1
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
2
|
Mahajan D, Kumar T, Rath PK, Sahoo AK, Mishra BP, Kumar S, Nayak NR, Jena MK. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0010. [PMID: 38782369 DOI: 10.2478/aite-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
Collapse
Affiliation(s)
- Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tarun Kumar
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Anjan Kumar Sahoo
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Bidyut Prava Mishra
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
3
|
Li Y, Androulakis IP. The SCN-HPA-Periphery Circadian Timing System: Mathematical Modeling of Clock Synchronization and the Effects of Photoperiod on Jetlag Adaptation. J Biol Rhythms 2023; 38:601-616. [PMID: 37529986 PMCID: PMC10615703 DOI: 10.1177/07487304231188541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Synchronizing the circadian timing system (CTS) to external light/dark cycles is crucial for homeostasis maintenance and environmental adaptation. The CTS is organized hierarchically, with the central pacemaker located in the suprachiasmatic nuclei (SCN) generating coherent oscillations that are entrained to light/dark cycles. These oscillations regulate the release of glucocorticoids by the hypothalamus-pituitary-adrenal (HPA) axis, which acts as a systemic entrainer of peripheral clocks throughout the body. The SCN adjusts its network plasticity in response to variations in photoperiod, leading to changes in the rhythmic release of glucocorticoids and ultimately impacting peripheral clocks. However, the effects of photoperiod-induced variations of glucocorticoids on the synchronization of peripheral clocks are not fully understood, and the interaction between jetlag adaption and photoperiod changes is unclear. This study presents a semi-mechanistic mathematical model to investigate how the CTS responds to changes in photoperiod. Specifically, the study focuses on the entrainment properties of a system composed of the SCN, HPA axis, and peripheral clocks. The results show that high-amplitude glucocorticoid rhythms lead to a more coherent phase distribution in the periphery. In addition, our study investigates the effect of photoperiod exposure on jetlag recovery time and phase shift, proposing different interventional strategies for eastward and westward jetlag. The findings suggest that decreasing photic exposure before jetlag during eastward traveling and after jetlag during westward traveling can accelerate jetlag readaptation. The study provides insights into the mechanisms of CTS organization and potential recovery strategies for transitions between time zones and lighting zones.
Collapse
Affiliation(s)
- Yannuo Li
- Department of Chemical & Biochemical Engineering, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Ioannis P Androulakis
- Department of Chemical & Biochemical Engineering, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
- Department of Surgery, Robert Wood Johnson Medical School, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Photoperiod Conditions Modulate Serum Oxylipins Levels in Healthy and Obese Rats: Impact of Proanthocyanidins and Gut Microbiota. Nutrients 2023; 15:nu15030707. [PMID: 36771413 PMCID: PMC9920779 DOI: 10.3390/nu15030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Seasonal rhythms are emerging as a key factor influencing gut microbiota and bioactive compounds functionality as well as several physiological processes such as inflammation. In this regard, their impact on the modulation of oxylipins (OXLs), which are important lipid mediators of inflammatory processes, has not been investigated yet. Hence, we aimed to investigate the effects of photoperiods on OXLs metabolites in healthy and obesogenic conditions. Moreover, we evaluated if the impact of proanthocyanidins and gut microbiota on OXLs metabolism is influenced by photoperiod in obesity. To this purpose, Fischer 344 rats were housed under different photoperiod conditions (L6: 6 h light, L12: 12 h light or L18:18 h light) and fed either a standard chow diet (STD) or a cafeteria diet (CAF) for 9 weeks. During the last 4 weeks, obese rats were daily administered with an antibiotic cocktail (ABX), an oral dose of a grape seed proanthocyanidin extract (GSPE), or with their combination. CAF feeding and ABX treatment affected OXLs in a photoperiod dependent-manner. GSPE significantly altered prostaglandin E2 (PGE2) levels, only under L6 and mitigated ABX-mediated effects only under L18. In conclusion, photoperiods affect OXLs levels influenced by gut microbiota. This is the first time that the effects of photoperiod on OXLs metabolites have been demonstrated.
Collapse
|
5
|
Kim H, Son B, Seo EU, Kwon M, Ahn JH, Shin H, Song GY, Park EJ, Na DH, Cho S, Kim HN, Park HH, Lee W. Cleavage-Responsive Biofactory T Cells Suppress Infectious Diseases-Associated Hypercytokinemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201883. [PMID: 35751470 PMCID: PMC9475519 DOI: 10.1002/advs.202201883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Severe infectious diseases, such as coronavirus disease 2019 (COVID-19), can induce hypercytokinemia and multiple organ failure. In spite of the growing demand for peptide therapeutics against infectious diseases, current small molecule-based strategies still require frequent administration due to limited half-life and enzymatic digestion in blood. To overcome this challenge, a strategy to continuously express multi-level therapeutic peptide drugs on the surface of immune cells, is established. Here, chimeric T cells stably expressing therapeutic peptides are presented for treatment of severe infectious diseases. Using lentiviral system, T cells are engineered to express multi-level therapeutic peptides with matrix metallopeptidases- (MMP-) and tumor necrosis factor alpha converting enzyme- (TACE-) responsive cleavage sites on the surface. The enzymatic cleavage releases γ-carboxyglutamic acid of protein C (PC-Gla) domain and thrombin receptor agonist peptide (TRAP), which activate endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1), respectively. These chimeric T cells prevent vascular damage in tissue-engineered blood vessel and suppress hypercytokinemia and lung tissue damages in vivo, demonstrating promise for use of engineered T cells against sepsis and other infectious-related diseases.
Collapse
Affiliation(s)
- Hyelim Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of BiotechnologyYonsei UniversitySeoul03722Republic of Korea
| | - Boram Son
- Department of BioengineeringHanyang UniversitySeoul04763Republic of Korea
| | - Eun U Seo
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology (KIST School)Korea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Miji Kwon
- Department of Smart Health Science and TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - June Hong Ahn
- Division of Pulmonology and AllergyDepartment of Internal MedicineCollege of MedicineYeungnam University and Regional Center for Respiratory DiseasesYeungnam University Medical CenterDaegu42415Republic of Korea
| | - Heungsoo Shin
- Department of BioengineeringHanyang UniversitySeoul04763Republic of Korea
| | - Gyu Yong Song
- College of PharmacyChungnam National UniversityDaejeon34134Republic of Korea
- AREZ Co. LtdDaejeon34134Republic of Korea
| | - Eun Ji Park
- D&D PharmatechSeongnam13486Republic of Korea
| | - Dong Hee Na
- College of PharmacyChung‐Ang UniversitySeoul06974Republic of Korea
| | - Seung‐Woo Cho
- Department of BiotechnologyYonsei UniversitySeoul03722Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology (KIST School)Korea University of Science and Technology (UST)Seoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Hee Ho Park
- Department of BioengineeringHanyang UniversitySeoul04763Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation LeaderHanyang UniversitySeoul04763Republic of Korea
- Research Institute for Convergence of Basic ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Wonhwa Lee
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
6
|
Carbillet J, Rey B, Palme R, Monestier C, Börger L, Lavabre T, Maublanc ML, Cebe N, Rames JL, Le Loc'h G, Wasniewski M, Rannou B, Gilot-Fromont E, Verheyden H. Covariation between glucocorticoids, behaviour and immunity supports the pace-of-life syndrome hypothesis: an experimental approach. Proc Biol Sci 2022; 289:20220464. [PMID: 35611533 DOI: 10.1098/rspb.2022.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The biomedical literature has consistently highlighted that long-term elevation of glucocorticoids might impair immune functions. However, patterns are less clear in wild animals. Here, we re-explored the stress-immunity relationship considering the potential effects of behavioural profiles. Thirteen captive roe deer (Capreolus capreolus) were monitored over an eight-week period encompassing two capture events. We assessed how changes in baseline faecal cortisol metabolite (FCM) concentrations following a standardized capture protocol and an immune challenge using anti-rabies vaccination affected changes in 13 immune parameters of innate and adaptive immunity, and whether these changes in baseline FCM levels and immune parameters related to behavioural profiles. We found that individuals with increased baseline FCM levels also exhibited increased immunity and were characterized by more reactive behavioural profiles (low activity levels, docility to manipulation and neophilia). Our results suggest that the immunity of large mammals may be influenced by glucocorticoids, but also behavioural profiles, as it is predicted by the pace-of-life syndrome hypothesis. Our results highlight the need to consider covariations between behaviour, immunity and glucocorticoids in order to improve our understanding of the among-individual variability in the stress-immunity relationships observed in wildlife, as they may be underpinned by different life-history strategies.
Collapse
Affiliation(s)
- Jeffrey Carbillet
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan 31326, France.,Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex, France
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna 1210, Austria
| | | | - Luca Börger
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - Typhaine Lavabre
- Equipe de Biologie médicale-Histologie, CREFRE, Inserm-UPS-ENVT, Toulouse, France.,Inovie Vet, Laboratoire d'Analyses et Biologie Vétérinaires, Montpellier, France
| | | | - Nicolas Cebe
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan 31326, France
| | - Jean-Luc Rames
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan 31326, France
| | | | | | - Benoit Rannou
- Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France.,Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex, France
| | - Hélène Verheyden
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan 31326, France
| |
Collapse
|
7
|
Guo H, Dixon B. Understanding acute stress-mediated immunity in teleost fish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100010. [DOI: 10.1016/j.fsirep.2021.100010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022] Open
|
8
|
The paraventricular thalamus serves as a nexus in the regulation of stress and immunity. Brain Behav Immun 2021; 95:36-44. [PMID: 33540073 DOI: 10.1016/j.bbi.2021.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/23/2022] Open
Abstract
Many temperate zone animals exhibit seasonal rhythms in physiology and behavior, including seasonal cycles of reproduction, energetics, stress responsiveness, and immune function, among many others. These rhythms are driven by seasonal changes in the duration of pineal melatonin secretion. The neural melatonin target tissues that mediate several of these rhythms have been identified, though the target(s) mediating melatonin's regulation of glucocorticoid secretion, immune cell numbers, and bacterial killing capacity remain unspecified. The present results indicate that one melatonin target tissue, the paraventricular nucleus of the thalamus (PVT), is necessary for the expression of these seasonal rhythms. Thus, while radiofrequency ablations of the PVT failed to alter testicular and body mass response to short photoperiod exposure, they did block the effect of short day lengths on cortisol secretion and bacterial killing efficacy. These results are consistent with the independent regulation by separate neural circuits of several physiological traits that vary seasonally in mammals.
Collapse
|
9
|
Kronfeld-Schor N, Stevenson TJ, Nickbakhsh S, Schernhammer ES, Dopico XC, Dayan T, Martinez M, Helm B. Drivers of Infectious Disease Seasonality: Potential Implications for COVID-19. J Biol Rhythms 2021; 36:35-54. [PMID: 33491541 PMCID: PMC7924107 DOI: 10.1177/0748730420987322] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Not 1 year has passed since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Since its emergence, great uncertainty has surrounded the potential for COVID-19 to establish as a seasonally recurrent disease. Many infectious diseases, including endemic human coronaviruses, vary across the year. They show a wide range of seasonal waveforms, timing (phase), and amplitudes, which differ depending on the geographical region. Drivers of such patterns are predominantly studied from an epidemiological perspective with a focus on weather and behavior, but complementary insights emerge from physiological studies of seasonality in animals, including humans. Thus, we take a multidisciplinary approach to integrate knowledge from usually distinct fields. First, we review epidemiological evidence of environmental and behavioral drivers of infectious disease seasonality. Subsequently, we take a chronobiological perspective and discuss within-host changes that may affect susceptibility, morbidity, and mortality from infectious diseases. Based on photoperiodic, circannual, and comparative human data, we not only identify promising future avenues but also highlight the need for further studies in animal models. Our preliminary assessment is that host immune seasonality warrants evaluation alongside weather and human behavior as factors that may contribute to COVID-19 seasonality, and that the relative importance of these drivers requires further investigation. A major challenge to predicting seasonality of infectious diseases are rapid, human-induced changes in the hitherto predictable seasonality of our planet, whose influence we review in a final outlook section. We conclude that a proactive multidisciplinary approach is warranted to predict, mitigate, and prevent seasonal infectious diseases in our complex, changing human-earth system.
Collapse
Affiliation(s)
| | - T. J. Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - S. Nickbakhsh
- Institute of Infection, Immunity & Inflammation, MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - E. S. Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
- Channing Division of Network Medicine, Harvard Medical School, Boston, MA, USA
| | - X. C. Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - T. Dayan
- School of Zoology, The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - M. Martinez
- School of Public Health, Columbia University, New York City, NY, USA
| | - B. Helm
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Vasilieva NY, Khrushchova AM, Kuptsov AV, Shekarova ON, Sokolova OV, Wang D, Rogovin KA. On the winter enhancement of adaptive humoral immunity: hypothesis testing in desert hamsters (Phodopus roborovskii: Cricetidae, Rodentia) kept under long-day and short-day photoperiod. Integr Zool 2020; 15:232-247. [PMID: 31773894 DOI: 10.1111/1749-4877.12419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We tested the winter immunity enhancement hypothesis (WIEH) on male desert hamsters (Phodopus roborovskii) kept under long-day (LD) and short-day (SD) photoperiods. We assumed that under SD in a laboratory, the adaptive humoral immune responsiveness to the antigenic challenge would be enhanced due to the lack of winter physical stressors and food shortages and/or because of the action of an endogenous winter bolstering mechanism, while under LD the immune responsiveness would be suppressed by the activity of the reproductive system. The results support the WIEH in part. We did not find a difference in antibody production in response to sheep erythrocytes between SD and LD hamsters, but SD males had the lower number of granulocytes and the higher number of lymphocytes in white blood cell counts. Reproductive activity was lower in SD males. These males demonstrated an increase in their mass-specific resting metabolic rate, their mass-specific maximal metabolic rate and their level of cortisol. The result of a generalized linear model analysis indicates the negative effect on secondary immunoresponsiveness to sheep erythrocytes of mid-ventral gland size, the organ characterizing individual reproductive quality, and designates a tradeoff between antibody production and reproductive effort. The mass-independent maximal metabolic rate also negatively affected antibody production, indicating a tradeoff between maximal aerobic performance and the adaptive immune function. The higher stress in SD males seems to be the most likely reason for the lack of the effect of daylight duration on antibody production.
Collapse
Affiliation(s)
| | | | | | - Olga N Shekarova
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Olga V Sokolova
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Dehua Wang
- Institute of Zoology Chinese Academy of Science, Chaoyang District, Beijing, China
| | | |
Collapse
|
11
|
Photoperiodic manipulation modulates the innate and cell mediated immune functions in the fresh water snake, Natrix piscator. Sci Rep 2020; 10:14722. [PMID: 32895425 PMCID: PMC7477230 DOI: 10.1038/s41598-020-71777-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives of the current work were to investigate the role of photoperiod and melatonin in the alteration of immune responses in a reptilian species. Animals were kept on a regimen of short or long days. Blood was obtained and leucocytes were isolated to study various innate immune responses. Lymphocytes were separated from blood by density gradient centrifugation and were used to study proliferation. Respiratory burst activity was measured through nitrobluetetrazolium reduction assay while nitric oxide production by leucocytes was assayed by nitrite assay. Lymphocytes were isolated and used to study proliferation with and without B and T cell mitogens. Photoperiodic manipulation acted differentially on leucocyte counts. Nitrite release was increased while superoxide production was decreased in cultures obtained from the snakes kept on the short day regimen. Significant enhancement of mitogen induced lymphocyte proliferation was observed in cultures from the animals kept in either long or short days compared to cultures from the animals kept in natural ambient day length. Use of in vitro melatonin showed that lymphocytes from the animals, kept in long days, were more reactive. Photoperiod induces changes in immune status which may permit adaptive functional responses in order to maintain seasonal energetic budgets of the animals. Physiological responses (like elevated immune status) are energetically expensive, therefore, animals have evolved a strategy to reduce immune functions at times when energy is invested in reproductive activities. Natrix piscator breeds from September to December and elevated pineal hormone in winter suppresses reproduction while immunity is stimulated.
Collapse
|
12
|
To What Extent Does Photoperiod Affect Cattle Reproduction? Clinical Perspectives of Melatonin Administration – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The seasonality of reproduction in most mammals is dictated by photoperiod, temperature and nutrition. Melatonin, mainly synthesized in the pineal gland, is generally accepted as the active mediator of photoperiod responses including reproduction. While non-pregnant heifers and cows show continuous sexual activity and are therefore not seasonal breeders, it has been suggested that photo-periodicity may influence the appearance of puberty in heifers and the onset of parturition. Further, the light/dark ratio may influence endocrine patterns of gestation and a shorter light period correlates with the incidence of twin pregnancies. This review considers specific aspects of the effects of photoperiod and melatonin on reproduction in dairy cattle and discusses the clinical applications of melatonin.
Collapse
|
13
|
Onishi KG, Maneval AC, Cable EC, Tuohy MC, Scasny AJ, Sterina E, Love JA, Riggle JP, Malamut LK, Mukerji A, Novo JS, Appah-Sampong A, Gary JB, Prendergast BJ. Circadian and circannual timescales interact to generate seasonal changes in immune function. Brain Behav Immun 2020; 83:33-43. [PMID: 31351184 DOI: 10.1016/j.bbi.2019.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
Annual changes in day length enhance or suppress diverse aspects of immune function, giving rise to seasonal cycles of illness and mortality. The daily light-dark cycle also entrains circadian rhythms in immunity. Most published reports on immunological seasonality rely on measurements or interventions performed only at one point in the day. Because there can be no perfect matching of circadian phase across photoperiods of different duration, the manner in which these timescales interact to affect immunity is not understood. We examined whether photoperiodic changes in immune function reflect phenotypic changes that persist throughout the daily cycle, or merely reflect photoperiodic shifts in the circadian phase alignment of immunological rhythms. Diurnal rhythms in blood leukocyte trafficking, infection induced sickness responses, and delayed-type hypersensitivity skin inflammatory responses were examined at high-frequency sampling intervals (every 3 h) in Siberian hamsters (Phodopus sungorus) following immunological adaptation to summer or winter photoperiods. Photoperiod profoundly enhanced or suppressed immune function, in a trait-specific manner, and we were unable to identify a phase alignment of diurnal waveforms which eliminated these enhancing and suppressing effects of photoperiod. These results support the hypothesis that seasonal timescales affect immunity via mechanisms independent of circadian entrainment of the immunological circadian waveform.
Collapse
Affiliation(s)
- Kenneth G Onishi
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States.
| | - Andrew C Maneval
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Erin C Cable
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Mary Claire Tuohy
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Andrew J Scasny
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Evelina Sterina
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Jharnae A Love
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Jonathan P Riggle
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Leah K Malamut
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Aashna Mukerji
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Jennifer S Novo
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Abena Appah-Sampong
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Joseph B Gary
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Brian J Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States; Committee on Neurobiology, University of Chicago, Chicago, IL 60637, United States; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
14
|
Season and sex have different effects on hematology and cytokines in striped hamsters (Cricetulus barabensis). J Comp Physiol B 2019; 190:87-100. [PMID: 31732779 DOI: 10.1007/s00360-019-01246-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/18/2019] [Accepted: 11/06/2019] [Indexed: 01/30/2023]
Abstract
Animals in the temperate zones face seasonal variations in environments and hence their immune responses change seasonally. In the current study, seasonal changes in hematological parameters and cytokines in striped hamsters (Cricetulus barabensis) were examined to test the winter immunoenhancement hypothesis, which states that immune function tends to increase in fall and winter compared with other seasons. Male and female hamsters were captured from the wild in the fall and winter of 2014 and in the spring and summer of 2015. Maximum body mass in both sexes and relative fatness in female hamsters occurred in the summer, indicating that body condition was the best during this season. All hematological parameters were not different between male and female hamsters, and were also not affected by the interaction of season and sex except neutrophil granulocytes (GRAN). Red blood cells (RBC) and haematocrit (PCV) were higher in the fall and winter, and hemoglobin concentration (HGB) was the highest in winter in hamsters compared with the spring and summer, implying that their oxygen-carrying capacity and oxygen affinity of the blood increased during these seasons. Compared with other seasons, the number of white blood cells (WBC) was higher in winter than in summer, intermediate granulocytes (MID), the percent of MID (MID%), GRAN and the percent of GRAN (GRAN%) were the highest in winter, which all supported the winter immunoenhancement hypothesis. However, the count of lymphocytes (LYMF) was the highest in spring, being inconsistent with this hypothesis. IL-2 levels, but not TNF-α, were influenced by seasons, sex and their interaction in hamsters. Regardless of sex, IL-4 titres were higher in spring and summer than in fall and winter in hamsters. INF-γ titres in male hamsters did not differ between the spring and summer, while its titres in female hamsters was lower in spring in contrast with winter and summer. Higher IL-2 and IL-4 levels during the breeding seasons might be crucial in controlling the increased possibilities of infections in these seasons. In summary, season and sex had disparate effects on different hematological profiles and the levels of cytokines in hamsters.
Collapse
|
15
|
Shelton KA, Nehete BP, Chitta S, Williams LE, Schapiro SJ, Simmons J, Abee CR, Nehete PN. Effects of Transportation and Relocation on Immunologic Measures in Cynomolgus Macaques ( Macaca fascicularis). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2019; 58:774-782. [PMID: 31604484 PMCID: PMC6926399 DOI: 10.30802/aalas-jaalas-19-000007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
Abstract
NHP are a small, but critical, portion of the animals studied in research laboratories. Many NHP are imported or raised at one facility and subsequently moved to another facility for research purposes. To improve our understanding of the effects of transportation and relocation on the NHP immune system, to minimize potential confounds associated with relocation, and to maximize study validity, we examined the phenotype and function of PBMC in cynomolgus macaques (Macaca fascicularis) that were transported approximately 200 miles by road from one facility to another. We evaluated the phenotype of lymphocyte subsets through flow cytometry, mitogen-specific immune responses of PBMC in vitro, and plasma levels of circulating cytokines before transportation, at approximately 24 h after arrival (day 2), and after 30 d of acclimation. Analyses of blood samples revealed that the CD3+ and CD4+ T-cell counts increased significantly, whereas NK+, NKT, and CD14+ CD16+ nonclassical monocyte subsets were decreased significantly on day 2 after relocation compared with baseline. We also noted significantly increased immune cell function as indicated by mitogen-specific proliferative responses and by IFNγ levels on day 2 compared with baseline. After 30 d of acclimation, peripheral blood CD4+ T-cells and monocyte counts were higher than baseline, whereas B-cell numbers were lower. The mitogen-induced responses to LPS and IFNγ production after stimulation with pokeweed mitogen or phytohemagglutinin remained significantly different from baseline. In conclusion, the effects of transportation and relocation on immune parameters in cynomolgus monkeys are significant and do not fully return to baseline values even after 30 d of acclimation.
Collapse
Affiliation(s)
- Kathryn A Shelton
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Bharti P Nehete
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas;,
| | - Sriram Chitta
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Lawrence E Williams
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Graduate School of Biomedical Sciences, University of Texas, Houston, Texas
| | - Steven J Schapiro
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joe Simmons
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Christian R Abee
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Pramod N Nehete
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Graduate School of Biomedical Sciences, University of Texas, Houston, Texas
| |
Collapse
|
16
|
Abstract
Stress has both a good and bad side which are discussed in terms of the concepts of allostasis and allostatic load and overload. Stressful experiences can cause health damaging behaviors which lead to allostatic load and overload and accelerate disease processes.
Collapse
Affiliation(s)
- Bruce S McEwen
- a Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University , New York , NY , USA
| |
Collapse
|
17
|
Gassen J, Proffitt Leyva RP, Mengelkoch S, White JD, Peterman JL, Prokosch ML, Bradshaw HK, Eimerbrink MJ, Corrigan EK, Cheek DJ, Boehm GW, Hill SE. Day length predicts investment in human immune function: Shorter days yield greater investment. Psychoneuroendocrinology 2019; 107:141-147. [PMID: 31128570 DOI: 10.1016/j.psyneuen.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022]
Abstract
Winter is characterized by stressful conditions which compromise health and render animals more vulnerable to infection and illness than during other times of the year. Organisms are hypothesized to adapt to these seasonal stressors by increasing investment in immune function in response to diminished photoperiod duration. Here, we examined this hypothesis in a sample of healthy human participants. Using several functional immune assays in vitro, as well as by utilizing measures of in vivo proinflammatory cytokine levels, we predicted that shorter day length would be associated with greater investment in immunological function. Results revealed that shorter days predicted significant upregulation of several facets of immune function, including natural killer cell cytotoxicity, peripheral blood mononuclear cell proliferation (in response to, and in the absence of stimulation), and plasma levels of interleukin-6, as well as lower rates of Staphylococcus aureus growth in serum ex vivo. Further, consistent with the hypothesis that these trade-offs would be offset by decreased investment in mating effort, shorter day length also predicted lower levels of total testosterone in men. These results suggest that ambient photoperiod may be a powerful regulator of human immunological activity, providing some of the first evidence of seasonal changes in multiple facets of human immune function.
Collapse
Affiliation(s)
- Jeffrey Gassen
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States.
| | - Randi P Proffitt Leyva
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Summer Mengelkoch
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Jordon D White
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Julia L Peterman
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Marjorie L Prokosch
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Hannah K Bradshaw
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Micah J Eimerbrink
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Emily K Corrigan
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Dennis J Cheek
- Texas Christian University, Harris College of Nursing and Health Sciences, 2800 W Bowie St, Fort Worth, TX 76109, United States
| | - Gary W Boehm
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| | - Sarah E Hill
- Texas Christian University, Department of Psychology, 2955 S University Dr, Fort Worth, TX 76109, United States
| |
Collapse
|
18
|
Onishi KG, Prendergast BJ, Stevenson TJ. Trait-specific effects of exogenous triiodothyronine on cytokine and behavioral responses to simulated systemic infection in male Siberian hamsters. Horm Behav 2019; 110:90-97. [PMID: 30826308 DOI: 10.1016/j.yhbeh.2019.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/21/2022]
Abstract
Seasonal changes in day length enhance and suppress immune function in a trait-specific manner. In Siberian hamsters (Phodopus sungorus) winter-like short days (SDs) increase blood leukocyte concentrations and adaptive T cell dependent immune responses, but attenuate innate inflammatory responses to simulated infections. Thyroid hormone (TH) signaling also changes seasonally and has been implicated in modulation of the reproductive axis by day length. Immunologically, TH administration in long days (LD) enhances adaptive immune responses in male Siberian hamsters, mimicking effects of SDs. This experiment tested the hypothesis that T3 is also sufficient to mimic the effects of SD on innate immune responses. Adult male hamsters housed in LDs were pretreated with triiodothyronine (T3; 1 μg, s.c.) or saline (VEH) daily for 6 weeks; additional positive controls were housed in SD and received VEH, after which cytokine, behavioral, and physiological responses to simulated bacterial infection (lipopolysaccharide; LPS) were evaluated. SD pretreatment inhibited proinflammatory cytokine mRNA expression (i.e. interleukin 1β, nuclear factor kappa-light-chain-enhancer of activated B cells). In addition, the magnitude and persistence of anorexic and cachectic responses to LPS were also lower in SD hamsters, and LPS-induced inhibition of nest building behavior was absent in SD. T3 treatments failed to affect behavioral (food intake, nest building) or somatic (body mass) responses to LPS in LD hamsters, but one CNS cytokine response to LPS (e.g., hypothalamic TNFα) was augmented by T3. Together these data implicate thyroid hormone signaling in select aspects of innate immune responses to seasonal changes in day length.
Collapse
Affiliation(s)
- Kenneth G Onishi
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tyler J Stevenson
- Inst. Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Engert LC, Weiler U, Pfaffinger B, Stefanski V, Schmucker SS. Photoperiodic Effects on Diurnal Rhythms in Cell Numbers of Peripheral Leukocytes in Domestic Pigs. Front Immunol 2019; 10:393. [PMID: 30915069 PMCID: PMC6422931 DOI: 10.3389/fimmu.2019.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
The photoperiod is known to modulate immune cell number and function and is regarded essential for seasonal disease susceptibility. In addition, diurnal variations in the immune system are regarded important for immune competence. Whereas few studies investigated the influence of season, none investigated the specific effect of the photoperiod on these diurnal immune rhythms until now. Therefore, the present study compared diurnal rhythms in cell numbers of peripheral leukocyte types in domestic pigs held either under long day conditions (LD) or short day conditions (SD). Cosinor analyses of cell numbers of various peripheral leukocyte subtypes investigated over periods of 50 h revealed distinct photoperiodic differences in diurnal immune rhythms. Relative amplitudes of cell numbers of total leukocytes, NK cells, T cells, and monocytes in blood were higher under SD than LD. In addition, cell counts of total leukocytes, NK cells, T cells including various T cell subtypes, and eosinophils peaked earlier relative to the time of lights-on under SD than LD. In contrast, diurnal rhythms of neutrophil counts did not show photoperiodic differences. Mesor values did not differ in any leukocyte type. Generalized linear mixed model analyses revealed associations of leukocyte counts with plasma cortisol concentration and activity behavior in most investigated cell types. Moreover, the present study demonstrated photoperiodic effects on diurnal rhythms in plasma cortisol concentrations and activity behavior, which is in agreement with human and primate studies. The results of the present study imply stronger rhythmicity in leukocyte counts in general under SD. Common intrinsic mechanisms seem to regulate photoperiodic effects on diurnal rhythms in leukocyte counts, except for neutrophils, in domestic pigs. Our results reveal considerable insights into the regulation of immune rhythms in diurnally active species.
Collapse
Affiliation(s)
- Larissa C Engert
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ulrike Weiler
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Birgit Pfaffinger
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sonja S Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
20
|
|
21
|
Xu DL, Hu XK, Tian Y. Seasonal variations in cellular and humoral immunity in male striped hamsters ( Cricetulus barabensis). Biol Open 2018; 7:bio038489. [PMID: 30404899 PMCID: PMC6310883 DOI: 10.1242/bio.038489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Animals in the non-tropical zone usually demonstrate seasonal variations in immune function, which is important for their survival. In the present study, seasonal changes in immunity in striped hamsters (Cricetulus barabensis) were investigated to test the winter immunoenhancement hypothesis. Male hamsters were captured from the wild in the fall and winter of 2014 and in the spring and summer of 2015. Body mass, body fat mass and blood glucose levels of the hamsters were all highest in the summer, whereas relative fatness and thymus mass had no seasonal changes. Spleen mass was highest in the fall and white blood cells and phytohaemagglutinin (PHA) response indicative of cellular immunity were lowest in the summer among the four seasons, which supports the winter immunoenhancement hypothesis. IgG and IgM titers were lowest in the fall, which was against this hypothesis. Body fat mass had no correlations with cellular and humoral immunity, suggesting it was not the reason for seasonal changes in cellular and humoral immunity in males. Leptin titers were higher in spring and summer than in fall and winter. No correlation between leptin and cellular and humoral immunity suggested that leptin did not mediate their seasonal changes. Similarly, corticosterone levels were also higher in spring and summer than in fall and winter, which correlated negatively with cellular immunity but positively with IgG levels. This result implied that corticosterone has a suppressive effect on cellular immunity and an enhancing effect on humoral immunity. In summary, distinct components of immune systems exhibited different seasonal patterns. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- De-Li Xu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong Province, China
| | - Xiao-Kai Hu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong Province, China
| | - Yufen Tian
- Library, Qufu Normal University, Qufu 273165, Shandong Province, China
| |
Collapse
|
22
|
Dhabhar FS. The short-term stress response - Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front Neuroendocrinol 2018; 49:175-192. [PMID: 29596867 PMCID: PMC5964013 DOI: 10.1016/j.yfrne.2018.03.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance.
Collapse
Affiliation(s)
- Firdaus S Dhabhar
- Department of Psychiatry & Behavioral Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Mail Stop M877, 1550 NW 10th Avenue, Miami, FL 33136-1000, United States.
| |
Collapse
|
23
|
Hernández-Arciga U, Herrera M. LG, Ibáñez-Contreras A, Miranda-Labra RU, Flores-Martínez JJ, Königsberg M. Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi. PLoS One 2018; 13:e0190047. [PMID: 29293551 PMCID: PMC5749750 DOI: 10.1371/journal.pone.0190047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023] Open
Abstract
Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage.
Collapse
Affiliation(s)
- Ulalume Hernández-Arciga
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - L. Gerardo Herrera M.
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio, Jalisco, México
| | - Alejandra Ibáñez-Contreras
- Laboratorio de Neurofisiología, Applied Research in Experimental Biomedicine S.A. de C.V. (APREXBIO), Ciudad de México, México
- Unidad de Experimentación Animal, Biología Integral para Vertebrados (BIOINVERT®), Estado de México, México
| | - Roxana U. Miranda-Labra
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - José Juan Flores-Martínez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| |
Collapse
|
24
|
Madelaire CB, Sokolova I, Gomes FR. Seasonal Patterns of Variation in Steroid Plasma Levels and Immune Parameters in Anurans from Brazilian Semiarid Area. Physiol Biochem Zool 2017; 90:415-433. [PMID: 28398155 DOI: 10.1086/691202] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Elevated androgens and glucocorticoids displayed by males during the reproductive season have been proposed to mediate a possible trade-off between reproduction and immunocompetence. Anurans living in arid and semiarid environments display a strong seasonal reproduction, which could accentuate the variation in physiological, immunological, and behavioral parameters. We studied covariation between steroid plasma levels, morphometric variables associated with body condition and immunity, leukocyte profile, parasite load, and response to an immunological challenge across different phases of the annual life-history cycle of three anuran species from a Brazilian semiarid area. Our results showed a seasonal pattern of covariation among leukocyte parameters, kidney mass, and steroid plasma levels, with higher values measured during the reproductive season, particularly when males were sampled during calling activity. Moreover, these anurans showed a stronger response to an immunological challenge during the reproductive period. The immunosuppression during the dry period was particularly evident for the species that aestivate, indicating that the availability of energetic resources might be an important factor determining seasonal variation in inflammatory response. Intensity of the helminth infection was associated with eosinophil count but showed a more complex pattern with regard to androgens levels. These data emphasize that variations in the intensity of helminth infection might be more closely related to specific aspects of the immune response than to the general seasonal patterns of variation in steroid plasma levels, total circulating leukocytes, and inflammatory response.
Collapse
|
25
|
Yi WJ, Kim TS. Melatonin protects mice against stress-induced inflammation through enhancement of M2 macrophage polarization. Int Immunopharmacol 2017; 48:146-158. [DOI: 10.1016/j.intimp.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 01/08/2023]
|
26
|
Peters EMJ, Müller Y, Snaga W, Fliege H, Reißhauer A, Schmidt-Rose T, Max H, Schweiger D, Rose M, Kruse J. Hair and stress: A pilot study of hair and cytokine balance alteration in healthy young women under major exam stress. PLoS One 2017; 12:e0175904. [PMID: 28423056 PMCID: PMC5397031 DOI: 10.1371/journal.pone.0175904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/02/2017] [Indexed: 12/25/2022] Open
Abstract
Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine-imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison) female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T) 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS]), COPE), cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs), and trichogram (hair cycle and pigmentation analysis). Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample populations is required, to assess suitability of trichogram analysis as biological outcome for stress studies.
Collapse
Affiliation(s)
- Eva M. J. Peters
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
- * E-mail:
| | - Yvonne Müller
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
| | - Wenke Snaga
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
| | - Herbert Fliege
- Foreign Office, Health Service, Psychosocial Counseling, Auswärtiges Amt, Berlin, Germany
| | - Anett Reißhauer
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for Physical Medicine and Rehabilitation, Berlin, Germany
| | | | | | | | - Matthias Rose
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
| | - Johannes Kruse
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
| |
Collapse
|
27
|
Xu DL, Hu XK. Photoperiod and temperature differently affect immune function in striped hamsters (Cricetulus barabensis). Comp Biochem Physiol A Mol Integr Physiol 2017; 204:211-218. [DOI: 10.1016/j.cbpa.2016.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/17/2022]
|
28
|
Hopkins SJ, Loudon ASI. Remember the Null Hypothesis. J Biol Rhythms 2016. [DOI: 10.1177/074873002237135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Stephen J. Hopkins
- North Western Injury Research Collaboration, Clinical Sciences Building, Hope Hospital, Salford M6 8HD, UK
| | - Andrew S. I. Loudon
- School of Biological Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
29
|
Nelson RJ, Demas GE. Seasonal Patterns of Stress, Disease, and Sickness Responses. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/j.0963-7214.2004.00307.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The combined challenge of low food availability and low temperatures can make winter difficult for survival, and nearly impossible for breeding. Traditionally, studies of seasonality have focused on reproductive adaptations and largely ignored adaptations associated with survival. We propose shifting the focus from reproduction to immune function, a proxy for survival, and hypothesize that evolved physiological and behavioral mechanisms enable individuals to anticipate recurrent seasonal stressors and enhance immune function in advance of their occurrence. These seasonal adaptations, which have an important influence on seasonal patterns of survival, are reviewed here. We then discuss studies suggesting that photoperiod (day length) and photoperiod-dependent melatonin secretion influence immune function. Our working hypothesis is that short day lengths reroute energy from reproduction and growth to bolster immune function during winter. The net effect of these photoperiod-mediated adjustments is enhanced immune function and increased survival.
Collapse
Affiliation(s)
- Randy J. Nelson
- Departments of Psychology and Neuroscience, Ohio State University, Columbus
| | | |
Collapse
|
30
|
DuRant SE, de Bruijn R, Tran MN, Romero LM. Wound-healing ability is conserved during periods of chronic stress and costly life history events in a wild-caught bird. Gen Comp Endocrinol 2016; 229:119-26. [PMID: 26965949 DOI: 10.1016/j.ygcen.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 12/31/2022]
Abstract
Chronic stress, potentially through the actions of corticosterone, is thought to directly impair the function of immune cells. However, chronic stress may also have an indirect effect by influencing allocation of energy, ultimately shifting resources away from the immune system. If so, the effects of chronic stress on immune responses may be greater during energetically-costly life history events. To test whether the effects of chronic stress on immune responses differ during expensive life history events we measured wound healing rate in molting and non-molting European starlings (Sturnus vulgaris) exposed to control or chronic stress conditions. To determine whether corticosterone correlated with wound healing rates before starting chronic stress, we measured baseline and stress-induced corticosterone and two estimates of corticosterone release and regulation, negative feedback (using dexamethasone injection), and maximal capacity of the adrenals to secrete corticosterone (using adrenocorticotropin hormone [ACTH] injection). After 8days of exposure to chronic stress, we wounded both control and chronically stressed birds and monitored healing daily. We monitored nighttime heart rate, which strongly correlates with energy expenditure, and body mass throughout the study. Measures of corticosterone did not differ with molt status. Contrary to work on lizards and small mammals, all birds, regardless of stress or molt status, fully-healed wounds at similar rates. Although chronic stress did not influence healing rates, individuals with low baseline corticosterone or strong negative feedback had faster healing rates than individuals with high baseline corticosterone or weak negative feedback. In addition, wound healing does appear to be linked to energy expenditure and body mass. Non-molting, chronically stressed birds decreased nighttime heart rate during healing, but this pattern did not exist in molting birds. Additionally, birds of heavier body mass at the start of the experiment healed wounds more rapidly than lighter birds. Finally, chronically stressed birds lost body mass at the start of chronic stress, but after wounding all birds regardless of stress or molt status started gaining weight, which continued for the remainder of the study. Increased body mass could suggest compensatory feeding to offset energetic or resource demands (e.g., proteins) of wound healing. Although chronic stress did not inhibit healing, our data suggest that corticosterone may play an important role in mediating healing processes and that molt could influence energy saving tactics during periods of chronic stress. Although the experiment was designed to test allostasis, interpretation of data through reactive scope appears to be a better fit.
Collapse
Affiliation(s)
- S E DuRant
- Department of Biology, Tufts University, Medford, MA 02155, United States; Department of Zoology, Oklahoma State University, Stillwater, OK 74078, United States.
| | - R de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - M N Tran
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - L M Romero
- Department of Biology, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
31
|
Banks R, Delibegovic M, Stevenson TJ. Photoperiod- and Triiodothyronine-dependent Regulation of Reproductive Neuropeptides, Proinflammatory Cytokines, and Peripheral Physiology in Siberian Hamsters (Phodopus sungorus). J Biol Rhythms 2016; 31:299-307. [DOI: 10.1177/0748730416637707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seasonal trade-offs in reproduction and immunity are ubiquitous in nature. The mechanisms that govern transitions across seasonal physiological states appear to involve reciprocal switches in the local synthesis of thyroid hormone. In long-day (LD) summer-like conditions, increased hypothalamic triiodothyronine (T3) stimulates gonadal development. Alternatively, short-day (SD) winter-like conditions increase peripheral leukocytes and enhance multiple aspects of immune function. These data indicate that the localized effects of T3 in the hypothalamus and leukocytes are photoperiod dependent. We tested the hypothesis that increased peripheral T3 in SD conditions would increase aspects of reproductive physiology and inhibit immune function, whereas T3 injections in LD conditions would facilitate aspects of immune function (i.e., leukocytes). In addition, we also examined whether T3 regulates hypothalamic neuropeptide expression as well as hypothalamic and splenic proinflammatory cytokine expression. Adult male Siberian hamsters were maintained in LD (15L:9D) or transferred to SD (9L:15D) for 8 weeks. A subset of LD and SD hamsters was treated daily with 5 µg T3 for 2 weeks. LD and SD controls were injected with saline. Daily T3 administration in SD hamsters (SD+T3) resulted in a rapid and substantial decrease in peripheral leukocyte concentrations and stimulated gonadal development. T3 treatment in LD (LD+T3) had no effect on testicular volumes but significantly increased leukocyte concentrations. Molecular analyses revealed that T3 stimulated interleukin 1β messenger RNA (mRNA) expression in the spleen and inhibited RFamide Related Peptide-3 mRNA expression in the hypothalamus. Moreover, there was a photoperiod-dependent decrease in splenic tumor necrosis factor–α mRNA expression. These findings reveal that T3 has tissue-specific and photoperiod-dependent regulation of seasonal rhythms in reproduction and immune function.
Collapse
Affiliation(s)
- Ruth Banks
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Tyler J. Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
32
|
Vasilieva NY, Khrushchova AM, Shekarova ON, Rogovin KA. Testosterone and induced humoral immunity in male Campbell dwarf hamsters (Phodopus campbelli, Thomas, 1905, Rodentia, Cricetidae): Experimental manipulation of testosterone levels. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015030139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Weil ZM, Borniger JC, Cisse YM, Abi Salloum BA, Nelson RJ. Neuroendocrine control of photoperiodic changes in immune function. Front Neuroendocrinol 2015; 37:108-18. [PMID: 25456047 PMCID: PMC4402123 DOI: 10.1016/j.yfrne.2014.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Seasonal variation in immune function putatively maximizes survival and reproductive success. Day length (photoperiod) is the most potent signal for time of year. Animals typically organize breeding, growth, and behavior to adapt to spatial and temporal niches. Outside the tropics individuals monitor photoperiod to support adaptations favoring survival and reproductive success. Changes in day length allow anticipation of seasonal changes in temperature and food availability that are critical for reproductive success. Immune function is typically bolstered during winter, whereas reproduction and growth are favored during summer. We provide an overview of how photoperiod influences neuronal function and melatonin secretion, how melatonin acts directly and indirectly to govern seasonal changes in immune function, and the manner by which other neuroendocrine effectors such as glucocorticoids, prolactin, thyroid, and sex steroid hormones modulate seasonal variations in immune function. Potential future research avenues include commensal gut microbiota and light pollution influences on photoperiodic responses.
Collapse
Affiliation(s)
- Zachary M Weil
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jeremy C Borniger
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yasmine M Cisse
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Bachir A Abi Salloum
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Stevenson TJ, Prendergast BJ. Photoperiodic time measurement and seasonal immunological plasticity. Front Neuroendocrinol 2015; 37:76-88. [PMID: 25456046 PMCID: PMC4405432 DOI: 10.1016/j.yfrne.2014.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
Abstract
Seasonal variations in immunity are common in nature, and changes in day length are sufficient to trigger enhancement and suppression of immune function in many vertebrates. Drawing primarily on data from Siberian hamsters, this review describes formal and physiological aspects of the neuroendocrine regulation of seasonal changes in mammalian immunity. Photoperiod regulates immunity in a trait-specific manner, and seasonal changes in gonadal hormone secretion and thyroid hormone signaling all participate in seasonal immunomodulation. Photoperiod-driven changes in the hamster reproductive and immune systems are associated with changes in iodothyronine deiodinase-mediated thyroid hormone signaling, but photoperiod exerts opposite effects on select aspects of the epigenetic regulation of reproductive neuroendocrine and lymphoid tissues. Photoperiodic changes in immunocompetence may explain a proportion of the annual variance in disease incidence and severity in nature, and provide a useful framework to help understand brain-immune interactions.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Brian J Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
35
|
Aubrecht TG, Weil ZM, Nelson RJ. Dim light at night interferes with the development of the short-day phenotype and impairs cell-mediated immunity in Siberian hamsters (Phodopus sungorus). ACTA ACUST UNITED AC 2014; 321:450-6. [PMID: 24962267 DOI: 10.1002/jez.1877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 11/07/2022]
Abstract
Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses.
Collapse
Affiliation(s)
- Taryn G Aubrecht
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Institute for Behavioral Medicine Research, Columbus, Ohio
| | | | | |
Collapse
|
36
|
Gracceva G, Herde A, Groothuis TGG, Koolhaas JM, Palme R, Eccard JA. Turning Shy on a Winter's Day: Effects of Season on Personality and Stress Response inMicrotus arvalis. Ethology 2014. [DOI: 10.1111/eth.12246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giulia Gracceva
- Behavioural Physiology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
- Behavioural Biology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Antje Herde
- Department of Animal Ecology; Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| | - Ton G. G. Groothuis
- Behavioural Biology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Jaap M. Koolhaas
- Behavioural Physiology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Rupert Palme
- Institute for Medical Biochemistry; University of Veterinary Medicine; Vienna Austria
| | - Jana A. Eccard
- Department of Animal Ecology; Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| |
Collapse
|
37
|
Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 2014; 58:193-210. [DOI: 10.1007/s12026-014-8517-0] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Ikeno T, Weil ZM, Nelson RJ. Dim light at night disrupts the short-day response in Siberian hamsters. Gen Comp Endocrinol 2014; 197:56-64. [PMID: 24362257 DOI: 10.1016/j.ygcen.2013.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 01/20/2023]
Abstract
Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Zachary M Weil
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Stevenson TJ, Onishi KG, Bradley SP, Prendergast BJ. Cell-autonomous iodothyronine deiodinase expression mediates seasonal plasticity in immune function. Brain Behav Immun 2014; 36:61-70. [PMID: 24145050 PMCID: PMC3974869 DOI: 10.1016/j.bbi.2013.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 01/07/2023] Open
Abstract
Annual rhythms in morbidity and mortality are well-documented, and host defense mechanisms undergo marked seasonal phenotypic change. Siberian hamsters (Phodopus sungorus) exhibit striking immunological plasticity following adaptation to short winter day lengths (SD), including increases in blood leukocytes and in the magnitude of T cell-mediated immune responses. Thyroid hormone (TH) signaling is rate-limited by tissue-level expression of iodothyronine deiodinase types II and III (dio2, dio3), and dio2/dio3 expression in the central nervous system gate TH-dependent transduction of photoperiod information into the neuroendocrine system. THs are also potent immunomodulators, but their role in seasonal immunobiology remains unexamined. Here we report that photoperiod-driven changes in triiodothyronine (T3) signaling mediate seasonal changes in multiple aspects of immune function. Transfer from long days (LD) to SD inhibited leukocyte dio3 expression, which increased cellular T4→T3 catabolism. T3 was preferentially localized in the lymphocyte cytoplasm, consistent with a non-nuclear role of T3 in lymphoid cell differentiation and maturation. Exposure to SD upregulated leukocyte DNA methyltransferase expression and markedly increased DNA methylation in the dio3 proximal promoter region. Lastly, to bypass low endogenous T3 biosynthesis in LD lymphocytes, LD hamsters were treated with T3, which enhanced T cell-dependent delayed-type hypersensitivity inflammatory responses and blood leukocyte concentrations in a dose-dependent manner, mimicking effects of SD on these immunophenotypes. T3 signaling represents a novel mechanism by which environmental day length cues impact the immune system: changes in day length alter lymphoid cell T3-signaling via epigenetic transcriptional control of dio3 expression.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Kenneth G Onishi
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | - Sean P Bradley
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA; Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| | - Brian J Prendergast
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA; Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
40
|
Prendergast BJ, Onishi KG, Patel PN, Stevenson TJ. Circadian arrhythmia dysregulates emotional behaviors in aged Siberian hamsters. Behav Brain Res 2013; 261:146-57. [PMID: 24333374 DOI: 10.1016/j.bbr.2013.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
Emotional behaviors are influenced by the circadian timing system. Circadian disruptions are associated with depressive-like symptoms in clinical and preclinical populations. Circadian rhythm robustness declines markedly with aging and may contribute to susceptibility to emotional dysregulation in aged individuals. The present experiments used a model of chronic circadian arrhythmia generated noninvasively, via a series of circadian-disruptive light treatments, to investigate interactions between circadian desynchrony and aging on depressive- and anxiety-like behaviors, and on limbic neuroinflammatory gene expression that has been linked with emotionality. We also examined whether a social manipulation (group housing) would attenuate effects of arrhythmia on emotionality. In aged (14-18 months of age) male Siberian hamsters, circadian arrhythmia increased behavioral despair and decreased social motivation, but decreased exploratory anxiety. These effects were not evident in younger (5-9 months of age) hamsters. Social housing (3-5 hamsters/cage) abolished the effects of circadian arrhythmia on emotionality. Circadian arrhythmia alone was without effect on hippocampal or cortical interleukin-1β (IL-1β) and indoleamine 2,3-dioxygenase (Ido) mRNA expression in aged hamsters, but social housing decreased hippocampal IL-1β and Ido mRNAs. The data demonstrate that circadian disruption can negatively impact affective state, and that this effect is pronounced in older individuals. Although clear associations between circadian arrhythmia and constitutive limbic proinflammatory activity were not evident, the present data suggest that social housing markedly inhibits constitutive hippocampal IL-1β and Ido activity, which may contribute to the ameliorating effects of social housing on a number of emotional behaviors.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA; Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | - Kenneth G Onishi
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| | - Priyesh N Patel
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Tyler J Stevenson
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
41
|
Brooks KC, Mateo JM. Chronically raised glucocorticoids reduce innate immune function in Belding's ground squirrels (Urocitellus beldingi) after an immune challenge. Gen Comp Endocrinol 2013; 193:149-57. [PMID: 23948370 DOI: 10.1016/j.ygcen.2013.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/04/2013] [Accepted: 07/31/2013] [Indexed: 12/16/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis releases glucocorticoids (GCs), or stress hormones, during the vertebrate stress response. GCs can both enhance and suppress the immune system depending on whether the experienced stressor is acute or chronic and what aspect of immune function is measured. More research is needed to fully understand how the immune system reacts to stressors. In this study, we examined the effects of chronically raised GCs on innate immune function in Belding's ground squirrels (Urocitellus beldingi). We measured immune function with a bacteria killing ability (BKA) assay, an integrative and functional assessment of an animal's ability to clear a bacterial infection. All studies to date have examined how acute stressors or repeated social stressors impact BKA. This study is the first to our knowledge to investigate how chronically raised GCs impact BKA both before and after an immune challenge. We noninvasively raised GCs in treatment squirrels for six days and then gave them, and a group of untreated (control) squirrels, an injection of lipopolysaccharide (LPS) to stimulate their innate immune system. Treatment squirrels exhibited lower BKA after, but not before, being challenged with LPS. These results suggest that experiencing chronic stress may not be detrimental to immune functioning until an individual is challenged with an infection.
Collapse
Affiliation(s)
- Katherine C Brooks
- Committee on Evolutionary Biology, The University of Chicago, 1025 E. 57th Street, Culver 402, Chicago, IL 60637, USA.
| | | |
Collapse
|
42
|
Prendergast BJ, Cable EJ, Patel PN, Pyter LM, Onishi KG, Stevenson TJ, Ruby NF, Bradley SP. Impaired leukocyte trafficking and skin inflammatory responses in hamsters lacking a functional circadian system. Brain Behav Immun 2013; 32:94-104. [PMID: 23474187 PMCID: PMC3686870 DOI: 10.1016/j.bbi.2013.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 01/19/2023] Open
Abstract
The immune system is under strong circadian control, and circadian desynchrony is a risk factor for metabolic disorders, inflammatory responses and cancer. Signaling pathways that maintain circadian rhythms (CRs) in immune function in vivo, and the mechanisms by which circadian desynchrony impairs immune function, remain to be fully identified. These experiments tested the hypothesis that the hypothalamic circadian pacemaker in the suprachiasmatic nucleus (SCN) drives CRs in the immune system, using a non-invasive model of SCN circadian arrhythmia. Robust CRs in blood leukocyte trafficking, with a peak during the early light phase (ZT4) and nadir in the early dark phase (ZT18), were absent in arrhythmic hamsters, as were CRs in spleen clock gene (per1, bmal1) expression, indicating that a functional pacemaker in the SCN is required for the generation of CRs in leukocyte trafficking and for driving peripheral clocks in secondary lymphoid organs. Pinealectomy was without effect on CRs in leukocyte trafficking, but abolished CRs in spleen clock gene expression, indicating that nocturnal melatonin secretion is necessary for communicating circadian time information to the spleen. CRs in trafficking of antigen presenting cells (CD11c(+) dendritic cells) in the skin were abolished, and antigen-specific delayed-type hypersensitivity skin inflammatory responses were markedly impaired in arrhythmic hamsters. The SCN drives robust CRs in leukocyte trafficking and lymphoid clock gene expression; the latter of which is not expressed in the absence of melatonin. Robust entrainment of the circadian pacemaker provides a signal critical to diurnal rhythms in immunosurveilliance and optimal memory T-cell dependent immune responses.
Collapse
Affiliation(s)
- Brian J. Prendergast
- Department of Psychology, University of Chicago, Chicago, IL 60637,Committee on Neurobiology, University of Chicago, Chicago, IL 60637
| | - Erin J. Cable
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | - Priyesh N. Patel
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | - Leah M. Pyter
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | | | | | - Norman F. Ruby
- Department of Biological Sciences, Stanford University, Palo Alto, CA 94305
| | - Sean P. Bradley
- Department of Psychology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
43
|
Abstract
Stress is thought to suppress immune function and increase susceptibility to infections and cancer. Paradoxically, stress is also known to exacerbate autoimmune/proinflammatory disorders (eg, psoriasis, atopic dermatitis) that should be ameliorated by immunosuppression. Here we review studies showing that although chronic stress (lasting for weeks/months/years) can suppress/dysregulate immune function, acute stress (lasting for minutes to hours) can have immunoenhancing effects. Short-term stress experienced at the time of immune activation enhances dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function, and has been shown to augment innate and adaptive immunity; therefore, depending on the conditions of immune activation, and the nature of the activating antigen, short-term stress can enhance the acquisition and expression of immunoprotection or immunopathology. In contrast, chronic stress suppresses or dysregulates innate and adaptive immune responses by altering the Type 1-Type 2 cytokine balance, inducing low-grade chronic increases in proinflammatory factors, and suppressing numbers, trafficking, and function of immunoprotective cells. Chronic stress also increases susceptibility to skin cancer by suppressing Type 1 cytokines and protective T cells while increasing regulatory/suppressor T cell number/function. It is important to recognize that the adaptive function of a physiological stress response is to promote survival. Stress-related neurotransmitters, hormones, and factors act as biological alarm signals that prepare the immune and other physiological systems for potential challenges (eg, wounding or infection) perceived by the brain (eg, detection of an attacker); however, this may exacerbate immunopathology (eg, psoriasis, atopic dermatitis) if the enhanced immune response is directed against innocuous or self-antigens, or if the system is chronically activated as seen during long-term stress. In view of the ubiquitous nature of stress and its significant effects on immunoprotection and immunopathology, it is important to further elucidate the mechanisms mediating both the salubrious and the harmful effects of stress, and to meaningfully translate findings from bench to bedside.
Collapse
Affiliation(s)
- Firdaus S Dhabhar
- Department of Psychiatry and Behavioral Sciences, Institute for Immunity Transplantation and Infection, Stanford Cancer Institute, Stanford University School of Medicine, 259 Campus Drive, MC 5135, Stanford, CA 94305-5135, USA.
| |
Collapse
|
44
|
Uzenbaeva LB, Vinogradova IA, Kizhina AG, Prokopenko OA, Malkiel AI, Goranskii AI, Lapinski S, Ilyukha VA. Influence of melatonin on neutrophil-to-lymphocyte ratio in mammalian blood depending on age of the animal. ADVANCES IN GERONTOLOGY 2013. [DOI: 10.1134/s2079057013010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Gómez-Acebo I, Llorca J, Dierssen T. Cold-related mortality due to cardiovascular diseases, respiratory diseases and cancer: a case-crossover study. Public Health 2013; 127:252-8. [PMID: 23433803 DOI: 10.1016/j.puhe.2012.12.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/21/2012] [Accepted: 12/21/2012] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The aim of this study was to identify the relationship between low temperatures in winter and mortality due to cancer, cardiovascular diseases and respiratory diseases. STUDY DESIGN Case-crossover study. METHODS A case-crossover study was performed in Cantabria (northern Spain) in the years 2004-2005; 3948 deaths were included. Odds ratios were estimated using conditional logistic regression, stratified by age, sex, and delay of exposure to low temperatures. RESULTS There was an inverse dose-response relationship between temperature and mortality in the three causes of death studied; this result was consistent across genders and age groups. The higher OR for cancer mortality was seen on the first day of exposure (OR = 4.91; 95% CI: 1.65-13.07 in the whole population), and it decreased when exposure over several days in a row was considered; people aged 75 years or more were especially susceptible to cold temperatures (OR = 17.9; 95% CI: 2.38-134.8). Cardiovascular (OR = 2.63; 95% CI: 1.88-3.67) and respiratory mortality (OR = 2.72; 95% CI: 1.46-5.08) showed a weaker effect. CONCLUSION There is a striking association between the extreme cold temperatures and mortality from cancer, not previously reported, which is more remarkable in the elderly. These results could be explained by a harvesting effect in which the cold acts as a trigger of death in terminally ill patients at high risk of dying a few days or weeks later.
Collapse
Affiliation(s)
- I Gómez-Acebo
- Facultad de Medicina, University of Cantabria, Santander, Spain.
| | | | | |
Collapse
|
46
|
Lattin CR, Waldron-Francis K, Romero LM. Intracellular glucocorticoid receptors in spleen, but not skin, vary seasonally in wild house sparrows (Passer domesticus). Proc Biol Sci 2013; 280:20123033. [PMID: 23407837 DOI: 10.1098/rspb.2012.3033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the short-term and at physiological doses, acute increases in corticosterone (CORT) titres can enhance immune function. There are predictable seasonal patterns in both circulating CORT and immune function across many animal species, but whether CORT receptor density in immune tissues varies seasonally is currently unknown. Using radioligand binding assays, we examined changes in concentrations of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in spleen and skin in wild-caught house sparrows in Massachusetts during six different life-history stages: moult, early winter, late winter, pre-egg-laying, breeding and late breeding. Splenic GR and MR binding were highest during the pre-laying period. This may help animals respond to immune threats through increased lymphocyte proliferation and/or an increase in delayed-type hypersensitivity reactions, both of which CORT can stimulate and in which spleen is involved. A decrease in splenic GR and MR during the late breeding period coincides with low baseline and stress-induced CORT, suggesting immune function in spleen may be relatively CORT-independent during this period. We saw no seasonal patterns in GR or MR in skin, suggesting skin's response to CORT is modulated primarily via changes in circulating CORT titres and/or via local production of CORT in response to wounding and other noxious stimuli.
Collapse
|
47
|
Tymen SD, Rojas IG, Zhou X, Fang ZJ, Zhao Y, Marucha PT. Restraint stress alters neutrophil and macrophage phenotypes during wound healing. Brain Behav Immun 2013; 28:207-17. [PMID: 22884902 PMCID: PMC3878450 DOI: 10.1016/j.bbi.2012.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/20/2012] [Accepted: 07/22/2012] [Indexed: 01/06/2023] Open
Abstract
Previous studies reported that stress delays wound healing, impairs bacterial clearance, and elevates the risk for opportunistic infection. Neutrophils and macrophages are responsible for the removal of bacteria present at the wound site. The appropriate recruitment and functions of these cells are necessary for efficient bacterial clearance. In our current study we found that restraint stress induced an excessive recruitment of neutrophils extending the inflammatory phase of healing, and the gene expression of neutrophil attracting chemokines MIP-2 and KC. However, restraint stress did not affect macrophage infiltration. Stress decreased the phagocytic abilities of phagocytic cells ex vivo, yet it did not affect superoxide production. The cell surface expression of adhesion molecules CD11b and TLR4 were decreased in peripheral blood monocytes in stressed mice. The phenotype of macrophages present at the wound site was also altered. Gene expression of markers of pro-inflammatory classically activated macrophages, CXCL10 and CCL5, were down-regulated; as were markers associated with wound healing macrophages, CCL22, IGF-1, RELMα; and the regulatory macrophage marker, chemokine CCL1. Restraint stress also induced up-regulation of IL10 gene expression. In summary, our study has shown that restraint stress suppresses the phenotype shift of the macrophage population, as compared to the changes observed during normal wound healing, while the number of macrophages remains constant. We also observed a general suppression of chemokine gene expression. Modulation of the macrophage phenotype could provide a new therapeutic approach in the treatment of wounds under stress conditions in the clinical setting.
Collapse
Affiliation(s)
- Stéphanie D. Tymen
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Isolde G. Rojas
- Department of Oral Surgery and Laboratory of Oral Biology and Pathology, College of Dentistry, University of Concepción, Concepción, Chile
| | - Xiaofeng Zhou
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zong Juan Fang
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Zhao
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Phillip T. Marucha
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
48
|
Dhabhar FS, Malarkey WB, Neri E, McEwen BS. Stress-induced redistribution of immune cells--from barracks to boulevards to battlefields: a tale of three hormones--Curt Richter Award winner. Psychoneuroendocrinology 2012; 37:1345-68. [PMID: 22727761 PMCID: PMC3412918 DOI: 10.1016/j.psyneuen.2012.05.008] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND The surveillance and effector functions of the immune system are critically dependent on the appropriate distribution of immune cells in the body. An acute or short-term stress response induces a rapid and significant redistribution of immune cells among different body compartments. Stress-induced leukocyte redistribution may be a fundamental survival response that directs leukocyte subpopulations to specific target organs during stress, and significantly enhances the speed, efficacy and regulation of an immune response. Immune responses are generally enhanced in compartments (e.g., skin) that are enriched with leukocytes, and suppressed in compartments that are depleted of leukocytes during/following stress. The experiments described here were designed to elucidate the: (1) Time-course, trajectory, and subpopulation-specificity of stress-induced mobilization and trafficking of blood leukocytes. (2) Individual and combined actions of the principal stress hormones, norepinephrine (NE), epinephrine (EPI), and corticosterone (CORT), in mediating mobilization or trafficking of specific leukocyte subpopulations. (3) Effects of stress/stress hormones on adhesion molecule, L-selectin (CD62L), expression by each subpopulation to assess its adhesion/functional/maturation status. METHODS Male Sprague Dawley rats were stressed (short-term restraint, 2-120 min), or adrenalectomized and injected with vehicle (VEH), NE, EPI, CORT, or their combinations, and blood was collected for measurement of hormones and flow cytometric quantification of leukocyte subpopulations. RESULTS Acute stress induced an early increase/mobilization of neutrophils, lymphocytes, helper T cells (Th), cytolytic T cells (CTL), and B cells into the blood, followed by a decrease/trafficking of all cell types out of the blood, except neutrophil numbers that continued to increase. CD62L expression was increased on neutrophils, decreased on Th, CTL, and natural killer (NK) cells, and showed a biphasic decrease on monocytes & B cells, suggesting that CD62L is involved in mediating the redistribution effects of stress. Additionally, we observed significant differences in the direction, magnitude, and subpopulation specificity of the effects of each hormone: NE increased leukocyte numbers, most notably CD62L⁻/⁺ neutrophils and CD62L⁻ B cells. EPI increased monocyte and neutrophil numbers, most notably CD62L⁻/⁺ neutrophils and CD62L⁻ monocytes, but decreased lymphocyte numbers with CD62L⁻/⁺ CTL and CD62L⁺ B cells being especially sensitive. CORT decreased monocyte, lymphocyte, Th, CTL, and B cell numbers with CD62L⁻ and CD62L⁺ cells being equally affected. Thus, naïve (CD62L⁺) vs. memory (CD62L⁻) T cells, classical (CD62L⁺) vs. non-classical (CD62L⁻) monocytes, and similarly distinct functional subsets of other leukocyte populations are differentially mobilized into the blood and trafficked to tissues by stress hormones. CONCLUSION Stress hormones orchestrate a large-scale redistribution of immune cells in the body. NE and EPI mobilize immune cells into the bloodstream, and EPI and CORT induce traffic out of the blood possibly to tissue surveillance pathways, lymphoid tissues, and sites of ongoing or de novo immune activation. Immune cell subpopulations appear to show differential sensitivities and redistribution responses to each hormone depending on the type of leukocyte (neutrophil, monocyte or lymphocyte) and its maturation/functional characteristics (e.g., non-classical/resident or classical/inflammatory monocyte, naïve or central/effector memory T cell). Thus, stress hormones could be administered simultaneously or sequentially to induce specific leukocyte subpopulations to be mobilized into the blood, or to traffic from blood to tissues. Stress- or stress hormone-mediated changes in immune cell distribution could be clinically harnessed to: (1) Direct leukocytes to sites of vaccination, wound healing, infection, or cancer and thereby enhance protective immunity. (2) Reduce leukocyte traffic to sites of inflammatory/autoimmune reactions. (3) Sequester immune cells in relatively protected compartments to minimize exposure to cytotoxic treatments like radiation or localized chemotherapy. (4) Measure biological resistance/sensitivity to stress hormones in vivo. In keeping with the guidelines for Richter Award manuscripts, in addition to original data we also present a model and synthesis of findings in the context of the literature on the effects of short-term stress on immune cell distribution and function.
Collapse
Affiliation(s)
- Firdaus S Dhabhar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5135, USA.
| | | | | | | |
Collapse
|
49
|
Ashley NT, Zhang N, Weil ZM, Magalang UJ, Nelson RJ. Photoperiod Alters Duration and Intensity of Non–Rapid Eye Movement Sleep Following Immune Challenge in Siberian Hamsters (Phodopus sungorus). Chronobiol Int 2012; 29:683-92. [DOI: 10.3109/07420528.2012.682682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Lessard M, Beaudoin F, Ménard M, Lachance MP, Laforest JP, Farmer C. Impact of a long photoperiod during lactation on immune status of piglets. J Anim Sci 2012; 90:3468-76. [PMID: 22665650 DOI: 10.2527/jas.2012-5191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of a long photoperiod treatment around parturition and throughout lactation on immune status of piglets were studied. Sows were assigned to 2 light regimens: i) standard short photoperiod (SP, n = 17), 8 h of daily light from d 112 of gestation until d 23 of lactation; and ii) long photoperiod (LP, n = 17), 23 h of daily light from d 112 of gestation to d 4 of lactation and 16 h thereafter. In front of the crates, under the side heat lamps and behind the sow, light intensities were 59 ± 5, 109 ± 6, and 44 ± 6 lx, respectively. On d 15 of lactation and at weaning (d 23), 2 piglets of similar BW per litter were selected and immunized intramuscularly with ovalbumin (OVA). Blood samples (5 mL serum and 10 mL whole blood) were taken at d 15 and d 23 of lactation, and at d 30, 37, and 44 of age after weaning to evaluate the antibody response to OVA and measure phagocytosis, lymphocyte proliferative response, and different circulating blood lymphocyte populations of piglets. Results showed that phagocytosis was increased in piglets submitted to LP (P < 0.05). A treatment × time interaction (P < 0.001) indicated that SP piglets developed a better IgG response to OVA than LP piglets. The percentage of B lymphocytes was also increased (P = 0.02) in SP piglets compared with piglets exposed to LP during lactation; the lymphocyte response to OVA tended to be enhanced (P = 0.07) over time in SP piglets. Different subpopulations of CD8+ lymphocytes were markedly increased in SP piglets at 23 d of age compared with piglets exposed to LP (treatment × time: P < 0.05). These results suggest that exposure of piglets to LP during lactation seems to reduce the capacity of piglets to develop a strong immune response to novel antigens. This may have important consequences on the ability of piglets to resist an infection after weaning.
Collapse
Affiliation(s)
- M Lessard
- Agriculture and Agri-Food Canada, Dairy and Swine R & D Centre, 2000 College St., Sherbrooke, QC J1M 0C8, Canada.
| | | | | | | | | | | |
Collapse
|