arnold J, Schattschneider J, Blechner C, Krisp C, Schlüter H, Schweizer M, Nalaskowski M, Oliveira-Ferrer L, Windhorst S. Tubulin Tyrosine Ligase Like 4 (TTLL4) overexpression in breast cancer cells is associated with brain metastasis and alters exosome biogenesis. J Exp Clin Cancer Res 2020; 39:205. [PMID: 32998758 PMCID: PMC7528497 DOI: 10.1186/s13046-020-01712-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The survival rate is poor in breast cancer patients with brain metastases. Thus, new concepts for therapeutic approaches are required. During metastasis, the cytoskeleton of cancer cells is highly dynamic and therefore cytoskeleton-associated proteins are interesting targets for tumour therapy. METHODS Screening for genes showing a significant correlation with brain metastasis formation was performed based on microarray data from breast cancer patients with long-term follow up information. Validation of the most interesting target was performed by MTT-, Scratch- and Transwell-assay. In addition, intracellular trafficking was analyzed by live-cell imaging for secretory vesicles, early endosomes and multiple vesicular bodies (MVB) generating extracellular vesicles (EVs). EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Western blotting, mass spectrometry, and ingenuity pathway analysis (IPA). Effect of EVs on the blood-brain-barrier (BBB) was examined by incubating endothelial cells of the BBB (hCMEC/D3) with EVs, and permeability as well as adhesion of breast cancer cells were analyzed. Clinical data of a breast cancer cohort was evaluated by χ2-tests, Kaplan-Meier-Analysis, and log-rank tests while for experimental data Student's T-test was performed. RESULTS Among those genes exhibiting a significant association with cerebral metastasis development, the only gene coding for a cytoskeleton-associated protein was Tubulin Tyrosine Ligase Like 4 (TTLL4). Overexpression of TTLL4 (TTLL4plus) in MDA-MB231 and MDA-MB468 breast cancer cells (TTLL4plus cells) significantly increased polyglutamylation of β-tubulin. Moreover, trafficking of secretory vesicles and MVBs was increased in TTLL4plus cells. EVs derived from TTLL4plus cells promote adhesion of MDA-MB231 and MDA-MB468 cells to hCMEC/D3 cells and increase permeability of hCMEC/D3 cell layer. CONCLUSIONS These data suggest that TTLL4-mediated microtubule polyglutamylation alters exosome homeostasis by regulating trafficking of MVBs. The TTLL4plus-derived EVs may provide a pre-metastatic niche for breast cancer cells by manipulating endothelial cells of the BBB.
Collapse
Affiliation(s)
- Julia Arnold
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Juliana Schattschneider
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility Morphology und Electron Microscopy, Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Marcus Nalaskowski
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
28
|
Lopes AT, Hausrat TJ, Heisler FF, Gromova KV, Lombino FL, Fischer T, Ruschkies L, Breiden P, Thies E, Hermans-Borgmeyer I, Schweizer M, Schwarz JR, Lohr C, Kneussel M. Spastin depletion increases tubulin polyglutamylation and impairs kinesin-mediated neuronal transport, leading to working and associative memory deficits. PLoS Biol 2020; 18:e3000820. [PMID: 32866173 PMCID: PMC7485986 DOI: 10.1371/journal.pbio.3000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/11/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations in the gene encoding the microtubule-severing protein spastin (spastic paraplegia 4 [SPG4]) cause hereditary spastic paraplegia (HSP), associated with neurodegeneration, spasticity, and motor impairment. Complicated forms (complicated HSP [cHSP]) further include cognitive deficits and dementia; however, the etiology and dysfunctional mechanisms of cHSP have remained unknown. Here, we report specific working and associative memory deficits upon spastin depletion in mice. Loss of spastin-mediated severing leads to reduced synapse numbers, accompanied by lower miniature excitatory postsynaptic current (mEPSC) frequencies. At the subcellular level, mutant neurons are characterized by longer microtubules with increased tubulin polyglutamylation levels. Notably, these conditions reduce kinesin-microtubule binding, impair the processivity of kinesin family protein (KIF) 5, and reduce the delivery of presynaptic vesicles and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Rescue experiments confirm the specificity of these results by showing that wild-type spastin, but not the severing-deficient and disease-associated K388R mutant, normalizes the effects at the synaptic, microtubule, and transport levels. In addition, short hairpin RNA (shRNA)-mediated reduction of tubulin polyglutamylation on spastin knockout background normalizes KIF5 transport deficits and attenuates the loss of excitatory synapses. Our data provide a mechanism that connects spastin dysfunction with the regulation of kinesin-mediated cargo transport, synapse integrity, and cognition. This study identifies deficits in working and associative memory in spastin knockout mice, resembling the cognitive deficits described in humans with severe forms of SPG4-type hereditary spastic paraplegia. Mechanistically, the findings suggest that impaired microtubule growth, kinesin motility and cargo delivery of synaptic AMPA receptors may contribute to the etiology of the disease.
Collapse
Affiliation(s)
- André T. Lopes
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torben J. Hausrat
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank F. Heisler
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira V. Gromova
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franco L. Lombino
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Fischer
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Laura Ruschkies
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Breiden
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edda Thies
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Morphology Unit, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen R. Schwarz
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
29
|
Moutin MJ, Bosc C, Peris L, Andrieux A. Tubulin post-translational modifications control neuronal development and functions. Dev Neurobiol 2020; 81:253-272. [PMID: 33325152 PMCID: PMC8246997 DOI: 10.1002/dneu.22774] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post‐translational modifications (PTMs). These PTMs—most notably detyrosination, acetylation, and polyglutamylation—have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro‐degeneration. The main therapeutic approaches to neuro‐diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub‐networks, each of which is crucial to specific neuronal features.
Collapse
Affiliation(s)
- Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Christophe Bosc
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| |
Collapse
|
30
|
The emerging role of tubulin posttranslational modifications in cilia and ciliopathies. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
31
|
Beijer D, Sisto A, Van Lent J, Baets J, Timmerman V. Defects in Axonal Transport in Inherited Neuropathies. J Neuromuscul Dis 2020; 6:401-419. [PMID: 31561383 PMCID: PMC6918914 DOI: 10.3233/jnd-190427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axonal transport is a highly complex process essential for sustaining proper neuronal functioning. Disturbances can result in an altered neuronal homeostasis, aggregation of cargoes, and ultimately a dying-back degeneration of neurons. The impact of dysfunction in axonal transport is shown by genetic defects in key proteins causing a broad spectrum of neurodegenerative diseases, including inherited peripheral neuropathies. In this review, we provide an overview of the cytoskeletal components, molecular motors and adaptor proteins involved in axonal transport mechanisms and their implication in neuronal functioning. In addition, we discuss the involvement of axonal transport dysfunction in neurodegenerative diseases with a particular focus on inherited peripheral neuropathies. Lastly, we address some recent scientific advances most notably in therapeutic strategies employed in the area of axonal transport, patient-derived iPSC models, in vivo animal models, antisense-oligonucleotide treatments, and novel chemical compounds.
Collapse
Affiliation(s)
- Danique Beijer
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium.,Neurology Department, University Hospital Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| |
Collapse
|
32
|
Microtubule Minus-End Binding Protein CAMSAP2 and Kinesin-14 Motor KIFC3 Control Dendritic Microtubule Organization. Curr Biol 2020; 30:899-908.e6. [PMID: 32084403 PMCID: PMC7063570 DOI: 10.1016/j.cub.2019.12.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Neuronal dendrites are characterized by an anti-parallel microtubule organization. The mixed oriented microtubules promote dendrite development and facilitate polarized cargo trafficking; however, the mechanism that regulates dendritic microtubule organization is still unclear. Here, we found that the kinesin-14 motor KIFC3 is important for organizing dendritic microtubules and to control dendrite development. The kinesin-14 motor proteins (Drosophila melanogaster Ncd, Saccharomyces cerevisiae Kar3, Saccharomyces pombe Pkl1, and Xenopus laevis XCTK2) are characterized by a C-terminal motor domain and are well described to organize the spindle microtubule during mitosis using an additional microtubule binding site in the N terminus [1-4]. In mammals, there are three kinesin-14 members, KIFC1, KIFC2, and KIFC3. It was recently shown that KIFC1 is important for organizing axonal microtubules in neurons, a process that depends on the two microtubule-interacting domains [5]. Unlike KIFC1, KIFC2 and KIFC3 lack the N-terminal microtubule binding domain and only have one microtubule-interacting domain, the motor domain [6, 7]. Thus, in order to regulate microtubule-microtubule crosslinking or sliding, KIFC2 and KIFC3 need to interact with additional microtubule binding proteins to connect two microtubules. We found that KIFC3 has a dendrite-specific distribution and interacts with microtubule minus-end binding protein CAMSAP2. Depletion of KIFC3 or CAMSAP2 results in increased microtubule dynamics during dendritic development. We propose a model in which CAMSAP2 anchors KIFC3 at microtubule minus ends and immobilizes microtubule arrays in dendrites.
Collapse
|
33
|
Bodakuntla S, Schnitzler A, Villablanca C, Gonzalez-Billault C, Bieche I, Janke C, Magiera MM. Tubulin polyglutamylation is a general traffic-control mechanism in hippocampal neurons. J Cell Sci 2020; 133:jcs241802. [PMID: 31932508 DOI: 10.1242/jcs.241802] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 08/31/2023] Open
Abstract
Neurons are highly complex cells that heavily rely on intracellular transport to distribute a range of functionally essential cargoes within the cell. Post-translational modifications of tubulin are emerging as mechanisms for regulating microtubule functions, but their impact on neuronal transport is only marginally understood. Here, we have systematically studied the impact of post-translational polyglutamylation on axonal transport. In cultured hippocampal neurons, deletion of a single deglutamylase, CCP1 (also known as AGTPBP1), is sufficient to induce abnormal accumulation of polyglutamylation, i.e. hyperglutamylation. We next investigated how hyperglutamylation affects axonal transport of a range of functionally different neuronal cargoes: mitochondria, lysosomes, LAMP1 endosomes and BDNF vesicles. Strikingly, we found a reduced motility for all these cargoes, suggesting that polyglutamylation could act as a regulator of cargo transport in neurons. This, together with the recent discovery that hyperglutamylation induces neurodegeneration, makes it likely that perturbed neuronal trafficking could be one of the central molecular causes underlying this novel type of degeneration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Anne Schnitzler
- Institut Curie, PSL Research University, Department of Genetics, F-75005 Paris, France
| | - Cristopher Villablanca
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
- Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Christian Gonzalez-Billault
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
- Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Ivan Bieche
- Institut Curie, PSL Research University, Department of Genetics, F-75005 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75005 Paris, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| |
Collapse
|
34
|
Gönczi M, Dienes B, Dobrosi N, Fodor J, Balogh N, Oláh T, Csernoch L. Septins, a cytoskeletal protein family, with emerging role in striated muscle. J Muscle Res Cell Motil 2020; 42:251-265. [PMID: 31955380 PMCID: PMC8332580 DOI: 10.1007/s10974-020-09573-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Appropriate organization of cytoskeletal components are required for normal distribution and intracellular localization of different ion channels and proteins involved in calcium homeostasis, signal transduction, and contractile function of striated muscle. Proteins of the contractile system are in direct or indirect connection with the extrasarcomeric cytoskeleton. A number of other molecules which have essential role in regulating stretch-, voltage-, and chemical signal transduction from the surface into the cytoplasm or other intracellular compartments are already well characterized. Sarcomere, the basic contractile unit, is comprised of a precisely organized system of thin (actin), and thick (myosin) filaments. Intermediate filaments connect the sarcomeres and other organelles (mitochondria and nucleus), and are responsible for the cellular integrity. Interacting proteins have a very diverse function in coupling of the intracellular assembly components and regulating the normal physiological function. Despite the more and more intense investigations of a new cytoskeletal protein family, the septins, only limited information is available regarding their expression and role in striated, especially in skeletal muscles. In this review we collected basic and specified knowledge regarding this protein group and emphasize the importance of this emerging field in skeletal muscle biology.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421, Homburg, Saar, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.
| |
Collapse
|
35
|
Bodakuntla S, Magiera MM, Janke C. Measuring the Impact of Tubulin Posttranslational Modifications on Axonal Transport. Methods Mol Biol 2020; 2101:353-370. [PMID: 31879913 DOI: 10.1007/978-1-0716-0219-5_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Axonal transport is a process essential for neuronal function and survival that takes place on the cellular highways-the microtubules. It requires three major components: the microtubules that serve as tracks for the transport, the motor proteins that drive the movement, and the transported cargoes with their adaptor proteins. Axonal transport could be controlled by tubulin posttranslational modifications, which by decorating specific microtubule tracks could determine the specificity of cargo delivery inside neurons. However, it appears that the effects of tubulin modifications on transport can be rather subtle, and might thus be easily overlooked depending on which parameter of the transport process is analyzed. Here we propose an analysis paradigm that allows detecting rather subtle alterations in neuronal transport, as induced for instance by accumulation of posttranslational polyglutamylation. Analyzing mitochondria movements in axons, we found that neither the average speed nor the distance traveled were affected by hyperglutamylation, but we detected an about 50% reduction of the overall motility, suggesting that polyglutamylation controls the efficiency of mitochondria transport in axons. Our protocol can readily be expanded to the analysis of the impact of other tubulin modifications on the transport of a range of different neuronal cargoes.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
36
|
Bompard G, van Dijk J, Cau J, Lannay Y, Marcellin G, Lawera A, van der Laan S, Rogowski K. CSAP Acts as a Regulator of TTLL-Mediated Microtubule Glutamylation. Cell Rep 2019; 25:2866-2877.e5. [PMID: 30517872 DOI: 10.1016/j.celrep.2018.10.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/22/2017] [Accepted: 10/25/2018] [Indexed: 01/22/2023] Open
Abstract
Tubulin glutamylation is a reversible posttranslational modification that accumulates on stable microtubules (MTs). While abnormally high levels of this modification lead to a number of disorders such as male sterility, retinal degeneration, and neurodegeneration, very little is known about the molecular mechanisms underlying the regulation of glutamylase activity. Here, we found that CSAP forms a complex with TTLL5, and we demonstrate that the two proteins regulate their reciprocal abundance. Moreover, we show that CSAP increases TTLL5-mediated glutamylation and identify the TTLL5-interacting domain. Deletion of this domain leads to complete loss of CSAP activating function without impacting its MT binding. Binding of CSAP to TTLL5 promotes relocalization of TTLL5 toward MTs. Finally, we show that CSAP binds and activates all of the remaining autonomously active TTLL glutamylases. As such, we present CSAP as a major regulator of tubulin glutamylation and associated functions.
Collapse
Affiliation(s)
- Guillaume Bompard
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Juliette van Dijk
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Julien Cau
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Yoann Lannay
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Guillaume Marcellin
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Aleksandra Lawera
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Siem van der Laan
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Krzysztof Rogowski
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France.
| |
Collapse
|
37
|
Guelfi S, Botia JA, Thom M, Ramasamy A, Perona M, Stanyer L, Martinian L, Trabzuni D, Smith C, Walker R, Ryten M, Reimers M, Weale ME, Hardy J, Matarin M. Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain 2019; 142:1616-1630. [DOI: 10.1093/brain/awz074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sebastian Guelfi
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Juan A. Botia
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Maria Thom
- Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Marina Perona
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), National Scientific and Technical Research Council (CONICET), Argentina
| | - Lee Stanyer
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Lillian Martinian
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert Walker
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Mark Reimers
- Neuroscience Program and Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael E. Weale
- Department Medical and Molecular Genetics, King’s College London, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Mar Matarin
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London, WC1N 3, UK
| |
Collapse
|
38
|
Lessard DV, Zinder OJ, Hotta T, Verhey KJ, Ohi R, Berger CL. Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A. J Biol Chem 2019; 294:6353-6363. [PMID: 30770469 DOI: 10.1074/jbc.ra118.005765] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Indexed: 01/06/2023] Open
Abstract
The kinesin-3 family member KIF1A plays a critical role in site-specific neuronal cargo delivery during axonal transport. KIF1A cargo is mislocalized in many neurodegenerative diseases, indicating that KIF1A's highly efficient, superprocessive motility along axonal microtubules needs to be tightly regulated. One potential regulatory mechanism may be through posttranslational modifications (PTMs) of axonal microtubules. These PTMs often occur on the C-terminal tails of the microtubule tracks, act as molecular "traffic signals" helping to direct kinesin motor cargo delivery, and include C-terminal tail polyglutamylation important for KIF1A cargo transport. KIF1A initially interacts with microtubule C-terminal tails through its K-loop, a positively charged surface loop of the KIF1A motor domain. However, the role of the K-loop in KIF1A motility and response to perturbations in C-terminal tail polyglutamylation is underexplored. Using single-molecule imaging, we present evidence that KIF1A pauses on different microtubule lattice structures, linking multiple processive segments together and contributing to KIF1A's characteristic superprocessive run length. Furthermore, modifications of the KIF1A K-loop or tubulin C-terminal tail polyglutamylation reduced KIF1A pausing and overall run length. These results suggest a new mechanism to regulate KIF1A motility via pauses mediated by K-loop/polyglutamylated C-terminal tail interactions, providing further insight into KIF1A's role in axonal transport.
Collapse
Affiliation(s)
- Dominique V Lessard
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Oraya J Zinder
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Takashi Hotta
- the Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kristen J Verhey
- the Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ryoma Ohi
- the Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Christopher L Berger
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| |
Collapse
|
39
|
Magiera MM, Bodakuntla S, Žiak J, Lacomme S, Marques Sousa P, Leboucher S, Hausrat TJ, Bosc C, Andrieux A, Kneussel M, Landry M, Calas A, Balastik M, Janke C. Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J 2018; 37:e100440. [PMID: 30420556 PMCID: PMC6276888 DOI: 10.15252/embj.2018100440] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Posttranslational modifications of tubulin are emerging regulators of microtubule functions. We have shown earlier that upregulated polyglutamylation is linked to rapid degeneration of Purkinje cells in mice with a mutation in the deglutamylating enzyme CCP1. How polyglutamylation leads to degeneration, whether it affects multiple neuron types, or which physiological processes it regulates in healthy neurons has remained unknown. Here, we demonstrate that excessive polyglutamylation induces neurodegeneration in a cell-autonomous manner and can occur in many parts of the central nervous system. Degeneration of selected neurons in CCP1-deficient mice can be fully rescued by simultaneous knockout of the counteracting polyglutamylase TTLL1. Excessive polyglutamylation reduces the efficiency of neuronal transport in cultured hippocampal neurons, suggesting that impaired cargo transport plays an important role in the observed degenerative phenotypes. We thus establish polyglutamylation as a cell-autonomous mechanism for neurodegeneration that might be therapeutically accessible through manipulation of the enzymes that control this posttranslational modification.
Collapse
Affiliation(s)
- Maria M Magiera
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Jakub Žiak
- Department of Molecular Neurobiology, Institute of Physiology, Czech Academy of Sciences, Prague 4, Czech Republic
- Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Sabrina Lacomme
- Bordeaux Imaging Center, BIC, UMS 3420, Université Bordeaux, Bordeaux, France
| | - Patricia Marques Sousa
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Sophie Leboucher
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Torben J Hausrat
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christophe Bosc
- Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France
- Inserm U1216, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France
- Inserm U1216, Grenoble, France
| | - Matthias Kneussel
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, CNRS UMR5297, Université Bordeaux, Bordeaux, France
| | - André Calas
- Interdisciplinary Institute for Neuroscience, CNRS UMR5297, Université Bordeaux, Bordeaux, France
| | - Martin Balastik
- Department of Molecular Neurobiology, Institute of Physiology, Czech Academy of Sciences, Prague 4, Czech Republic
| | - Carsten Janke
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| |
Collapse
|
40
|
Kinesins: Motor Proteins as Novel Target for the Treatment of Chronic Pain. Mol Neurobiol 2018; 56:3854-3864. [DOI: 10.1007/s12035-018-1327-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
41
|
He K, Ma X, Xu T, Li Y, Hodge A, Zhang Q, Torline J, Huang Y, Zhao J, Ling K, Hu J. Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat Commun 2018; 9:3310. [PMID: 30120249 PMCID: PMC6098020 DOI: 10.1038/s41467-018-05867-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/02/2018] [Indexed: 12/12/2022] Open
Abstract
Tubulin polyglutamylation is a predominant axonemal post-translational modification. However, if and how axoneme polyglutamylation is essential for primary cilia and contribute to ciliopathies are unknown. Here, we report that Joubert syndrome protein ARL13B controls axoneme polyglutamylation, which is marginally required for cilia stability but essential for cilia signaling. ARL13B interacts with RAB11 effector FIP5 to promote cilia import of glutamylase TTLL5 and TTLL6. Hypoglutamylation caused by a deficient ARL13B-RAB11-FIP5 trafficking pathway shows no effect on ciliogenesis, but promotes cilia disassembly and, importantly, impairs cilia signaling by disrupting the proper anchoring of sensory receptors and trafficking of signaling molecules. Remarkably, depletion of deglutamylase CCP5, the predominant cilia deglutamylase, effectively restores hypoglutamylation-induced cilia defects. Our study reveals a paradigm that tubulin polyglutamylation is a major contributor for cilia signaling and suggests a potential therapeutic strategy by targeting polyglutamylation machinery to promote ciliary targeting of signaling machineries and correct signaling defects in ciliopathies.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tao Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yan Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Allen Hodge
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julia Torline
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Zhao
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA.
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
42
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
43
|
Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, Cinatl J, Huang PH, Tanos BE. Primary Cilia Mediate Diverse Kinase Inhibitor Resistance Mechanisms in Cancer. Cell Rep 2018; 23:3042-3055. [PMID: 29874589 PMCID: PMC6016080 DOI: 10.1016/j.celrep.2018.05.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/13/2017] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
Primary cilia are microtubule-based organelles that detect mechanical and chemical stimuli. Although cilia house a number of oncogenic molecules (including Smoothened, KRAS, EGFR, and PDGFR), their precise role in cancer remains unclear. We have interrogated the role of cilia in acquired and de novo resistance to a variety of kinase inhibitors, and found that, in several examples, resistant cells are distinctly characterized by an increase in the number and/or length of cilia with altered structural features. Changes in ciliation seem to be linked to differences in the molecular composition of cilia and result in enhanced Hedgehog pathway activation. Notably, manipulating cilia length via Kif7 knockdown is sufficient to confer drug resistance in drug-sensitive cells. Conversely, targeting of cilia length or integrity through genetic and pharmacological approaches overcomes kinase inhibitor resistance. Our work establishes a role for ciliogenesis and cilia length in promoting cancer drug resistance and has significant translational implications.
Collapse
Affiliation(s)
- Andrew D Jenks
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Simon Vyse
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jocelyn P Wong
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Eleftherios Kostaras
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Deborah Keller
- FILM, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | - Amelia Shoemark
- Imperial College London, London, UK Electron Microscopy Department, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Athanasios Tsalikis
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Strasse 40, 60596 Frankfurt am Main, Germany
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Barbara E Tanos
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
44
|
Magiera MM, Singh P, Gadadhar S, Janke C. Tubulin Posttranslational Modifications and Emerging Links to Human Disease. Cell 2018; 173:1323-1327. [PMID: 29856952 DOI: 10.1016/j.cell.2018.05.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Tubulin posttranslational modifications are currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders. Here, we review the latest advances in understanding the physiological roles of tubulin modifications and their links to a variety of pathologies.
Collapse
Affiliation(s)
- Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Puja Singh
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
45
|
Kimura Y, Tsutsumi K, Konno A, Ikegami K, Hameed S, Kaneko T, Kaplan OI, Teramoto T, Fujiwara M, Ishihara T, Blacque OE, Setou M. Environmental responsiveness of tubulin glutamylation in sensory cilia is regulated by the p38 MAPK pathway. Sci Rep 2018; 8:8392. [PMID: 29849065 PMCID: PMC5976657 DOI: 10.1038/s41598-018-26694-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Glutamylation is a post-translational modification found on tubulin that can alter the interaction between microtubules (MTs) and associated proteins. The molecular mechanisms regulating tubulin glutamylation in response to the environment are not well understood. Here, we show that in the sensory cilia of Caenorhabditis elegans, tubulin glutamylation is upregulated in response to various signals such as temperature, osmolality, and dietary conditions. Similarly, tubulin glutamylation is modified in mammalian photoreceptor cells following light adaptation. A tubulin glutamate ligase gene ttll-4, which is essential for tubulin glutamylation of axonemal MTs in sensory cilia, is activated by p38 MAPK. Amino acid substitution of TTLL-4 has revealed that a Thr residue (a putative MAPK-phosphorylation site) is required for enhancement of tubulin glutamylation. Intraflagellar transport (IFT), a bidirectional trafficking system specifically observed along axonemal MTs, is required for the formation, maintenance, and function of sensory cilia. Measurement of the velocity of IFT particles revealed that starvation accelerates IFT, which was also dependent on the Thr residue of TTLL-4. Similarly, starvation-induced attenuation of avoidance behaviour from high osmolality conditions was also dependent on ttll-4. Our data suggest that a novel evolutionarily conserved regulatory system exists for tubulin glutamylation in sensory cilia in response to the environment.
Collapse
Affiliation(s)
- Yoshishige Kimura
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa, 238-8522, Japan
| | - Koji Tsutsumi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Alu Konno
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Saira Hameed
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomomi Kaneko
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa, 238-8522, Japan
| | - Oktay Ismail Kaplan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, 4, Ireland
- Abdullah Gul Universitesi, Doga Bilimleri Fakultesi, Sumer Kampusu, 38090, Kocasinan, Kayseri, Turkey
| | - Takayuki Teramoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Manabi Fujiwara
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Ishihara
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Department of Anatomy, The University of Hong Kong, Hong Kong, China.
- Division of Neural Systematics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
46
|
Murillo B, Mendes Sousa M. Neuronal Intrinsic Regenerative Capacity: The Impact of Microtubule Organization and Axonal Transport. Dev Neurobiol 2018; 78:952-959. [PMID: 29738096 DOI: 10.1002/dneu.22602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 11/06/2022]
Abstract
In the adult vertebrate central nervous system, axons generally fail to regenerate. In contrast, peripheral nervous system axons are able to form a growth cone and regenerate upon lesion. Among the multiple intrinsic mechanisms leading to the formation of a new growth cone and to successful axon regrowth, cytoskeleton organization and dynamics is central. Here we discuss how multiple pathways that define the regenerative capacity converge into the regulation of the axonal microtubule cytoskeleton and transport. We further explore the use of dorsal root ganglion neurons as a model to study the neuronal regenerative ability. Finally, we address some of the unanswered questions in the field, including the mechanisms by which axonal transport might be modulated by injury, and the relationship between microtubule organization, dynamics, and axonal transport. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Blanca Murillo
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
47
|
Hong SR, Wang CL, Huang YS, Chang YC, Chang YC, Pusapati GV, Lin CY, Hsu N, Cheng HC, Chiang YC, Huang WE, Shaner NC, Rohatgi R, Inoue T, Lin YC. Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat Commun 2018; 9:1732. [PMID: 29712905 PMCID: PMC5928066 DOI: 10.1038/s41467-018-03952-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells and are suggested to be involved in a wide range of cellular activities. However, the complexity and dynamic distribution of tubulin PTMs within cells have hindered the understanding of their physiological roles in specific subcellular compartments. Here, we develop a method to rapidly deplete tubulin glutamylation inside the primary cilia, a microtubule-based sensory organelle protruding on the cell surface, by targeting an engineered deglutamylase to the cilia in minutes. This rapid deglutamylation quickly leads to altered ciliary functions such as kinesin-2-mediated anterograde intraflagellar transport and Hedgehog signaling, along with no apparent crosstalk to other PTMs such as acetylation and detyrosination. Our study offers a feasible approach to spatiotemporally manipulate tubulin PTMs in living cells. Future expansion of the repertoire of actuators that regulate PTMs may facilitate a comprehensive understanding of how diverse tubulin PTMs encode ciliary as well as cellular functions. Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells, therefore assessing the physiological roles in specific subcellular compartments has been challenging. Here the authors develop a method to rapidly deplete tubulin glutamylation inside the primary cilia by targeting an engineered deglutamylase to the axoneme.
Collapse
Affiliation(s)
- Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cuei-Ling Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yao-Shen Huang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Chang
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ganesh V Pusapati
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Chun-Yu Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ning Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsiao-Chi Cheng
- Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yueh-Chen Chiang
- Interdisciplinary Program of Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-En Huang
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Nathan C Shaner
- Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, 92121, CA, USA
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, 21205, MD, USA.
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
48
|
Bedoni N, Haer-Wigman L, Vaclavik V, Tran VH, Farinelli P, Balzano S, Royer-Bertrand B, El-Asrag ME, Bonny O, Ikonomidis C, Litzistorf Y, Nikopoulos K, Yioti GG, Stefaniotou MI, McKibbin M, Booth AP, Ellingford JM, Black GC, Toomes C, Inglehearn CF, Hoyng CB, Bax N, Klaver CCW, Thiadens AA, Murisier F, Schorderet DF, Ali M, Cremers FPM, Andréasson S, Munier FL, Rivolta C. Mutations in the polyglutamylase gene TTLL5, expressed in photoreceptor cells and spermatozoa, are associated with cone-rod degeneration and reduced male fertility. Hum Mol Genet 2018; 25:4546-4555. [PMID: 28173158 DOI: 10.1093/hmg/ddw282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/30/2022] Open
Abstract
Hereditary retinal degenerations encompass a group of genetic diseases characterized by extreme clinical variability. Following next-generation sequencing and autozygome-based screening of patients presenting with a peculiar, recessive form of cone-dominated retinopathy, we identified five homozygous variants [p.(Asp594fs), p.(Gln117*), p.(Met712fs), p.(Ile756Phe), and p.(Glu543Lys)] in the polyglutamylase-encoding gene TTLL5, in eight patients from six families. The two male patients carrying truncating TTLL5 variants also displayed a substantial reduction in sperm motility and infertility, whereas those carrying missense changes were fertile. Defects in this polyglutamylase in humans have recently been associated with cone photoreceptor dystrophy, while mouse models carrying truncating mutations in the same gene also display reduced fertility in male animals. We examined the expression levels of TTLL5 in various human tissues and determined that this gene has multiple viable isoforms, being highly expressed in testis and retina. In addition, antibodies against TTLL5 stained the basal body of photoreceptor cells in rat and the centrosome of the spermatozoon flagellum in humans, suggesting a common mechanism of action in these two cell types. Taken together, our data indicate that mutations in TTLL5 delineate a novel, allele-specific syndrome causing defects in two as yet pathogenically unrelated functions, reproduction and vision.
Collapse
Affiliation(s)
- Nicola Bedoni
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Lonneke Haer-Wigman
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Veronika Vaclavik
- Jules Gonin Eye Hospital, Lausanne, Switzerland.,Fertas Andrology Laboratory, Lausanne, Switzerland
| | - Viet H Tran
- Jules Gonin Eye Hospital, Lausanne, Switzerland
| | - Pietro Farinelli
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Sara Balzano
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Beryl Royer-Bertrand
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Institute for Research in Ophtalmology, University of Lausanne and Ecole Polytechnique Federale de Lausanne, Switzerland
| | - Mohammed E El-Asrag
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK
| | - Olivier Bonny
- Service of Nephrology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Christos Ikonomidis
- Department of Otorhinolaryngology, Head and Neck Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Yan Litzistorf
- Department of Otorhinolaryngology, Head and Neck Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Konstantinos Nikopoulos
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Georgia G Yioti
- Department of Ophthalmology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Maria I Stefaniotou
- Department of Ophthalmology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Martin McKibbin
- The Eye Department, St. James's University Hospital, Leeds, UK
| | - Adam P Booth
- Royal Eye Infirmary, Derriford Hospital, Plymouth, UK
| | - Jamie M Ellingford
- Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Graeme C Black
- Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Carmel Toomes
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK
| | - Chris F Inglehearn
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nathalie Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Alberta A Thiadens
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Daniel F Schorderet
- Institute for Research in Ophtalmology, University of Lausanne and Ecole Polytechnique Federale de Lausanne, Switzerland
| | - Manir Ali
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK
| | - Frans P M Cremers
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Kreitzer G, Myat MM. Microtubule Motors in Establishment of Epithelial Cell Polarity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027896. [PMID: 28264820 DOI: 10.1101/cshperspect.a027896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells play a key role in insuring physiological homeostasis by acting as a barrier between the outside environment and internal organs. They are also responsible for the vectorial transport of ions and fluid essential to the function of many organs. To accomplish these tasks, epithelial cells must generate an asymmetrically organized plasma membrane comprised of structurally and functionally distinct apical and basolateral membranes. Adherent and occluding junctions, respectively, anchor cells within a layer and prevent lateral diffusion of proteins in the outer leaflet of the plasma membrane and restrict passage of proteins and solutes through intercellular spaces. At a fundamental level, the establishment and maintenance of epithelial polarity requires that signals initiated at cell-substratum and cell-cell adhesions are transmitted appropriately and dynamically to the cytoskeleton, to the membrane-trafficking machinery, and to the regulation of occluding and adherent junctions. Rigorous descriptive and mechanistic studies published over the last 50 years have provided great detail to our understanding of epithelial polarization. Yet still, critical early steps in morphogenesis are not yet fully appreciated. In this review, we discuss how cytoskeletal motor proteins, primarily kinesins, contribute to coordinated modification of microtubule and actin arrays, formation and remodeling of cell adhesions to targeted membrane trafficking, and to initiating the formation and expansion of an apical lumen.
Collapse
Affiliation(s)
- Geri Kreitzer
- Department of Pathobiology, Sophie Davis School of Biomedical Education, City College of New York, The City University of New York School of Medicine, New York, New York 10031
| | - Monn Monn Myat
- Department of Biology, Medgar Evers College, Brooklyn, New York 11225.,The Graduate Center, The City University of New York, New York, New York 10016
| |
Collapse
|
50
|
Identification of DmTTLL5 as a Major Tubulin Glutamylase in the Drosophila Nervous System. Sci Rep 2017; 7:16254. [PMID: 29176602 PMCID: PMC5701211 DOI: 10.1038/s41598-017-16586-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 01/09/2023] Open
Abstract
Microtubules (MTs) play crucial roles during neuronal life. They are formed by heterodimers of alpha and beta-tubulins, which are subjected to several post-translational modifications (PTMs). Amongst them, glutamylation consists in the reversible addition of a variable number of glutamate residues to the C-terminal tails of tubulins. Glutamylation is the most abundant MT PTM in the mammalian adult brain, suggesting that it plays an important role in the nervous system (NS). Here, we show that the previously uncharacterized CG31108 gene encodes an alpha-tubulin glutamylase acting in the Drosophila NS. We show that this glutamylase, which we named DmTTLL5, initiates MT glutamylation specifically on alpha-tubulin, which are the only glutamylated tubulin in the Drosophila brain. In DmTTLL5 mutants, MT glutamylation was not detected in the NS, allowing for determining its potential function. DmTTLL5 mutants are viable and we did not find any defect in vesicular axonal transport, synapse morphology and larval locomotion. Moreover, DmTTLL5 mutant flies display normal negative geotaxis behavior and their lifespan is not altered. Thus, our work identifies DmTTLL5 as the major enzyme responsible for initiating neuronal MT glutamylation specifically on alpha-tubulin and we show that the absence of MT glutamylation is not detrimental for Drosophila NS function.
Collapse
|