1
|
Han X, Cheng Y, Wan D, Alu A, Zhang Z, Bi Z, Wang M, Tang Y, Hong W, Chen S, Chen L, Wei Y. Enhancing antitumor immunity through the combination of cholesterolized TLR7 agonist liposomes and radiotherapy: a role for IL-1β and the inflammasome pathway. Cancer Commun (Lond) 2025. [PMID: 40207651 DOI: 10.1002/cac2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Radiotherapy (RT) is a key treatment modality in cancer therapy, utilizing high-energy radiation to directly kill tumor cells. Recent research has increasingly highlighted RT's potential to indirectly enhance antitumor immunity. However, this immune activation alone often fails to generate sustained systemic antitumor responses. In this study, we aimed to investigate the antitumor effects of combining cholesterolized toll-like receptor 7 (TLR7) agonist liposomes, specifically 1V209-Cho-Lip, with RT. METHODS Mouse tumor models were used to assess the impact of combining 1V209-Cho-Lip with RT on tumor progression and modification of the tumor microenvironment. In vitro, primary mouse bone marrow-derived dendritic cells (BMDCs) were utilized to investigate changes in function and the activated pathways through RNA sequencing. Additionally, we explored the role of oxidized mitochondrial DNA (ox-mtDNA) released from irradiated tumor cells as a damage-associated molecular pattern in modulating immune responses. The involvement of interleukin-1β (IL-1β) and the inflammasome pathway in the antitumor efficacy of the combined treatment was evaluated using Il-1β-/- and cysteinyl aspartate specific proteinase 1 knockout (Casp1-/-) mouse models. RESULTS The combination of 1V209-Cho-Lip and RT significantly inhibited tumor growth and induced antitumor immunity in tumor models. This combination therapy enhanced maturation, antigen presentation and IL-1β secretion of dendritic cells (DCs) in vitro. Ox-mtDNA released from irradiated tumor cells synergized with 1V209-Cho-Lip to activate the inflammasome pathway in DCs. The antitumor effect of the combined therapy was significantly reduced in Il-1β-/- and Casp1-/- mice. CONCLUSIONS This study suggests that the combination of 1V209-Cho-Lip with RT might be a promising antitumor strategy and further studies are warranted to explore the clinical relevance of this combination therapy.
Collapse
Affiliation(s)
- Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
2
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kim JH, Lee Y, Ahn S, Koh D, Lim Y, Lee YH, Bae DH, Shin SY. Design, Synthesis, and Biological Evaluation of Aryl Pyrazolopyrimidines as Toll-Like Receptor 7 Agonists. Chem Biol Drug Des 2025; 105:e70056. [PMID: 39887539 DOI: 10.1111/cbdd.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Compounds containing pyrazolopyrimidine scaffolds were designed and synthesized as toll-like receptor 7 (TLR7) agonists. Thirty-three compounds, including 22 novel compounds, were prepared, and their structures were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. TLR7 agonist activity was determined in HEK-Blue hTLR7 reporter cells. Among the compounds tested, 2-((4-methoxyphenyl)amino)-7-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile showed the highest activity, and further in vitro biological experiments were performed using this compound. Treatment with the title compound activated the TLR7-mediated NF-κB pathway, triggering the IRAK4-IKKα/β-IκBα-p65 NF-κB signaling cascade, which led to an increase in the expression of NF-κB-regulated innate cytokines such as TNFα and IL-1β in RAW264.7 macrophages. These findings suggest that the title compound acts as a TLR7 agonist and enhances the innate immune response.
Collapse
Affiliation(s)
- Ji Hwan Kim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Youngshim Lee
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Young Han Lee
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Dong-Ho Bae
- Department of Food Sciences and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul, Korea
- Cancer and Metabolism Institute, Konkuk University, Seoul, Korea
| |
Collapse
|
4
|
Matsuda K, Ota Y, Uemachi H, Taoda R, Tsunashima Y, Ban H, Nagai Y. Examination of the potential clinical application of 5DEX-0509R, the tumor macrophage-targeting nanomedicine. Cytokine 2025; 186:156842. [PMID: 39721228 DOI: 10.1016/j.cyto.2024.156842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Toll-like receptors (TLRs) are crucial for the detection of infections and activation of downstream signaling pathways that lead to the production of pro-inflammatory cytokines and interferons. Because of their strong immunostimulatory activity, TLRs are thought to be a "double-edged sword" for systemic treatment, even in the cancer field. To solve this, we have developed dextran-based TAM targeting activator conjugate (D-TAC) technology which successfully uses tumor-associated macrophages (TAMs) to deliver the TLR7 agonist DSP-0509. We have demonstrated that the anti-tumor effect of our best drug candidate 5DEX-0509R is dependent on the abundance of TAMs, which is consistent with their mechanism of action. In this study, we compared the anti-tumor effects of EIK1001 and 5DEX-0509R, and analyzed its unique immune reaction against tumors to evaluate whether 5DEX-0509R is suitable for further clinical study. 5DEX-0509R showed superior anti-tumor activity compared to EIK1001, an R848 sulfate currently in phase 2 trials, with comparable systemic cytokine profiles. 5DEX-0509R elicited unique CD4 T cell and B cell-dependent anti-tumor effects. We also found that 5DEX-0509R synergistically suppresses tumors with oxaliplatin by changing M2 macrophages that cause oxaliplatin to become resistant to antitumor M1 macrophages. In addition, 5DEX-0509R caused a rapid but not sustained cytokine elevation in both rats and dogs. We believe 5DEX-0509R is worth pursuing for clinical trials.
Collapse
Affiliation(s)
- K Matsuda
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Y Ota
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan.
| | - H Uemachi
- Modality Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - R Taoda
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Y Tsunashima
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - H Ban
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan; Modality Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Y Nagai
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan.
| |
Collapse
|
5
|
Yamamura R, Nagayoshi Y, Nishiguchi K, Kaneko H, Yamamoto K, Matsushita K, Shimamura M, Kunisawa A, Sakakida K, Chujo T, Adachi M, Kakizoe Y, Izumi Y, Kuwabara T, Mukoyama M, Tomizawa K. Bacteria-specific modified nucleoside is released and elevated in urine of patients with bacterial infections. mBio 2025; 16:e0312424. [PMID: 39660929 PMCID: PMC11708014 DOI: 10.1128/mbio.03124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Over 170 types of chemical modifications have been identified in cellular RNAs across the three domains of life. Modified RNA is eventually degraded to constituent nucleosides, and in mammals, modified nucleosides are released into the extracellular space. By contrast, the fate of modified nucleosides in bacteria remains unknown. In this study, we performed liquid chromatography-mass spectroscopy (LC-MS) analysis of modified nucleosides from the RNA of 23 pathogenic bacteria, revealing 2-methyladenosine (m2A) as a common bacteria-specific modified nucleoside detected in all bacterial RNAs. Under normal culture conditions, bacteria did not actively release most modified nucleoside species, but robustly released nucleosides, including m2A, following addition of antibiotics or immune cells. These results indicate that m2A is released following bacterial lysis. Intraperitoneal injection of mice with m2A increased detectable levels of m2A in the urine, indicating that mammals can effectively excrete m2A. Additionally, mice infected with wild-type E. coli showed higher levels of m2A in their urine than mice infected by m2A-deficient rlmN KO E. coli. This suggests that m2A from the infected bacteria is excreted in the urine. Lastly, clinical studies using urine samples from febrile patients revealed significantly elevated levels of m2A during bacterial infections, and these values did not correlate with inflammation severity markers, such as white blood count (WBC) and C-reactive protein (CRP). This study reports the mammalian metabolism of modified nucleosides derived from bacterial RNA, and the elevation of urinary m2A in patients with bacterial infections. IMPORTANCE This study reveals the differences in the fate and release of modified nucleosides in bacteria and mammals. Additionally, our study highlights that external bacteria-damaging factors, such as antibiotics and phagocytosis by host immune cells, promote the release of bacteria-specific modified nucleosides. Furthermore, we found that m2A was elevated in the urine from animal models of bacterial infection and the urine of patients with bacterial infections. Collectively, this work spans basic biology and clinical science, offering valuable insights into the fate of modified nucleosides in bacterial systems and their relevance to infectious diseases.
Collapse
Affiliation(s)
- Ryosuke Yamamura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Kayo Nishiguchi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Yamamoto
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Koki Matsushita
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miho Shimamura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiro Kunisawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Korin Sakakida
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
7
|
Rafique A, Ali I, Kim S, Farooq A, Manzoor U, Moon J, Arooj M, Ahn M, Park Y, Hyun CL, Koh YS. Toll-like receptor 13-mediated signaling protects against the development of colon cancer. Int J Cancer 2024; 155:1858-1873. [PMID: 38989970 DOI: 10.1002/ijc.35089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Appropriate host-microbiota interactions are essential for maintaining intestinal homeostasis; hence, an imbalance in these interactions leads to inflammation-associated intestinal diseases. Toll-like receptors (TLRs) recognize microbial ligands and play a key role in host-microbe interactions in health and disease. TLR13 has a well-established function in enhancing host defenses against pathogenic bacteria. However, its role in maintaining intestinal homeostasis and controlling colitis-associated colon cancer (CAC) is largely unknown. This study aimed to investigate the involvement of TLR13-mediated signaling in intestinal homeostasis and colonic tumorigenesis using ex vivo cell and in vivo CAC animal model. Tlr13-deficient mice were prone to dextran sodium sulfate (DSS)-induced colitis. During the early stages of the CAC regimen (AOM/DSS-treated), Tlr13 deficiency led to severe ulcerative colitis. Moreover, Tlr13-deficient mice exhibited increased intestinal permeability, as evidenced by elevated levels of fluorescein isothiocyanate (FITC)-dextran, endotoxins, and bacterial translocation. Enhanced cell survival and proliferation of colonic intestinal cells were observed in Tlr13-deficient mice. A transcriptome analysis revealed that Tlr13 deficiency is associated with substantial changes in gene expression profile of colonic tumor tissue. Tlr13-deficient mice were more susceptible to CAC, with increased production of interleukin (IL)-6, IL-12, and TNF-α cytokines and enhanced STAT3, NF-κB, and MAPK signaling in colon tissues. These findings suggest that TLR13 plays a protective role in maintaining intestinal homeostasis and controlling CAC. Our study provides a novel perspective on intestinal health via TLR13-mediated signaling, which is crucial for deciphering the role of host-microbiota interactions in health and disease.
Collapse
Affiliation(s)
- Asma Rafique
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Irshad Ali
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Seukchan Kim
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Adeel Farooq
- Research Institute for Basic Sciences, Jeju National University, Jeju, South Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Jeungho Moon
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Madeeha Arooj
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju, South Korea
| | - Chang Lim Hyun
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Young-Sang Koh
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| |
Collapse
|
8
|
Fiore G, Weckwarth W, Paetzold K, Albertí Servera L, Gies M, Rosenhauer J, Antoniolli M, Nassiri S, Schmeing S, Dettling S, Soni B, Majety M, Krug AB, Hoves S, Wolf MJ. Human CD34 +-derived plasmacytoid dendritic cells as surrogates for primary pDCs and potential cancer immunotherapy. Front Immunol 2024; 15:1433119. [PMID: 39575246 PMCID: PMC11578708 DOI: 10.3389/fimmu.2024.1433119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) are capable of triggering broad immune responses, yet, their scarcity in blood coupled to their reduced functionality in cancer, makes their therapeutic use for in situ activation or vaccination challenging. Methods We designed an in vitro differentiation protocol tailored for human pDCs from cord blood (CB) hematopoietic stem cells (HSCs) with StemRegenin 1 (SR-1) and GM-CSF supplementation. Next, we evaluated the identity and function of CB-pDCs compared to human primary pDCs. Furthermore, we tested the potential of CB-pDCs to support anti-tumor immune responses in co-culture with tumor explants from CRC patients. Results Here, we report an in vitro differentiation protocol enabling the generation of 200 pDCs per HSC and highlight the role of GM-CSF and SR-1 in CB-pDC differentiation and function. CB-pDCs exhibited a robust resemblance to primary pDCs phenotypically and functionally. Transcriptomic analysis confirmed strong homology at both, baseline and upon TLR9 or TLR7 stimulation. Further, we could confirm the potential of CB-pDCs to promote inflammation in the tumor microenvironment by eliciting cytokines associated with NK and T cell recruitment and function upon TLR7 stimulation ex vivo in patient tumor explants. Discussion This study highlights CB-pDCs as surrogates for primary pDCs to investigate their biology and for their potential use as cell therapy in cancer.
Collapse
Affiliation(s)
- Giovanna Fiore
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang Weckwarth
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Kerstin Paetzold
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Llucia Albertí Servera
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Manuela Gies
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Jakob Rosenhauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Martina Antoniolli
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Sina Nassiri
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Schmeing
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Steffen Dettling
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Bhavesh Soni
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Zurich, Switzerland
| | - Meher Majety
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Anne B. Krug
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sabine Hoves
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Monika Julia Wolf
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
9
|
Ota Y, Inagaki R, Sumida K, Nakamura M, Nagai Y, Yamamoto S. DSP-0509, a TLR7 agonist, exerted synergistic anti-tumor immunity combined with various immune therapies through modulating diverse immune cells in cancer microenvironment. Front Oncol 2024; 14:1410373. [PMID: 39346737 PMCID: PMC11427241 DOI: 10.3389/fonc.2024.1410373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Toll-like receptor 7 (TLR7) acts as a crucial component of the innate immune system. Upon TLR7 binding to its ligand, myeloid cells, including dendritic cells (DCs) and macrophages, are activated and play vital roles in initiating adaptive immunity. Consequently, TLR7 agonists have been employed in cancer immunotherapy. We have synthesized DSP-0509, a systemic injectable TLR7 agonist, and in this investigation, we examined the effects of DSP-0509 on tumor-infiltrating lymphocytes (TILs) utilizing single-cell RNA sequencing (scRNA-seq) in a mouse model bearing tumors. Our results demonstrated that DSP-0509 induced an expansion of immune cell populations, such as Natural Killer (NK) cells, CD4+ T cells, and CD4+ regulatory T cells (Tregs). Subsequently, we combined an Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor with DSP-0509 to enhance the antitumor efficacy by reducing Tregs, as DSP-0509 led to an increase in Treg presence within tumors. Our findings demonstrated that this combination therapy effectively reduced Treg infiltration within the tumor, leading to enhanced antitumor activity. To further prevent CD8+ T cell exhaustion, we combined DSP-0509 with an anti-PD-1 antibody and assessed the alterations in TILs using scRNA-seq. Our results indicated that the combination treatment significantly increased the cluster of CD8+ T cells expressing Gzmb, Prf1, Ctla4, and Icos, when compared to the administration of DSP-0509 alone. Additionally, we observed a marked rise in the M1-like macrophage cluster in the combination treatment group compared to the group receiving only DSP-0509. To validate the potential of modulating myeloid cells within the tumor to enhance antitumor efficacy, we combined DSP-0509 with an inhibitor targeting the receptor tyrosine kinase AXL. In bone marrow derived macrophages (BMDMs), the AXL inhibitor further amplified DSP-0509-stimulated TNFα secretion while reducing IL-10 secretion. As a final step, we evaluated the antitumor activity by combining DSP-0509 and the AXL inhibitor in an in vivo tumor model, which demonstrated increased efficacy. In summary, our study elucidated the effects of DSP-0509 on immune activity within the tumor microenvironment. These findings provided valuable insights that pave the way for the development of novel combination immunotherapy strategies.
Collapse
Affiliation(s)
- Yosuke Ota
- Cancer Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Ryosaku Inagaki
- Cancer Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Kentaro Sumida
- Cancer Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Megumi Nakamura
- Cancer Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Yasuhiro Nagai
- Cancer Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | | |
Collapse
|
10
|
Ota Y, Inagaki R, Takanashi Y, Uemachi H, Matsuda K, Matsuoka M, Taoda R, Ohe S, Ishitsubo Y, Nakamura M, Goto M, Ban H, Nagai Y. Targeting Tumor-Associated Macrophages with the Immune-Activating Nanomedicine for Achieving Strong Antitumor Activity with Rapid Clearance from the Body. ACS NANO 2024; 18:23757-23772. [PMID: 39141816 PMCID: PMC11363121 DOI: 10.1021/acsnano.4c08811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) crucial for the detection of infections and activation of downstream signaling pathways that lead to the production of pro-inflammatory cytokines and interferons. The TLR pathway is an attractive actively studied target pathway. Because of their strong immunostimulatory activity, TLRs are thought to be a "double-edged sword" for systemic treatment, even in the cancer field. To solve this, we have developed dextran-based TAM targeting activating conjugate (D-TAC) technology, which successfully uses tumor-associated macrophages (TAMs) to deliver the TLR7 agonist DSP-0509. We used low molecular weight dextran to target CD206 high M2-type macrophages, activate them, and induce a change in phenotype to antitumor M1-type macrophages with rapid clearance from the body and astonishing antitumor activity. We also demonstrated that the antitumor effect of our best drug candidate 5DEX-0509R is dependent on the abundance of TAMs, which is consistent with their mechanism of action. We believe that 5DEX-0509R generated by D-TAC technology can be a clinically applicable immunotherapy targeting the TLR signaling pathway.
Collapse
Affiliation(s)
- Yosuke Ota
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Ryosaku Inagaki
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Yosuke Takanashi
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Hiro Uemachi
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Kimiya Matsuda
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Makoto Matsuoka
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Risa Taoda
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Seina Ohe
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Yukari Ishitsubo
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Megumi Nakamura
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Masashi Goto
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Hitoshi Ban
- Oncology, Sumitomo
Pharma Co Ltd, Osaka 5540022, Japan
| | - Yasuhiro Nagai
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| |
Collapse
|
11
|
Zuo X, Cheng Q, Wang Z, Liu J, Lu W, Wu G, Zhu S, Liu X, Lv T, Song Y. A novel oral TLR7 agonist orchestrates immune response and synergizes with PD-L1 blockade via type I IFN pathway in lung cancer. Int Immunopharmacol 2024; 137:112478. [PMID: 38901243 DOI: 10.1016/j.intimp.2024.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Despite the groundbreaking impact of immune checkpoint blockade (ICB), response rates in non-small cell lung cancer remain modest, particularly in immune-excluded or immune-desert microenvironments. Toll-like receptor 7 (TLR7) emerges as a latent target bridging innate and adaptive immunity, offering a promising avenue for combination therapies to augment ICB efficacy. Here, we explored the anti-tumor activity of the novel oral TLR7 agonist TQ-A3334 and its potential to enhance anti-programmed death ligand 1 (PD-L1) therapy through a combination strategy in a syngeneic murine lung cancer model. Oral administration of TQ-A3334 significantly alleviated tumor burden in C57BL/6J mice, modulated by type I interferon (IFN), and exhibited low toxicity. This therapy elicited activation of both innate and adaptive immune cells in tumor tissue, particularly increasing the abundance of CD8+ TILs through type I IFN pathway and subsequent CXCL10 expression. In vitro examinations validated that IFN-α-stimulated tumor cells exhibited increased secretion of CXCL10, conducive to the promoted trafficking of CD8+ T cells. Furthermore, combining TQ-A3334 with anti-PD-L1 treatment exceeded tumor control, with a further increase in CD8+ TIL frequency compared to monotherapy. These findings suggest that TQ-A3334 can mobilize innate immunity and promote T cell recruitment into the tumor microenvironment; a combination of TQ-A3334 and anti-PD-L1 antibodies can intensify the sensitivity of tumors to anti-PD-L1 therapy, which demonstrates significant potential for treating poorly immune-infiltrated lung cancer.
Collapse
Affiliation(s)
- Xueying Zuo
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210008, Jiangsu, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210008, Jiangsu, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Guannan Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
12
|
Izumi Y, O’Dell KA, Cashikar AG, Paul SM, Covey DF, Mennerick SJ, Zorumski CF. Neurosteroids mediate and modulate the effects of pro-inflammatory stimulation and toll-like receptors on hippocampal plasticity and learning. PLoS One 2024; 19:e0304481. [PMID: 38875235 PMCID: PMC11178232 DOI: 10.1371/journal.pone.0304481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024] Open
Abstract
Pro-inflammatory changes contribute to multiple neuropsychiatric illnesses. Understanding how these changes are involved in illnesses and identifying strategies to alter inflammatory responses offer paths to potentially novel treatments. We previously found that acute pro-inflammatory stimulation with high (μg/ml) lipopolysaccharide (LPS) for 10-15 min dampens long-term potentiation (LTP) in the hippocampus and impairs learning. Effects of LPS involved non-canonical inflammasome signaling but were independent of toll-like receptor 4 (TLR4), a known LPS receptor. Low (ng/ml) LPS also inhibits LTP when administered for 2-4 h, and here we report that this LPS exposure requires TLR4. We also found that effects of low LPS on LTP involve the oxysterol, 25-hydroxycholesterol, akin to high LPS. Effects of high LPS on LTP are blocked by inhibiting synthesis of 5α-reduced neurosteroids, indicating that neurosteroids mediate LTP inhibition. 5α-Neurosteroids also have anti-inflammatory effects, and we found that exogenous allopregnanolone (AlloP), a key 5α-reduced steroid, prevented effects of low but not high LPS on LTP. We also found that activation of TLR2, TLR3 and TLR7 inhibited LTP and that AlloP prevented the effects of TLR2 and TLR7, but not TLR3. The enantiomer of AlloP, a steroid that has anti-inflammatory actions but low activity at GABAA receptors, prevented LTP inhibition by TLR2, TLR3 and TLR7. In vivo, both AlloP enantiomers prevented LPS-induced learning defects. These studies indicate that neurosteroids play complex roles in network effects of acute neuroinflammation and have potential importance for development of AlloP analogues as therapeutic agents.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kazuko A. O’Dell
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Anil G. Cashikar
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven M. Paul
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Douglas F. Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
- Developmental Biology and Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven J. Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles F. Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
13
|
Kim M, Noh K, Kim P, Kim JH, Choi BW, Singh R, Choi JH, Han SB, Kim SS, Lee EY, Bae MA, Shin D, Kim M, Ahn JH. Design, Synthesis, and Biological Evaluation of New 2,6,7-Substituted Purine Derivatives as Toll-like Receptor 7 Agonists for Intranasal Vaccine Adjuvants. J Med Chem 2024; 67:9389-9405. [PMID: 38787938 DOI: 10.1021/acs.jmedchem.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
TLR7/8 agonists are versatile immune stimulators capable of treating various diseases such as viral infections, autoimmune, and cancer. Despite the structural similarity of TLR7/8, their immune stimulation mechanisms and time-course responses significantly differ. In this study, a new series of TLR7-selective agonists was synthesized utilizing the economical building block 2,6-dichloropurine. Compound 27b showed the most potent activity on hTLR7 with an EC50 of 17.53 nM and demonstrated high hTLR7 selectivity (224 folds against TLR8). 27b effectively stimulated the secretion of proinflammatory cytokines in mouse macrophages and enhanced intranasal vaccine efficacy against influenza A virus in vivo. Assessment of humoral and mucosal antibody titers confirmed that 27b elevates IgG and IgA levels, protecting against both homologous and heterologous influenza viral infections. These findings suggest that 27b is a promising candidate as a vaccine adjuvant to prevent viral infections or as a robust immunomodulator with prolonged activity for treating immune-suppressed diseases.
Collapse
Affiliation(s)
- Morgan Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kyungseob Noh
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Pyeongkeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Ho Kim
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Byeong Wook Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seong Soon Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Eun-Young Lee
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Myung Ae Bae
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Daeho Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
14
|
Gu L, Kong X, Li M, Chen R, Xu K, Li G, Qin Y, Wu L. Molecule engineering strategy of toll-like receptor 7/8 agonists designed for potentiating immune stimuli activation. Chem Commun (Camb) 2024; 60:5474-5485. [PMID: 38712400 DOI: 10.1039/d4cc00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Toll-like receptor 7/8 (TLR-7/8) agonists serve as a promising class of pattern recognition receptors that effectively evoke the innate immune response, making them promising immunomodulatory agents for tumor immunotherapy. However, the uncontrollable administration of TLR-7/8 agonists frequently leads to the occurrence of severe immune-related adverse events (irAEs). Thus, it is imperative to strategically design tumor-microenvironment-associated biomarkers or exogenous stimuli responsive TLR-7/8 agonists in order to accurately evaluate and activate innate immune responses. No comprehensive elucidation has been documented thus far regarding TLR-7/8 immune agonists that are specifically engineered to enhance immune activation. In this feature article, we provide an overview of the advancements in TLR-7/8 agonists, aiming to enhance the comprehension of their mechanisms and promote the clinical progression through nanomedicine strategies. The current challenges and future directions of cancer immunotherapy are also discussed, with the hope that this work will inspire researchers to explore innovative applications for triggering immune responses through TLR-7/8 agonists.
Collapse
Affiliation(s)
- Liuwei Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Xiaojie Kong
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Mengyan Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Rui Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Ke Xu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Guo Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Yulin Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| |
Collapse
|
15
|
Du WJ, Yang H, Tong F, Liu S, Zhang C, Chen Y, Yan Y, Xiang YW, Hua LY, Gong Y, Xu ZX, Liu X, Jiang X, Lu M, Guan JS, Han Q. Ash1L ameliorates psoriasis via limiting neuronal activity-dependent release of miR-let-7b. Br J Pharmacol 2024; 181:1107-1127. [PMID: 37766518 DOI: 10.1111/bph.16254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is a common autoimmune skin disease that significantly diminishes patients' quality of life. Interactions between primary afferents of the somatosensory system and the cutaneous immune system mediate the pathogenesis of psoriasis. This study aims to elucidate the molecular mechanisms of how primary sensory neurons regulate psoriasis formation. EXPERIMENTAL APPROACH Skin and total RNA were extracted from wild-type (WT) and ASH1-like histone lysine methyltransferase (Ash1l+/- ) mice in both naive and imiquimod (IMQ)-induced psoriasis models. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence-activated cell sorting (FACS) were then performed. Microfluidic chamber coculture was used to investigate the interaction between somatosensory neurons and bone marrow dendritic cells (BMDCs) ex vivo. Whole-cell patch clamp recordings were used to evaluate neuronal excitability after Ash1L haploinsufficiency in primary sensory neurons. KEY RESULTS The haploinsufficiency of ASH1L, a histone methyltransferase, in primary sensory neurons causes both neurite hyperinnervation and increased neuronal excitability, which promote miR-let-7b release from primary afferents in the skin in a neuronal activity-dependent manner. With a 'GUUGUGU' core sequence, miR-let-7b functions as an endogenous ligand of toll-like receptor 7 (TLR7) and stimulates the activation of dermal dendritic cells (DCs) and interleukin (IL)-23/IL-17 axis, ultimately exacerbating the symptoms of psoriasis. Thus, by limiting miR-let-7b release from primary afferents, ASH1L prevents dermal DC activation and ameliorates psoriasis. CONCLUSION AND IMPLICATIONS Somatosensory neuron ASH1L modulates the cutaneous immune system by limiting neuronal activity-dependent release of miR-let-7b, which can directly activate dermal DCs via TLR7 and ultimately lead to aggravated psoriatic lesion.
Collapse
Affiliation(s)
- Wan-Jie Du
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yeying Chen
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuze Yan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yang Hua
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Xiang Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Mingfang Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Wang X, Hirose M, Li X. TLR7 Agonist-Loaded Gadolinium Oxide Nanotubes Promote Anti-Tumor Immunity by Activation of Innate and Adaptive Immune Responses. Vaccines (Basel) 2024; 12:373. [PMID: 38675755 PMCID: PMC11053986 DOI: 10.3390/vaccines12040373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Improving the delivery of biomolecules to DCs and lymph nodes is critical to increasing their anti-tumor efficacy, reducing their off-target side effects, and improving their safety. In this study, Gd2O3 nanotubes with lengths of 70-80 nm, diameters of 20-30 nm, and pore sizes of up to 18 nm were synthesized using a facile one-pot solvothermal method. The Gd2O3 nanotubes showed good adsorption capacity of OVA and TLR7a, with a loading efficiency of about 100%. The Gd2O3 nanotubes showed pH-sensitive degradation and biomolecule release properties; the release of gadolinium ions, OVA, and TLR7a was slow at pH 7.4 and fast at pH 5. The Gd2O3 nanotubes showed 2.6-6.0 times higher payload retention around the injection site, 3.1 times higher cellular uptake, 1.7 times higher IL1β secretion, 1.4 times higher TNFα secretion by BMDCs, and markedly enhanced draining lymph node delivery properties. The combination of OVA, TLR7a, and Gd2O3 nanotubes significantly inhibited tumor growth and increased survival rate compared with only OVA-TLR7a, only OVA, and saline. The Gd2O3 nanotubes are biocompatible and can also be used as radiation sensitizers.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan; (M.H.); (X.L.)
| | | | | |
Collapse
|
17
|
Takenaka Y, Tanaka T, Otaki S, Kanbe A, Morita T, Yokoi K, Sekiguchi S, Nakamura K, Satoh H, Tojo T, Uchiumi F, Kitabatake K, Aoki S, Tsukimoto M. Amodiaquine Analogs Are Potent Inhibitors of Interleukin-6 Production Induced by Activation of Toll-Like Receptors Recognizing Pathogen Nucleic Acids. Biol Pharm Bull 2024; 47:2101-2118. [PMID: 39710379 DOI: 10.1248/bpb.b24-00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro. In J774.1 murine macrophages, ADQ inhibited interleukin-6 (IL-6) production induced by TLR3 agonist poly(I:C), TLR7 agonist imiquimod, and TLR9 agonist cytosine-phosphate-guanosine oligodeoxynucleotide (CpG ODN) with IC50 values of 2.43, 3.48, and 0.0359 µM, respectively, indicating that ADQ has a high inhibitory selectivity for TLR9 signaling. A structure-activity relationship study revealed that an appropriately substituted amino group on the phenol moiety and a halogen substituent on quinoline are important for potent anti-inflammatory activity and low cytotoxicity. ADQ analogs bearing N-butylethyl, N-3-fluoropiperidinyl, and N-4-fluoropiperidinyl groups in place of the N-diethyl group exhibited more potent activity and lower cytotoxicity than ADQ. ADQ and its analogs appear to inhibit the activity of TLRs recognizing pathogen nucleic acids via alkalinization of endolysosomes. Our results suggest that ADQ analogs are promising candidates as therapeutic agents for cytokine storms mediated by TLRs recognizing pathogen nucleic acid with reduced side effects.
Collapse
Affiliation(s)
- Yohei Takenaka
- Department of Radiation Biosciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Tomohiro Tanaka
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shotaro Otaki
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Azusa Kanbe
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Tomoe Morita
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Kenta Yokoi
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Saki Sekiguchi
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Koki Nakamura
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Hidetoshi Satoh
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Toshifumi Tojo
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
- Research Institute for Science and Technology (RIST), Tokyo University of Science
| | - Fumiaki Uchiumi
- Department of Gene Regulation Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Shin Aoki
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
- Research Institute for Science and Technology (RIST), Tokyo University of Science
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
- Research Institute for Science and Technology (RIST), Tokyo University of Science
| |
Collapse
|
18
|
Li W, Liang M, Qi J, Ding D. Semiconducting Polymers for Cancer Immunotherapy. Macromol Rapid Commun 2023; 44:e2300496. [PMID: 37712920 DOI: 10.1002/marc.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Indexed: 09/16/2023]
Abstract
As a monumental breakthrough in cancer treatment, immunotherapy has attracted tremendous attention in recent years. However, one challenge faced by immunotherapy is the low response rate and the immune-related adverse events (irAEs). Therefore, it is important to explore new therapeutic strategies and platforms for boosting therapeutic benefits and decreasing the side effects of immunotherapy. In recent years, semiconducting polymer (SP), a category of organic materials with π-conjugated aromatic backbone, has been attracting considerable attention because of their outstanding characteristics such as excellent photophysical features, good biosafety, adjustable chemical flexibility, easy fabrication, and high stability. With these distinct advantages, SP is extensively explored for bioimaging and photo- or ultrasound-activated tumor therapy. Here, the recent advancements in SP-based nanomedicines are summarized for enhanced tumor immunotherapy. According to the photophysical properties of SPs, the cancer immunotherapies enabled by SPs with the photothermal, photodynamic, or sonodynamic functions are highlighted in detail, with a particular focus on the construction of combination immunotherapy and activatable nanoplatforms to maximize the benefits of cancer immunotherapy. Herein, new guidance and comprehensive insights are provided for the design of SPs with desired photophysical properties to realize maximized effectiveness of required biomedical applications.
Collapse
Affiliation(s)
- Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| |
Collapse
|
19
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
20
|
CHAMBERS JK, ITO S, UCHIDA K. Feline papillomavirus-associated Merkel cell carcinoma: a comparative review with human Merkel cell carcinoma. J Vet Med Sci 2023; 85:1195-1209. [PMID: 37743525 PMCID: PMC10686778 DOI: 10.1292/jvms.23-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin tumor that shares a similar immunophenotype with Merkel cells, although its origin is debatable. More than 80% of human MCC cases are associated with Merkel cell polyomavirus infections and viral gene integration. Recent studies have shown that the clinical and pathological characteristics of feline MCC are comparable to those of human MCC, including its occurrence in aged individuals, aggressive behavior, histopathological findings, and the expression of Merkel cell markers. More than 90% of feline MCC are positive for the Felis catus papillomavirus type 2 (FcaPV2) gene. Molecular changes involved in papillomavirus-associated tumorigenesis, such as increased p16 and decreased retinoblastoma (Rb) and p53 protein levels, were observed in FcaPV2-positive MCC, but not in FcaPV2-negative MCC cases. These features were also confirmed in FcaPV2-positive and -negative MCC cell lines. The expression of papillomavirus E6 and E7 genes, responsible for p53 degradation and Rb inhibition, respectively, was detected in tumor cells by in situ hybridization. Whole genome sequencing revealed the integration of FcaPV2 DNA into the host feline genome. MCC cases often develop concurrent skin lesions, such as viral plaque and squamous cell carcinoma, which are also associated with papillomavirus infection. These findings suggest that FcaPV2 infection and integration of viral genes are involved in the development of MCC in cats. This review provides an overview of the comparative pathology of feline and human MCC caused by different viruses and discusses their cell of origin.
Collapse
Affiliation(s)
- James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Qiu J, Gu X, Li X, Bi J, Liu Y, Zheng K, Zhao Y. Identification of potentially suitable areas for nucleosides of Pinellia Ternata (Thunb.) Breit using ecological niche modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1479. [PMID: 37966553 DOI: 10.1007/s10661-023-12065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
Pinellia ternata, a traditional Chinese medicine, is well-renowned for its effectiveness in treating sickness such as coughs with excessive phlegm, vomiting, and nausea. The nucleoside components of P. ternata have been shown to have antitumor activity. Identifying potential growth areas of high-quality P. ternata based on the content of five nucleoside components and the identification of climatic features suitable for the growth of P. ternata will help to conserve P. ternata resources with targeted bioactive compounds. Using high-performance liquid chromatography (HPLC), we determined five nucleoside components, uridine, guanosine, adenosine, inosine, and thymidine, at 27 sampling points of P. ternata collected from 21 municipalities of 11 provinces in China. We used ecological niche modeling to identify the major environmental factors associated with the high metabolite content of P. ternata, including precipitation of the warmest quarter, annual mean temperature, annual precipitation, and isothermality. Areas with high suitability for the five nucleosides were found in Hebei, Shandong, Shanxi, Gansu, Sichuan, Guizhou, and Hubei Provinces. Under the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, the areas with a suitable distribution decreased and some areas with high suitability became areas with low suitability. Overall, our findings advance our knowledge of the ecological impacts of climate change and provide a valuable reference for conserving and sustainably developing high-quality P. ternata resources in the future.
Collapse
Affiliation(s)
- Jinmiao Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
| | - Xiaowei Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jingyi Bi
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yang Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Kaiyan Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| | - Yunsheng Zhao
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
22
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
23
|
Huang Z, Gao Y, Han Y, Yang J, Yang C, Li S, Zhou D, Huang Q, Yang J. Revealing the roles of TLR7, a nucleic acid sensor for COVID-19 in pan-cancer. BIOSAFETY AND HEALTH 2023:S2590-0536(23)00054-X. [PMID: 37362864 PMCID: PMC10167782 DOI: 10.1016/j.bsheal.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
Recent studies suggested that cancer was a risk factor for coronavirus disease 2019 (COVID-19). Toll-like receptor 7 (TLR7), a severe acute respiratory syndrome 2 (SARS-CoV-2) virus's nucleic acid sensor, was discovered to be aberrantly expressed in many types of cancers. However, its expression pattern across cancers and association with COVID-19 (or its causing virus SARS-CoV-2) has not been systematically studied. In this study, we proposed a computational framework to comprehensively study the roles of TLR7 in COVID-19 and pan-cancers at genetic, gene expression, protein, epigenetic, and single-cell levels. We applied the computational framework in a few databases, including The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), Human Protein Atlas (HPA), lung gene expression data of mice infected with SARS-CoV-2, and the like. As a result, TLR7 expression was found to be higher in the lung of mice infected with SARS-CoV-2 than that in the control group. The analysis in the Opentargets database also confirmed the association between TLR7 and COVID-19. There are also a few exciting findings in cancers. First, the most common type of TLR7 was "Missense" at the genomic level. Second, TLR7 mRNA expression was significantly up-regulated in 6 cancer types and down-regulated in 6 cancer types compared to normal tissues, further validated in the HPA database at the protein level. The genes significantly co-expressed with TLR7 were mainly enriched in the toll-like receptor signaling pathway, endolysosome, and signaling pattern recognition receptor activity. In addition, the abnormal TLR7 expression was associated with mismatch repair (MMR), microsatellite instability (MSI), and tumor mutational burden (TMB) in various cancers. Mined by the ESTIMATE algorithm, the expression of TLR7 was also closely linked to various immune infiltration patterns in pan-cancer, and TLR7 was mainly enriched in macrophages, as revealed by single-cell RNA sequencing. Third, abnormal expression of TLR7 could predict the survival of Brain Lower Grade Glioma (LGG), Lung adenocarcinoma (LUAD), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), and Testicular Germ Cell Tumors (TGCT) patients, respectively. Finally, TLR7 expressions were very sensitive to a few targeted drugs, such as Alectinib and Imiquimod. In conclusion, TLR7 might be essential in the pathogenesis of COVID-19 and cancers.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yaoxin Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China
| | - Jingwen Yang
- Department of Clinical Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Can Yang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Shixiong Li
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Decong Zhou
- Geriatric Hospital of Hainan Medical Education Department, Haikou 571100, China
| | - Qiuyan Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| |
Collapse
|
24
|
Demers-Mathieu V. Optimal Selection of IFN-α-Inducible Genes to Determine Type I Interferon Signature Improves the Diagnosis of Systemic Lupus Erythematosus. Biomedicines 2023; 11:biomedicines11030864. [PMID: 36979843 PMCID: PMC10045398 DOI: 10.3390/biomedicines11030864] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies specific to self-molecules in the nucleus, cytoplasm, and cell surface. The diversity of serologic and clinical manifestations observed in SLE patients challenges the development of diagnostics and tools for monitoring disease activity. Elevated type I interferon signature (IFN- I) in SLE leads to dysregulation of innate and adaptive immune function, resulting in autoantibodies production. The most common method to determine IFN-I signature is measuring the gene expression of several IFN-α-inducible genes (IFIGs) in blood samples and calculating a score. Optimal selection of IFIGs improves the sensitivity, specificity, and accuracy of the diagnosis of SLE. We describe the mechanisms of the immunopathogenesis of IFN-I signature (IFNα production) and its clinical consequences in SLE. In addition, we explore the association between IFN-I signature, the presence of autoantibodies, disease activity, medical therapy, and ethnicity. We discuss the presence of IFN-I signature in some patients with other autoimmune diseases, including rheumatoid arthritis, systemic and multiple sclerosis, Sjogren’s syndrome, and dermatomyositis. Prospective studies are required to assess the role of IFIG and the best combination of IFIGs to monitor SLE disease activity and drug treatments.
Collapse
|
25
|
3-(5-Hydroxyphenyl)-5-Phenyl-2-Pyrazolines as Toll-Like Receptor 7 Agonists. J CHEM-NY 2023. [DOI: 10.1155/2023/2151669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is an attractive target for developing immune modulators to enhance innate immunity against ssRNA virus infections, including hepatitis C and COVID-19. Ten 3-(5-hydroxyphenyl)-5-phenyl-2-pyrazolines were tested using TLR7 reporter cells, overexpressing TLR7 and the NF-κB-inducible SEAP reporter gene to discover a novel TLR7 agonist enhancing innate immunity. Of these, 2-(3-(2-hydroxynaphthalen-1-yl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (compound 6) showed the best TLR7 agonistic activity, and further experiments were carried out to study the immune-modulatory capability of compound 6. Treatment with compound 6 rapidly induced phosphorylation of IRAK4, IKKα/β, IκBα, and p65/RelA in THP1 monocytic cells. In addition, it increased the expression of NF-κB-regulated innate cytokines, such as TNFα and IL1β, in THP1 monocytic cells. These data suggest that compound 6 induces an innate immune response by agonizing TLR7 activity in THP1 human monocytic cells. Therefore, compound 6 can be used as an innate immune modulator to develop antiviral agents and vaccine adjuvants.
Collapse
|
26
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Ota Y, Nagai Y, Hirose Y, Hori S, Koga-Yamakawa E, Eguchi K, Sumida K, Murata M, Umehara H, Yamamoto S. DSP-0509, a systemically available TLR7 agonist, exhibits combination effect with immune checkpoint blockade by activating anti-tumor immune effects. Front Immunol 2023; 14:1055671. [PMID: 36793737 PMCID: PMC9922899 DOI: 10.3389/fimmu.2023.1055671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
TLR7 is an innate immune receptor that recognizes single-stranded RNAs, and its activation leads to anti-tumor immune effects. Although it is the only approved TLR7 agonist in cancer therapy, imiquimod is allowed to be administered with topical formulation. Thus, systemic administrative TLR7 agonist is expected in terms of expanding applicable cancer types. Here, we demonstrated the identification and characterization of DSP-0509 as a novel small-molecule TLR7 agonist. DSP-0509 is designed to have unique physicochemical features that could be administered systemically with a short half-life. DSP-0509 activated bone marrow-derived dendritic cells (BMDCs) and induced inflammatory cytokines including type I interferons. In the LM8 tumor-bearing mouse model, DSP-0509 reduced tumor growth not only in subcutaneous primary lesions but also in lung metastatic lesions. DSP-0509 inhibited tumor growth in several syngeneic tumor-bearing mouse models. We found that the CD8+ T cell infiltration of tumor before treatment tended to be positively correlated with anti-tumor efficacy in several mouse tumor models. The combination of DSP-0509 with anti-PD-1 antibody significantly enhanced the tumor growth inhibition compared to each monotherapy in CT26 model mice. In addition, the effector memory T cells were expanded in both the peripheral blood and tumor, and rejection of tumor re-challenge occurred in the combination group. Moreover, synergistic anti-tumor efficacy and effector memory T cell upregulation were also observed for the combination with anti-CTLA-4 antibody. The analysis of the tumor-immune microenvironment by using the nCounter assay revealed that the combination of DSP-0509 with anti-PD-1 antibody enhanced infiltration by multiple immune cells including cytotoxic T cells. In addition, the T cell function pathway and antigen presentation pathway were activated in the combination group. We confirmed that DSP-0509 enhanced the anti-tumor immune effects of anti-PD-1 antibody by inducing type I interferons via activation of dendritic cells and even CTLs. In conclusion, we expect that DSP-0509, a new TLR7 agonist that synergistically induces anti-tumor effector memory T cells with immune checkpoint blockers (ICBs) and can be administered systemically, will be used in the treatment of multiple cancers.
Collapse
|
28
|
Paine A, Brookes PS, Bhattacharya S, Li D, De La Luz Garcia-Hernandez M, Tausk F, Ritchlin C. Dysregulation of Bile Acids, Lipids, and Nucleotides in Psoriatic Arthritis Revealed by Unbiased Profiling of Serum Metabolites. Arthritis Rheumatol 2023; 75:53-63. [PMID: 35818333 PMCID: PMC9797425 DOI: 10.1002/art.42288] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The transition from psoriasis to psoriatic arthritis (PsA) occurs in 20-30% of patients; however, the mechanisms underlying the emergence of musculoskeletal disease are not well understood. Metabolic disease is prevalent in psoriasis patients, but whether metabolic factors, other than obesity, increase arthritis risk in psoriasis patients is not known. This study was undertaken to investigate the link between metabolic changes and disease progression in psoriasis patients. METHODS To characterize the metabolic alterations during the progression of arthritis in psoriasis patients, we analyzed cross-sectional healthy controls and PsA samples and longitudinal psoriasis serum samples, before and after PsA onset. Nontargeted metabolomic profiling was performed using liquid chromatography mass spectrometry. RESULTS We identified several serum metabolites that differed between PsA patients, psoriasis patients, and healthy controls. Differentially abundant bile acids, purines, pyrimidines, glutathione, lipids, and amino acid metabolites were noted in these 3 groups. We also noted differences between psoriasis patients who progressed and those who did not progress to PsA. Bile acid and butyrate levels were depressed in those who progressed to PsA compared to those who did not, and the level of inflammatory lipid mediators increased following PsA diagnosis. In particular, the combination of leukotriene B4 and glycoursodeoxycholic acid sulfate were sensitive and specific predictors of PsA progression. CONCLUSION We observed notable differences in bile acid, purine, lipid, and amino acid-derived metabolites, among the healthy controls, psoriasis patients, and PsA patients and identified changes during the transition from psoriasis to PsA. The decreased bile acid and butyrate levels and elevated guanine levels in psoriasis patients at risk for PsA were particularly striking and may reflect gut microbial dysbiosis and dysregulated hepatic metabolism, leading to altered proliferation of immune cells and enhanced cytokine expression.
Collapse
Affiliation(s)
- Ananta Paine
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Maria De La Luz Garcia-Hernandez
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Francisco Tausk
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Christopher Ritchlin
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
29
|
Huang R, Sun Z, Xian S, Song D, Chang Z, Yan P, Zhang J, Yin H, Zheng Z, Hu P, Li Z, Huang D, Liu Y, Jiang C, Li M, Li S, Meng T, Yang D, Huang Z. The role of toll-like receptors (TLRs) in pan-cancer. Ann Med 2022; 54:1918-1937. [PMID: 35801728 PMCID: PMC9272932 DOI: 10.1080/07853890.2022.2095664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are important components of the innate and adaptive immune systems, and abnormal TLR expression has been linked to a variety of cancers. However, there was a lack of clarity on the association of TLR stimulation with the carcinogenesis of cancer. The study's goal was to analyse the clinical importance of TLRs expression at the mRNA level in pan-cancer datasets, as well as the link between TLR expression and carcinogenesis, progression, and clinical prognosis. METHODS The expression profile of TLRs derived from UCSC pan-cancer data was analysed in multiple dimensions, including clinical analysis, immunological subtype analysis, tumour microenvironment (TME) analysis, tumour stem cell correlation analysis, and drug sensitivity analysis. Additionally, we analyse protein-protein interactions, functional enrichment, and chromatin accessibility, as well as TLR expression in single-cell sequencing data. RESULTS Our multi-omics analysis results imply that TLRs may operate as a biological marker for carcinogenesis and progression, a potential target for anti-tumour therapy, and a prognostic biomarker, laying the theoretical groundwork for future translational medicine research. CONCLUSION TLRs are involved in the formation of malignancies and can be explored in further detail as potential prognostic indicators. Key MessagesToll-like receptors (TLRs) are key factors in the process of the innate and adaptive immune response, and their aberrant expression of TLRs have been widely reported in various cancer. However, the association between TLRs stimulation and tumorigenesis of cancer has not been well clarified.In this study, in the pan-cancer data, integrated TLR family gene expression analysis, clinical correlation analysis, immune subtype correlation analysis, tumour microenvironment correlation analysis, tumour stem cell correlation analysis, and drug sensitivity correlation analysis were performed.TLRs play an important role in the development of tumours and can be studied in depth as potential prognostic markers.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Zehui Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zixuan Zheng
- Tongji University School of Medicine, Shanghai, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenyu Li
- Tongji University School of Medicine, Shanghai, China
| | - Dan Huang
- Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Tongji University School of Medicine, Shanghai, China
| | - Chenyang Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Man Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siqi Li
- Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Daoke Yang
- Department of Radiotherpy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Dowling DJ, Barman S, Smith AJ, Borriello F, Chaney D, Brightman SE, Melhem G, Brook B, Menon M, Soni D, Schüller S, Siram K, Nanishi E, Bazin HG, Burkhart DJ, Levy O, Evans JT. Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Sci Rep 2022; 12:16860. [PMID: 36258023 PMCID: PMC9579132 DOI: 10.1038/s41598-022-20346-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.
Collapse
Affiliation(s)
- David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Alyson J Smith
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Seagen, Bothell, WA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, 80131, Italy
- WAO Center of Excellence, Naples, 80131, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Danielle Chaney
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Spencer E Brightman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Gandolina Melhem
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Schüller
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Karthik Siram
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Hélène G Bazin
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - David J Burkhart
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT & Harvard, Cambridge, MA, USA.
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA.
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
31
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
32
|
Li T, Gao X, Yan Z, Wai TS, Yang W, Chen J, Yan R. Understanding the tonifying and the detoxifying properties of Chinese medicines from their impacts on gut microbiota and host metabolism: a case study with four medicinal herbs in experimental colitis rat model. Chin Med 2022; 17:118. [PMID: 36195889 PMCID: PMC9533630 DOI: 10.1186/s13020-022-00673-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese medicines (CMs) have emerged as an alternative therapy for ulcerative colitis through reinforcing the vital qi and/or eliminating the pathogenic factors according to the traditional Chinese medicinal theory. Presystemic interactions of CMs with gut microbiota and the associated metabolic network shift are believed to be essential to achieve their holistic health benefits in traditional oral application. METHODS This study first employed 16S rDNA-based microbial profiling and mass spectrometry-based urinary metabolomics to simultaneously evaluate four single CMs frequently prescribed as main constituent herbs for alleviating UC, the tonic ginseng and Astragali Radix (AR) and the detoxifying Scutellaria Radix (SR) and Rhubarb, on a dextran sodium sulfate (DSS)-induced colitis rat model, with aims to understanding the tonifying or detoxifying properties of CMs through clinical phenotypes, the common features and herb-specific signatures in gut microbial alterations and the associated host metabolic shifts. Colitis was induced in rats receiving 5% DSS for consecutive 7 days. Control group received water alone. Herbal groups received 5% DSS and respective herbal preparation by gavage once daily. Body weight, stool consistency, and rectal bleeding were recorded daily. Feces and urine were freshly collected at multiple time points. On day 7, blood and colon tissues were collected to determine anti-/pro-inflammatory cytokines levels, colonic myeloperoxidase activity, and histopathologic alterations. RESULTS Gut microbiome was more prone to herb intervention than metabolome and displayed increasing associations with metabolic dynamics. Although both the tonic and the detoxifying herbs alleviated colitis and caused some similar changes in DSS-induced microbiome and metabolome disturbance, the tonic herbs were more effective and shared more common microbial and metabolic signatures. The detoxifying herbs elicited herb-specific changes. Rhubarb uniquely affected phenylalanine metabolism and established high correlations between Akkermansia muciniphila and Parasutterella and hydroxyphenylacetylglycine and phenylbutyrylglycine, while SR caused significant elevation of steroidal glucuronides dehydropregnenolone glucuronide and estriol glucuronide, both displaying exclusive correlations with genus Acetatifactor. CONCLUSION Both tonic and detoxifying herbs tested ameliorated experimental colitis and elicited alternative microbial and host metabolic reprogramming. The findings highlight the importance of presystemic interactions with gut microbiota to host metabolic shifts and promote modern translation of tonic and detoxifying properties of CMs.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Xuejiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Zhixiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Tai-Seng Wai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Wei Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| |
Collapse
|
33
|
Nicolai M, Steinberg J, Obermann HL, Solis FV, Bartok E, Bauer S, Jung S. Identification of an Optimal TLR8 Ligand by Alternating the Position of 2′-O-Ribose Methylation. Int J Mol Sci 2022; 23:ijms231911139. [PMID: 36232437 PMCID: PMC9570189 DOI: 10.3390/ijms231911139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Recognition of RNA by receptors of the innate immune system is regulated by various posttranslational modifications. Different single 2′-O-ribose (2′-O-) methylations have been shown to convert TLR7/TLR8 ligands into specific TLR8 ligands, so we investigated whether the position of 2′-O-methylation is crucial for its function. To this end, we designed different 2′-O-methylated RNA oligoribonucleotides (ORN), investigating their immune activity in various cell systems and analyzing degradation under RNase T2 treatment. We found that the 18S rRNA-derived TLR7/8 ligand, RNA63, was differentially digested as a result of 2′-O-methylation, leading to variations in TLR8 and TLR7 inhibition. The suitability of certain 2′-O-methylated RNA63 derivatives as TLR8 agonists was further demonstrated by the fact that other RNA sequences were only weak TLR8 agonists. We were thus able to identify specific 2′-O-methylated RNA derivatives as optimal TLR8 ligands.
Collapse
Affiliation(s)
- Marina Nicolai
- Institute for Immunology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Julia Steinberg
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | | | - Eva Bartok
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Stephanie Jung
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
34
|
Liu ZM, Yang MH, Yu K, Lian ZX, Deng SL. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front Pharmacol 2022; 13:989664. [PMID: 36188605 PMCID: PMC9518217 DOI: 10.3389/fphar.2022.989664] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) rapidly infects humans and animals which make coronavirus disease 2019 (COVID-19) a grievous epidemic worldwide which broke out in 2020. According to data analysis of the other coronavirus family, for instance severe acute respiratory syndrome SARS coronavirus (SARS-CoV), can provide experience for the mutation of SARS-CoV-2 and the prevention and treatment of COVID-19. Toll-like receptors (TLRs) as a pattern recognition receptor (PRRs), have an indispensable function in identifying the invader even activate the innate immune system. It is possible for organism to activate different TLR pathways which leads to secretion of proinflammatory cytokines such as Interleukin 1 (IL-1), Interleukin 6 (IL-6), Tumor necrosis factor α (TNFα) and type Ⅰ interferon. As a component of non-specific immunity, TLRs pathway may participate in the SARS-CoV-2 pathogenic processes, due to previous works have proved that TLRs are involved in the invasion and infection of SARS-CoV and MERS to varying degrees. Different TLR, such as TLR2, TLR4, TLR7, TLR8 and TLR9 probably have a double-sided in COVID-19 infection. Therefore, it is of great significance for a correctly acknowledging how TLR take part in the SARS-CoV-2 pathogenic processes, which will be the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Hui Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| |
Collapse
|
35
|
Board NL, Moskovljevic M, Wu F, Siliciano RF, Siliciano JD. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol 2022; 22:499-512. [PMID: 34824401 DOI: 10.1038/s41577-021-00649-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Combination antiretroviral therapy (ART) can block multiple stages of the HIV-1 life cycle to prevent progression to AIDS in people living with HIV-1. However, owing to the persistence of a reservoir of latently infected CD4+ T cells, life-long ART is necessary to prevent viral rebound. One strategy currently under consideration for curing HIV-1 infection is known as 'shock and kill'. This strategy uses latency-reversing agents to induce expression of HIV-1 genes, allowing for infected cells to be cleared by cytolytic immune cells. The role of innate immunity in HIV-1 pathogenesis is best understood in the context of acute infection. Here, we suggest that innate immunity can also be used to improve the efficacy of HIV-1 cure strategies, with a particular focus on dendritic cells (DCs) and natural killer cells. We discuss novel latency-reversing agents targeting DCs as well as DC-based strategies to enhance the clearance of infected cells by CD8+ T cells and strategies to improve the killing activity of natural killer cells.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Sharma BK, Ramakrishan S, Kaliappan A, Singh M, Kumar A, Dandapat S, Dey S, Chellappa MM. Evaluation of a Lipopolysaccharide and Resiquimod Combination as an Adjuvant with Inactivated Newcastle Disease Virus Vaccine in Chickens. Vaccines (Basel) 2022; 10:vaccines10060894. [PMID: 35746503 PMCID: PMC9229813 DOI: 10.3390/vaccines10060894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Various toll-like receptor (TLR) agonists have shown potential as adjuvants with different vaccines in both human and livestock species, including chickens. Our previous studies on combination of lipopolysaccharide (LPS; TLR4 agonist) and resiquimod (R-848; TLR7 agonist) showed the synergistic up-regulation of pro-inflammatory Th1 and Th2 cytokines in chicken peripheral blood mononuclear cells (PMBCs). Hence, the present study aimed to explore the combined adjuvant effect of LPS and R-848 with inactivated Newcastle disease virus (NDV) vaccine in chickens. Two weeks-old SPF chickens were immunized with inactivated NDV vaccine along with a combination of LPS and R-848 as an adjuvant with suitable control groups. A booster dose was given two weeks later. Antibody responses were assessed by enzyme linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) test, while cell-mediated immune responses were analyzed by a lymphocyte transformation test (LTT) and flow cytometry following vaccination. Two weeks post-booster, the birds were challenged with a velogenic strain of NDV, and protection against clinical signs, mortality and virus shedding was analyzed. The results indicated that inactivated NDV vaccine with R-848 induced significantly higher humoral and cellular immune responses with 100% protection against mortality and viral shedding following a virulent NDV challenge. However, the combination of LPS and R-848 along with inactivated NDV vaccine produced poor humoral and cellular immune responses and could not afford protection against challenge infection and virus shedding when compared to the vaccine-alone group, indicating the deleterious effects of the combination on antigen-specific immune responses. In conclusion, the combination of LPS and R-848 showed the inhibitory effects on antigen-specific humoral, cellular and protective immune responses when used as an adjuvant with inactivated NDV vaccines in chickens. This inhibitory effect might have occurred due to systemic cytokine storm. A nanoparticle-based delivery of the combination of LPS and R-848 for slow and sustained release could be tried as an alternative method to explore the synergistic effect of the combination as an adjuvant in chickens.
Collapse
Affiliation(s)
- Bal Krishnan Sharma
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Saravanan Ramakrishan
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
- Correspondence: ; Tel.: +91-941-246-3498
| | - Abinaya Kaliappan
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Mithilesh Singh
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Ajay Kumar
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Satyabrata Dandapat
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Sohini Dey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, India; (S.D.); (M.M.C.)
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, India; (S.D.); (M.M.C.)
| |
Collapse
|
37
|
Targeting Subviral Particles: A Critical Step in Achieving HBV Functional Cure but Where Are We with Current Agents in Clinical Development? Viruses 2022; 14:v14061193. [PMID: 35746664 PMCID: PMC9227515 DOI: 10.3390/v14061193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
|
38
|
Rolig AS, Rose DC, McGee GH, Rubas W, Kivimäe S, Redmond WL. Combining bempegaldesleukin (CD122-preferential IL-2 pathway agonist) and NKTR-262 (TLR7/8 agonist) improves systemic antitumor CD8 + T cell cytotoxicity over BEMPEG+RT. J Immunother Cancer 2022; 10:jitc-2021-004218. [PMID: 35444059 PMCID: PMC9021762 DOI: 10.1136/jitc-2021-004218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Tumor cell death caused by radiation therapy (RT) triggers antitumor immunity in part because dying cells release adjuvant factors that amplify and sustain dendritic cell and T cell responses. We previously demonstrated that bempegaldesleukin (BEMPEG: NKTR-214, an immunostimulatory IL-2 cytokine prodrug) significantly enhanced the antitumor efficacy of RT through a T cell-dependent mechanism. Because RT can induce either immunogenic or tolerogenic cell death, depending on various factors (radiation dose, cell cycle phase), we hypothesized that providing a specific immunogenic adjuvant, like intratumoral therapy with a novel toll-like receptor (TLR) 7/8 agonist, NKTR-262, would improve systemic tumor-specific responses through the activation of local innate immunity. Therefore, we evaluated whether intratumoral NKTR-262 combined with systemic BEMPEG treatment would elicit improved tumor-specific immunity and survival compared with RT combined with BEMPEG. Methods Tumor-bearing mice (CT26; EMT6) received BEMPEG (0.8 mg/kg; intravenously), RT (12 Gy × 1), and/or intratumoral NKTR-262 (0.5 mg/kg). Flow cytometry was used to evaluate CD4+ and CD8+ T cell responses in the blood and tumor 7 days post-treatment. The contribution of specific immune subsets was determined by depletion of CD4+, CD8+, or NK cells. CD8+ T cell cytolytic activity was determined by an in vitro CTL assay. Data are representative of 1–2 independent experiments (n=5–14/group) and statistical significance was determined by 1-way analysis of variance (ANOVA) or repeated measures ANOVA (p value cut-off of 0.05). Results BEMPEG+NKTR-262 significantly improved survival compared with BEMPEG+RT in a CD8+ T cell-dependent manner. Response to BEMPEG+NKTR-262 was characterized by a significant expansion of activated CD8+ T cells (GzmA+; Ki-67+; ICOS+; PD-1+) in the blood, which correlated with reduced tumor size (p<0.05). In the tumor, BEMPEG+NKTR-262 induced higher frequencies of GzmA+ CD8+ T cells exhibiting reduced expression of suppressive molecules (PD-1+), compared with BEMPEG+RT (p<0.05). Further, BEMPEG+NKTR-262 treatment induced greater tumor-specific CD8+ T cell cytolytic function than BEMPEG+RT. Conclusions BEMPEG+NKTR-262 therapy elicited more robust expansion of activated CD8+ T cells compared with BEMPEG+RT, suggesting that intratumoral TLR stimulation provides superior antigen presentation and costimulatory activity compared with RT. A clinical trial of BEMPEG+NKTR-262 for patients with metastatic solid tumors is in progress (NCT03435640).
Collapse
Affiliation(s)
- Annah S Rolig
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Daniel C Rose
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Grace Helen McGee
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | | | - William L Redmond
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| |
Collapse
|
39
|
Köllisch G, Solis FV, Obermann HL, Eckert J, Müller T, Vierbuchen T, Rickmeyer T, Muche S, Przyborski JM, Heine H, Kaufmann A, Baumeister S, Lingelbach K, Bauer S. TLR8 is activated by 5'-methylthioinosine, a Plasmodium falciparum-derived intermediate of the purine salvage pathway. Cell Rep 2022; 39:110691. [PMID: 35417716 DOI: 10.1016/j.celrep.2022.110691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
The innate immune recognition of the malaria-causing pathogen Plasmodium falciparum (P. falciparum) is not fully explored. Here, we identify the nucleoside 5'-methylthioinosine (MTI), a Plasmodium-specific intermediate of the purine salvage pathway, as a pathogen-derived Toll-like receptor 8 (TLR8) agonist. Co-incubation of MTI with the TLR8 enhancer poly(dT) as well as synthetic or P. falciparum-derived RNA strongly increase its stimulatory activity. Of note, MTI generated from methylthioadenosine (MTA) by P. falciparum lysates activates TLR8 when MTI metabolism is inhibited by immucillin targeting the purine nucleoside phosphorylase (PfPNP). Importantly, P. falciparum-infected red blood cells incubated with MTI or cultivated with MTA and immucillin lead to TLR8-dependent interleukin-6 (IL-6) production in human monocytes. Our data demonstrate that the nucleoside MTI is a natural human TLR8 ligand with possible in vivo relevance for innate sensing of P. falciparum.
Collapse
Affiliation(s)
- Gabriele Köllisch
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Hannah-Lena Obermann
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany
| | - Jeannine Eckert
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Thomas Müller
- Institute for Medical Microbiology, Immunology und Hygiene, Technical University Munich, Munich, Germany
| | - Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Rickmeyer
- Institute for Pharmaceutical Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Simon Muche
- Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany
| | - Stefan Baumeister
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Klaus Lingelbach
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
40
|
Chiang CY, Lane DJ, Zou Y, Hoffman T, Pan J, Hampton J, Maginnis J, Nayak BP, D'Oro U, Valiante N, Miller AT, Cooke M, Wu T, Bavari S, Panchal RG. A Novel Toll-Like Receptor 2 Agonist Protects Mice in a Prophylactic Treatment Model Against Challenge With Bacillus anthracis. Front Microbiol 2022; 13:803041. [PMID: 35369443 PMCID: PMC8965344 DOI: 10.3389/fmicb.2022.803041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Current therapies for anthrax include the use of antibiotics (i.e., doxycycline, and ciprofloxacin), an anthrax vaccine (BioThrax) and Bacillus anthracis-specific, monoclonal antibody (mAb) (i.e., Raxibacumab and obiltoxaximab). In this study, we investigated the activity of immunomodulators, which potentiate inflammatory responses through innate immune receptors. The rationale for the use of innate immune receptor agonists as adjunctive immunomodulators for infectious diseases is based on the concept that augmentation of host defense should promote the antimicrobial mechanism of the host. Our aim was to explore the anti-B. anthracis effector function of Toll-like receptor (TLR) agonists using a mouse model. Amongst the six TLR ligands tested, Pam3CSK4 (TLR1/2 ligand) was the best at protecting mice from lethal challenge of B. anthracis. We then evaluated the activity of a novel TLR2 ligand, DA-98-WW07. DA-98-WW07 demonstrated enhanced protection in B. anthracis infected mice. The surviving mice that received DA-98-WW07 when re-challenged with B. anthracis 20 days post the first infection showed increased survival rate. Moreover, ciprofloxacin, when treated in adjunct with a suboptimal concentration of DA-98-WW07 demonstrated augmented activity in protecting mice from B. anthracis infection. Taken together, we report the prophylactic treatment potential of DA-98-WW07 for anthrax and the utility of immunomodulators in combination with an antibiotic to treat infections caused by the B. anthracis bacterium.
Collapse
Affiliation(s)
- Chih-Yuan Chiang
- Division of Molecular Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Douglas J Lane
- Division of Molecular Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yefen Zou
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Tim Hoffman
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Jianfeng Pan
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Janice Hampton
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Jillian Maginnis
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Bishnu P Nayak
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Ugo D'Oro
- Novartis Vaccines and Diagnostics, Siena, Italy
| | | | - Andrew T Miller
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Michael Cooke
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Tom Wu
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Sina Bavari
- Division of Molecular Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Rekha G Panchal
- Division of Molecular Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
41
|
Liu J, He S, Luo Y, Zhang Y, Du X, Xu C, Pu K, Wang J. Tumor-Microenvironment-Activatable Polymer Nano-Immunomodulator for Precision Cancer Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106654. [PMID: 34854147 DOI: 10.1002/adma.202106654] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Cancer nanomedicine combined with immunotherapy has become a promising strategy for treating cancer in terms of safety and potency; however, precise regulation of the activation of antitumor immunity remains challenging. Herein, a smart semiconducting polymer nano-immunomodulator (SPNI), which responds to the acidic tumor microenvironment (TME), for precision photodynamic immunotherapy of cancer, is reported. The SPNI is self-assembled by a near-infrared (NIR)-absorbing semiconducting polymer and an amphipathic polymer conjugated with a Toll-like receptor 7 (TLR7) agonist via an acid-labile linker. Upon arrival at tumor site, SPNI undergoes hydrolysis and triggers an efficient liberation of TLR7 agonist in response to the acidic TME for dendritic cell activation. Moreover, SPNI exerts photodynamic effects for direct tumor eradication and immunogenic cancer cell death under NIR photoirradiation. The synergistic action of released immunogenic factors and acidic-TME-activated TLR7 agonist can serve as an in situ generated cancer vaccine to evoke strong antitumor activities. Notably, such localized immune activation boosts systemic antitumor immune responses, resulting in enhanced cytotoxic CD8+ T infiltration to inhibit tumor growth and metastasis. Thereby, this work presents a general strategy to devise prodrug of immunotherapeutics for precise regulation of cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yingli Luo
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yue Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xiaojiao Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
42
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
43
|
Naik R, Peden K. Regulatory Considerations on the Development of mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:187-205. [PMID: 32638114 DOI: 10.1007/82_2020_220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developing traditional viral vaccines for infectious diseases usually takes years, as these are usually produced either by chemical inactivation of the virus or attenuation of the pathogen, processes that can take considerable time to validate and also require the live pathogen. With the advent of nucleic-acid vaccines (DNA and mRNA), the time to vaccine design and production is considerably shortened, since once the platform has been established, all that is required is the sequence of the antigen gene, its synthesis and insertion into an appropriate expression vector; importantly, no infectious virus is required. mRNA vaccines have some advantages over DNA vaccines, such as expression in non-dividing cells and the absence of the perceived risk of integration into host genome. Also, generally lower doses are required to induce the immune response. Based on experience in recent clinical trials, mRNA-based vaccines are a promising novel platform that might be useful for the development of vaccines against emerging pandemic infectious diseases. This chapter discusses some of the specific issues that mRNA vaccines raise with respect to production, quality, safety and efficacy, and how they have been addressed so as to allow their evaluation in clinical trials.
Collapse
Affiliation(s)
- Ramachandra Naik
- Division of Vaccines and Related Products Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 71, Room 3045, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Keith Peden
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 52/72, Room 1220, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
44
|
Wang J, Wang L, Zhang Z, Wu M, Fei W, Yang Z, Zhang J. Elucidation of the hepatoprotective effect and mechanism of Melastoma dodecandrum Lour. based on network pharmacology and experimental validation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Zhang Z, Kuo JCT, Yao S, Zhang C, Khan H, Lee RJ. CpG Oligodeoxynucleotides for Anticancer Monotherapy from Preclinical Stages to Clinical Trials. Pharmaceutics 2021; 14:73. [PMID: 35056969 PMCID: PMC8780291 DOI: 10.3390/pharmaceutics14010073] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022] Open
Abstract
CpG oligodeoxynucleotides (CpG ODNs), the artificial versions of unmethylated CpG motifs that were originally discovered in bacterial DNA, are demonstrated not only as potent immunoadjuvants but also as anticancer agents by triggering toll-like receptor 9 (TLR9) activation in immune cells. TLR9 activation triggered by CpG ODN has been shown to activate plasmacytoid dendritic cells (pDCs) and cytotoxic T lymphocytes (CTLs), enhancing T cell-mediated antitumor immunity. However, the extent of antitumor immunity carried by TLR agonists has not been optimized individually or in combinations with cancer vaccines, resulting in a decreased preference for TLR agonists as adjuvants in clinical trials. Although various combination therapies involving CpG ODNs have been applied in clinical trials, none of the CpG ODN-based drugs have been approved by the FDA, owing to the short half-life of CpG ODNs in serum that leads to low activation of natural killer cells (NK cells) and CTLs, along with increases of pro-inflammatory cytokine productions. This review summarized the current innovation on CpG ODNs that are under clinical investigation and explored the future direction for CpG ODN-based nanomedicine as an anticancer monotherapy.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Siyu Yao
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA;
| | - Chi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Hira Khan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Abbottabad 22500, Pakistan
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| |
Collapse
|
46
|
Han Y, Wu J, Gong Z, Zhou Y, Li H, Wang B, Qian Q. Identification and development of a novel 5-gene diagnostic model based on immune infiltration analysis of osteoarthritis. J Transl Med 2021; 19:522. [PMID: 34949204 PMCID: PMC8705150 DOI: 10.1186/s12967-021-03183-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/05/2021] [Indexed: 11/27/2022] Open
Abstract
Background Osteoarthritis (OA), which is due to the progressive loss and degeneration of articular cartilage, is the leading cause of disability worldwide. Therefore, it is of great significance to explore OA biomarkers for the prevention, diagnosis, and treatment of OA. Methods and materials The GSE129147, GSE57218, GSE51588, GSE117999, and GSE98918 datasets with normal and OA samples were downloaded from the Gene Expression Omnibus (GEO) database. The GSE117999 and GSE98918 datasets were integrated, and immune infiltration was evaluated. The differentially expressed genes (DEGs) were analyzed using the limma package in R, and weighted gene co-expression network analysis (WGCNA) was used to explore the co-expression genes and co-expression modules. The co-expression module genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and hub genes were identified by the degree, MNC, closeness, and MCC algorithms. The hub genes were used to construct a diagnostic model based on support vector machines. Results The Immune Score in the OA samples was significantly higher than in the normal samples, and a total of 2313 DEGs were identified. Through WGCNA, we found that the yellow module was significantly positively correlated with the OA samples and Immune Score and negatively correlated with the normal samples. The 142 DEGs of the yellow module were related to biological processes such as regulation of inflammatory response, positive regulation of inflammatory response, blood vessel morphogenesis, endothelial cell migration, and humoral immune response. The intersections of the genes obtained by the 4 algorithms resulted in 5 final hub genes, and the diagnostic model constructed with these 5 genes showed good performance in the training and validation cohorts. Conclusions The 5-gene diagnostic model can be used to diagnose OA and guide clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03183-9.
Collapse
Affiliation(s)
- YaGuang Han
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jun Wu
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.,Department of Orthopaedic Surgery, Nantong Sixth People's Hospital, Nantong Hospital Affiliated To Shanghai University, Nantong, Jiangsu, China
| | - ZhenYu Gong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - YiQin Zhou
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - HaoBo Li
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Bo Wang
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.
| | - QiRong Qian
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
47
|
Wan D, Que H, Chen L, Lan T, Hong W, He C, Yang J, Wei Y, Wei X. Lymph-Node-Targeted Cholesterolized TLR7 Agonist Liposomes Provoke a Safe and Durable Antitumor Response. NANO LETTERS 2021; 21:7960-7969. [PMID: 34533963 DOI: 10.1021/acs.nanolett.1c01968] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Toll-like receptor (TLR) agonists as the potent stimulants of an innate immune system hold promises for applications in anticancer immunotherapy. However, most of them are limited in the clinical translation due to the uncontrolled systemic inflammatory response. In the current study, 1V209, a small molecule TLR7 agonist, was conjugated with cholesterol (1V209-Cho) and prepared into liposomes (1V209-Cho-Lip). 1V209-Cho-Lip exerted minimal toxic effects and enhanced the transportation ability in lymph nodes (LNs) compared with 1V209. 1V209-Cho-Lip treatment inhibited tumor progression in CT26 colorectal cancer, 4T1 breast cancer, and Pan02 pancreatic ductal cancer models through inducing effective DC activation and eliciting CD8+ T cell responses. Furthermore, 1V209-Cho-Lip induced tumor-specific memory immunity to inhibit cancer recurrence and metastasis. These results indicate that cholesterol conjugation with 1V209 is an effective approach to target lymph nodes and to reduce the adverse effects. This work provides a rational basis for the distribution optimization of TLR agonists for potential clinical use.
Collapse
Affiliation(s)
- Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
48
|
Wang Y, Gong N, Ma C, Zhang Y, Tan H, Qing G, Zhang J, Wang Y, Wang J, Chen S, Li X, Ni Q, Yuan Y, Gan Y, Chen J, Li F, Zhang J, Ou C, Zhao Y, Liu X, Liang XJ. An amphiphilic dendrimer as a light-activable immunological adjuvant for in situ cancer vaccination. Nat Commun 2021; 12:4964. [PMID: 34400628 PMCID: PMC8368031 DOI: 10.1038/s41467-021-25197-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Immunological adjuvants are essential for successful cancer vaccination. However, traditional adjuvants have some limitations, such as lack of controllability and induction of systemic toxicity, which restrict their broad application. Here, we present a light-activable immunological adjuvant (LIA), which is composed of a hypoxia-responsive amphiphilic dendrimer nanoparticle loaded with chlorin e6. Under irradiation with near-infrared light, the LIA not only induces tumour cell lysis and tumour antigen release, but also promotes the structural transformation of 2-nitroimidazole containing dendrimer to 2-aminoimidazole containing dendrimer which can activate dendritic cells via the Toll-like receptor 7-mediated signaling pathway. The LIA efficiently inhibits both primary and abscopal tumour growth and induces strong antigen-specific immune memory effect to prevent tumour metastasis and recurrence in vivo. Furthermore, LIA localizes the immunological adjuvant effect at the tumour site. We demonstrate this light-activable immunological adjuvant offers a safe and potent platform for in situ cancer vaccination. Immunological adjuvants are a crucial component of cancer vaccines. Here the authors design a light-activable immunological adjuvant, based on hypoxia-responsive amphiphilic dendrimer nanoparticles loaded with a photodynamic agent, promoting anti-tumor immune responses in preclinical cancer models.
Collapse
Affiliation(s)
- Yongchao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center for Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, China.,Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ningqiang Gong
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Chi Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center for Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, China
| | - Yuxuan Zhang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong Tan
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics, Guangxi Medical University, Guangxi, China
| | - Guangchao Qing
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jimei Zhang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yufei Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shizhu Chen
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xianlei Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiankun Ni
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Yuan
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaling Gan
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junge Chen
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fangzhou Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, China
| | - Caiwen Ou
- Dongguan Hospital of Southern Medical University, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics, Guangxi Medical University, Guangxi, China.
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center for Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, China.
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Combination Treatment of Topical Imiquimod Plus Anti-PD-1 Antibody Exerts Significantly Potent Antitumor Effect. Cancers (Basel) 2021; 13:cancers13163948. [PMID: 34439104 PMCID: PMC8391905 DOI: 10.3390/cancers13163948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
The exact mechanisms of the imiquimod (IMQ)-induced antitumor effect have not been fully understood. Although both topical IMQ treatment and anti-PD-1 antibody may be used for primary skin lesions or skin metastases of various cancers, the efficacy of each monotherapy for these lesions is insufficient. Using a murine tumor model and human samples, we aimed to elucidate the detailed mechanisms of the IMQ-induced antitumor effect and analyzed the antitumor effect of combination therapy of topical IMQ plus anti-PD-1 antibody. Topical IMQ significantly suppressed the tumor growth of MC38 in wildtype mice. IMQ upregulated interferon γ (IFN-γ) expression in CD8+ T cells in both the lymph nodes and the tumor, and the antitumor effect was abolished in both Rag1-deficient mice and IFN-γ-deficient mice, indicating that IFN-γ produced by CD8+ T cells play a crucial role in the IMQ-induced antitumor effect. IMQ also upregulated PD-1 expression in T cells as well as PD-L1/PD-L2 expression in myeloid cells, suggesting that IMQ induces not only T-cell activation but also T-cell exhaustion by enhanced PD-1 inhibitory signaling. Combination therapy of topical IMQ plus anti-PD-1 antibody exerted a significantly potent antitumor effect when compared with each single therapy, indicating that the combination therapy is a promising therapy for the skin lesions of various cancers.
Collapse
|
50
|
Budden CF, Gearing LJ, Kaiser R, Standke L, Hertzog PJ, Latz E. Inflammasome-induced extracellular vesicles harbour distinct RNA signatures and alter bystander macrophage responses. J Extracell Vesicles 2021; 10:e12127. [PMID: 34377374 PMCID: PMC8329986 DOI: 10.1002/jev2.12127] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious organisms and damage of cells can activate inflammasomes, which mediate tissue inflammation and adaptive immunity. These mechanisms evolved to curb the spread of microbes and to induce repair of the damaged tissue. Chronic activation of inflammasomes, however, contributes to non-resolving inflammatory responses that lead to immuno-pathologies. Inflammasome-activated cells undergo an inflammatory cell death associated with the release of potent pro-inflammatory cytokines and poorly characterized extracellular vesicles (EVs). Since inflammasome-induced EVs could signal inflammasome pathway activation in patients with chronic inflammation and modulate bystander cell activation, we performed a systems analysis of the ribonucleic acid (RNA) content and function of two EV classes. We show that EVs released from inflammasome-activated macrophages carry a specific RNA signature and contain interferon β (IFNβ). EV-associated IFNβ induces an interferon signature in bystander cells and results in dampening of NLRP3 inflammasome responses. EVs could, therefore, serve as biomarkers for inflammasome activation and act to prevent systemic hyper-inflammatory states by restricting NLRP3 activation in bystander cells.
Collapse
Affiliation(s)
- Christina F. Budden
- Institute of Innate ImmunityUniversity HospitalUniversity of BonnBonnGermany
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Romina Kaiser
- Institute of Innate ImmunityUniversity HospitalUniversity of BonnBonnGermany
| | - Lena Standke
- Institute of Innate ImmunityUniversity HospitalUniversity of BonnBonnGermany
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Paul J. Hertzog
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Eicke Latz
- Institute of Innate ImmunityUniversity HospitalUniversity of BonnBonnGermany
- Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
- German Centre for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|